xref: /openbmc/linux/drivers/net/phy/phy_device.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phy_led_triggers.h>
31 #include <linux/pse-pd/pse.h>
32 #include <linux/property.h>
33 #include <linux/sfp.h>
34 #include <linux/skbuff.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/uaccess.h>
38 #include <linux/unistd.h>
39 
40 MODULE_DESCRIPTION("PHY library");
41 MODULE_AUTHOR("Andy Fleming");
42 MODULE_LICENSE("GPL");
43 
44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
45 EXPORT_SYMBOL_GPL(phy_basic_features);
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_gbit_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
61 
62 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
63 EXPORT_SYMBOL_GPL(phy_10gbit_features);
64 
65 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
66 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
67 
68 const int phy_basic_ports_array[3] = {
69 	ETHTOOL_LINK_MODE_Autoneg_BIT,
70 	ETHTOOL_LINK_MODE_TP_BIT,
71 	ETHTOOL_LINK_MODE_MII_BIT,
72 };
73 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
74 
75 const int phy_fibre_port_array[1] = {
76 	ETHTOOL_LINK_MODE_FIBRE_BIT,
77 };
78 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
79 
80 const int phy_all_ports_features_array[7] = {
81 	ETHTOOL_LINK_MODE_Autoneg_BIT,
82 	ETHTOOL_LINK_MODE_TP_BIT,
83 	ETHTOOL_LINK_MODE_MII_BIT,
84 	ETHTOOL_LINK_MODE_FIBRE_BIT,
85 	ETHTOOL_LINK_MODE_AUI_BIT,
86 	ETHTOOL_LINK_MODE_BNC_BIT,
87 	ETHTOOL_LINK_MODE_Backplane_BIT,
88 };
89 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
90 
91 const int phy_10_100_features_array[4] = {
92 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
93 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
94 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
96 };
97 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
98 
99 const int phy_basic_t1_features_array[3] = {
100 	ETHTOOL_LINK_MODE_TP_BIT,
101 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
102 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
103 };
104 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
105 
106 const int phy_basic_t1s_p2mp_features_array[2] = {
107 	ETHTOOL_LINK_MODE_TP_BIT,
108 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
109 };
110 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
111 
112 const int phy_gbit_features_array[2] = {
113 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
114 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
115 };
116 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
117 
118 const int phy_10gbit_features_array[1] = {
119 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
120 };
121 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
122 
123 static const int phy_10gbit_fec_features_array[1] = {
124 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
125 };
126 
127 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
128 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
129 
130 static const int phy_10gbit_full_features_array[] = {
131 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
132 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
133 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
135 };
136 
137 static const int phy_eee_cap1_features_array[] = {
138 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
139 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
140 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
143 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
144 };
145 
146 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
147 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
148 
149 static void features_init(void)
150 {
151 	/* 10/100 half/full*/
152 	linkmode_set_bit_array(phy_basic_ports_array,
153 			       ARRAY_SIZE(phy_basic_ports_array),
154 			       phy_basic_features);
155 	linkmode_set_bit_array(phy_10_100_features_array,
156 			       ARRAY_SIZE(phy_10_100_features_array),
157 			       phy_basic_features);
158 
159 	/* 100 full, TP */
160 	linkmode_set_bit_array(phy_basic_t1_features_array,
161 			       ARRAY_SIZE(phy_basic_t1_features_array),
162 			       phy_basic_t1_features);
163 
164 	/* 10 half, P2MP, TP */
165 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
166 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
167 			       phy_basic_t1s_p2mp_features);
168 
169 	/* 10/100 half/full + 1000 half/full */
170 	linkmode_set_bit_array(phy_basic_ports_array,
171 			       ARRAY_SIZE(phy_basic_ports_array),
172 			       phy_gbit_features);
173 	linkmode_set_bit_array(phy_10_100_features_array,
174 			       ARRAY_SIZE(phy_10_100_features_array),
175 			       phy_gbit_features);
176 	linkmode_set_bit_array(phy_gbit_features_array,
177 			       ARRAY_SIZE(phy_gbit_features_array),
178 			       phy_gbit_features);
179 
180 	/* 10/100 half/full + 1000 half/full + fibre*/
181 	linkmode_set_bit_array(phy_basic_ports_array,
182 			       ARRAY_SIZE(phy_basic_ports_array),
183 			       phy_gbit_fibre_features);
184 	linkmode_set_bit_array(phy_10_100_features_array,
185 			       ARRAY_SIZE(phy_10_100_features_array),
186 			       phy_gbit_fibre_features);
187 	linkmode_set_bit_array(phy_gbit_features_array,
188 			       ARRAY_SIZE(phy_gbit_features_array),
189 			       phy_gbit_fibre_features);
190 	linkmode_set_bit_array(phy_fibre_port_array,
191 			       ARRAY_SIZE(phy_fibre_port_array),
192 			       phy_gbit_fibre_features);
193 
194 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
195 	linkmode_set_bit_array(phy_all_ports_features_array,
196 			       ARRAY_SIZE(phy_all_ports_features_array),
197 			       phy_gbit_all_ports_features);
198 	linkmode_set_bit_array(phy_10_100_features_array,
199 			       ARRAY_SIZE(phy_10_100_features_array),
200 			       phy_gbit_all_ports_features);
201 	linkmode_set_bit_array(phy_gbit_features_array,
202 			       ARRAY_SIZE(phy_gbit_features_array),
203 			       phy_gbit_all_ports_features);
204 
205 	/* 10/100 half/full + 1000 half/full + 10G full*/
206 	linkmode_set_bit_array(phy_all_ports_features_array,
207 			       ARRAY_SIZE(phy_all_ports_features_array),
208 			       phy_10gbit_features);
209 	linkmode_set_bit_array(phy_10_100_features_array,
210 			       ARRAY_SIZE(phy_10_100_features_array),
211 			       phy_10gbit_features);
212 	linkmode_set_bit_array(phy_gbit_features_array,
213 			       ARRAY_SIZE(phy_gbit_features_array),
214 			       phy_10gbit_features);
215 	linkmode_set_bit_array(phy_10gbit_features_array,
216 			       ARRAY_SIZE(phy_10gbit_features_array),
217 			       phy_10gbit_features);
218 
219 	/* 10/100/1000/10G full */
220 	linkmode_set_bit_array(phy_all_ports_features_array,
221 			       ARRAY_SIZE(phy_all_ports_features_array),
222 			       phy_10gbit_full_features);
223 	linkmode_set_bit_array(phy_10gbit_full_features_array,
224 			       ARRAY_SIZE(phy_10gbit_full_features_array),
225 			       phy_10gbit_full_features);
226 	/* 10G FEC only */
227 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
228 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
229 			       phy_10gbit_fec_features);
230 	linkmode_set_bit_array(phy_eee_cap1_features_array,
231 			       ARRAY_SIZE(phy_eee_cap1_features_array),
232 			       phy_eee_cap1_features);
233 
234 }
235 
236 void phy_device_free(struct phy_device *phydev)
237 {
238 	put_device(&phydev->mdio.dev);
239 }
240 EXPORT_SYMBOL(phy_device_free);
241 
242 static void phy_mdio_device_free(struct mdio_device *mdiodev)
243 {
244 	struct phy_device *phydev;
245 
246 	phydev = container_of(mdiodev, struct phy_device, mdio);
247 	phy_device_free(phydev);
248 }
249 
250 static void phy_device_release(struct device *dev)
251 {
252 	fwnode_handle_put(dev->fwnode);
253 	kfree(to_phy_device(dev));
254 }
255 
256 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
257 {
258 	struct phy_device *phydev;
259 
260 	phydev = container_of(mdiodev, struct phy_device, mdio);
261 	phy_device_remove(phydev);
262 }
263 
264 static struct phy_driver genphy_driver;
265 
266 static LIST_HEAD(phy_fixup_list);
267 static DEFINE_MUTEX(phy_fixup_lock);
268 
269 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
270 {
271 	struct device_driver *drv = phydev->mdio.dev.driver;
272 	struct phy_driver *phydrv = to_phy_driver(drv);
273 	struct net_device *netdev = phydev->attached_dev;
274 
275 	if (!drv || !phydrv->suspend)
276 		return false;
277 
278 	/* PHY not attached? May suspend if the PHY has not already been
279 	 * suspended as part of a prior call to phy_disconnect() ->
280 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
281 	 * MDIO bus driver and clock gated at this point.
282 	 */
283 	if (!netdev)
284 		goto out;
285 
286 	if (netdev->wol_enabled)
287 		return false;
288 
289 	/* As long as not all affected network drivers support the
290 	 * wol_enabled flag, let's check for hints that WoL is enabled.
291 	 * Don't suspend PHY if the attached netdev parent may wake up.
292 	 * The parent may point to a PCI device, as in tg3 driver.
293 	 */
294 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
295 		return false;
296 
297 	/* Also don't suspend PHY if the netdev itself may wakeup. This
298 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
299 	 * e.g. SoC devices.
300 	 */
301 	if (device_may_wakeup(&netdev->dev))
302 		return false;
303 
304 out:
305 	return !phydev->suspended;
306 }
307 
308 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
309 {
310 	struct phy_device *phydev = to_phy_device(dev);
311 
312 	if (phydev->mac_managed_pm)
313 		return 0;
314 
315 	/* Wakeup interrupts may occur during the system sleep transition when
316 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
317 	 * has resumed. Wait for concurrent interrupt handler to complete.
318 	 */
319 	if (phy_interrupt_is_valid(phydev)) {
320 		phydev->irq_suspended = 1;
321 		synchronize_irq(phydev->irq);
322 	}
323 
324 	/* We must stop the state machine manually, otherwise it stops out of
325 	 * control, possibly with the phydev->lock held. Upon resume, netdev
326 	 * may call phy routines that try to grab the same lock, and that may
327 	 * lead to a deadlock.
328 	 */
329 	if (phydev->attached_dev && phydev->adjust_link)
330 		phy_stop_machine(phydev);
331 
332 	if (!mdio_bus_phy_may_suspend(phydev))
333 		return 0;
334 
335 	phydev->suspended_by_mdio_bus = 1;
336 
337 	return phy_suspend(phydev);
338 }
339 
340 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
341 {
342 	struct phy_device *phydev = to_phy_device(dev);
343 	int ret;
344 
345 	if (phydev->mac_managed_pm)
346 		return 0;
347 
348 	if (!phydev->suspended_by_mdio_bus)
349 		goto no_resume;
350 
351 	phydev->suspended_by_mdio_bus = 0;
352 
353 	/* If we managed to get here with the PHY state machine in a state
354 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
355 	 * that something went wrong and we should most likely be using
356 	 * MAC managed PM, but we are not.
357 	 */
358 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
359 		phydev->state != PHY_UP);
360 
361 	ret = phy_init_hw(phydev);
362 	if (ret < 0)
363 		return ret;
364 
365 	ret = phy_resume(phydev);
366 	if (ret < 0)
367 		return ret;
368 no_resume:
369 	if (phy_interrupt_is_valid(phydev)) {
370 		phydev->irq_suspended = 0;
371 		synchronize_irq(phydev->irq);
372 
373 		/* Rerun interrupts which were postponed by phy_interrupt()
374 		 * because they occurred during the system sleep transition.
375 		 */
376 		if (phydev->irq_rerun) {
377 			phydev->irq_rerun = 0;
378 			enable_irq(phydev->irq);
379 			irq_wake_thread(phydev->irq, phydev);
380 		}
381 	}
382 
383 	if (phydev->attached_dev && phydev->adjust_link)
384 		phy_start_machine(phydev);
385 
386 	return 0;
387 }
388 
389 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
390 			 mdio_bus_phy_resume);
391 
392 /**
393  * phy_register_fixup - creates a new phy_fixup and adds it to the list
394  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
395  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
396  *	It can also be PHY_ANY_UID
397  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
398  *	comparison
399  * @run: The actual code to be run when a matching PHY is found
400  */
401 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
402 		       int (*run)(struct phy_device *))
403 {
404 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
405 
406 	if (!fixup)
407 		return -ENOMEM;
408 
409 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
410 	fixup->phy_uid = phy_uid;
411 	fixup->phy_uid_mask = phy_uid_mask;
412 	fixup->run = run;
413 
414 	mutex_lock(&phy_fixup_lock);
415 	list_add_tail(&fixup->list, &phy_fixup_list);
416 	mutex_unlock(&phy_fixup_lock);
417 
418 	return 0;
419 }
420 EXPORT_SYMBOL(phy_register_fixup);
421 
422 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
423 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
424 			       int (*run)(struct phy_device *))
425 {
426 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
427 }
428 EXPORT_SYMBOL(phy_register_fixup_for_uid);
429 
430 /* Registers a fixup to be run on the PHY with id string bus_id */
431 int phy_register_fixup_for_id(const char *bus_id,
432 			      int (*run)(struct phy_device *))
433 {
434 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
435 }
436 EXPORT_SYMBOL(phy_register_fixup_for_id);
437 
438 /**
439  * phy_unregister_fixup - remove a phy_fixup from the list
440  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
441  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
442  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
443  */
444 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
445 {
446 	struct list_head *pos, *n;
447 	struct phy_fixup *fixup;
448 	int ret;
449 
450 	ret = -ENODEV;
451 
452 	mutex_lock(&phy_fixup_lock);
453 	list_for_each_safe(pos, n, &phy_fixup_list) {
454 		fixup = list_entry(pos, struct phy_fixup, list);
455 
456 		if ((!strcmp(fixup->bus_id, bus_id)) &&
457 		    ((fixup->phy_uid & phy_uid_mask) ==
458 		     (phy_uid & phy_uid_mask))) {
459 			list_del(&fixup->list);
460 			kfree(fixup);
461 			ret = 0;
462 			break;
463 		}
464 	}
465 	mutex_unlock(&phy_fixup_lock);
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL(phy_unregister_fixup);
470 
471 /* Unregisters a fixup of any PHY with the UID in phy_uid */
472 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
473 {
474 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
475 }
476 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
477 
478 /* Unregisters a fixup of the PHY with id string bus_id */
479 int phy_unregister_fixup_for_id(const char *bus_id)
480 {
481 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
482 }
483 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
484 
485 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
486  * Fixups can be set to match any in one or more fields.
487  */
488 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
489 {
490 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
491 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
492 			return 0;
493 
494 	if ((fixup->phy_uid & fixup->phy_uid_mask) !=
495 	    (phydev->phy_id & fixup->phy_uid_mask))
496 		if (fixup->phy_uid != PHY_ANY_UID)
497 			return 0;
498 
499 	return 1;
500 }
501 
502 /* Runs any matching fixups for this phydev */
503 static int phy_scan_fixups(struct phy_device *phydev)
504 {
505 	struct phy_fixup *fixup;
506 
507 	mutex_lock(&phy_fixup_lock);
508 	list_for_each_entry(fixup, &phy_fixup_list, list) {
509 		if (phy_needs_fixup(phydev, fixup)) {
510 			int err = fixup->run(phydev);
511 
512 			if (err < 0) {
513 				mutex_unlock(&phy_fixup_lock);
514 				return err;
515 			}
516 			phydev->has_fixups = true;
517 		}
518 	}
519 	mutex_unlock(&phy_fixup_lock);
520 
521 	return 0;
522 }
523 
524 static int phy_bus_match(struct device *dev, struct device_driver *drv)
525 {
526 	struct phy_device *phydev = to_phy_device(dev);
527 	struct phy_driver *phydrv = to_phy_driver(drv);
528 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
529 	int i;
530 
531 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
532 		return 0;
533 
534 	if (phydrv->match_phy_device)
535 		return phydrv->match_phy_device(phydev);
536 
537 	if (phydev->is_c45) {
538 		for (i = 1; i < num_ids; i++) {
539 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
540 				continue;
541 
542 			if ((phydrv->phy_id & phydrv->phy_id_mask) ==
543 			    (phydev->c45_ids.device_ids[i] &
544 			     phydrv->phy_id_mask))
545 				return 1;
546 		}
547 		return 0;
548 	} else {
549 		return (phydrv->phy_id & phydrv->phy_id_mask) ==
550 			(phydev->phy_id & phydrv->phy_id_mask);
551 	}
552 }
553 
554 static ssize_t
555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct phy_device *phydev = to_phy_device(dev);
558 
559 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560 }
561 static DEVICE_ATTR_RO(phy_id);
562 
563 static ssize_t
564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 	const char *mode = NULL;
568 
569 	if (phy_is_internal(phydev))
570 		mode = "internal";
571 	else
572 		mode = phy_modes(phydev->interface);
573 
574 	return sysfs_emit(buf, "%s\n", mode);
575 }
576 static DEVICE_ATTR_RO(phy_interface);
577 
578 static ssize_t
579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 		    char *buf)
581 {
582 	struct phy_device *phydev = to_phy_device(dev);
583 
584 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585 }
586 static DEVICE_ATTR_RO(phy_has_fixups);
587 
588 static ssize_t phy_dev_flags_show(struct device *dev,
589 				  struct device_attribute *attr,
590 				  char *buf)
591 {
592 	struct phy_device *phydev = to_phy_device(dev);
593 
594 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595 }
596 static DEVICE_ATTR_RO(phy_dev_flags);
597 
598 static struct attribute *phy_dev_attrs[] = {
599 	&dev_attr_phy_id.attr,
600 	&dev_attr_phy_interface.attr,
601 	&dev_attr_phy_has_fixups.attr,
602 	&dev_attr_phy_dev_flags.attr,
603 	NULL,
604 };
605 ATTRIBUTE_GROUPS(phy_dev);
606 
607 static const struct device_type mdio_bus_phy_type = {
608 	.name = "PHY",
609 	.groups = phy_dev_groups,
610 	.release = phy_device_release,
611 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
612 };
613 
614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615 {
616 	int ret;
617 
618 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 			     MDIO_ID_ARGS(phy_id));
620 	/* We only check for failures in executing the usermode binary,
621 	 * not whether a PHY driver module exists for the PHY ID.
622 	 * Accept -ENOENT because this may occur in case no initramfs exists,
623 	 * then modprobe isn't available.
624 	 */
625 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 			   ret, (unsigned long)phy_id);
628 		return ret;
629 	}
630 
631 	return 0;
632 }
633 
634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 				     bool is_c45,
636 				     struct phy_c45_device_ids *c45_ids)
637 {
638 	struct phy_device *dev;
639 	struct mdio_device *mdiodev;
640 	int ret = 0;
641 
642 	/* We allocate the device, and initialize the default values */
643 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 	if (!dev)
645 		return ERR_PTR(-ENOMEM);
646 
647 	mdiodev = &dev->mdio;
648 	mdiodev->dev.parent = &bus->dev;
649 	mdiodev->dev.bus = &mdio_bus_type;
650 	mdiodev->dev.type = &mdio_bus_phy_type;
651 	mdiodev->bus = bus;
652 	mdiodev->bus_match = phy_bus_match;
653 	mdiodev->addr = addr;
654 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 	mdiodev->device_free = phy_mdio_device_free;
656 	mdiodev->device_remove = phy_mdio_device_remove;
657 
658 	dev->speed = SPEED_UNKNOWN;
659 	dev->duplex = DUPLEX_UNKNOWN;
660 	dev->pause = 0;
661 	dev->asym_pause = 0;
662 	dev->link = 0;
663 	dev->port = PORT_TP;
664 	dev->interface = PHY_INTERFACE_MODE_GMII;
665 
666 	dev->autoneg = AUTONEG_ENABLE;
667 
668 	dev->pma_extable = -ENODATA;
669 	dev->is_c45 = is_c45;
670 	dev->phy_id = phy_id;
671 	if (c45_ids)
672 		dev->c45_ids = *c45_ids;
673 	dev->irq = bus->irq[addr];
674 
675 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
676 	device_initialize(&mdiodev->dev);
677 
678 	dev->state = PHY_DOWN;
679 	INIT_LIST_HEAD(&dev->leds);
680 
681 	mutex_init(&dev->lock);
682 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
683 
684 	/* Request the appropriate module unconditionally; don't
685 	 * bother trying to do so only if it isn't already loaded,
686 	 * because that gets complicated. A hotplug event would have
687 	 * done an unconditional modprobe anyway.
688 	 * We don't do normal hotplug because it won't work for MDIO
689 	 * -- because it relies on the device staying around for long
690 	 * enough for the driver to get loaded. With MDIO, the NIC
691 	 * driver will get bored and give up as soon as it finds that
692 	 * there's no driver _already_ loaded.
693 	 */
694 	if (is_c45 && c45_ids) {
695 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
696 		int i;
697 
698 		for (i = 1; i < num_ids; i++) {
699 			if (c45_ids->device_ids[i] == 0xffffffff)
700 				continue;
701 
702 			ret = phy_request_driver_module(dev,
703 						c45_ids->device_ids[i]);
704 			if (ret)
705 				break;
706 		}
707 	} else {
708 		ret = phy_request_driver_module(dev, phy_id);
709 	}
710 
711 	if (ret) {
712 		put_device(&mdiodev->dev);
713 		dev = ERR_PTR(ret);
714 	}
715 
716 	return dev;
717 }
718 EXPORT_SYMBOL(phy_device_create);
719 
720 /* phy_c45_probe_present - checks to see if a MMD is present in the package
721  * @bus: the target MII bus
722  * @prtad: PHY package address on the MII bus
723  * @devad: PHY device (MMD) address
724  *
725  * Read the MDIO_STAT2 register, and check whether a device is responding
726  * at this address.
727  *
728  * Returns: negative error number on bus access error, zero if no device
729  * is responding, or positive if a device is present.
730  */
731 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
732 {
733 	int stat2;
734 
735 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
736 	if (stat2 < 0)
737 		return stat2;
738 
739 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
740 }
741 
742 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
743  * @bus: the target MII bus
744  * @addr: PHY address on the MII bus
745  * @dev_addr: MMD address in the PHY.
746  * @devices_in_package: where to store the devices in package information.
747  *
748  * Description: reads devices in package registers of a MMD at @dev_addr
749  * from PHY at @addr on @bus.
750  *
751  * Returns: 0 on success, -EIO on failure.
752  */
753 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
754 				   u32 *devices_in_package)
755 {
756 	int phy_reg;
757 
758 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
759 	if (phy_reg < 0)
760 		return -EIO;
761 	*devices_in_package = phy_reg << 16;
762 
763 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
764 	if (phy_reg < 0)
765 		return -EIO;
766 	*devices_in_package |= phy_reg;
767 
768 	return 0;
769 }
770 
771 /**
772  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
773  * @bus: the target MII bus
774  * @addr: PHY address on the MII bus
775  * @c45_ids: where to store the c45 ID information.
776  *
777  * Read the PHY "devices in package". If this appears to be valid, read
778  * the PHY identifiers for each device. Return the "devices in package"
779  * and identifiers in @c45_ids.
780  *
781  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
782  * the "devices in package" is invalid.
783  */
784 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
785 			   struct phy_c45_device_ids *c45_ids)
786 {
787 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
788 	u32 devs_in_pkg = 0;
789 	int i, ret, phy_reg;
790 
791 	/* Find first non-zero Devices In package. Device zero is reserved
792 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
793 	 */
794 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
795 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
796 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
797 			/* Check that there is a device present at this
798 			 * address before reading the devices-in-package
799 			 * register to avoid reading garbage from the PHY.
800 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
801 			 * compliant.
802 			 */
803 			ret = phy_c45_probe_present(bus, addr, i);
804 			if (ret < 0)
805 				return -EIO;
806 
807 			if (!ret)
808 				continue;
809 		}
810 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
811 		if (phy_reg < 0)
812 			return -EIO;
813 	}
814 
815 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
816 		/* If mostly Fs, there is no device there, then let's probe
817 		 * MMD 0, as some 10G PHYs have zero Devices In package,
818 		 * e.g. Cortina CS4315/CS4340 PHY.
819 		 */
820 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
821 		if (phy_reg < 0)
822 			return -EIO;
823 
824 		/* no device there, let's get out of here */
825 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
826 			return -ENODEV;
827 	}
828 
829 	/* Now probe Device Identifiers for each device present. */
830 	for (i = 1; i < num_ids; i++) {
831 		if (!(devs_in_pkg & (1 << i)))
832 			continue;
833 
834 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
835 			/* Probe the "Device Present" bits for the vendor MMDs
836 			 * to ignore these if they do not contain IEEE 802.3
837 			 * registers.
838 			 */
839 			ret = phy_c45_probe_present(bus, addr, i);
840 			if (ret < 0)
841 				return ret;
842 
843 			if (!ret)
844 				continue;
845 		}
846 
847 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
848 		if (phy_reg < 0)
849 			return -EIO;
850 		c45_ids->device_ids[i] = phy_reg << 16;
851 
852 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
853 		if (phy_reg < 0)
854 			return -EIO;
855 		c45_ids->device_ids[i] |= phy_reg;
856 	}
857 
858 	c45_ids->devices_in_package = devs_in_pkg;
859 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
860 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
861 
862 	return 0;
863 }
864 
865 /**
866  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
867  * @bus: the target MII bus
868  * @addr: PHY address on the MII bus
869  * @phy_id: where to store the ID retrieved.
870  *
871  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
872  * placing it in @phy_id. Return zero on successful read and the ID is
873  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
874  * or invalid ID.
875  */
876 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
877 {
878 	int phy_reg;
879 
880 	/* Grab the bits from PHYIR1, and put them in the upper half */
881 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
882 	if (phy_reg < 0) {
883 		/* returning -ENODEV doesn't stop bus scanning */
884 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
885 	}
886 
887 	*phy_id = phy_reg << 16;
888 
889 	/* Grab the bits from PHYIR2, and put them in the lower half */
890 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
891 	if (phy_reg < 0) {
892 		/* returning -ENODEV doesn't stop bus scanning */
893 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
894 	}
895 
896 	*phy_id |= phy_reg;
897 
898 	/* If the phy_id is mostly Fs, there is no device there */
899 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
900 		return -ENODEV;
901 
902 	return 0;
903 }
904 
905 /* Extract the phy ID from the compatible string of the form
906  * ethernet-phy-idAAAA.BBBB.
907  */
908 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
909 {
910 	unsigned int upper, lower;
911 	const char *cp;
912 	int ret;
913 
914 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
915 	if (ret)
916 		return ret;
917 
918 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
919 		return -EINVAL;
920 
921 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
922 	return 0;
923 }
924 EXPORT_SYMBOL(fwnode_get_phy_id);
925 
926 /**
927  * get_phy_device - reads the specified PHY device and returns its @phy_device
928  *		    struct
929  * @bus: the target MII bus
930  * @addr: PHY address on the MII bus
931  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
932  *
933  * Probe for a PHY at @addr on @bus.
934  *
935  * When probing for a clause 22 PHY, then read the ID registers. If we find
936  * a valid ID, allocate and return a &struct phy_device.
937  *
938  * When probing for a clause 45 PHY, read the "devices in package" registers.
939  * If the "devices in package" appears valid, read the ID registers for each
940  * MMD, allocate and return a &struct phy_device.
941  *
942  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
943  * no PHY present, or %-EIO on bus access error.
944  */
945 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
946 {
947 	struct phy_c45_device_ids c45_ids;
948 	u32 phy_id = 0;
949 	int r;
950 
951 	c45_ids.devices_in_package = 0;
952 	c45_ids.mmds_present = 0;
953 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
954 
955 	if (is_c45)
956 		r = get_phy_c45_ids(bus, addr, &c45_ids);
957 	else
958 		r = get_phy_c22_id(bus, addr, &phy_id);
959 
960 	if (r)
961 		return ERR_PTR(r);
962 
963 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
964 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
965 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
966 	 * space, if successful, create the C45 PHY device.
967 	 */
968 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
969 		r = get_phy_c45_ids(bus, addr, &c45_ids);
970 		if (!r)
971 			return phy_device_create(bus, addr, phy_id,
972 						 true, &c45_ids);
973 	}
974 
975 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
976 }
977 EXPORT_SYMBOL(get_phy_device);
978 
979 /**
980  * phy_device_register - Register the phy device on the MDIO bus
981  * @phydev: phy_device structure to be added to the MDIO bus
982  */
983 int phy_device_register(struct phy_device *phydev)
984 {
985 	int err;
986 
987 	err = mdiobus_register_device(&phydev->mdio);
988 	if (err)
989 		return err;
990 
991 	/* Deassert the reset signal */
992 	phy_device_reset(phydev, 0);
993 
994 	/* Run all of the fixups for this PHY */
995 	err = phy_scan_fixups(phydev);
996 	if (err) {
997 		phydev_err(phydev, "failed to initialize\n");
998 		goto out;
999 	}
1000 
1001 	err = device_add(&phydev->mdio.dev);
1002 	if (err) {
1003 		phydev_err(phydev, "failed to add\n");
1004 		goto out;
1005 	}
1006 
1007 	return 0;
1008 
1009  out:
1010 	/* Assert the reset signal */
1011 	phy_device_reset(phydev, 1);
1012 
1013 	mdiobus_unregister_device(&phydev->mdio);
1014 	return err;
1015 }
1016 EXPORT_SYMBOL(phy_device_register);
1017 
1018 /**
1019  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1020  * @phydev: phy_device structure to remove
1021  *
1022  * This doesn't free the phy_device itself, it merely reverses the effects
1023  * of phy_device_register(). Use phy_device_free() to free the device
1024  * after calling this function.
1025  */
1026 void phy_device_remove(struct phy_device *phydev)
1027 {
1028 	unregister_mii_timestamper(phydev->mii_ts);
1029 	pse_control_put(phydev->psec);
1030 
1031 	device_del(&phydev->mdio.dev);
1032 
1033 	/* Assert the reset signal */
1034 	phy_device_reset(phydev, 1);
1035 
1036 	mdiobus_unregister_device(&phydev->mdio);
1037 }
1038 EXPORT_SYMBOL(phy_device_remove);
1039 
1040 /**
1041  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1042  * @phydev: phy_device structure to read 802.3-c45 IDs
1043  *
1044  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1045  * the "devices in package" is invalid.
1046  */
1047 int phy_get_c45_ids(struct phy_device *phydev)
1048 {
1049 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1050 			       &phydev->c45_ids);
1051 }
1052 EXPORT_SYMBOL(phy_get_c45_ids);
1053 
1054 /**
1055  * phy_find_first - finds the first PHY device on the bus
1056  * @bus: the target MII bus
1057  */
1058 struct phy_device *phy_find_first(struct mii_bus *bus)
1059 {
1060 	struct phy_device *phydev;
1061 	int addr;
1062 
1063 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1064 		phydev = mdiobus_get_phy(bus, addr);
1065 		if (phydev)
1066 			return phydev;
1067 	}
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(phy_find_first);
1071 
1072 static void phy_link_change(struct phy_device *phydev, bool up)
1073 {
1074 	struct net_device *netdev = phydev->attached_dev;
1075 
1076 	if (up)
1077 		netif_carrier_on(netdev);
1078 	else
1079 		netif_carrier_off(netdev);
1080 	phydev->adjust_link(netdev);
1081 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1082 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1083 }
1084 
1085 /**
1086  * phy_prepare_link - prepares the PHY layer to monitor link status
1087  * @phydev: target phy_device struct
1088  * @handler: callback function for link status change notifications
1089  *
1090  * Description: Tells the PHY infrastructure to handle the
1091  *   gory details on monitoring link status (whether through
1092  *   polling or an interrupt), and to call back to the
1093  *   connected device driver when the link status changes.
1094  *   If you want to monitor your own link state, don't call
1095  *   this function.
1096  */
1097 static void phy_prepare_link(struct phy_device *phydev,
1098 			     void (*handler)(struct net_device *))
1099 {
1100 	phydev->adjust_link = handler;
1101 }
1102 
1103 /**
1104  * phy_connect_direct - connect an ethernet device to a specific phy_device
1105  * @dev: the network device to connect
1106  * @phydev: the pointer to the phy device
1107  * @handler: callback function for state change notifications
1108  * @interface: PHY device's interface
1109  */
1110 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1111 		       void (*handler)(struct net_device *),
1112 		       phy_interface_t interface)
1113 {
1114 	int rc;
1115 
1116 	if (!dev)
1117 		return -EINVAL;
1118 
1119 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1120 	if (rc)
1121 		return rc;
1122 
1123 	phy_prepare_link(phydev, handler);
1124 	if (phy_interrupt_is_valid(phydev))
1125 		phy_request_interrupt(phydev);
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL(phy_connect_direct);
1130 
1131 /**
1132  * phy_connect - connect an ethernet device to a PHY device
1133  * @dev: the network device to connect
1134  * @bus_id: the id string of the PHY device to connect
1135  * @handler: callback function for state change notifications
1136  * @interface: PHY device's interface
1137  *
1138  * Description: Convenience function for connecting ethernet
1139  *   devices to PHY devices.  The default behavior is for
1140  *   the PHY infrastructure to handle everything, and only notify
1141  *   the connected driver when the link status changes.  If you
1142  *   don't want, or can't use the provided functionality, you may
1143  *   choose to call only the subset of functions which provide
1144  *   the desired functionality.
1145  */
1146 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1147 			       void (*handler)(struct net_device *),
1148 			       phy_interface_t interface)
1149 {
1150 	struct phy_device *phydev;
1151 	struct device *d;
1152 	int rc;
1153 
1154 	/* Search the list of PHY devices on the mdio bus for the
1155 	 * PHY with the requested name
1156 	 */
1157 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1158 	if (!d) {
1159 		pr_err("PHY %s not found\n", bus_id);
1160 		return ERR_PTR(-ENODEV);
1161 	}
1162 	phydev = to_phy_device(d);
1163 
1164 	rc = phy_connect_direct(dev, phydev, handler, interface);
1165 	put_device(d);
1166 	if (rc)
1167 		return ERR_PTR(rc);
1168 
1169 	return phydev;
1170 }
1171 EXPORT_SYMBOL(phy_connect);
1172 
1173 /**
1174  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1175  *		    device
1176  * @phydev: target phy_device struct
1177  */
1178 void phy_disconnect(struct phy_device *phydev)
1179 {
1180 	if (phy_is_started(phydev))
1181 		phy_stop(phydev);
1182 
1183 	if (phy_interrupt_is_valid(phydev))
1184 		phy_free_interrupt(phydev);
1185 
1186 	phydev->adjust_link = NULL;
1187 
1188 	phy_detach(phydev);
1189 }
1190 EXPORT_SYMBOL(phy_disconnect);
1191 
1192 /**
1193  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1194  * @phydev: The PHY device to poll
1195  *
1196  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1197  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1198  *   register must be polled until the BMCR_RESET bit clears.
1199  *
1200  *   Furthermore, any attempts to write to PHY registers may have no effect
1201  *   or even generate MDIO bus errors until this is complete.
1202  *
1203  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1204  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1205  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1206  *   effort to support such broken PHYs, this function is separate from the
1207  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1208  *   and reapply all driver-specific and board-specific fixups.
1209  */
1210 static int phy_poll_reset(struct phy_device *phydev)
1211 {
1212 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1213 	int ret, val;
1214 
1215 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1216 				    50000, 600000, true);
1217 	if (ret)
1218 		return ret;
1219 	/* Some chips (smsc911x) may still need up to another 1ms after the
1220 	 * BMCR_RESET bit is cleared before they are usable.
1221 	 */
1222 	msleep(1);
1223 	return 0;
1224 }
1225 
1226 int phy_init_hw(struct phy_device *phydev)
1227 {
1228 	int ret = 0;
1229 
1230 	/* Deassert the reset signal */
1231 	phy_device_reset(phydev, 0);
1232 
1233 	if (!phydev->drv)
1234 		return 0;
1235 
1236 	if (phydev->drv->soft_reset) {
1237 		ret = phydev->drv->soft_reset(phydev);
1238 		/* see comment in genphy_soft_reset for an explanation */
1239 		if (!ret)
1240 			phydev->suspended = 0;
1241 	}
1242 
1243 	if (ret < 0)
1244 		return ret;
1245 
1246 	ret = phy_scan_fixups(phydev);
1247 	if (ret < 0)
1248 		return ret;
1249 
1250 	if (phydev->drv->config_init) {
1251 		ret = phydev->drv->config_init(phydev);
1252 		if (ret < 0)
1253 			return ret;
1254 	}
1255 
1256 	if (phydev->drv->config_intr) {
1257 		ret = phydev->drv->config_intr(phydev);
1258 		if (ret < 0)
1259 			return ret;
1260 	}
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(phy_init_hw);
1265 
1266 void phy_attached_info(struct phy_device *phydev)
1267 {
1268 	phy_attached_print(phydev, NULL);
1269 }
1270 EXPORT_SYMBOL(phy_attached_info);
1271 
1272 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1273 char *phy_attached_info_irq(struct phy_device *phydev)
1274 {
1275 	char *irq_str;
1276 	char irq_num[8];
1277 
1278 	switch(phydev->irq) {
1279 	case PHY_POLL:
1280 		irq_str = "POLL";
1281 		break;
1282 	case PHY_MAC_INTERRUPT:
1283 		irq_str = "MAC";
1284 		break;
1285 	default:
1286 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1287 		irq_str = irq_num;
1288 		break;
1289 	}
1290 
1291 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1292 }
1293 EXPORT_SYMBOL(phy_attached_info_irq);
1294 
1295 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1296 {
1297 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1298 	char *irq_str = phy_attached_info_irq(phydev);
1299 
1300 	if (!fmt) {
1301 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1302 			    phydev_name(phydev), irq_str);
1303 	} else {
1304 		va_list ap;
1305 
1306 		phydev_info(phydev, ATTACHED_FMT, unbound,
1307 			    phydev_name(phydev), irq_str);
1308 
1309 		va_start(ap, fmt);
1310 		vprintk(fmt, ap);
1311 		va_end(ap);
1312 	}
1313 	kfree(irq_str);
1314 }
1315 EXPORT_SYMBOL(phy_attached_print);
1316 
1317 static void phy_sysfs_create_links(struct phy_device *phydev)
1318 {
1319 	struct net_device *dev = phydev->attached_dev;
1320 	int err;
1321 
1322 	if (!dev)
1323 		return;
1324 
1325 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1326 				"attached_dev");
1327 	if (err)
1328 		return;
1329 
1330 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1331 				       &phydev->mdio.dev.kobj,
1332 				       "phydev");
1333 	if (err) {
1334 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1335 			kobject_name(&phydev->mdio.dev.kobj),
1336 			err);
1337 		/* non-fatal - some net drivers can use one netdevice
1338 		 * with more then one phy
1339 		 */
1340 	}
1341 
1342 	phydev->sysfs_links = true;
1343 }
1344 
1345 static ssize_t
1346 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1347 		    char *buf)
1348 {
1349 	struct phy_device *phydev = to_phy_device(dev);
1350 
1351 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1352 }
1353 static DEVICE_ATTR_RO(phy_standalone);
1354 
1355 /**
1356  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1357  * @upstream: pointer to the phy device
1358  * @bus: sfp bus representing cage being attached
1359  *
1360  * This is used to fill in the sfp_upstream_ops .attach member.
1361  */
1362 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1363 {
1364 	struct phy_device *phydev = upstream;
1365 
1366 	if (phydev->attached_dev)
1367 		phydev->attached_dev->sfp_bus = bus;
1368 	phydev->sfp_bus_attached = true;
1369 }
1370 EXPORT_SYMBOL(phy_sfp_attach);
1371 
1372 /**
1373  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1374  * @upstream: pointer to the phy device
1375  * @bus: sfp bus representing cage being attached
1376  *
1377  * This is used to fill in the sfp_upstream_ops .detach member.
1378  */
1379 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1380 {
1381 	struct phy_device *phydev = upstream;
1382 
1383 	if (phydev->attached_dev)
1384 		phydev->attached_dev->sfp_bus = NULL;
1385 	phydev->sfp_bus_attached = false;
1386 }
1387 EXPORT_SYMBOL(phy_sfp_detach);
1388 
1389 /**
1390  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1391  * @phydev: Pointer to phy_device
1392  * @ops: SFP's upstream operations
1393  */
1394 int phy_sfp_probe(struct phy_device *phydev,
1395 		  const struct sfp_upstream_ops *ops)
1396 {
1397 	struct sfp_bus *bus;
1398 	int ret = 0;
1399 
1400 	if (phydev->mdio.dev.fwnode) {
1401 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1402 		if (IS_ERR(bus))
1403 			return PTR_ERR(bus);
1404 
1405 		phydev->sfp_bus = bus;
1406 
1407 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1408 		sfp_bus_put(bus);
1409 	}
1410 	return ret;
1411 }
1412 EXPORT_SYMBOL(phy_sfp_probe);
1413 
1414 /**
1415  * phy_attach_direct - attach a network device to a given PHY device pointer
1416  * @dev: network device to attach
1417  * @phydev: Pointer to phy_device to attach
1418  * @flags: PHY device's dev_flags
1419  * @interface: PHY device's interface
1420  *
1421  * Description: Called by drivers to attach to a particular PHY
1422  *     device. The phy_device is found, and properly hooked up
1423  *     to the phy_driver.  If no driver is attached, then a
1424  *     generic driver is used.  The phy_device is given a ptr to
1425  *     the attaching device, and given a callback for link status
1426  *     change.  The phy_device is returned to the attaching driver.
1427  *     This function takes a reference on the phy device.
1428  */
1429 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1430 		      u32 flags, phy_interface_t interface)
1431 {
1432 	struct mii_bus *bus = phydev->mdio.bus;
1433 	struct device *d = &phydev->mdio.dev;
1434 	struct module *ndev_owner = NULL;
1435 	bool using_genphy = false;
1436 	int err;
1437 
1438 	/* For Ethernet device drivers that register their own MDIO bus, we
1439 	 * will have bus->owner match ndev_mod, so we do not want to increment
1440 	 * our own module->refcnt here, otherwise we would not be able to
1441 	 * unload later on.
1442 	 */
1443 	if (dev)
1444 		ndev_owner = dev->dev.parent->driver->owner;
1445 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1446 		phydev_err(phydev, "failed to get the bus module\n");
1447 		return -EIO;
1448 	}
1449 
1450 	get_device(d);
1451 
1452 	/* Assume that if there is no driver, that it doesn't
1453 	 * exist, and we should use the genphy driver.
1454 	 */
1455 	if (!d->driver) {
1456 		if (phydev->is_c45)
1457 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1458 		else
1459 			d->driver = &genphy_driver.mdiodrv.driver;
1460 
1461 		using_genphy = true;
1462 	}
1463 
1464 	if (!try_module_get(d->driver->owner)) {
1465 		phydev_err(phydev, "failed to get the device driver module\n");
1466 		err = -EIO;
1467 		goto error_put_device;
1468 	}
1469 
1470 	if (using_genphy) {
1471 		err = d->driver->probe(d);
1472 		if (err >= 0)
1473 			err = device_bind_driver(d);
1474 
1475 		if (err)
1476 			goto error_module_put;
1477 	}
1478 
1479 	if (phydev->attached_dev) {
1480 		dev_err(&dev->dev, "PHY already attached\n");
1481 		err = -EBUSY;
1482 		goto error;
1483 	}
1484 
1485 	phydev->phy_link_change = phy_link_change;
1486 	if (dev) {
1487 		phydev->attached_dev = dev;
1488 		dev->phydev = phydev;
1489 
1490 		if (phydev->sfp_bus_attached)
1491 			dev->sfp_bus = phydev->sfp_bus;
1492 		else if (dev->sfp_bus)
1493 			phydev->is_on_sfp_module = true;
1494 	}
1495 
1496 	/* Some Ethernet drivers try to connect to a PHY device before
1497 	 * calling register_netdevice() -> netdev_register_kobject() and
1498 	 * does the dev->dev.kobj initialization. Here we only check for
1499 	 * success which indicates that the network device kobject is
1500 	 * ready. Once we do that we still need to keep track of whether
1501 	 * links were successfully set up or not for phy_detach() to
1502 	 * remove them accordingly.
1503 	 */
1504 	phydev->sysfs_links = false;
1505 
1506 	phy_sysfs_create_links(phydev);
1507 
1508 	if (!phydev->attached_dev) {
1509 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1510 					&dev_attr_phy_standalone.attr);
1511 		if (err)
1512 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1513 	}
1514 
1515 	phydev->dev_flags |= flags;
1516 
1517 	phydev->interface = interface;
1518 
1519 	phydev->state = PHY_READY;
1520 
1521 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1522 
1523 	/* PHYs can request to use poll mode even though they have an
1524 	 * associated interrupt line. This could be the case if they
1525 	 * detect a broken interrupt handling.
1526 	 */
1527 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1528 		phydev->irq = PHY_POLL;
1529 
1530 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1531 	 * it to different value depending on the PHY configuration. If we have
1532 	 * the generic PHY driver we can't figure it out, thus set the old
1533 	 * legacy PORT_MII value.
1534 	 */
1535 	if (using_genphy)
1536 		phydev->port = PORT_MII;
1537 
1538 	/* Initial carrier state is off as the phy is about to be
1539 	 * (re)initialized.
1540 	 */
1541 	if (dev)
1542 		netif_carrier_off(phydev->attached_dev);
1543 
1544 	/* Do initial configuration here, now that
1545 	 * we have certain key parameters
1546 	 * (dev_flags and interface)
1547 	 */
1548 	err = phy_init_hw(phydev);
1549 	if (err)
1550 		goto error;
1551 
1552 	phy_resume(phydev);
1553 	phy_led_triggers_register(phydev);
1554 
1555 	/**
1556 	 * If the external phy used by current mac interface is managed by
1557 	 * another mac interface, so we should create a device link between
1558 	 * phy dev and mac dev.
1559 	 */
1560 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1561 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1562 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1563 
1564 	return err;
1565 
1566 error:
1567 	/* phy_detach() does all of the cleanup below */
1568 	phy_detach(phydev);
1569 	return err;
1570 
1571 error_module_put:
1572 	module_put(d->driver->owner);
1573 	d->driver = NULL;
1574 error_put_device:
1575 	put_device(d);
1576 	if (ndev_owner != bus->owner)
1577 		module_put(bus->owner);
1578 	return err;
1579 }
1580 EXPORT_SYMBOL(phy_attach_direct);
1581 
1582 /**
1583  * phy_attach - attach a network device to a particular PHY device
1584  * @dev: network device to attach
1585  * @bus_id: Bus ID of PHY device to attach
1586  * @interface: PHY device's interface
1587  *
1588  * Description: Same as phy_attach_direct() except that a PHY bus_id
1589  *     string is passed instead of a pointer to a struct phy_device.
1590  */
1591 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1592 			      phy_interface_t interface)
1593 {
1594 	struct bus_type *bus = &mdio_bus_type;
1595 	struct phy_device *phydev;
1596 	struct device *d;
1597 	int rc;
1598 
1599 	if (!dev)
1600 		return ERR_PTR(-EINVAL);
1601 
1602 	/* Search the list of PHY devices on the mdio bus for the
1603 	 * PHY with the requested name
1604 	 */
1605 	d = bus_find_device_by_name(bus, NULL, bus_id);
1606 	if (!d) {
1607 		pr_err("PHY %s not found\n", bus_id);
1608 		return ERR_PTR(-ENODEV);
1609 	}
1610 	phydev = to_phy_device(d);
1611 
1612 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1613 	put_device(d);
1614 	if (rc)
1615 		return ERR_PTR(rc);
1616 
1617 	return phydev;
1618 }
1619 EXPORT_SYMBOL(phy_attach);
1620 
1621 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1622 				      struct device_driver *driver)
1623 {
1624 	struct device *d = &phydev->mdio.dev;
1625 	bool ret = false;
1626 
1627 	if (!phydev->drv)
1628 		return ret;
1629 
1630 	get_device(d);
1631 	ret = d->driver == driver;
1632 	put_device(d);
1633 
1634 	return ret;
1635 }
1636 
1637 bool phy_driver_is_genphy(struct phy_device *phydev)
1638 {
1639 	return phy_driver_is_genphy_kind(phydev,
1640 					 &genphy_driver.mdiodrv.driver);
1641 }
1642 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1643 
1644 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1645 {
1646 	return phy_driver_is_genphy_kind(phydev,
1647 					 &genphy_c45_driver.mdiodrv.driver);
1648 }
1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1650 
1651 /**
1652  * phy_package_join - join a common PHY group
1653  * @phydev: target phy_device struct
1654  * @addr: cookie and PHY address for global register access
1655  * @priv_size: if non-zero allocate this amount of bytes for private data
1656  *
1657  * This joins a PHY group and provides a shared storage for all phydevs in
1658  * this group. This is intended to be used for packages which contain
1659  * more than one PHY, for example a quad PHY transceiver.
1660  *
1661  * The addr parameter serves as a cookie which has to have the same value
1662  * for all members of one group and as a PHY address to access generic
1663  * registers of a PHY package. Usually, one of the PHY addresses of the
1664  * different PHYs in the package provides access to these global registers.
1665  * The address which is given here, will be used in the phy_package_read()
1666  * and phy_package_write() convenience functions. If your PHY doesn't have
1667  * global registers you can just pick any of the PHY addresses.
1668  *
1669  * This will set the shared pointer of the phydev to the shared storage.
1670  * If this is the first call for a this cookie the shared storage will be
1671  * allocated. If priv_size is non-zero, the given amount of bytes are
1672  * allocated for the priv member.
1673  *
1674  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1675  * with the same cookie but a different priv_size is an error.
1676  */
1677 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1678 {
1679 	struct mii_bus *bus = phydev->mdio.bus;
1680 	struct phy_package_shared *shared;
1681 	int ret;
1682 
1683 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1684 		return -EINVAL;
1685 
1686 	mutex_lock(&bus->shared_lock);
1687 	shared = bus->shared[addr];
1688 	if (!shared) {
1689 		ret = -ENOMEM;
1690 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1691 		if (!shared)
1692 			goto err_unlock;
1693 		if (priv_size) {
1694 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1695 			if (!shared->priv)
1696 				goto err_free;
1697 			shared->priv_size = priv_size;
1698 		}
1699 		shared->addr = addr;
1700 		refcount_set(&shared->refcnt, 1);
1701 		bus->shared[addr] = shared;
1702 	} else {
1703 		ret = -EINVAL;
1704 		if (priv_size && priv_size != shared->priv_size)
1705 			goto err_unlock;
1706 		refcount_inc(&shared->refcnt);
1707 	}
1708 	mutex_unlock(&bus->shared_lock);
1709 
1710 	phydev->shared = shared;
1711 
1712 	return 0;
1713 
1714 err_free:
1715 	kfree(shared);
1716 err_unlock:
1717 	mutex_unlock(&bus->shared_lock);
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(phy_package_join);
1721 
1722 /**
1723  * phy_package_leave - leave a common PHY group
1724  * @phydev: target phy_device struct
1725  *
1726  * This leaves a PHY group created by phy_package_join(). If this phydev
1727  * was the last user of the shared data between the group, this data is
1728  * freed. Resets the phydev->shared pointer to NULL.
1729  */
1730 void phy_package_leave(struct phy_device *phydev)
1731 {
1732 	struct phy_package_shared *shared = phydev->shared;
1733 	struct mii_bus *bus = phydev->mdio.bus;
1734 
1735 	if (!shared)
1736 		return;
1737 
1738 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1739 		bus->shared[shared->addr] = NULL;
1740 		mutex_unlock(&bus->shared_lock);
1741 		kfree(shared->priv);
1742 		kfree(shared);
1743 	}
1744 
1745 	phydev->shared = NULL;
1746 }
1747 EXPORT_SYMBOL_GPL(phy_package_leave);
1748 
1749 static void devm_phy_package_leave(struct device *dev, void *res)
1750 {
1751 	phy_package_leave(*(struct phy_device **)res);
1752 }
1753 
1754 /**
1755  * devm_phy_package_join - resource managed phy_package_join()
1756  * @dev: device that is registering this PHY package
1757  * @phydev: target phy_device struct
1758  * @addr: cookie and PHY address for global register access
1759  * @priv_size: if non-zero allocate this amount of bytes for private data
1760  *
1761  * Managed phy_package_join(). Shared storage fetched by this function,
1762  * phy_package_leave() is automatically called on driver detach. See
1763  * phy_package_join() for more information.
1764  */
1765 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1766 			  int addr, size_t priv_size)
1767 {
1768 	struct phy_device **ptr;
1769 	int ret;
1770 
1771 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1772 			   GFP_KERNEL);
1773 	if (!ptr)
1774 		return -ENOMEM;
1775 
1776 	ret = phy_package_join(phydev, addr, priv_size);
1777 
1778 	if (!ret) {
1779 		*ptr = phydev;
1780 		devres_add(dev, ptr);
1781 	} else {
1782 		devres_free(ptr);
1783 	}
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1788 
1789 /**
1790  * phy_detach - detach a PHY device from its network device
1791  * @phydev: target phy_device struct
1792  *
1793  * This detaches the phy device from its network device and the phy
1794  * driver, and drops the reference count taken in phy_attach_direct().
1795  */
1796 void phy_detach(struct phy_device *phydev)
1797 {
1798 	struct net_device *dev = phydev->attached_dev;
1799 	struct module *ndev_owner = NULL;
1800 	struct mii_bus *bus;
1801 
1802 	if (phydev->devlink)
1803 		device_link_del(phydev->devlink);
1804 
1805 	if (phydev->sysfs_links) {
1806 		if (dev)
1807 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1808 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1809 	}
1810 
1811 	if (!phydev->attached_dev)
1812 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1813 				  &dev_attr_phy_standalone.attr);
1814 
1815 	phy_suspend(phydev);
1816 	if (dev) {
1817 		phydev->attached_dev->phydev = NULL;
1818 		phydev->attached_dev = NULL;
1819 	}
1820 	phydev->phylink = NULL;
1821 
1822 	phy_led_triggers_unregister(phydev);
1823 
1824 	if (phydev->mdio.dev.driver)
1825 		module_put(phydev->mdio.dev.driver->owner);
1826 
1827 	/* If the device had no specific driver before (i.e. - it
1828 	 * was using the generic driver), we unbind the device
1829 	 * from the generic driver so that there's a chance a
1830 	 * real driver could be loaded
1831 	 */
1832 	if (phy_driver_is_genphy(phydev) ||
1833 	    phy_driver_is_genphy_10g(phydev))
1834 		device_release_driver(&phydev->mdio.dev);
1835 
1836 	/* Assert the reset signal */
1837 	phy_device_reset(phydev, 1);
1838 
1839 	/*
1840 	 * The phydev might go away on the put_device() below, so avoid
1841 	 * a use-after-free bug by reading the underlying bus first.
1842 	 */
1843 	bus = phydev->mdio.bus;
1844 
1845 	put_device(&phydev->mdio.dev);
1846 	if (dev)
1847 		ndev_owner = dev->dev.parent->driver->owner;
1848 	if (ndev_owner != bus->owner)
1849 		module_put(bus->owner);
1850 }
1851 EXPORT_SYMBOL(phy_detach);
1852 
1853 int phy_suspend(struct phy_device *phydev)
1854 {
1855 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1856 	struct net_device *netdev = phydev->attached_dev;
1857 	struct phy_driver *phydrv = phydev->drv;
1858 	int ret;
1859 
1860 	if (phydev->suspended)
1861 		return 0;
1862 
1863 	/* If the device has WOL enabled, we cannot suspend the PHY */
1864 	phy_ethtool_get_wol(phydev, &wol);
1865 	if (wol.wolopts || (netdev && netdev->wol_enabled))
1866 		return -EBUSY;
1867 
1868 	if (!phydrv || !phydrv->suspend)
1869 		return 0;
1870 
1871 	ret = phydrv->suspend(phydev);
1872 	if (!ret)
1873 		phydev->suspended = true;
1874 
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL(phy_suspend);
1878 
1879 int __phy_resume(struct phy_device *phydev)
1880 {
1881 	struct phy_driver *phydrv = phydev->drv;
1882 	int ret;
1883 
1884 	lockdep_assert_held(&phydev->lock);
1885 
1886 	if (!phydrv || !phydrv->resume)
1887 		return 0;
1888 
1889 	ret = phydrv->resume(phydev);
1890 	if (!ret)
1891 		phydev->suspended = false;
1892 
1893 	return ret;
1894 }
1895 EXPORT_SYMBOL(__phy_resume);
1896 
1897 int phy_resume(struct phy_device *phydev)
1898 {
1899 	int ret;
1900 
1901 	mutex_lock(&phydev->lock);
1902 	ret = __phy_resume(phydev);
1903 	mutex_unlock(&phydev->lock);
1904 
1905 	return ret;
1906 }
1907 EXPORT_SYMBOL(phy_resume);
1908 
1909 int phy_loopback(struct phy_device *phydev, bool enable)
1910 {
1911 	int ret = 0;
1912 
1913 	if (!phydev->drv)
1914 		return -EIO;
1915 
1916 	mutex_lock(&phydev->lock);
1917 
1918 	if (enable && phydev->loopback_enabled) {
1919 		ret = -EBUSY;
1920 		goto out;
1921 	}
1922 
1923 	if (!enable && !phydev->loopback_enabled) {
1924 		ret = -EINVAL;
1925 		goto out;
1926 	}
1927 
1928 	if (phydev->drv->set_loopback)
1929 		ret = phydev->drv->set_loopback(phydev, enable);
1930 	else
1931 		ret = genphy_loopback(phydev, enable);
1932 
1933 	if (ret)
1934 		goto out;
1935 
1936 	phydev->loopback_enabled = enable;
1937 
1938 out:
1939 	mutex_unlock(&phydev->lock);
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL(phy_loopback);
1943 
1944 /**
1945  * phy_reset_after_clk_enable - perform a PHY reset if needed
1946  * @phydev: target phy_device struct
1947  *
1948  * Description: Some PHYs are known to need a reset after their refclk was
1949  *   enabled. This function evaluates the flags and perform the reset if it's
1950  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1951  *   was reset.
1952  */
1953 int phy_reset_after_clk_enable(struct phy_device *phydev)
1954 {
1955 	if (!phydev || !phydev->drv)
1956 		return -ENODEV;
1957 
1958 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1959 		phy_device_reset(phydev, 1);
1960 		phy_device_reset(phydev, 0);
1961 		return 1;
1962 	}
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1967 
1968 /* Generic PHY support and helper functions */
1969 
1970 /**
1971  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1972  * @phydev: target phy_device struct
1973  *
1974  * Description: Writes MII_ADVERTISE with the appropriate values,
1975  *   after sanitizing the values to make sure we only advertise
1976  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1977  *   hasn't changed, and > 0 if it has changed.
1978  */
1979 static int genphy_config_advert(struct phy_device *phydev)
1980 {
1981 	int err, bmsr, changed = 0;
1982 	u32 adv;
1983 
1984 	/* Only allow advertising what this PHY supports */
1985 	linkmode_and(phydev->advertising, phydev->advertising,
1986 		     phydev->supported);
1987 
1988 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1989 
1990 	/* Setup standard advertisement */
1991 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1992 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1993 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1994 				 adv);
1995 	if (err < 0)
1996 		return err;
1997 	if (err > 0)
1998 		changed = 1;
1999 
2000 	bmsr = phy_read(phydev, MII_BMSR);
2001 	if (bmsr < 0)
2002 		return bmsr;
2003 
2004 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2005 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2006 	 * logical 1.
2007 	 */
2008 	if (!(bmsr & BMSR_ESTATEN))
2009 		return changed;
2010 
2011 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2012 
2013 	err = phy_modify_changed(phydev, MII_CTRL1000,
2014 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2015 				 adv);
2016 	if (err < 0)
2017 		return err;
2018 	if (err > 0)
2019 		changed = 1;
2020 
2021 	return changed;
2022 }
2023 
2024 /**
2025  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2026  * @phydev: target phy_device struct
2027  *
2028  * Description: Writes MII_ADVERTISE with the appropriate values,
2029  *   after sanitizing the values to make sure we only advertise
2030  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2031  *   hasn't changed, and > 0 if it has changed. This function is intended
2032  *   for Clause 37 1000Base-X mode.
2033  */
2034 static int genphy_c37_config_advert(struct phy_device *phydev)
2035 {
2036 	u16 adv = 0;
2037 
2038 	/* Only allow advertising what this PHY supports */
2039 	linkmode_and(phydev->advertising, phydev->advertising,
2040 		     phydev->supported);
2041 
2042 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2043 			      phydev->advertising))
2044 		adv |= ADVERTISE_1000XFULL;
2045 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2046 			      phydev->advertising))
2047 		adv |= ADVERTISE_1000XPAUSE;
2048 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2049 			      phydev->advertising))
2050 		adv |= ADVERTISE_1000XPSE_ASYM;
2051 
2052 	return phy_modify_changed(phydev, MII_ADVERTISE,
2053 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2054 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2055 				  adv);
2056 }
2057 
2058 /**
2059  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2060  * @phydev: target phy_device struct
2061  *
2062  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2063  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2064  *   changed, and 1 if it has changed.
2065  */
2066 int genphy_config_eee_advert(struct phy_device *phydev)
2067 {
2068 	int err;
2069 
2070 	/* Nothing to disable */
2071 	if (!phydev->eee_broken_modes)
2072 		return 0;
2073 
2074 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2075 				     phydev->eee_broken_modes, 0);
2076 	/* If the call failed, we assume that EEE is not supported */
2077 	return err < 0 ? 0 : err;
2078 }
2079 EXPORT_SYMBOL(genphy_config_eee_advert);
2080 
2081 /**
2082  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2083  * @phydev: target phy_device struct
2084  *
2085  * Description: Configures MII_BMCR to force speed/duplex
2086  *   to the values in phydev. Assumes that the values are valid.
2087  *   Please see phy_sanitize_settings().
2088  */
2089 int genphy_setup_forced(struct phy_device *phydev)
2090 {
2091 	u16 ctl;
2092 
2093 	phydev->pause = 0;
2094 	phydev->asym_pause = 0;
2095 
2096 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2097 
2098 	return phy_modify(phydev, MII_BMCR,
2099 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2100 }
2101 EXPORT_SYMBOL(genphy_setup_forced);
2102 
2103 static int genphy_setup_master_slave(struct phy_device *phydev)
2104 {
2105 	u16 ctl = 0;
2106 
2107 	if (!phydev->is_gigabit_capable)
2108 		return 0;
2109 
2110 	switch (phydev->master_slave_set) {
2111 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2112 		ctl |= CTL1000_PREFER_MASTER;
2113 		break;
2114 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2115 		break;
2116 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2117 		ctl |= CTL1000_AS_MASTER;
2118 		fallthrough;
2119 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2120 		ctl |= CTL1000_ENABLE_MASTER;
2121 		break;
2122 	case MASTER_SLAVE_CFG_UNKNOWN:
2123 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2124 		return 0;
2125 	default:
2126 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2127 		return -EOPNOTSUPP;
2128 	}
2129 
2130 	return phy_modify_changed(phydev, MII_CTRL1000,
2131 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2132 				   CTL1000_PREFER_MASTER), ctl);
2133 }
2134 
2135 int genphy_read_master_slave(struct phy_device *phydev)
2136 {
2137 	int cfg, state;
2138 	int val;
2139 
2140 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2141 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2142 
2143 	val = phy_read(phydev, MII_CTRL1000);
2144 	if (val < 0)
2145 		return val;
2146 
2147 	if (val & CTL1000_ENABLE_MASTER) {
2148 		if (val & CTL1000_AS_MASTER)
2149 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2150 		else
2151 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2152 	} else {
2153 		if (val & CTL1000_PREFER_MASTER)
2154 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2155 		else
2156 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2157 	}
2158 
2159 	val = phy_read(phydev, MII_STAT1000);
2160 	if (val < 0)
2161 		return val;
2162 
2163 	if (val & LPA_1000MSFAIL) {
2164 		state = MASTER_SLAVE_STATE_ERR;
2165 	} else if (phydev->link) {
2166 		/* this bits are valid only for active link */
2167 		if (val & LPA_1000MSRES)
2168 			state = MASTER_SLAVE_STATE_MASTER;
2169 		else
2170 			state = MASTER_SLAVE_STATE_SLAVE;
2171 	} else {
2172 		state = MASTER_SLAVE_STATE_UNKNOWN;
2173 	}
2174 
2175 	phydev->master_slave_get = cfg;
2176 	phydev->master_slave_state = state;
2177 
2178 	return 0;
2179 }
2180 EXPORT_SYMBOL(genphy_read_master_slave);
2181 
2182 /**
2183  * genphy_restart_aneg - Enable and Restart Autonegotiation
2184  * @phydev: target phy_device struct
2185  */
2186 int genphy_restart_aneg(struct phy_device *phydev)
2187 {
2188 	/* Don't isolate the PHY if we're negotiating */
2189 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2190 			  BMCR_ANENABLE | BMCR_ANRESTART);
2191 }
2192 EXPORT_SYMBOL(genphy_restart_aneg);
2193 
2194 /**
2195  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2196  * @phydev: target phy_device struct
2197  * @restart: whether aneg restart is requested
2198  *
2199  * Check, and restart auto-negotiation if needed.
2200  */
2201 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2202 {
2203 	int ret;
2204 
2205 	if (!restart) {
2206 		/* Advertisement hasn't changed, but maybe aneg was never on to
2207 		 * begin with?  Or maybe phy was isolated?
2208 		 */
2209 		ret = phy_read(phydev, MII_BMCR);
2210 		if (ret < 0)
2211 			return ret;
2212 
2213 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2214 			restart = true;
2215 	}
2216 
2217 	if (restart)
2218 		return genphy_restart_aneg(phydev);
2219 
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2223 
2224 /**
2225  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2226  * @phydev: target phy_device struct
2227  * @changed: whether autoneg is requested
2228  *
2229  * Description: If auto-negotiation is enabled, we configure the
2230  *   advertising, and then restart auto-negotiation.  If it is not
2231  *   enabled, then we write the BMCR.
2232  */
2233 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2234 {
2235 	int err;
2236 
2237 	err = genphy_c45_an_config_eee_aneg(phydev);
2238 	if (err < 0)
2239 		return err;
2240 	else if (err)
2241 		changed = true;
2242 
2243 	err = genphy_setup_master_slave(phydev);
2244 	if (err < 0)
2245 		return err;
2246 	else if (err)
2247 		changed = true;
2248 
2249 	if (AUTONEG_ENABLE != phydev->autoneg)
2250 		return genphy_setup_forced(phydev);
2251 
2252 	err = genphy_config_advert(phydev);
2253 	if (err < 0) /* error */
2254 		return err;
2255 	else if (err)
2256 		changed = true;
2257 
2258 	return genphy_check_and_restart_aneg(phydev, changed);
2259 }
2260 EXPORT_SYMBOL(__genphy_config_aneg);
2261 
2262 /**
2263  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2264  * @phydev: target phy_device struct
2265  *
2266  * Description: If auto-negotiation is enabled, we configure the
2267  *   advertising, and then restart auto-negotiation.  If it is not
2268  *   enabled, then we write the BMCR. This function is intended
2269  *   for use with Clause 37 1000Base-X mode.
2270  */
2271 int genphy_c37_config_aneg(struct phy_device *phydev)
2272 {
2273 	int err, changed;
2274 
2275 	if (phydev->autoneg != AUTONEG_ENABLE)
2276 		return genphy_setup_forced(phydev);
2277 
2278 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2279 			 BMCR_SPEED1000);
2280 	if (err)
2281 		return err;
2282 
2283 	changed = genphy_c37_config_advert(phydev);
2284 	if (changed < 0) /* error */
2285 		return changed;
2286 
2287 	if (!changed) {
2288 		/* Advertisement hasn't changed, but maybe aneg was never on to
2289 		 * begin with?  Or maybe phy was isolated?
2290 		 */
2291 		int ctl = phy_read(phydev, MII_BMCR);
2292 
2293 		if (ctl < 0)
2294 			return ctl;
2295 
2296 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2297 			changed = 1; /* do restart aneg */
2298 	}
2299 
2300 	/* Only restart aneg if we are advertising something different
2301 	 * than we were before.
2302 	 */
2303 	if (changed > 0)
2304 		return genphy_restart_aneg(phydev);
2305 
2306 	return 0;
2307 }
2308 EXPORT_SYMBOL(genphy_c37_config_aneg);
2309 
2310 /**
2311  * genphy_aneg_done - return auto-negotiation status
2312  * @phydev: target phy_device struct
2313  *
2314  * Description: Reads the status register and returns 0 either if
2315  *   auto-negotiation is incomplete, or if there was an error.
2316  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2317  */
2318 int genphy_aneg_done(struct phy_device *phydev)
2319 {
2320 	int retval = phy_read(phydev, MII_BMSR);
2321 
2322 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2323 }
2324 EXPORT_SYMBOL(genphy_aneg_done);
2325 
2326 /**
2327  * genphy_update_link - update link status in @phydev
2328  * @phydev: target phy_device struct
2329  *
2330  * Description: Update the value in phydev->link to reflect the
2331  *   current link value.  In order to do this, we need to read
2332  *   the status register twice, keeping the second value.
2333  */
2334 int genphy_update_link(struct phy_device *phydev)
2335 {
2336 	int status = 0, bmcr;
2337 
2338 	bmcr = phy_read(phydev, MII_BMCR);
2339 	if (bmcr < 0)
2340 		return bmcr;
2341 
2342 	/* Autoneg is being started, therefore disregard BMSR value and
2343 	 * report link as down.
2344 	 */
2345 	if (bmcr & BMCR_ANRESTART)
2346 		goto done;
2347 
2348 	/* The link state is latched low so that momentary link
2349 	 * drops can be detected. Do not double-read the status
2350 	 * in polling mode to detect such short link drops except
2351 	 * the link was already down.
2352 	 */
2353 	if (!phy_polling_mode(phydev) || !phydev->link) {
2354 		status = phy_read(phydev, MII_BMSR);
2355 		if (status < 0)
2356 			return status;
2357 		else if (status & BMSR_LSTATUS)
2358 			goto done;
2359 	}
2360 
2361 	/* Read link and autonegotiation status */
2362 	status = phy_read(phydev, MII_BMSR);
2363 	if (status < 0)
2364 		return status;
2365 done:
2366 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2367 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2368 
2369 	/* Consider the case that autoneg was started and "aneg complete"
2370 	 * bit has been reset, but "link up" bit not yet.
2371 	 */
2372 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2373 		phydev->link = 0;
2374 
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(genphy_update_link);
2378 
2379 int genphy_read_lpa(struct phy_device *phydev)
2380 {
2381 	int lpa, lpagb;
2382 
2383 	if (phydev->autoneg == AUTONEG_ENABLE) {
2384 		if (!phydev->autoneg_complete) {
2385 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2386 							0);
2387 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2388 			return 0;
2389 		}
2390 
2391 		if (phydev->is_gigabit_capable) {
2392 			lpagb = phy_read(phydev, MII_STAT1000);
2393 			if (lpagb < 0)
2394 				return lpagb;
2395 
2396 			if (lpagb & LPA_1000MSFAIL) {
2397 				int adv = phy_read(phydev, MII_CTRL1000);
2398 
2399 				if (adv < 0)
2400 					return adv;
2401 
2402 				if (adv & CTL1000_ENABLE_MASTER)
2403 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2404 				else
2405 					phydev_err(phydev, "Master/Slave resolution failed\n");
2406 				return -ENOLINK;
2407 			}
2408 
2409 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2410 							lpagb);
2411 		}
2412 
2413 		lpa = phy_read(phydev, MII_LPA);
2414 		if (lpa < 0)
2415 			return lpa;
2416 
2417 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2418 	} else {
2419 		linkmode_zero(phydev->lp_advertising);
2420 	}
2421 
2422 	return 0;
2423 }
2424 EXPORT_SYMBOL(genphy_read_lpa);
2425 
2426 /**
2427  * genphy_read_status_fixed - read the link parameters for !aneg mode
2428  * @phydev: target phy_device struct
2429  *
2430  * Read the current duplex and speed state for a PHY operating with
2431  * autonegotiation disabled.
2432  */
2433 int genphy_read_status_fixed(struct phy_device *phydev)
2434 {
2435 	int bmcr = phy_read(phydev, MII_BMCR);
2436 
2437 	if (bmcr < 0)
2438 		return bmcr;
2439 
2440 	if (bmcr & BMCR_FULLDPLX)
2441 		phydev->duplex = DUPLEX_FULL;
2442 	else
2443 		phydev->duplex = DUPLEX_HALF;
2444 
2445 	if (bmcr & BMCR_SPEED1000)
2446 		phydev->speed = SPEED_1000;
2447 	else if (bmcr & BMCR_SPEED100)
2448 		phydev->speed = SPEED_100;
2449 	else
2450 		phydev->speed = SPEED_10;
2451 
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL(genphy_read_status_fixed);
2455 
2456 /**
2457  * genphy_read_status - check the link status and update current link state
2458  * @phydev: target phy_device struct
2459  *
2460  * Description: Check the link, then figure out the current state
2461  *   by comparing what we advertise with what the link partner
2462  *   advertises.  Start by checking the gigabit possibilities,
2463  *   then move on to 10/100.
2464  */
2465 int genphy_read_status(struct phy_device *phydev)
2466 {
2467 	int err, old_link = phydev->link;
2468 
2469 	/* Update the link, but return if there was an error */
2470 	err = genphy_update_link(phydev);
2471 	if (err)
2472 		return err;
2473 
2474 	/* why bother the PHY if nothing can have changed */
2475 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2476 		return 0;
2477 
2478 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2479 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2480 	phydev->speed = SPEED_UNKNOWN;
2481 	phydev->duplex = DUPLEX_UNKNOWN;
2482 	phydev->pause = 0;
2483 	phydev->asym_pause = 0;
2484 
2485 	if (phydev->is_gigabit_capable) {
2486 		err = genphy_read_master_slave(phydev);
2487 		if (err < 0)
2488 			return err;
2489 	}
2490 
2491 	err = genphy_read_lpa(phydev);
2492 	if (err < 0)
2493 		return err;
2494 
2495 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2496 		phy_resolve_aneg_linkmode(phydev);
2497 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2498 		err = genphy_read_status_fixed(phydev);
2499 		if (err < 0)
2500 			return err;
2501 	}
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL(genphy_read_status);
2506 
2507 /**
2508  * genphy_c37_read_status - check the link status and update current link state
2509  * @phydev: target phy_device struct
2510  *
2511  * Description: Check the link, then figure out the current state
2512  *   by comparing what we advertise with what the link partner
2513  *   advertises. This function is for Clause 37 1000Base-X mode.
2514  */
2515 int genphy_c37_read_status(struct phy_device *phydev)
2516 {
2517 	int lpa, err, old_link = phydev->link;
2518 
2519 	/* Update the link, but return if there was an error */
2520 	err = genphy_update_link(phydev);
2521 	if (err)
2522 		return err;
2523 
2524 	/* why bother the PHY if nothing can have changed */
2525 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2526 		return 0;
2527 
2528 	phydev->duplex = DUPLEX_UNKNOWN;
2529 	phydev->pause = 0;
2530 	phydev->asym_pause = 0;
2531 
2532 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2533 		lpa = phy_read(phydev, MII_LPA);
2534 		if (lpa < 0)
2535 			return lpa;
2536 
2537 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2538 				 phydev->lp_advertising, lpa & LPA_LPACK);
2539 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2540 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2541 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2542 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2543 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2544 				 phydev->lp_advertising,
2545 				 lpa & LPA_1000XPAUSE_ASYM);
2546 
2547 		phy_resolve_aneg_linkmode(phydev);
2548 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2549 		int bmcr = phy_read(phydev, MII_BMCR);
2550 
2551 		if (bmcr < 0)
2552 			return bmcr;
2553 
2554 		if (bmcr & BMCR_FULLDPLX)
2555 			phydev->duplex = DUPLEX_FULL;
2556 		else
2557 			phydev->duplex = DUPLEX_HALF;
2558 	}
2559 
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL(genphy_c37_read_status);
2563 
2564 /**
2565  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2566  * @phydev: target phy_device struct
2567  *
2568  * Description: Perform a software PHY reset using the standard
2569  * BMCR_RESET bit and poll for the reset bit to be cleared.
2570  *
2571  * Returns: 0 on success, < 0 on failure
2572  */
2573 int genphy_soft_reset(struct phy_device *phydev)
2574 {
2575 	u16 res = BMCR_RESET;
2576 	int ret;
2577 
2578 	if (phydev->autoneg == AUTONEG_ENABLE)
2579 		res |= BMCR_ANRESTART;
2580 
2581 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2582 	if (ret < 0)
2583 		return ret;
2584 
2585 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2586 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2587 	 * be cleared after soft reset.
2588 	 */
2589 	phydev->suspended = 0;
2590 
2591 	ret = phy_poll_reset(phydev);
2592 	if (ret)
2593 		return ret;
2594 
2595 	/* BMCR may be reset to defaults */
2596 	if (phydev->autoneg == AUTONEG_DISABLE)
2597 		ret = genphy_setup_forced(phydev);
2598 
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL(genphy_soft_reset);
2602 
2603 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2604 {
2605 	/* It seems there are cases where the interrupts are handled by another
2606 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2607 	 * need any other interraction from phylib. In this case, just trigger
2608 	 * the state machine directly.
2609 	 */
2610 	phy_trigger_machine(phydev);
2611 
2612 	return 0;
2613 }
2614 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2615 
2616 /**
2617  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2618  * @phydev: target phy_device struct
2619  *
2620  * Description: Reads the PHY's abilities and populates
2621  * phydev->supported accordingly.
2622  *
2623  * Returns: 0 on success, < 0 on failure
2624  */
2625 int genphy_read_abilities(struct phy_device *phydev)
2626 {
2627 	int val;
2628 
2629 	linkmode_set_bit_array(phy_basic_ports_array,
2630 			       ARRAY_SIZE(phy_basic_ports_array),
2631 			       phydev->supported);
2632 
2633 	val = phy_read(phydev, MII_BMSR);
2634 	if (val < 0)
2635 		return val;
2636 
2637 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2638 			 val & BMSR_ANEGCAPABLE);
2639 
2640 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2641 			 val & BMSR_100FULL);
2642 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2643 			 val & BMSR_100HALF);
2644 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2645 			 val & BMSR_10FULL);
2646 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2647 			 val & BMSR_10HALF);
2648 
2649 	if (val & BMSR_ESTATEN) {
2650 		val = phy_read(phydev, MII_ESTATUS);
2651 		if (val < 0)
2652 			return val;
2653 
2654 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2655 				 phydev->supported, val & ESTATUS_1000_TFULL);
2656 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2657 				 phydev->supported, val & ESTATUS_1000_THALF);
2658 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2659 				 phydev->supported, val & ESTATUS_1000_XFULL);
2660 	}
2661 
2662 	/* This is optional functionality. If not supported, we may get an error
2663 	 * which should be ignored.
2664 	 */
2665 	genphy_c45_read_eee_abilities(phydev);
2666 
2667 	return 0;
2668 }
2669 EXPORT_SYMBOL(genphy_read_abilities);
2670 
2671 /* This is used for the phy device which doesn't support the MMD extended
2672  * register access, but it does have side effect when we are trying to access
2673  * the MMD register via indirect method.
2674  */
2675 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2676 {
2677 	return -EOPNOTSUPP;
2678 }
2679 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2680 
2681 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2682 				 u16 regnum, u16 val)
2683 {
2684 	return -EOPNOTSUPP;
2685 }
2686 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2687 
2688 int genphy_suspend(struct phy_device *phydev)
2689 {
2690 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2691 }
2692 EXPORT_SYMBOL(genphy_suspend);
2693 
2694 int genphy_resume(struct phy_device *phydev)
2695 {
2696 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2697 }
2698 EXPORT_SYMBOL(genphy_resume);
2699 
2700 int genphy_loopback(struct phy_device *phydev, bool enable)
2701 {
2702 	if (enable) {
2703 		u16 val, ctl = BMCR_LOOPBACK;
2704 		int ret;
2705 
2706 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2707 
2708 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2709 
2710 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2711 					    val & BMSR_LSTATUS,
2712 				    5000, 500000, true);
2713 		if (ret)
2714 			return ret;
2715 	} else {
2716 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2717 
2718 		phy_config_aneg(phydev);
2719 	}
2720 
2721 	return 0;
2722 }
2723 EXPORT_SYMBOL(genphy_loopback);
2724 
2725 /**
2726  * phy_remove_link_mode - Remove a supported link mode
2727  * @phydev: phy_device structure to remove link mode from
2728  * @link_mode: Link mode to be removed
2729  *
2730  * Description: Some MACs don't support all link modes which the PHY
2731  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2732  * to remove a link mode.
2733  */
2734 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2735 {
2736 	linkmode_clear_bit(link_mode, phydev->supported);
2737 	phy_advertise_supported(phydev);
2738 }
2739 EXPORT_SYMBOL(phy_remove_link_mode);
2740 
2741 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2742 {
2743 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2744 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2745 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2746 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2747 }
2748 
2749 /**
2750  * phy_advertise_supported - Advertise all supported modes
2751  * @phydev: target phy_device struct
2752  *
2753  * Description: Called to advertise all supported modes, doesn't touch
2754  * pause mode advertising.
2755  */
2756 void phy_advertise_supported(struct phy_device *phydev)
2757 {
2758 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2759 
2760 	linkmode_copy(new, phydev->supported);
2761 	phy_copy_pause_bits(new, phydev->advertising);
2762 	linkmode_copy(phydev->advertising, new);
2763 }
2764 EXPORT_SYMBOL(phy_advertise_supported);
2765 
2766 /**
2767  * phy_support_sym_pause - Enable support of symmetrical pause
2768  * @phydev: target phy_device struct
2769  *
2770  * Description: Called by the MAC to indicate is supports symmetrical
2771  * Pause, but not asym pause.
2772  */
2773 void phy_support_sym_pause(struct phy_device *phydev)
2774 {
2775 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2776 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2777 }
2778 EXPORT_SYMBOL(phy_support_sym_pause);
2779 
2780 /**
2781  * phy_support_asym_pause - Enable support of asym pause
2782  * @phydev: target phy_device struct
2783  *
2784  * Description: Called by the MAC to indicate is supports Asym Pause.
2785  */
2786 void phy_support_asym_pause(struct phy_device *phydev)
2787 {
2788 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2789 }
2790 EXPORT_SYMBOL(phy_support_asym_pause);
2791 
2792 /**
2793  * phy_set_sym_pause - Configure symmetric Pause
2794  * @phydev: target phy_device struct
2795  * @rx: Receiver Pause is supported
2796  * @tx: Transmit Pause is supported
2797  * @autoneg: Auto neg should be used
2798  *
2799  * Description: Configure advertised Pause support depending on if
2800  * receiver pause and pause auto neg is supported. Generally called
2801  * from the set_pauseparam .ndo.
2802  */
2803 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2804 		       bool autoneg)
2805 {
2806 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2807 
2808 	if (rx && tx && autoneg)
2809 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2810 				 phydev->supported);
2811 
2812 	linkmode_copy(phydev->advertising, phydev->supported);
2813 }
2814 EXPORT_SYMBOL(phy_set_sym_pause);
2815 
2816 /**
2817  * phy_set_asym_pause - Configure Pause and Asym Pause
2818  * @phydev: target phy_device struct
2819  * @rx: Receiver Pause is supported
2820  * @tx: Transmit Pause is supported
2821  *
2822  * Description: Configure advertised Pause support depending on if
2823  * transmit and receiver pause is supported. If there has been a
2824  * change in adverting, trigger a new autoneg. Generally called from
2825  * the set_pauseparam .ndo.
2826  */
2827 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2828 {
2829 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2830 
2831 	linkmode_copy(oldadv, phydev->advertising);
2832 	linkmode_set_pause(phydev->advertising, tx, rx);
2833 
2834 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2835 	    phydev->autoneg)
2836 		phy_start_aneg(phydev);
2837 }
2838 EXPORT_SYMBOL(phy_set_asym_pause);
2839 
2840 /**
2841  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2842  * @phydev: phy_device struct
2843  * @pp: requested pause configuration
2844  *
2845  * Description: Test if the PHY/MAC combination supports the Pause
2846  * configuration the user is requesting. Returns True if it is
2847  * supported, false otherwise.
2848  */
2849 bool phy_validate_pause(struct phy_device *phydev,
2850 			struct ethtool_pauseparam *pp)
2851 {
2852 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2853 			       phydev->supported) && pp->rx_pause)
2854 		return false;
2855 
2856 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2857 			       phydev->supported) &&
2858 	    pp->rx_pause != pp->tx_pause)
2859 		return false;
2860 
2861 	return true;
2862 }
2863 EXPORT_SYMBOL(phy_validate_pause);
2864 
2865 /**
2866  * phy_get_pause - resolve negotiated pause modes
2867  * @phydev: phy_device struct
2868  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2869  * enabled.
2870  * @rx_pause: pointer to bool to indicate whether receive pause should be
2871  * enabled.
2872  *
2873  * Resolve and return the flow control modes according to the negotiation
2874  * result. This includes checking that we are operating in full duplex mode.
2875  * See linkmode_resolve_pause() for further details.
2876  */
2877 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2878 {
2879 	if (phydev->duplex != DUPLEX_FULL) {
2880 		*tx_pause = false;
2881 		*rx_pause = false;
2882 		return;
2883 	}
2884 
2885 	return linkmode_resolve_pause(phydev->advertising,
2886 				      phydev->lp_advertising,
2887 				      tx_pause, rx_pause);
2888 }
2889 EXPORT_SYMBOL(phy_get_pause);
2890 
2891 #if IS_ENABLED(CONFIG_OF_MDIO)
2892 static int phy_get_int_delay_property(struct device *dev, const char *name)
2893 {
2894 	s32 int_delay;
2895 	int ret;
2896 
2897 	ret = device_property_read_u32(dev, name, &int_delay);
2898 	if (ret)
2899 		return ret;
2900 
2901 	return int_delay;
2902 }
2903 #else
2904 static int phy_get_int_delay_property(struct device *dev, const char *name)
2905 {
2906 	return -EINVAL;
2907 }
2908 #endif
2909 
2910 /**
2911  * phy_get_internal_delay - returns the index of the internal delay
2912  * @phydev: phy_device struct
2913  * @dev: pointer to the devices device struct
2914  * @delay_values: array of delays the PHY supports
2915  * @size: the size of the delay array
2916  * @is_rx: boolean to indicate to get the rx internal delay
2917  *
2918  * Returns the index within the array of internal delay passed in.
2919  * If the device property is not present then the interface type is checked
2920  * if the interface defines use of internal delay then a 1 is returned otherwise
2921  * a 0 is returned.
2922  * The array must be in ascending order. If PHY does not have an ascending order
2923  * array then size = 0 and the value of the delay property is returned.
2924  * Return -EINVAL if the delay is invalid or cannot be found.
2925  */
2926 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2927 			   const int *delay_values, int size, bool is_rx)
2928 {
2929 	s32 delay;
2930 	int i;
2931 
2932 	if (is_rx) {
2933 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2934 		if (delay < 0 && size == 0) {
2935 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2936 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2937 				return 1;
2938 			else
2939 				return 0;
2940 		}
2941 
2942 	} else {
2943 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2944 		if (delay < 0 && size == 0) {
2945 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2946 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2947 				return 1;
2948 			else
2949 				return 0;
2950 		}
2951 	}
2952 
2953 	if (delay < 0)
2954 		return delay;
2955 
2956 	if (delay && size == 0)
2957 		return delay;
2958 
2959 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2960 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2961 		return -EINVAL;
2962 	}
2963 
2964 	if (delay == delay_values[0])
2965 		return 0;
2966 
2967 	for (i = 1; i < size; i++) {
2968 		if (delay == delay_values[i])
2969 			return i;
2970 
2971 		/* Find an approximate index by looking up the table */
2972 		if (delay > delay_values[i - 1] &&
2973 		    delay < delay_values[i]) {
2974 			if (delay - delay_values[i - 1] <
2975 			    delay_values[i] - delay)
2976 				return i - 1;
2977 			else
2978 				return i;
2979 		}
2980 	}
2981 
2982 	phydev_err(phydev, "error finding internal delay index for %d\n",
2983 		   delay);
2984 
2985 	return -EINVAL;
2986 }
2987 EXPORT_SYMBOL(phy_get_internal_delay);
2988 
2989 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2990 {
2991 	return phydrv->config_intr && phydrv->handle_interrupt;
2992 }
2993 
2994 static int phy_led_set_brightness(struct led_classdev *led_cdev,
2995 				  enum led_brightness value)
2996 {
2997 	struct phy_led *phyled = to_phy_led(led_cdev);
2998 	struct phy_device *phydev = phyled->phydev;
2999 	int err;
3000 
3001 	mutex_lock(&phydev->lock);
3002 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3003 	mutex_unlock(&phydev->lock);
3004 
3005 	return err;
3006 }
3007 
3008 static int phy_led_blink_set(struct led_classdev *led_cdev,
3009 			     unsigned long *delay_on,
3010 			     unsigned long *delay_off)
3011 {
3012 	struct phy_led *phyled = to_phy_led(led_cdev);
3013 	struct phy_device *phydev = phyled->phydev;
3014 	int err;
3015 
3016 	mutex_lock(&phydev->lock);
3017 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3018 					 delay_on, delay_off);
3019 	mutex_unlock(&phydev->lock);
3020 
3021 	return err;
3022 }
3023 
3024 static void phy_leds_unregister(struct phy_device *phydev)
3025 {
3026 	struct phy_led *phyled;
3027 
3028 	list_for_each_entry(phyled, &phydev->leds, list) {
3029 		led_classdev_unregister(&phyled->led_cdev);
3030 	}
3031 }
3032 
3033 static int of_phy_led(struct phy_device *phydev,
3034 		      struct device_node *led)
3035 {
3036 	struct device *dev = &phydev->mdio.dev;
3037 	struct led_init_data init_data = {};
3038 	struct led_classdev *cdev;
3039 	struct phy_led *phyled;
3040 	u32 index;
3041 	int err;
3042 
3043 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3044 	if (!phyled)
3045 		return -ENOMEM;
3046 
3047 	cdev = &phyled->led_cdev;
3048 	phyled->phydev = phydev;
3049 
3050 	err = of_property_read_u32(led, "reg", &index);
3051 	if (err)
3052 		return err;
3053 	if (index > U8_MAX)
3054 		return -EINVAL;
3055 
3056 	phyled->index = index;
3057 	if (phydev->drv->led_brightness_set)
3058 		cdev->brightness_set_blocking = phy_led_set_brightness;
3059 	if (phydev->drv->led_blink_set)
3060 		cdev->blink_set = phy_led_blink_set;
3061 	cdev->max_brightness = 1;
3062 	init_data.devicename = dev_name(&phydev->mdio.dev);
3063 	init_data.fwnode = of_fwnode_handle(led);
3064 	init_data.devname_mandatory = true;
3065 
3066 	err = led_classdev_register_ext(dev, cdev, &init_data);
3067 	if (err)
3068 		return err;
3069 
3070 	list_add(&phyled->list, &phydev->leds);
3071 
3072 	return 0;
3073 }
3074 
3075 static int of_phy_leds(struct phy_device *phydev)
3076 {
3077 	struct device_node *node = phydev->mdio.dev.of_node;
3078 	struct device_node *leds, *led;
3079 	int err;
3080 
3081 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3082 		return 0;
3083 
3084 	if (!node)
3085 		return 0;
3086 
3087 	leds = of_get_child_by_name(node, "leds");
3088 	if (!leds)
3089 		return 0;
3090 
3091 	for_each_available_child_of_node(leds, led) {
3092 		err = of_phy_led(phydev, led);
3093 		if (err) {
3094 			of_node_put(led);
3095 			phy_leds_unregister(phydev);
3096 			return err;
3097 		}
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 /**
3104  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3105  * @fwnode: pointer to the mdio_device's fwnode
3106  *
3107  * If successful, returns a pointer to the mdio_device with the embedded
3108  * struct device refcount incremented by one, or NULL on failure.
3109  * The caller should call put_device() on the mdio_device after its use.
3110  */
3111 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3112 {
3113 	struct device *d;
3114 
3115 	if (!fwnode)
3116 		return NULL;
3117 
3118 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3119 	if (!d)
3120 		return NULL;
3121 
3122 	return to_mdio_device(d);
3123 }
3124 EXPORT_SYMBOL(fwnode_mdio_find_device);
3125 
3126 /**
3127  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3128  *
3129  * @phy_fwnode: Pointer to the phy's fwnode.
3130  *
3131  * If successful, returns a pointer to the phy_device with the embedded
3132  * struct device refcount incremented by one, or NULL on failure.
3133  */
3134 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3135 {
3136 	struct mdio_device *mdiodev;
3137 
3138 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3139 	if (!mdiodev)
3140 		return NULL;
3141 
3142 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3143 		return to_phy_device(&mdiodev->dev);
3144 
3145 	put_device(&mdiodev->dev);
3146 
3147 	return NULL;
3148 }
3149 EXPORT_SYMBOL(fwnode_phy_find_device);
3150 
3151 /**
3152  * device_phy_find_device - For the given device, get the phy_device
3153  * @dev: Pointer to the given device
3154  *
3155  * Refer return conditions of fwnode_phy_find_device().
3156  */
3157 struct phy_device *device_phy_find_device(struct device *dev)
3158 {
3159 	return fwnode_phy_find_device(dev_fwnode(dev));
3160 }
3161 EXPORT_SYMBOL_GPL(device_phy_find_device);
3162 
3163 /**
3164  * fwnode_get_phy_node - Get the phy_node using the named reference.
3165  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3166  *
3167  * Refer return conditions of fwnode_find_reference().
3168  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3169  * and "phy-device" are not supported in ACPI. DT supports all the three
3170  * named references to the phy node.
3171  */
3172 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3173 {
3174 	struct fwnode_handle *phy_node;
3175 
3176 	/* Only phy-handle is used for ACPI */
3177 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3178 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3179 		return phy_node;
3180 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3181 	if (IS_ERR(phy_node))
3182 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3183 	return phy_node;
3184 }
3185 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3186 
3187 /**
3188  * phy_probe - probe and init a PHY device
3189  * @dev: device to probe and init
3190  *
3191  * Take care of setting up the phy_device structure, set the state to READY.
3192  */
3193 static int phy_probe(struct device *dev)
3194 {
3195 	struct phy_device *phydev = to_phy_device(dev);
3196 	struct device_driver *drv = phydev->mdio.dev.driver;
3197 	struct phy_driver *phydrv = to_phy_driver(drv);
3198 	int err = 0;
3199 
3200 	phydev->drv = phydrv;
3201 
3202 	/* Disable the interrupt if the PHY doesn't support it
3203 	 * but the interrupt is still a valid one
3204 	 */
3205 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3206 		phydev->irq = PHY_POLL;
3207 
3208 	if (phydrv->flags & PHY_IS_INTERNAL)
3209 		phydev->is_internal = true;
3210 
3211 	/* Deassert the reset signal */
3212 	phy_device_reset(phydev, 0);
3213 
3214 	if (phydev->drv->probe) {
3215 		err = phydev->drv->probe(phydev);
3216 		if (err)
3217 			goto out;
3218 	}
3219 
3220 	/* Start out supporting everything. Eventually,
3221 	 * a controller will attach, and may modify one
3222 	 * or both of these values
3223 	 */
3224 	if (phydrv->features) {
3225 		linkmode_copy(phydev->supported, phydrv->features);
3226 		genphy_c45_read_eee_abilities(phydev);
3227 	}
3228 	else if (phydrv->get_features)
3229 		err = phydrv->get_features(phydev);
3230 	else if (phydev->is_c45)
3231 		err = genphy_c45_pma_read_abilities(phydev);
3232 	else
3233 		err = genphy_read_abilities(phydev);
3234 
3235 	if (err)
3236 		goto out;
3237 
3238 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3239 			       phydev->supported))
3240 		phydev->autoneg = 0;
3241 
3242 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3243 			      phydev->supported))
3244 		phydev->is_gigabit_capable = 1;
3245 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3246 			      phydev->supported))
3247 		phydev->is_gigabit_capable = 1;
3248 
3249 	of_set_phy_supported(phydev);
3250 	phy_advertise_supported(phydev);
3251 
3252 	/* Get PHY default EEE advertising modes and handle them as potentially
3253 	 * safe initial configuration.
3254 	 */
3255 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3256 	if (err)
3257 		goto out;
3258 
3259 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3260 	 * kind of enabled.
3261 	 */
3262 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3263 
3264 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3265 	 * we need to clean them.
3266 	 */
3267 	if (phydev->eee_enabled)
3268 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3269 			     phydev->advertising_eee);
3270 
3271 	/* Get the EEE modes we want to prohibit. We will ask
3272 	 * the PHY stop advertising these mode later on
3273 	 */
3274 	of_set_phy_eee_broken(phydev);
3275 
3276 	/* The Pause Frame bits indicate that the PHY can support passing
3277 	 * pause frames. During autonegotiation, the PHYs will determine if
3278 	 * they should allow pause frames to pass.  The MAC driver should then
3279 	 * use that result to determine whether to enable flow control via
3280 	 * pause frames.
3281 	 *
3282 	 * Normally, PHY drivers should not set the Pause bits, and instead
3283 	 * allow phylib to do that.  However, there may be some situations
3284 	 * (e.g. hardware erratum) where the driver wants to set only one
3285 	 * of these bits.
3286 	 */
3287 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3288 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3289 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3290 				 phydev->supported);
3291 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3292 				 phydev->supported);
3293 	}
3294 
3295 	/* Set the state to READY by default */
3296 	phydev->state = PHY_READY;
3297 
3298 	/* Get the LEDs from the device tree, and instantiate standard
3299 	 * LEDs for them.
3300 	 */
3301 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3302 		err = of_phy_leds(phydev);
3303 
3304 out:
3305 	/* Re-assert the reset signal on error */
3306 	if (err)
3307 		phy_device_reset(phydev, 1);
3308 
3309 	return err;
3310 }
3311 
3312 static int phy_remove(struct device *dev)
3313 {
3314 	struct phy_device *phydev = to_phy_device(dev);
3315 
3316 	cancel_delayed_work_sync(&phydev->state_queue);
3317 
3318 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3319 		phy_leds_unregister(phydev);
3320 
3321 	phydev->state = PHY_DOWN;
3322 
3323 	sfp_bus_del_upstream(phydev->sfp_bus);
3324 	phydev->sfp_bus = NULL;
3325 
3326 	if (phydev->drv && phydev->drv->remove)
3327 		phydev->drv->remove(phydev);
3328 
3329 	/* Assert the reset signal */
3330 	phy_device_reset(phydev, 1);
3331 
3332 	phydev->drv = NULL;
3333 
3334 	return 0;
3335 }
3336 
3337 static void phy_shutdown(struct device *dev)
3338 {
3339 	struct phy_device *phydev = to_phy_device(dev);
3340 
3341 	if (phydev->state == PHY_READY || !phydev->attached_dev)
3342 		return;
3343 
3344 	phy_disable_interrupts(phydev);
3345 }
3346 
3347 /**
3348  * phy_driver_register - register a phy_driver with the PHY layer
3349  * @new_driver: new phy_driver to register
3350  * @owner: module owning this PHY
3351  */
3352 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3353 {
3354 	int retval;
3355 
3356 	/* Either the features are hard coded, or dynamically
3357 	 * determined. It cannot be both.
3358 	 */
3359 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3360 		pr_err("%s: features and get_features must not both be set\n",
3361 		       new_driver->name);
3362 		return -EINVAL;
3363 	}
3364 
3365 	/* PHYLIB device drivers must not match using a DT compatible table
3366 	 * as this bypasses our checks that the mdiodev that is being matched
3367 	 * is backed by a struct phy_device. If such a case happens, we will
3368 	 * make out-of-bounds accesses and lockup in phydev->lock.
3369 	 */
3370 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3371 		 "%s: driver must not provide a DT match table\n",
3372 		 new_driver->name))
3373 		return -EINVAL;
3374 
3375 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3376 	new_driver->mdiodrv.driver.name = new_driver->name;
3377 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3378 	new_driver->mdiodrv.driver.probe = phy_probe;
3379 	new_driver->mdiodrv.driver.remove = phy_remove;
3380 	new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3381 	new_driver->mdiodrv.driver.owner = owner;
3382 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3383 
3384 	retval = driver_register(&new_driver->mdiodrv.driver);
3385 	if (retval) {
3386 		pr_err("%s: Error %d in registering driver\n",
3387 		       new_driver->name, retval);
3388 
3389 		return retval;
3390 	}
3391 
3392 	pr_debug("%s: Registered new driver\n", new_driver->name);
3393 
3394 	return 0;
3395 }
3396 EXPORT_SYMBOL(phy_driver_register);
3397 
3398 int phy_drivers_register(struct phy_driver *new_driver, int n,
3399 			 struct module *owner)
3400 {
3401 	int i, ret = 0;
3402 
3403 	for (i = 0; i < n; i++) {
3404 		ret = phy_driver_register(new_driver + i, owner);
3405 		if (ret) {
3406 			while (i-- > 0)
3407 				phy_driver_unregister(new_driver + i);
3408 			break;
3409 		}
3410 	}
3411 	return ret;
3412 }
3413 EXPORT_SYMBOL(phy_drivers_register);
3414 
3415 void phy_driver_unregister(struct phy_driver *drv)
3416 {
3417 	driver_unregister(&drv->mdiodrv.driver);
3418 }
3419 EXPORT_SYMBOL(phy_driver_unregister);
3420 
3421 void phy_drivers_unregister(struct phy_driver *drv, int n)
3422 {
3423 	int i;
3424 
3425 	for (i = 0; i < n; i++)
3426 		phy_driver_unregister(drv + i);
3427 }
3428 EXPORT_SYMBOL(phy_drivers_unregister);
3429 
3430 static struct phy_driver genphy_driver = {
3431 	.phy_id		= 0xffffffff,
3432 	.phy_id_mask	= 0xffffffff,
3433 	.name		= "Generic PHY",
3434 	.get_features	= genphy_read_abilities,
3435 	.suspend	= genphy_suspend,
3436 	.resume		= genphy_resume,
3437 	.set_loopback   = genphy_loopback,
3438 };
3439 
3440 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3441 	.get_sset_count		= phy_ethtool_get_sset_count,
3442 	.get_strings		= phy_ethtool_get_strings,
3443 	.get_stats		= phy_ethtool_get_stats,
3444 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3445 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3446 	.get_plca_status	= phy_ethtool_get_plca_status,
3447 	.start_cable_test	= phy_start_cable_test,
3448 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3449 };
3450 
3451 static int __init phy_init(void)
3452 {
3453 	int rc;
3454 
3455 	rc = mdio_bus_init();
3456 	if (rc)
3457 		return rc;
3458 
3459 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3460 	features_init();
3461 
3462 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3463 	if (rc)
3464 		goto err_c45;
3465 
3466 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3467 	if (rc) {
3468 		phy_driver_unregister(&genphy_c45_driver);
3469 err_c45:
3470 		mdio_bus_exit();
3471 	}
3472 
3473 	return rc;
3474 }
3475 
3476 static void __exit phy_exit(void)
3477 {
3478 	phy_driver_unregister(&genphy_c45_driver);
3479 	phy_driver_unregister(&genphy_driver);
3480 	mdio_bus_exit();
3481 	ethtool_set_ethtool_phy_ops(NULL);
3482 }
3483 
3484 subsys_initcall(phy_init);
3485 module_exit(phy_exit);
3486