1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phy_led_triggers.h> 31 #include <linux/pse-pd/pse.h> 32 #include <linux/property.h> 33 #include <linux/sfp.h> 34 #include <linux/skbuff.h> 35 #include <linux/slab.h> 36 #include <linux/string.h> 37 #include <linux/uaccess.h> 38 #include <linux/unistd.h> 39 40 MODULE_DESCRIPTION("PHY library"); 41 MODULE_AUTHOR("Andy Fleming"); 42 MODULE_LICENSE("GPL"); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 61 62 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 63 EXPORT_SYMBOL_GPL(phy_10gbit_features); 64 65 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 66 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 67 68 const int phy_basic_ports_array[3] = { 69 ETHTOOL_LINK_MODE_Autoneg_BIT, 70 ETHTOOL_LINK_MODE_TP_BIT, 71 ETHTOOL_LINK_MODE_MII_BIT, 72 }; 73 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 74 75 const int phy_fibre_port_array[1] = { 76 ETHTOOL_LINK_MODE_FIBRE_BIT, 77 }; 78 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 79 80 const int phy_all_ports_features_array[7] = { 81 ETHTOOL_LINK_MODE_Autoneg_BIT, 82 ETHTOOL_LINK_MODE_TP_BIT, 83 ETHTOOL_LINK_MODE_MII_BIT, 84 ETHTOOL_LINK_MODE_FIBRE_BIT, 85 ETHTOOL_LINK_MODE_AUI_BIT, 86 ETHTOOL_LINK_MODE_BNC_BIT, 87 ETHTOOL_LINK_MODE_Backplane_BIT, 88 }; 89 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 90 91 const int phy_10_100_features_array[4] = { 92 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 93 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 94 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 96 }; 97 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 98 99 const int phy_basic_t1_features_array[3] = { 100 ETHTOOL_LINK_MODE_TP_BIT, 101 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 102 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 103 }; 104 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 105 106 const int phy_basic_t1s_p2mp_features_array[2] = { 107 ETHTOOL_LINK_MODE_TP_BIT, 108 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 109 }; 110 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 111 112 const int phy_gbit_features_array[2] = { 113 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 114 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 115 }; 116 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 117 118 const int phy_10gbit_features_array[1] = { 119 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 120 }; 121 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 122 123 static const int phy_10gbit_fec_features_array[1] = { 124 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 125 }; 126 127 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 128 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 129 130 static const int phy_10gbit_full_features_array[] = { 131 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 132 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 133 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 135 }; 136 137 static const int phy_eee_cap1_features_array[] = { 138 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 139 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 140 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 143 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 144 }; 145 146 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 147 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 148 149 static void features_init(void) 150 { 151 /* 10/100 half/full*/ 152 linkmode_set_bit_array(phy_basic_ports_array, 153 ARRAY_SIZE(phy_basic_ports_array), 154 phy_basic_features); 155 linkmode_set_bit_array(phy_10_100_features_array, 156 ARRAY_SIZE(phy_10_100_features_array), 157 phy_basic_features); 158 159 /* 100 full, TP */ 160 linkmode_set_bit_array(phy_basic_t1_features_array, 161 ARRAY_SIZE(phy_basic_t1_features_array), 162 phy_basic_t1_features); 163 164 /* 10 half, P2MP, TP */ 165 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 166 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 167 phy_basic_t1s_p2mp_features); 168 169 /* 10/100 half/full + 1000 half/full */ 170 linkmode_set_bit_array(phy_basic_ports_array, 171 ARRAY_SIZE(phy_basic_ports_array), 172 phy_gbit_features); 173 linkmode_set_bit_array(phy_10_100_features_array, 174 ARRAY_SIZE(phy_10_100_features_array), 175 phy_gbit_features); 176 linkmode_set_bit_array(phy_gbit_features_array, 177 ARRAY_SIZE(phy_gbit_features_array), 178 phy_gbit_features); 179 180 /* 10/100 half/full + 1000 half/full + fibre*/ 181 linkmode_set_bit_array(phy_basic_ports_array, 182 ARRAY_SIZE(phy_basic_ports_array), 183 phy_gbit_fibre_features); 184 linkmode_set_bit_array(phy_10_100_features_array, 185 ARRAY_SIZE(phy_10_100_features_array), 186 phy_gbit_fibre_features); 187 linkmode_set_bit_array(phy_gbit_features_array, 188 ARRAY_SIZE(phy_gbit_features_array), 189 phy_gbit_fibre_features); 190 linkmode_set_bit_array(phy_fibre_port_array, 191 ARRAY_SIZE(phy_fibre_port_array), 192 phy_gbit_fibre_features); 193 194 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 195 linkmode_set_bit_array(phy_all_ports_features_array, 196 ARRAY_SIZE(phy_all_ports_features_array), 197 phy_gbit_all_ports_features); 198 linkmode_set_bit_array(phy_10_100_features_array, 199 ARRAY_SIZE(phy_10_100_features_array), 200 phy_gbit_all_ports_features); 201 linkmode_set_bit_array(phy_gbit_features_array, 202 ARRAY_SIZE(phy_gbit_features_array), 203 phy_gbit_all_ports_features); 204 205 /* 10/100 half/full + 1000 half/full + 10G full*/ 206 linkmode_set_bit_array(phy_all_ports_features_array, 207 ARRAY_SIZE(phy_all_ports_features_array), 208 phy_10gbit_features); 209 linkmode_set_bit_array(phy_10_100_features_array, 210 ARRAY_SIZE(phy_10_100_features_array), 211 phy_10gbit_features); 212 linkmode_set_bit_array(phy_gbit_features_array, 213 ARRAY_SIZE(phy_gbit_features_array), 214 phy_10gbit_features); 215 linkmode_set_bit_array(phy_10gbit_features_array, 216 ARRAY_SIZE(phy_10gbit_features_array), 217 phy_10gbit_features); 218 219 /* 10/100/1000/10G full */ 220 linkmode_set_bit_array(phy_all_ports_features_array, 221 ARRAY_SIZE(phy_all_ports_features_array), 222 phy_10gbit_full_features); 223 linkmode_set_bit_array(phy_10gbit_full_features_array, 224 ARRAY_SIZE(phy_10gbit_full_features_array), 225 phy_10gbit_full_features); 226 /* 10G FEC only */ 227 linkmode_set_bit_array(phy_10gbit_fec_features_array, 228 ARRAY_SIZE(phy_10gbit_fec_features_array), 229 phy_10gbit_fec_features); 230 linkmode_set_bit_array(phy_eee_cap1_features_array, 231 ARRAY_SIZE(phy_eee_cap1_features_array), 232 phy_eee_cap1_features); 233 234 } 235 236 void phy_device_free(struct phy_device *phydev) 237 { 238 put_device(&phydev->mdio.dev); 239 } 240 EXPORT_SYMBOL(phy_device_free); 241 242 static void phy_mdio_device_free(struct mdio_device *mdiodev) 243 { 244 struct phy_device *phydev; 245 246 phydev = container_of(mdiodev, struct phy_device, mdio); 247 phy_device_free(phydev); 248 } 249 250 static void phy_device_release(struct device *dev) 251 { 252 fwnode_handle_put(dev->fwnode); 253 kfree(to_phy_device(dev)); 254 } 255 256 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 257 { 258 struct phy_device *phydev; 259 260 phydev = container_of(mdiodev, struct phy_device, mdio); 261 phy_device_remove(phydev); 262 } 263 264 static struct phy_driver genphy_driver; 265 266 static LIST_HEAD(phy_fixup_list); 267 static DEFINE_MUTEX(phy_fixup_lock); 268 269 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 270 { 271 struct device_driver *drv = phydev->mdio.dev.driver; 272 struct phy_driver *phydrv = to_phy_driver(drv); 273 struct net_device *netdev = phydev->attached_dev; 274 275 if (!drv || !phydrv->suspend) 276 return false; 277 278 /* PHY not attached? May suspend if the PHY has not already been 279 * suspended as part of a prior call to phy_disconnect() -> 280 * phy_detach() -> phy_suspend() because the parent netdev might be the 281 * MDIO bus driver and clock gated at this point. 282 */ 283 if (!netdev) 284 goto out; 285 286 if (netdev->wol_enabled) 287 return false; 288 289 /* As long as not all affected network drivers support the 290 * wol_enabled flag, let's check for hints that WoL is enabled. 291 * Don't suspend PHY if the attached netdev parent may wake up. 292 * The parent may point to a PCI device, as in tg3 driver. 293 */ 294 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 295 return false; 296 297 /* Also don't suspend PHY if the netdev itself may wakeup. This 298 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 299 * e.g. SoC devices. 300 */ 301 if (device_may_wakeup(&netdev->dev)) 302 return false; 303 304 out: 305 return !phydev->suspended; 306 } 307 308 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 309 { 310 struct phy_device *phydev = to_phy_device(dev); 311 312 if (phydev->mac_managed_pm) 313 return 0; 314 315 /* Wakeup interrupts may occur during the system sleep transition when 316 * the PHY is inaccessible. Set flag to postpone handling until the PHY 317 * has resumed. Wait for concurrent interrupt handler to complete. 318 */ 319 if (phy_interrupt_is_valid(phydev)) { 320 phydev->irq_suspended = 1; 321 synchronize_irq(phydev->irq); 322 } 323 324 /* We must stop the state machine manually, otherwise it stops out of 325 * control, possibly with the phydev->lock held. Upon resume, netdev 326 * may call phy routines that try to grab the same lock, and that may 327 * lead to a deadlock. 328 */ 329 if (phydev->attached_dev && phydev->adjust_link) 330 phy_stop_machine(phydev); 331 332 if (!mdio_bus_phy_may_suspend(phydev)) 333 return 0; 334 335 phydev->suspended_by_mdio_bus = 1; 336 337 return phy_suspend(phydev); 338 } 339 340 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 341 { 342 struct phy_device *phydev = to_phy_device(dev); 343 int ret; 344 345 if (phydev->mac_managed_pm) 346 return 0; 347 348 if (!phydev->suspended_by_mdio_bus) 349 goto no_resume; 350 351 phydev->suspended_by_mdio_bus = 0; 352 353 /* If we managed to get here with the PHY state machine in a state 354 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 355 * that something went wrong and we should most likely be using 356 * MAC managed PM, but we are not. 357 */ 358 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 359 phydev->state != PHY_UP); 360 361 ret = phy_init_hw(phydev); 362 if (ret < 0) 363 return ret; 364 365 ret = phy_resume(phydev); 366 if (ret < 0) 367 return ret; 368 no_resume: 369 if (phy_interrupt_is_valid(phydev)) { 370 phydev->irq_suspended = 0; 371 synchronize_irq(phydev->irq); 372 373 /* Rerun interrupts which were postponed by phy_interrupt() 374 * because they occurred during the system sleep transition. 375 */ 376 if (phydev->irq_rerun) { 377 phydev->irq_rerun = 0; 378 enable_irq(phydev->irq); 379 irq_wake_thread(phydev->irq, phydev); 380 } 381 } 382 383 if (phydev->attached_dev && phydev->adjust_link) 384 phy_start_machine(phydev); 385 386 return 0; 387 } 388 389 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 390 mdio_bus_phy_resume); 391 392 /** 393 * phy_register_fixup - creates a new phy_fixup and adds it to the list 394 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 395 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 396 * It can also be PHY_ANY_UID 397 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 398 * comparison 399 * @run: The actual code to be run when a matching PHY is found 400 */ 401 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 402 int (*run)(struct phy_device *)) 403 { 404 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 405 406 if (!fixup) 407 return -ENOMEM; 408 409 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 410 fixup->phy_uid = phy_uid; 411 fixup->phy_uid_mask = phy_uid_mask; 412 fixup->run = run; 413 414 mutex_lock(&phy_fixup_lock); 415 list_add_tail(&fixup->list, &phy_fixup_list); 416 mutex_unlock(&phy_fixup_lock); 417 418 return 0; 419 } 420 EXPORT_SYMBOL(phy_register_fixup); 421 422 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 423 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 424 int (*run)(struct phy_device *)) 425 { 426 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 427 } 428 EXPORT_SYMBOL(phy_register_fixup_for_uid); 429 430 /* Registers a fixup to be run on the PHY with id string bus_id */ 431 int phy_register_fixup_for_id(const char *bus_id, 432 int (*run)(struct phy_device *)) 433 { 434 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 435 } 436 EXPORT_SYMBOL(phy_register_fixup_for_id); 437 438 /** 439 * phy_unregister_fixup - remove a phy_fixup from the list 440 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 441 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 442 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 443 */ 444 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 445 { 446 struct list_head *pos, *n; 447 struct phy_fixup *fixup; 448 int ret; 449 450 ret = -ENODEV; 451 452 mutex_lock(&phy_fixup_lock); 453 list_for_each_safe(pos, n, &phy_fixup_list) { 454 fixup = list_entry(pos, struct phy_fixup, list); 455 456 if ((!strcmp(fixup->bus_id, bus_id)) && 457 ((fixup->phy_uid & phy_uid_mask) == 458 (phy_uid & phy_uid_mask))) { 459 list_del(&fixup->list); 460 kfree(fixup); 461 ret = 0; 462 break; 463 } 464 } 465 mutex_unlock(&phy_fixup_lock); 466 467 return ret; 468 } 469 EXPORT_SYMBOL(phy_unregister_fixup); 470 471 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 472 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 473 { 474 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 475 } 476 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 477 478 /* Unregisters a fixup of the PHY with id string bus_id */ 479 int phy_unregister_fixup_for_id(const char *bus_id) 480 { 481 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 482 } 483 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 484 485 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 486 * Fixups can be set to match any in one or more fields. 487 */ 488 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 489 { 490 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 491 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 492 return 0; 493 494 if ((fixup->phy_uid & fixup->phy_uid_mask) != 495 (phydev->phy_id & fixup->phy_uid_mask)) 496 if (fixup->phy_uid != PHY_ANY_UID) 497 return 0; 498 499 return 1; 500 } 501 502 /* Runs any matching fixups for this phydev */ 503 static int phy_scan_fixups(struct phy_device *phydev) 504 { 505 struct phy_fixup *fixup; 506 507 mutex_lock(&phy_fixup_lock); 508 list_for_each_entry(fixup, &phy_fixup_list, list) { 509 if (phy_needs_fixup(phydev, fixup)) { 510 int err = fixup->run(phydev); 511 512 if (err < 0) { 513 mutex_unlock(&phy_fixup_lock); 514 return err; 515 } 516 phydev->has_fixups = true; 517 } 518 } 519 mutex_unlock(&phy_fixup_lock); 520 521 return 0; 522 } 523 524 static int phy_bus_match(struct device *dev, struct device_driver *drv) 525 { 526 struct phy_device *phydev = to_phy_device(dev); 527 struct phy_driver *phydrv = to_phy_driver(drv); 528 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 529 int i; 530 531 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 532 return 0; 533 534 if (phydrv->match_phy_device) 535 return phydrv->match_phy_device(phydev); 536 537 if (phydev->is_c45) { 538 for (i = 1; i < num_ids; i++) { 539 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 540 continue; 541 542 if ((phydrv->phy_id & phydrv->phy_id_mask) == 543 (phydev->c45_ids.device_ids[i] & 544 phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return (phydrv->phy_id & phydrv->phy_id_mask) == 550 (phydev->phy_id & phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 658 dev->speed = SPEED_UNKNOWN; 659 dev->duplex = DUPLEX_UNKNOWN; 660 dev->pause = 0; 661 dev->asym_pause = 0; 662 dev->link = 0; 663 dev->port = PORT_TP; 664 dev->interface = PHY_INTERFACE_MODE_GMII; 665 666 dev->autoneg = AUTONEG_ENABLE; 667 668 dev->pma_extable = -ENODATA; 669 dev->is_c45 = is_c45; 670 dev->phy_id = phy_id; 671 if (c45_ids) 672 dev->c45_ids = *c45_ids; 673 dev->irq = bus->irq[addr]; 674 675 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 676 device_initialize(&mdiodev->dev); 677 678 dev->state = PHY_DOWN; 679 INIT_LIST_HEAD(&dev->leds); 680 681 mutex_init(&dev->lock); 682 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 683 684 /* Request the appropriate module unconditionally; don't 685 * bother trying to do so only if it isn't already loaded, 686 * because that gets complicated. A hotplug event would have 687 * done an unconditional modprobe anyway. 688 * We don't do normal hotplug because it won't work for MDIO 689 * -- because it relies on the device staying around for long 690 * enough for the driver to get loaded. With MDIO, the NIC 691 * driver will get bored and give up as soon as it finds that 692 * there's no driver _already_ loaded. 693 */ 694 if (is_c45 && c45_ids) { 695 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 696 int i; 697 698 for (i = 1; i < num_ids; i++) { 699 if (c45_ids->device_ids[i] == 0xffffffff) 700 continue; 701 702 ret = phy_request_driver_module(dev, 703 c45_ids->device_ids[i]); 704 if (ret) 705 break; 706 } 707 } else { 708 ret = phy_request_driver_module(dev, phy_id); 709 } 710 711 if (ret) { 712 put_device(&mdiodev->dev); 713 dev = ERR_PTR(ret); 714 } 715 716 return dev; 717 } 718 EXPORT_SYMBOL(phy_device_create); 719 720 /* phy_c45_probe_present - checks to see if a MMD is present in the package 721 * @bus: the target MII bus 722 * @prtad: PHY package address on the MII bus 723 * @devad: PHY device (MMD) address 724 * 725 * Read the MDIO_STAT2 register, and check whether a device is responding 726 * at this address. 727 * 728 * Returns: negative error number on bus access error, zero if no device 729 * is responding, or positive if a device is present. 730 */ 731 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 732 { 733 int stat2; 734 735 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 736 if (stat2 < 0) 737 return stat2; 738 739 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 740 } 741 742 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 743 * @bus: the target MII bus 744 * @addr: PHY address on the MII bus 745 * @dev_addr: MMD address in the PHY. 746 * @devices_in_package: where to store the devices in package information. 747 * 748 * Description: reads devices in package registers of a MMD at @dev_addr 749 * from PHY at @addr on @bus. 750 * 751 * Returns: 0 on success, -EIO on failure. 752 */ 753 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 754 u32 *devices_in_package) 755 { 756 int phy_reg; 757 758 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 759 if (phy_reg < 0) 760 return -EIO; 761 *devices_in_package = phy_reg << 16; 762 763 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 764 if (phy_reg < 0) 765 return -EIO; 766 *devices_in_package |= phy_reg; 767 768 return 0; 769 } 770 771 /** 772 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 773 * @bus: the target MII bus 774 * @addr: PHY address on the MII bus 775 * @c45_ids: where to store the c45 ID information. 776 * 777 * Read the PHY "devices in package". If this appears to be valid, read 778 * the PHY identifiers for each device. Return the "devices in package" 779 * and identifiers in @c45_ids. 780 * 781 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 782 * the "devices in package" is invalid. 783 */ 784 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 785 struct phy_c45_device_ids *c45_ids) 786 { 787 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 788 u32 devs_in_pkg = 0; 789 int i, ret, phy_reg; 790 791 /* Find first non-zero Devices In package. Device zero is reserved 792 * for 802.3 c45 complied PHYs, so don't probe it at first. 793 */ 794 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 795 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 796 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 797 /* Check that there is a device present at this 798 * address before reading the devices-in-package 799 * register to avoid reading garbage from the PHY. 800 * Some PHYs (88x3310) vendor space is not IEEE802.3 801 * compliant. 802 */ 803 ret = phy_c45_probe_present(bus, addr, i); 804 if (ret < 0) 805 return -EIO; 806 807 if (!ret) 808 continue; 809 } 810 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 811 if (phy_reg < 0) 812 return -EIO; 813 } 814 815 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 816 /* If mostly Fs, there is no device there, then let's probe 817 * MMD 0, as some 10G PHYs have zero Devices In package, 818 * e.g. Cortina CS4315/CS4340 PHY. 819 */ 820 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 821 if (phy_reg < 0) 822 return -EIO; 823 824 /* no device there, let's get out of here */ 825 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 826 return -ENODEV; 827 } 828 829 /* Now probe Device Identifiers for each device present. */ 830 for (i = 1; i < num_ids; i++) { 831 if (!(devs_in_pkg & (1 << i))) 832 continue; 833 834 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 835 /* Probe the "Device Present" bits for the vendor MMDs 836 * to ignore these if they do not contain IEEE 802.3 837 * registers. 838 */ 839 ret = phy_c45_probe_present(bus, addr, i); 840 if (ret < 0) 841 return ret; 842 843 if (!ret) 844 continue; 845 } 846 847 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 848 if (phy_reg < 0) 849 return -EIO; 850 c45_ids->device_ids[i] = phy_reg << 16; 851 852 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 853 if (phy_reg < 0) 854 return -EIO; 855 c45_ids->device_ids[i] |= phy_reg; 856 } 857 858 c45_ids->devices_in_package = devs_in_pkg; 859 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 860 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 861 862 return 0; 863 } 864 865 /** 866 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 867 * @bus: the target MII bus 868 * @addr: PHY address on the MII bus 869 * @phy_id: where to store the ID retrieved. 870 * 871 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 872 * placing it in @phy_id. Return zero on successful read and the ID is 873 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 874 * or invalid ID. 875 */ 876 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 877 { 878 int phy_reg; 879 880 /* Grab the bits from PHYIR1, and put them in the upper half */ 881 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 882 if (phy_reg < 0) { 883 /* returning -ENODEV doesn't stop bus scanning */ 884 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 885 } 886 887 *phy_id = phy_reg << 16; 888 889 /* Grab the bits from PHYIR2, and put them in the lower half */ 890 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 891 if (phy_reg < 0) { 892 /* returning -ENODEV doesn't stop bus scanning */ 893 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 894 } 895 896 *phy_id |= phy_reg; 897 898 /* If the phy_id is mostly Fs, there is no device there */ 899 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 900 return -ENODEV; 901 902 return 0; 903 } 904 905 /* Extract the phy ID from the compatible string of the form 906 * ethernet-phy-idAAAA.BBBB. 907 */ 908 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 909 { 910 unsigned int upper, lower; 911 const char *cp; 912 int ret; 913 914 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 915 if (ret) 916 return ret; 917 918 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 919 return -EINVAL; 920 921 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 922 return 0; 923 } 924 EXPORT_SYMBOL(fwnode_get_phy_id); 925 926 /** 927 * get_phy_device - reads the specified PHY device and returns its @phy_device 928 * struct 929 * @bus: the target MII bus 930 * @addr: PHY address on the MII bus 931 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 932 * 933 * Probe for a PHY at @addr on @bus. 934 * 935 * When probing for a clause 22 PHY, then read the ID registers. If we find 936 * a valid ID, allocate and return a &struct phy_device. 937 * 938 * When probing for a clause 45 PHY, read the "devices in package" registers. 939 * If the "devices in package" appears valid, read the ID registers for each 940 * MMD, allocate and return a &struct phy_device. 941 * 942 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 943 * no PHY present, or %-EIO on bus access error. 944 */ 945 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 946 { 947 struct phy_c45_device_ids c45_ids; 948 u32 phy_id = 0; 949 int r; 950 951 c45_ids.devices_in_package = 0; 952 c45_ids.mmds_present = 0; 953 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 954 955 if (is_c45) 956 r = get_phy_c45_ids(bus, addr, &c45_ids); 957 else 958 r = get_phy_c22_id(bus, addr, &phy_id); 959 960 if (r) 961 return ERR_PTR(r); 962 963 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 964 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 965 * probe with C45 to see if we're able to get a valid PHY ID in the C45 966 * space, if successful, create the C45 PHY device. 967 */ 968 if (!is_c45 && phy_id == 0 && bus->read_c45) { 969 r = get_phy_c45_ids(bus, addr, &c45_ids); 970 if (!r) 971 return phy_device_create(bus, addr, phy_id, 972 true, &c45_ids); 973 } 974 975 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 976 } 977 EXPORT_SYMBOL(get_phy_device); 978 979 /** 980 * phy_device_register - Register the phy device on the MDIO bus 981 * @phydev: phy_device structure to be added to the MDIO bus 982 */ 983 int phy_device_register(struct phy_device *phydev) 984 { 985 int err; 986 987 err = mdiobus_register_device(&phydev->mdio); 988 if (err) 989 return err; 990 991 /* Deassert the reset signal */ 992 phy_device_reset(phydev, 0); 993 994 /* Run all of the fixups for this PHY */ 995 err = phy_scan_fixups(phydev); 996 if (err) { 997 phydev_err(phydev, "failed to initialize\n"); 998 goto out; 999 } 1000 1001 err = device_add(&phydev->mdio.dev); 1002 if (err) { 1003 phydev_err(phydev, "failed to add\n"); 1004 goto out; 1005 } 1006 1007 return 0; 1008 1009 out: 1010 /* Assert the reset signal */ 1011 phy_device_reset(phydev, 1); 1012 1013 mdiobus_unregister_device(&phydev->mdio); 1014 return err; 1015 } 1016 EXPORT_SYMBOL(phy_device_register); 1017 1018 /** 1019 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1020 * @phydev: phy_device structure to remove 1021 * 1022 * This doesn't free the phy_device itself, it merely reverses the effects 1023 * of phy_device_register(). Use phy_device_free() to free the device 1024 * after calling this function. 1025 */ 1026 void phy_device_remove(struct phy_device *phydev) 1027 { 1028 unregister_mii_timestamper(phydev->mii_ts); 1029 pse_control_put(phydev->psec); 1030 1031 device_del(&phydev->mdio.dev); 1032 1033 /* Assert the reset signal */ 1034 phy_device_reset(phydev, 1); 1035 1036 mdiobus_unregister_device(&phydev->mdio); 1037 } 1038 EXPORT_SYMBOL(phy_device_remove); 1039 1040 /** 1041 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1042 * @phydev: phy_device structure to read 802.3-c45 IDs 1043 * 1044 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1045 * the "devices in package" is invalid. 1046 */ 1047 int phy_get_c45_ids(struct phy_device *phydev) 1048 { 1049 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1050 &phydev->c45_ids); 1051 } 1052 EXPORT_SYMBOL(phy_get_c45_ids); 1053 1054 /** 1055 * phy_find_first - finds the first PHY device on the bus 1056 * @bus: the target MII bus 1057 */ 1058 struct phy_device *phy_find_first(struct mii_bus *bus) 1059 { 1060 struct phy_device *phydev; 1061 int addr; 1062 1063 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1064 phydev = mdiobus_get_phy(bus, addr); 1065 if (phydev) 1066 return phydev; 1067 } 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(phy_find_first); 1071 1072 static void phy_link_change(struct phy_device *phydev, bool up) 1073 { 1074 struct net_device *netdev = phydev->attached_dev; 1075 1076 if (up) 1077 netif_carrier_on(netdev); 1078 else 1079 netif_carrier_off(netdev); 1080 phydev->adjust_link(netdev); 1081 if (phydev->mii_ts && phydev->mii_ts->link_state) 1082 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1083 } 1084 1085 /** 1086 * phy_prepare_link - prepares the PHY layer to monitor link status 1087 * @phydev: target phy_device struct 1088 * @handler: callback function for link status change notifications 1089 * 1090 * Description: Tells the PHY infrastructure to handle the 1091 * gory details on monitoring link status (whether through 1092 * polling or an interrupt), and to call back to the 1093 * connected device driver when the link status changes. 1094 * If you want to monitor your own link state, don't call 1095 * this function. 1096 */ 1097 static void phy_prepare_link(struct phy_device *phydev, 1098 void (*handler)(struct net_device *)) 1099 { 1100 phydev->adjust_link = handler; 1101 } 1102 1103 /** 1104 * phy_connect_direct - connect an ethernet device to a specific phy_device 1105 * @dev: the network device to connect 1106 * @phydev: the pointer to the phy device 1107 * @handler: callback function for state change notifications 1108 * @interface: PHY device's interface 1109 */ 1110 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1111 void (*handler)(struct net_device *), 1112 phy_interface_t interface) 1113 { 1114 int rc; 1115 1116 if (!dev) 1117 return -EINVAL; 1118 1119 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1120 if (rc) 1121 return rc; 1122 1123 phy_prepare_link(phydev, handler); 1124 if (phy_interrupt_is_valid(phydev)) 1125 phy_request_interrupt(phydev); 1126 1127 return 0; 1128 } 1129 EXPORT_SYMBOL(phy_connect_direct); 1130 1131 /** 1132 * phy_connect - connect an ethernet device to a PHY device 1133 * @dev: the network device to connect 1134 * @bus_id: the id string of the PHY device to connect 1135 * @handler: callback function for state change notifications 1136 * @interface: PHY device's interface 1137 * 1138 * Description: Convenience function for connecting ethernet 1139 * devices to PHY devices. The default behavior is for 1140 * the PHY infrastructure to handle everything, and only notify 1141 * the connected driver when the link status changes. If you 1142 * don't want, or can't use the provided functionality, you may 1143 * choose to call only the subset of functions which provide 1144 * the desired functionality. 1145 */ 1146 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1147 void (*handler)(struct net_device *), 1148 phy_interface_t interface) 1149 { 1150 struct phy_device *phydev; 1151 struct device *d; 1152 int rc; 1153 1154 /* Search the list of PHY devices on the mdio bus for the 1155 * PHY with the requested name 1156 */ 1157 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1158 if (!d) { 1159 pr_err("PHY %s not found\n", bus_id); 1160 return ERR_PTR(-ENODEV); 1161 } 1162 phydev = to_phy_device(d); 1163 1164 rc = phy_connect_direct(dev, phydev, handler, interface); 1165 put_device(d); 1166 if (rc) 1167 return ERR_PTR(rc); 1168 1169 return phydev; 1170 } 1171 EXPORT_SYMBOL(phy_connect); 1172 1173 /** 1174 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1175 * device 1176 * @phydev: target phy_device struct 1177 */ 1178 void phy_disconnect(struct phy_device *phydev) 1179 { 1180 if (phy_is_started(phydev)) 1181 phy_stop(phydev); 1182 1183 if (phy_interrupt_is_valid(phydev)) 1184 phy_free_interrupt(phydev); 1185 1186 phydev->adjust_link = NULL; 1187 1188 phy_detach(phydev); 1189 } 1190 EXPORT_SYMBOL(phy_disconnect); 1191 1192 /** 1193 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1194 * @phydev: The PHY device to poll 1195 * 1196 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1197 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1198 * register must be polled until the BMCR_RESET bit clears. 1199 * 1200 * Furthermore, any attempts to write to PHY registers may have no effect 1201 * or even generate MDIO bus errors until this is complete. 1202 * 1203 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1204 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1205 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1206 * effort to support such broken PHYs, this function is separate from the 1207 * standard phy_init_hw() which will zero all the other bits in the BMCR 1208 * and reapply all driver-specific and board-specific fixups. 1209 */ 1210 static int phy_poll_reset(struct phy_device *phydev) 1211 { 1212 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1213 int ret, val; 1214 1215 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1216 50000, 600000, true); 1217 if (ret) 1218 return ret; 1219 /* Some chips (smsc911x) may still need up to another 1ms after the 1220 * BMCR_RESET bit is cleared before they are usable. 1221 */ 1222 msleep(1); 1223 return 0; 1224 } 1225 1226 int phy_init_hw(struct phy_device *phydev) 1227 { 1228 int ret = 0; 1229 1230 /* Deassert the reset signal */ 1231 phy_device_reset(phydev, 0); 1232 1233 if (!phydev->drv) 1234 return 0; 1235 1236 if (phydev->drv->soft_reset) { 1237 ret = phydev->drv->soft_reset(phydev); 1238 /* see comment in genphy_soft_reset for an explanation */ 1239 if (!ret) 1240 phydev->suspended = 0; 1241 } 1242 1243 if (ret < 0) 1244 return ret; 1245 1246 ret = phy_scan_fixups(phydev); 1247 if (ret < 0) 1248 return ret; 1249 1250 if (phydev->drv->config_init) { 1251 ret = phydev->drv->config_init(phydev); 1252 if (ret < 0) 1253 return ret; 1254 } 1255 1256 if (phydev->drv->config_intr) { 1257 ret = phydev->drv->config_intr(phydev); 1258 if (ret < 0) 1259 return ret; 1260 } 1261 1262 return 0; 1263 } 1264 EXPORT_SYMBOL(phy_init_hw); 1265 1266 void phy_attached_info(struct phy_device *phydev) 1267 { 1268 phy_attached_print(phydev, NULL); 1269 } 1270 EXPORT_SYMBOL(phy_attached_info); 1271 1272 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1273 char *phy_attached_info_irq(struct phy_device *phydev) 1274 { 1275 char *irq_str; 1276 char irq_num[8]; 1277 1278 switch(phydev->irq) { 1279 case PHY_POLL: 1280 irq_str = "POLL"; 1281 break; 1282 case PHY_MAC_INTERRUPT: 1283 irq_str = "MAC"; 1284 break; 1285 default: 1286 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1287 irq_str = irq_num; 1288 break; 1289 } 1290 1291 return kasprintf(GFP_KERNEL, "%s", irq_str); 1292 } 1293 EXPORT_SYMBOL(phy_attached_info_irq); 1294 1295 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1296 { 1297 const char *unbound = phydev->drv ? "" : "[unbound] "; 1298 char *irq_str = phy_attached_info_irq(phydev); 1299 1300 if (!fmt) { 1301 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1302 phydev_name(phydev), irq_str); 1303 } else { 1304 va_list ap; 1305 1306 phydev_info(phydev, ATTACHED_FMT, unbound, 1307 phydev_name(phydev), irq_str); 1308 1309 va_start(ap, fmt); 1310 vprintk(fmt, ap); 1311 va_end(ap); 1312 } 1313 kfree(irq_str); 1314 } 1315 EXPORT_SYMBOL(phy_attached_print); 1316 1317 static void phy_sysfs_create_links(struct phy_device *phydev) 1318 { 1319 struct net_device *dev = phydev->attached_dev; 1320 int err; 1321 1322 if (!dev) 1323 return; 1324 1325 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1326 "attached_dev"); 1327 if (err) 1328 return; 1329 1330 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1331 &phydev->mdio.dev.kobj, 1332 "phydev"); 1333 if (err) { 1334 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1335 kobject_name(&phydev->mdio.dev.kobj), 1336 err); 1337 /* non-fatal - some net drivers can use one netdevice 1338 * with more then one phy 1339 */ 1340 } 1341 1342 phydev->sysfs_links = true; 1343 } 1344 1345 static ssize_t 1346 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1347 char *buf) 1348 { 1349 struct phy_device *phydev = to_phy_device(dev); 1350 1351 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1352 } 1353 static DEVICE_ATTR_RO(phy_standalone); 1354 1355 /** 1356 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1357 * @upstream: pointer to the phy device 1358 * @bus: sfp bus representing cage being attached 1359 * 1360 * This is used to fill in the sfp_upstream_ops .attach member. 1361 */ 1362 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1363 { 1364 struct phy_device *phydev = upstream; 1365 1366 if (phydev->attached_dev) 1367 phydev->attached_dev->sfp_bus = bus; 1368 phydev->sfp_bus_attached = true; 1369 } 1370 EXPORT_SYMBOL(phy_sfp_attach); 1371 1372 /** 1373 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1374 * @upstream: pointer to the phy device 1375 * @bus: sfp bus representing cage being attached 1376 * 1377 * This is used to fill in the sfp_upstream_ops .detach member. 1378 */ 1379 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1380 { 1381 struct phy_device *phydev = upstream; 1382 1383 if (phydev->attached_dev) 1384 phydev->attached_dev->sfp_bus = NULL; 1385 phydev->sfp_bus_attached = false; 1386 } 1387 EXPORT_SYMBOL(phy_sfp_detach); 1388 1389 /** 1390 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1391 * @phydev: Pointer to phy_device 1392 * @ops: SFP's upstream operations 1393 */ 1394 int phy_sfp_probe(struct phy_device *phydev, 1395 const struct sfp_upstream_ops *ops) 1396 { 1397 struct sfp_bus *bus; 1398 int ret = 0; 1399 1400 if (phydev->mdio.dev.fwnode) { 1401 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1402 if (IS_ERR(bus)) 1403 return PTR_ERR(bus); 1404 1405 phydev->sfp_bus = bus; 1406 1407 ret = sfp_bus_add_upstream(bus, phydev, ops); 1408 sfp_bus_put(bus); 1409 } 1410 return ret; 1411 } 1412 EXPORT_SYMBOL(phy_sfp_probe); 1413 1414 /** 1415 * phy_attach_direct - attach a network device to a given PHY device pointer 1416 * @dev: network device to attach 1417 * @phydev: Pointer to phy_device to attach 1418 * @flags: PHY device's dev_flags 1419 * @interface: PHY device's interface 1420 * 1421 * Description: Called by drivers to attach to a particular PHY 1422 * device. The phy_device is found, and properly hooked up 1423 * to the phy_driver. If no driver is attached, then a 1424 * generic driver is used. The phy_device is given a ptr to 1425 * the attaching device, and given a callback for link status 1426 * change. The phy_device is returned to the attaching driver. 1427 * This function takes a reference on the phy device. 1428 */ 1429 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1430 u32 flags, phy_interface_t interface) 1431 { 1432 struct mii_bus *bus = phydev->mdio.bus; 1433 struct device *d = &phydev->mdio.dev; 1434 struct module *ndev_owner = NULL; 1435 bool using_genphy = false; 1436 int err; 1437 1438 /* For Ethernet device drivers that register their own MDIO bus, we 1439 * will have bus->owner match ndev_mod, so we do not want to increment 1440 * our own module->refcnt here, otherwise we would not be able to 1441 * unload later on. 1442 */ 1443 if (dev) 1444 ndev_owner = dev->dev.parent->driver->owner; 1445 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1446 phydev_err(phydev, "failed to get the bus module\n"); 1447 return -EIO; 1448 } 1449 1450 get_device(d); 1451 1452 /* Assume that if there is no driver, that it doesn't 1453 * exist, and we should use the genphy driver. 1454 */ 1455 if (!d->driver) { 1456 if (phydev->is_c45) 1457 d->driver = &genphy_c45_driver.mdiodrv.driver; 1458 else 1459 d->driver = &genphy_driver.mdiodrv.driver; 1460 1461 using_genphy = true; 1462 } 1463 1464 if (!try_module_get(d->driver->owner)) { 1465 phydev_err(phydev, "failed to get the device driver module\n"); 1466 err = -EIO; 1467 goto error_put_device; 1468 } 1469 1470 if (using_genphy) { 1471 err = d->driver->probe(d); 1472 if (err >= 0) 1473 err = device_bind_driver(d); 1474 1475 if (err) 1476 goto error_module_put; 1477 } 1478 1479 if (phydev->attached_dev) { 1480 dev_err(&dev->dev, "PHY already attached\n"); 1481 err = -EBUSY; 1482 goto error; 1483 } 1484 1485 phydev->phy_link_change = phy_link_change; 1486 if (dev) { 1487 phydev->attached_dev = dev; 1488 dev->phydev = phydev; 1489 1490 if (phydev->sfp_bus_attached) 1491 dev->sfp_bus = phydev->sfp_bus; 1492 else if (dev->sfp_bus) 1493 phydev->is_on_sfp_module = true; 1494 } 1495 1496 /* Some Ethernet drivers try to connect to a PHY device before 1497 * calling register_netdevice() -> netdev_register_kobject() and 1498 * does the dev->dev.kobj initialization. Here we only check for 1499 * success which indicates that the network device kobject is 1500 * ready. Once we do that we still need to keep track of whether 1501 * links were successfully set up or not for phy_detach() to 1502 * remove them accordingly. 1503 */ 1504 phydev->sysfs_links = false; 1505 1506 phy_sysfs_create_links(phydev); 1507 1508 if (!phydev->attached_dev) { 1509 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1510 &dev_attr_phy_standalone.attr); 1511 if (err) 1512 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1513 } 1514 1515 phydev->dev_flags |= flags; 1516 1517 phydev->interface = interface; 1518 1519 phydev->state = PHY_READY; 1520 1521 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1522 1523 /* PHYs can request to use poll mode even though they have an 1524 * associated interrupt line. This could be the case if they 1525 * detect a broken interrupt handling. 1526 */ 1527 if (phydev->dev_flags & PHY_F_NO_IRQ) 1528 phydev->irq = PHY_POLL; 1529 1530 /* Port is set to PORT_TP by default and the actual PHY driver will set 1531 * it to different value depending on the PHY configuration. If we have 1532 * the generic PHY driver we can't figure it out, thus set the old 1533 * legacy PORT_MII value. 1534 */ 1535 if (using_genphy) 1536 phydev->port = PORT_MII; 1537 1538 /* Initial carrier state is off as the phy is about to be 1539 * (re)initialized. 1540 */ 1541 if (dev) 1542 netif_carrier_off(phydev->attached_dev); 1543 1544 /* Do initial configuration here, now that 1545 * we have certain key parameters 1546 * (dev_flags and interface) 1547 */ 1548 err = phy_init_hw(phydev); 1549 if (err) 1550 goto error; 1551 1552 phy_resume(phydev); 1553 phy_led_triggers_register(phydev); 1554 1555 /** 1556 * If the external phy used by current mac interface is managed by 1557 * another mac interface, so we should create a device link between 1558 * phy dev and mac dev. 1559 */ 1560 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1561 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1562 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1563 1564 return err; 1565 1566 error: 1567 /* phy_detach() does all of the cleanup below */ 1568 phy_detach(phydev); 1569 return err; 1570 1571 error_module_put: 1572 module_put(d->driver->owner); 1573 d->driver = NULL; 1574 error_put_device: 1575 put_device(d); 1576 if (ndev_owner != bus->owner) 1577 module_put(bus->owner); 1578 return err; 1579 } 1580 EXPORT_SYMBOL(phy_attach_direct); 1581 1582 /** 1583 * phy_attach - attach a network device to a particular PHY device 1584 * @dev: network device to attach 1585 * @bus_id: Bus ID of PHY device to attach 1586 * @interface: PHY device's interface 1587 * 1588 * Description: Same as phy_attach_direct() except that a PHY bus_id 1589 * string is passed instead of a pointer to a struct phy_device. 1590 */ 1591 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1592 phy_interface_t interface) 1593 { 1594 struct bus_type *bus = &mdio_bus_type; 1595 struct phy_device *phydev; 1596 struct device *d; 1597 int rc; 1598 1599 if (!dev) 1600 return ERR_PTR(-EINVAL); 1601 1602 /* Search the list of PHY devices on the mdio bus for the 1603 * PHY with the requested name 1604 */ 1605 d = bus_find_device_by_name(bus, NULL, bus_id); 1606 if (!d) { 1607 pr_err("PHY %s not found\n", bus_id); 1608 return ERR_PTR(-ENODEV); 1609 } 1610 phydev = to_phy_device(d); 1611 1612 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1613 put_device(d); 1614 if (rc) 1615 return ERR_PTR(rc); 1616 1617 return phydev; 1618 } 1619 EXPORT_SYMBOL(phy_attach); 1620 1621 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1622 struct device_driver *driver) 1623 { 1624 struct device *d = &phydev->mdio.dev; 1625 bool ret = false; 1626 1627 if (!phydev->drv) 1628 return ret; 1629 1630 get_device(d); 1631 ret = d->driver == driver; 1632 put_device(d); 1633 1634 return ret; 1635 } 1636 1637 bool phy_driver_is_genphy(struct phy_device *phydev) 1638 { 1639 return phy_driver_is_genphy_kind(phydev, 1640 &genphy_driver.mdiodrv.driver); 1641 } 1642 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1643 1644 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1645 { 1646 return phy_driver_is_genphy_kind(phydev, 1647 &genphy_c45_driver.mdiodrv.driver); 1648 } 1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1650 1651 /** 1652 * phy_package_join - join a common PHY group 1653 * @phydev: target phy_device struct 1654 * @addr: cookie and PHY address for global register access 1655 * @priv_size: if non-zero allocate this amount of bytes for private data 1656 * 1657 * This joins a PHY group and provides a shared storage for all phydevs in 1658 * this group. This is intended to be used for packages which contain 1659 * more than one PHY, for example a quad PHY transceiver. 1660 * 1661 * The addr parameter serves as a cookie which has to have the same value 1662 * for all members of one group and as a PHY address to access generic 1663 * registers of a PHY package. Usually, one of the PHY addresses of the 1664 * different PHYs in the package provides access to these global registers. 1665 * The address which is given here, will be used in the phy_package_read() 1666 * and phy_package_write() convenience functions. If your PHY doesn't have 1667 * global registers you can just pick any of the PHY addresses. 1668 * 1669 * This will set the shared pointer of the phydev to the shared storage. 1670 * If this is the first call for a this cookie the shared storage will be 1671 * allocated. If priv_size is non-zero, the given amount of bytes are 1672 * allocated for the priv member. 1673 * 1674 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1675 * with the same cookie but a different priv_size is an error. 1676 */ 1677 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1678 { 1679 struct mii_bus *bus = phydev->mdio.bus; 1680 struct phy_package_shared *shared; 1681 int ret; 1682 1683 if (addr < 0 || addr >= PHY_MAX_ADDR) 1684 return -EINVAL; 1685 1686 mutex_lock(&bus->shared_lock); 1687 shared = bus->shared[addr]; 1688 if (!shared) { 1689 ret = -ENOMEM; 1690 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1691 if (!shared) 1692 goto err_unlock; 1693 if (priv_size) { 1694 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1695 if (!shared->priv) 1696 goto err_free; 1697 shared->priv_size = priv_size; 1698 } 1699 shared->addr = addr; 1700 refcount_set(&shared->refcnt, 1); 1701 bus->shared[addr] = shared; 1702 } else { 1703 ret = -EINVAL; 1704 if (priv_size && priv_size != shared->priv_size) 1705 goto err_unlock; 1706 refcount_inc(&shared->refcnt); 1707 } 1708 mutex_unlock(&bus->shared_lock); 1709 1710 phydev->shared = shared; 1711 1712 return 0; 1713 1714 err_free: 1715 kfree(shared); 1716 err_unlock: 1717 mutex_unlock(&bus->shared_lock); 1718 return ret; 1719 } 1720 EXPORT_SYMBOL_GPL(phy_package_join); 1721 1722 /** 1723 * phy_package_leave - leave a common PHY group 1724 * @phydev: target phy_device struct 1725 * 1726 * This leaves a PHY group created by phy_package_join(). If this phydev 1727 * was the last user of the shared data between the group, this data is 1728 * freed. Resets the phydev->shared pointer to NULL. 1729 */ 1730 void phy_package_leave(struct phy_device *phydev) 1731 { 1732 struct phy_package_shared *shared = phydev->shared; 1733 struct mii_bus *bus = phydev->mdio.bus; 1734 1735 if (!shared) 1736 return; 1737 1738 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1739 bus->shared[shared->addr] = NULL; 1740 mutex_unlock(&bus->shared_lock); 1741 kfree(shared->priv); 1742 kfree(shared); 1743 } 1744 1745 phydev->shared = NULL; 1746 } 1747 EXPORT_SYMBOL_GPL(phy_package_leave); 1748 1749 static void devm_phy_package_leave(struct device *dev, void *res) 1750 { 1751 phy_package_leave(*(struct phy_device **)res); 1752 } 1753 1754 /** 1755 * devm_phy_package_join - resource managed phy_package_join() 1756 * @dev: device that is registering this PHY package 1757 * @phydev: target phy_device struct 1758 * @addr: cookie and PHY address for global register access 1759 * @priv_size: if non-zero allocate this amount of bytes for private data 1760 * 1761 * Managed phy_package_join(). Shared storage fetched by this function, 1762 * phy_package_leave() is automatically called on driver detach. See 1763 * phy_package_join() for more information. 1764 */ 1765 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1766 int addr, size_t priv_size) 1767 { 1768 struct phy_device **ptr; 1769 int ret; 1770 1771 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1772 GFP_KERNEL); 1773 if (!ptr) 1774 return -ENOMEM; 1775 1776 ret = phy_package_join(phydev, addr, priv_size); 1777 1778 if (!ret) { 1779 *ptr = phydev; 1780 devres_add(dev, ptr); 1781 } else { 1782 devres_free(ptr); 1783 } 1784 1785 return ret; 1786 } 1787 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1788 1789 /** 1790 * phy_detach - detach a PHY device from its network device 1791 * @phydev: target phy_device struct 1792 * 1793 * This detaches the phy device from its network device and the phy 1794 * driver, and drops the reference count taken in phy_attach_direct(). 1795 */ 1796 void phy_detach(struct phy_device *phydev) 1797 { 1798 struct net_device *dev = phydev->attached_dev; 1799 struct module *ndev_owner = NULL; 1800 struct mii_bus *bus; 1801 1802 if (phydev->devlink) 1803 device_link_del(phydev->devlink); 1804 1805 if (phydev->sysfs_links) { 1806 if (dev) 1807 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1808 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1809 } 1810 1811 if (!phydev->attached_dev) 1812 sysfs_remove_file(&phydev->mdio.dev.kobj, 1813 &dev_attr_phy_standalone.attr); 1814 1815 phy_suspend(phydev); 1816 if (dev) { 1817 phydev->attached_dev->phydev = NULL; 1818 phydev->attached_dev = NULL; 1819 } 1820 phydev->phylink = NULL; 1821 1822 phy_led_triggers_unregister(phydev); 1823 1824 if (phydev->mdio.dev.driver) 1825 module_put(phydev->mdio.dev.driver->owner); 1826 1827 /* If the device had no specific driver before (i.e. - it 1828 * was using the generic driver), we unbind the device 1829 * from the generic driver so that there's a chance a 1830 * real driver could be loaded 1831 */ 1832 if (phy_driver_is_genphy(phydev) || 1833 phy_driver_is_genphy_10g(phydev)) 1834 device_release_driver(&phydev->mdio.dev); 1835 1836 /* Assert the reset signal */ 1837 phy_device_reset(phydev, 1); 1838 1839 /* 1840 * The phydev might go away on the put_device() below, so avoid 1841 * a use-after-free bug by reading the underlying bus first. 1842 */ 1843 bus = phydev->mdio.bus; 1844 1845 put_device(&phydev->mdio.dev); 1846 if (dev) 1847 ndev_owner = dev->dev.parent->driver->owner; 1848 if (ndev_owner != bus->owner) 1849 module_put(bus->owner); 1850 } 1851 EXPORT_SYMBOL(phy_detach); 1852 1853 int phy_suspend(struct phy_device *phydev) 1854 { 1855 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1856 struct net_device *netdev = phydev->attached_dev; 1857 struct phy_driver *phydrv = phydev->drv; 1858 int ret; 1859 1860 if (phydev->suspended) 1861 return 0; 1862 1863 /* If the device has WOL enabled, we cannot suspend the PHY */ 1864 phy_ethtool_get_wol(phydev, &wol); 1865 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1866 return -EBUSY; 1867 1868 if (!phydrv || !phydrv->suspend) 1869 return 0; 1870 1871 ret = phydrv->suspend(phydev); 1872 if (!ret) 1873 phydev->suspended = true; 1874 1875 return ret; 1876 } 1877 EXPORT_SYMBOL(phy_suspend); 1878 1879 int __phy_resume(struct phy_device *phydev) 1880 { 1881 struct phy_driver *phydrv = phydev->drv; 1882 int ret; 1883 1884 lockdep_assert_held(&phydev->lock); 1885 1886 if (!phydrv || !phydrv->resume) 1887 return 0; 1888 1889 ret = phydrv->resume(phydev); 1890 if (!ret) 1891 phydev->suspended = false; 1892 1893 return ret; 1894 } 1895 EXPORT_SYMBOL(__phy_resume); 1896 1897 int phy_resume(struct phy_device *phydev) 1898 { 1899 int ret; 1900 1901 mutex_lock(&phydev->lock); 1902 ret = __phy_resume(phydev); 1903 mutex_unlock(&phydev->lock); 1904 1905 return ret; 1906 } 1907 EXPORT_SYMBOL(phy_resume); 1908 1909 int phy_loopback(struct phy_device *phydev, bool enable) 1910 { 1911 int ret = 0; 1912 1913 if (!phydev->drv) 1914 return -EIO; 1915 1916 mutex_lock(&phydev->lock); 1917 1918 if (enable && phydev->loopback_enabled) { 1919 ret = -EBUSY; 1920 goto out; 1921 } 1922 1923 if (!enable && !phydev->loopback_enabled) { 1924 ret = -EINVAL; 1925 goto out; 1926 } 1927 1928 if (phydev->drv->set_loopback) 1929 ret = phydev->drv->set_loopback(phydev, enable); 1930 else 1931 ret = genphy_loopback(phydev, enable); 1932 1933 if (ret) 1934 goto out; 1935 1936 phydev->loopback_enabled = enable; 1937 1938 out: 1939 mutex_unlock(&phydev->lock); 1940 return ret; 1941 } 1942 EXPORT_SYMBOL(phy_loopback); 1943 1944 /** 1945 * phy_reset_after_clk_enable - perform a PHY reset if needed 1946 * @phydev: target phy_device struct 1947 * 1948 * Description: Some PHYs are known to need a reset after their refclk was 1949 * enabled. This function evaluates the flags and perform the reset if it's 1950 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1951 * was reset. 1952 */ 1953 int phy_reset_after_clk_enable(struct phy_device *phydev) 1954 { 1955 if (!phydev || !phydev->drv) 1956 return -ENODEV; 1957 1958 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1959 phy_device_reset(phydev, 1); 1960 phy_device_reset(phydev, 0); 1961 return 1; 1962 } 1963 1964 return 0; 1965 } 1966 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1967 1968 /* Generic PHY support and helper functions */ 1969 1970 /** 1971 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1972 * @phydev: target phy_device struct 1973 * 1974 * Description: Writes MII_ADVERTISE with the appropriate values, 1975 * after sanitizing the values to make sure we only advertise 1976 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1977 * hasn't changed, and > 0 if it has changed. 1978 */ 1979 static int genphy_config_advert(struct phy_device *phydev) 1980 { 1981 int err, bmsr, changed = 0; 1982 u32 adv; 1983 1984 /* Only allow advertising what this PHY supports */ 1985 linkmode_and(phydev->advertising, phydev->advertising, 1986 phydev->supported); 1987 1988 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1989 1990 /* Setup standard advertisement */ 1991 err = phy_modify_changed(phydev, MII_ADVERTISE, 1992 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1993 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1994 adv); 1995 if (err < 0) 1996 return err; 1997 if (err > 0) 1998 changed = 1; 1999 2000 bmsr = phy_read(phydev, MII_BMSR); 2001 if (bmsr < 0) 2002 return bmsr; 2003 2004 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2005 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2006 * logical 1. 2007 */ 2008 if (!(bmsr & BMSR_ESTATEN)) 2009 return changed; 2010 2011 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2012 2013 err = phy_modify_changed(phydev, MII_CTRL1000, 2014 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2015 adv); 2016 if (err < 0) 2017 return err; 2018 if (err > 0) 2019 changed = 1; 2020 2021 return changed; 2022 } 2023 2024 /** 2025 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2026 * @phydev: target phy_device struct 2027 * 2028 * Description: Writes MII_ADVERTISE with the appropriate values, 2029 * after sanitizing the values to make sure we only advertise 2030 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2031 * hasn't changed, and > 0 if it has changed. This function is intended 2032 * for Clause 37 1000Base-X mode. 2033 */ 2034 static int genphy_c37_config_advert(struct phy_device *phydev) 2035 { 2036 u16 adv = 0; 2037 2038 /* Only allow advertising what this PHY supports */ 2039 linkmode_and(phydev->advertising, phydev->advertising, 2040 phydev->supported); 2041 2042 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2043 phydev->advertising)) 2044 adv |= ADVERTISE_1000XFULL; 2045 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2046 phydev->advertising)) 2047 adv |= ADVERTISE_1000XPAUSE; 2048 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2049 phydev->advertising)) 2050 adv |= ADVERTISE_1000XPSE_ASYM; 2051 2052 return phy_modify_changed(phydev, MII_ADVERTISE, 2053 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2054 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2055 adv); 2056 } 2057 2058 /** 2059 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2060 * @phydev: target phy_device struct 2061 * 2062 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2063 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2064 * changed, and 1 if it has changed. 2065 */ 2066 int genphy_config_eee_advert(struct phy_device *phydev) 2067 { 2068 int err; 2069 2070 /* Nothing to disable */ 2071 if (!phydev->eee_broken_modes) 2072 return 0; 2073 2074 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2075 phydev->eee_broken_modes, 0); 2076 /* If the call failed, we assume that EEE is not supported */ 2077 return err < 0 ? 0 : err; 2078 } 2079 EXPORT_SYMBOL(genphy_config_eee_advert); 2080 2081 /** 2082 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2083 * @phydev: target phy_device struct 2084 * 2085 * Description: Configures MII_BMCR to force speed/duplex 2086 * to the values in phydev. Assumes that the values are valid. 2087 * Please see phy_sanitize_settings(). 2088 */ 2089 int genphy_setup_forced(struct phy_device *phydev) 2090 { 2091 u16 ctl; 2092 2093 phydev->pause = 0; 2094 phydev->asym_pause = 0; 2095 2096 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2097 2098 return phy_modify(phydev, MII_BMCR, 2099 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2100 } 2101 EXPORT_SYMBOL(genphy_setup_forced); 2102 2103 static int genphy_setup_master_slave(struct phy_device *phydev) 2104 { 2105 u16 ctl = 0; 2106 2107 if (!phydev->is_gigabit_capable) 2108 return 0; 2109 2110 switch (phydev->master_slave_set) { 2111 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2112 ctl |= CTL1000_PREFER_MASTER; 2113 break; 2114 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2115 break; 2116 case MASTER_SLAVE_CFG_MASTER_FORCE: 2117 ctl |= CTL1000_AS_MASTER; 2118 fallthrough; 2119 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2120 ctl |= CTL1000_ENABLE_MASTER; 2121 break; 2122 case MASTER_SLAVE_CFG_UNKNOWN: 2123 case MASTER_SLAVE_CFG_UNSUPPORTED: 2124 return 0; 2125 default: 2126 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2127 return -EOPNOTSUPP; 2128 } 2129 2130 return phy_modify_changed(phydev, MII_CTRL1000, 2131 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2132 CTL1000_PREFER_MASTER), ctl); 2133 } 2134 2135 int genphy_read_master_slave(struct phy_device *phydev) 2136 { 2137 int cfg, state; 2138 int val; 2139 2140 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2141 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2142 2143 val = phy_read(phydev, MII_CTRL1000); 2144 if (val < 0) 2145 return val; 2146 2147 if (val & CTL1000_ENABLE_MASTER) { 2148 if (val & CTL1000_AS_MASTER) 2149 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2150 else 2151 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2152 } else { 2153 if (val & CTL1000_PREFER_MASTER) 2154 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2155 else 2156 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2157 } 2158 2159 val = phy_read(phydev, MII_STAT1000); 2160 if (val < 0) 2161 return val; 2162 2163 if (val & LPA_1000MSFAIL) { 2164 state = MASTER_SLAVE_STATE_ERR; 2165 } else if (phydev->link) { 2166 /* this bits are valid only for active link */ 2167 if (val & LPA_1000MSRES) 2168 state = MASTER_SLAVE_STATE_MASTER; 2169 else 2170 state = MASTER_SLAVE_STATE_SLAVE; 2171 } else { 2172 state = MASTER_SLAVE_STATE_UNKNOWN; 2173 } 2174 2175 phydev->master_slave_get = cfg; 2176 phydev->master_slave_state = state; 2177 2178 return 0; 2179 } 2180 EXPORT_SYMBOL(genphy_read_master_slave); 2181 2182 /** 2183 * genphy_restart_aneg - Enable and Restart Autonegotiation 2184 * @phydev: target phy_device struct 2185 */ 2186 int genphy_restart_aneg(struct phy_device *phydev) 2187 { 2188 /* Don't isolate the PHY if we're negotiating */ 2189 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2190 BMCR_ANENABLE | BMCR_ANRESTART); 2191 } 2192 EXPORT_SYMBOL(genphy_restart_aneg); 2193 2194 /** 2195 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2196 * @phydev: target phy_device struct 2197 * @restart: whether aneg restart is requested 2198 * 2199 * Check, and restart auto-negotiation if needed. 2200 */ 2201 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2202 { 2203 int ret; 2204 2205 if (!restart) { 2206 /* Advertisement hasn't changed, but maybe aneg was never on to 2207 * begin with? Or maybe phy was isolated? 2208 */ 2209 ret = phy_read(phydev, MII_BMCR); 2210 if (ret < 0) 2211 return ret; 2212 2213 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2214 restart = true; 2215 } 2216 2217 if (restart) 2218 return genphy_restart_aneg(phydev); 2219 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2223 2224 /** 2225 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2226 * @phydev: target phy_device struct 2227 * @changed: whether autoneg is requested 2228 * 2229 * Description: If auto-negotiation is enabled, we configure the 2230 * advertising, and then restart auto-negotiation. If it is not 2231 * enabled, then we write the BMCR. 2232 */ 2233 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2234 { 2235 int err; 2236 2237 err = genphy_c45_an_config_eee_aneg(phydev); 2238 if (err < 0) 2239 return err; 2240 else if (err) 2241 changed = true; 2242 2243 err = genphy_setup_master_slave(phydev); 2244 if (err < 0) 2245 return err; 2246 else if (err) 2247 changed = true; 2248 2249 if (AUTONEG_ENABLE != phydev->autoneg) 2250 return genphy_setup_forced(phydev); 2251 2252 err = genphy_config_advert(phydev); 2253 if (err < 0) /* error */ 2254 return err; 2255 else if (err) 2256 changed = true; 2257 2258 return genphy_check_and_restart_aneg(phydev, changed); 2259 } 2260 EXPORT_SYMBOL(__genphy_config_aneg); 2261 2262 /** 2263 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2264 * @phydev: target phy_device struct 2265 * 2266 * Description: If auto-negotiation is enabled, we configure the 2267 * advertising, and then restart auto-negotiation. If it is not 2268 * enabled, then we write the BMCR. This function is intended 2269 * for use with Clause 37 1000Base-X mode. 2270 */ 2271 int genphy_c37_config_aneg(struct phy_device *phydev) 2272 { 2273 int err, changed; 2274 2275 if (phydev->autoneg != AUTONEG_ENABLE) 2276 return genphy_setup_forced(phydev); 2277 2278 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2279 BMCR_SPEED1000); 2280 if (err) 2281 return err; 2282 2283 changed = genphy_c37_config_advert(phydev); 2284 if (changed < 0) /* error */ 2285 return changed; 2286 2287 if (!changed) { 2288 /* Advertisement hasn't changed, but maybe aneg was never on to 2289 * begin with? Or maybe phy was isolated? 2290 */ 2291 int ctl = phy_read(phydev, MII_BMCR); 2292 2293 if (ctl < 0) 2294 return ctl; 2295 2296 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2297 changed = 1; /* do restart aneg */ 2298 } 2299 2300 /* Only restart aneg if we are advertising something different 2301 * than we were before. 2302 */ 2303 if (changed > 0) 2304 return genphy_restart_aneg(phydev); 2305 2306 return 0; 2307 } 2308 EXPORT_SYMBOL(genphy_c37_config_aneg); 2309 2310 /** 2311 * genphy_aneg_done - return auto-negotiation status 2312 * @phydev: target phy_device struct 2313 * 2314 * Description: Reads the status register and returns 0 either if 2315 * auto-negotiation is incomplete, or if there was an error. 2316 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2317 */ 2318 int genphy_aneg_done(struct phy_device *phydev) 2319 { 2320 int retval = phy_read(phydev, MII_BMSR); 2321 2322 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2323 } 2324 EXPORT_SYMBOL(genphy_aneg_done); 2325 2326 /** 2327 * genphy_update_link - update link status in @phydev 2328 * @phydev: target phy_device struct 2329 * 2330 * Description: Update the value in phydev->link to reflect the 2331 * current link value. In order to do this, we need to read 2332 * the status register twice, keeping the second value. 2333 */ 2334 int genphy_update_link(struct phy_device *phydev) 2335 { 2336 int status = 0, bmcr; 2337 2338 bmcr = phy_read(phydev, MII_BMCR); 2339 if (bmcr < 0) 2340 return bmcr; 2341 2342 /* Autoneg is being started, therefore disregard BMSR value and 2343 * report link as down. 2344 */ 2345 if (bmcr & BMCR_ANRESTART) 2346 goto done; 2347 2348 /* The link state is latched low so that momentary link 2349 * drops can be detected. Do not double-read the status 2350 * in polling mode to detect such short link drops except 2351 * the link was already down. 2352 */ 2353 if (!phy_polling_mode(phydev) || !phydev->link) { 2354 status = phy_read(phydev, MII_BMSR); 2355 if (status < 0) 2356 return status; 2357 else if (status & BMSR_LSTATUS) 2358 goto done; 2359 } 2360 2361 /* Read link and autonegotiation status */ 2362 status = phy_read(phydev, MII_BMSR); 2363 if (status < 0) 2364 return status; 2365 done: 2366 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2367 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2368 2369 /* Consider the case that autoneg was started and "aneg complete" 2370 * bit has been reset, but "link up" bit not yet. 2371 */ 2372 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2373 phydev->link = 0; 2374 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(genphy_update_link); 2378 2379 int genphy_read_lpa(struct phy_device *phydev) 2380 { 2381 int lpa, lpagb; 2382 2383 if (phydev->autoneg == AUTONEG_ENABLE) { 2384 if (!phydev->autoneg_complete) { 2385 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2386 0); 2387 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2388 return 0; 2389 } 2390 2391 if (phydev->is_gigabit_capable) { 2392 lpagb = phy_read(phydev, MII_STAT1000); 2393 if (lpagb < 0) 2394 return lpagb; 2395 2396 if (lpagb & LPA_1000MSFAIL) { 2397 int adv = phy_read(phydev, MII_CTRL1000); 2398 2399 if (adv < 0) 2400 return adv; 2401 2402 if (adv & CTL1000_ENABLE_MASTER) 2403 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2404 else 2405 phydev_err(phydev, "Master/Slave resolution failed\n"); 2406 return -ENOLINK; 2407 } 2408 2409 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2410 lpagb); 2411 } 2412 2413 lpa = phy_read(phydev, MII_LPA); 2414 if (lpa < 0) 2415 return lpa; 2416 2417 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2418 } else { 2419 linkmode_zero(phydev->lp_advertising); 2420 } 2421 2422 return 0; 2423 } 2424 EXPORT_SYMBOL(genphy_read_lpa); 2425 2426 /** 2427 * genphy_read_status_fixed - read the link parameters for !aneg mode 2428 * @phydev: target phy_device struct 2429 * 2430 * Read the current duplex and speed state for a PHY operating with 2431 * autonegotiation disabled. 2432 */ 2433 int genphy_read_status_fixed(struct phy_device *phydev) 2434 { 2435 int bmcr = phy_read(phydev, MII_BMCR); 2436 2437 if (bmcr < 0) 2438 return bmcr; 2439 2440 if (bmcr & BMCR_FULLDPLX) 2441 phydev->duplex = DUPLEX_FULL; 2442 else 2443 phydev->duplex = DUPLEX_HALF; 2444 2445 if (bmcr & BMCR_SPEED1000) 2446 phydev->speed = SPEED_1000; 2447 else if (bmcr & BMCR_SPEED100) 2448 phydev->speed = SPEED_100; 2449 else 2450 phydev->speed = SPEED_10; 2451 2452 return 0; 2453 } 2454 EXPORT_SYMBOL(genphy_read_status_fixed); 2455 2456 /** 2457 * genphy_read_status - check the link status and update current link state 2458 * @phydev: target phy_device struct 2459 * 2460 * Description: Check the link, then figure out the current state 2461 * by comparing what we advertise with what the link partner 2462 * advertises. Start by checking the gigabit possibilities, 2463 * then move on to 10/100. 2464 */ 2465 int genphy_read_status(struct phy_device *phydev) 2466 { 2467 int err, old_link = phydev->link; 2468 2469 /* Update the link, but return if there was an error */ 2470 err = genphy_update_link(phydev); 2471 if (err) 2472 return err; 2473 2474 /* why bother the PHY if nothing can have changed */ 2475 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2476 return 0; 2477 2478 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2479 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2480 phydev->speed = SPEED_UNKNOWN; 2481 phydev->duplex = DUPLEX_UNKNOWN; 2482 phydev->pause = 0; 2483 phydev->asym_pause = 0; 2484 2485 if (phydev->is_gigabit_capable) { 2486 err = genphy_read_master_slave(phydev); 2487 if (err < 0) 2488 return err; 2489 } 2490 2491 err = genphy_read_lpa(phydev); 2492 if (err < 0) 2493 return err; 2494 2495 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2496 phy_resolve_aneg_linkmode(phydev); 2497 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2498 err = genphy_read_status_fixed(phydev); 2499 if (err < 0) 2500 return err; 2501 } 2502 2503 return 0; 2504 } 2505 EXPORT_SYMBOL(genphy_read_status); 2506 2507 /** 2508 * genphy_c37_read_status - check the link status and update current link state 2509 * @phydev: target phy_device struct 2510 * 2511 * Description: Check the link, then figure out the current state 2512 * by comparing what we advertise with what the link partner 2513 * advertises. This function is for Clause 37 1000Base-X mode. 2514 */ 2515 int genphy_c37_read_status(struct phy_device *phydev) 2516 { 2517 int lpa, err, old_link = phydev->link; 2518 2519 /* Update the link, but return if there was an error */ 2520 err = genphy_update_link(phydev); 2521 if (err) 2522 return err; 2523 2524 /* why bother the PHY if nothing can have changed */ 2525 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2526 return 0; 2527 2528 phydev->duplex = DUPLEX_UNKNOWN; 2529 phydev->pause = 0; 2530 phydev->asym_pause = 0; 2531 2532 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2533 lpa = phy_read(phydev, MII_LPA); 2534 if (lpa < 0) 2535 return lpa; 2536 2537 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2538 phydev->lp_advertising, lpa & LPA_LPACK); 2539 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2540 phydev->lp_advertising, lpa & LPA_1000XFULL); 2541 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2542 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2543 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2544 phydev->lp_advertising, 2545 lpa & LPA_1000XPAUSE_ASYM); 2546 2547 phy_resolve_aneg_linkmode(phydev); 2548 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2549 int bmcr = phy_read(phydev, MII_BMCR); 2550 2551 if (bmcr < 0) 2552 return bmcr; 2553 2554 if (bmcr & BMCR_FULLDPLX) 2555 phydev->duplex = DUPLEX_FULL; 2556 else 2557 phydev->duplex = DUPLEX_HALF; 2558 } 2559 2560 return 0; 2561 } 2562 EXPORT_SYMBOL(genphy_c37_read_status); 2563 2564 /** 2565 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2566 * @phydev: target phy_device struct 2567 * 2568 * Description: Perform a software PHY reset using the standard 2569 * BMCR_RESET bit and poll for the reset bit to be cleared. 2570 * 2571 * Returns: 0 on success, < 0 on failure 2572 */ 2573 int genphy_soft_reset(struct phy_device *phydev) 2574 { 2575 u16 res = BMCR_RESET; 2576 int ret; 2577 2578 if (phydev->autoneg == AUTONEG_ENABLE) 2579 res |= BMCR_ANRESTART; 2580 2581 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2582 if (ret < 0) 2583 return ret; 2584 2585 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2586 * to their default value. Therefore the POWER DOWN bit is supposed to 2587 * be cleared after soft reset. 2588 */ 2589 phydev->suspended = 0; 2590 2591 ret = phy_poll_reset(phydev); 2592 if (ret) 2593 return ret; 2594 2595 /* BMCR may be reset to defaults */ 2596 if (phydev->autoneg == AUTONEG_DISABLE) 2597 ret = genphy_setup_forced(phydev); 2598 2599 return ret; 2600 } 2601 EXPORT_SYMBOL(genphy_soft_reset); 2602 2603 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2604 { 2605 /* It seems there are cases where the interrupts are handled by another 2606 * entity (ie an IRQ controller embedded inside the PHY) and do not 2607 * need any other interraction from phylib. In this case, just trigger 2608 * the state machine directly. 2609 */ 2610 phy_trigger_machine(phydev); 2611 2612 return 0; 2613 } 2614 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2615 2616 /** 2617 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2618 * @phydev: target phy_device struct 2619 * 2620 * Description: Reads the PHY's abilities and populates 2621 * phydev->supported accordingly. 2622 * 2623 * Returns: 0 on success, < 0 on failure 2624 */ 2625 int genphy_read_abilities(struct phy_device *phydev) 2626 { 2627 int val; 2628 2629 linkmode_set_bit_array(phy_basic_ports_array, 2630 ARRAY_SIZE(phy_basic_ports_array), 2631 phydev->supported); 2632 2633 val = phy_read(phydev, MII_BMSR); 2634 if (val < 0) 2635 return val; 2636 2637 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2638 val & BMSR_ANEGCAPABLE); 2639 2640 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2641 val & BMSR_100FULL); 2642 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2643 val & BMSR_100HALF); 2644 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2645 val & BMSR_10FULL); 2646 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2647 val & BMSR_10HALF); 2648 2649 if (val & BMSR_ESTATEN) { 2650 val = phy_read(phydev, MII_ESTATUS); 2651 if (val < 0) 2652 return val; 2653 2654 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2655 phydev->supported, val & ESTATUS_1000_TFULL); 2656 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2657 phydev->supported, val & ESTATUS_1000_THALF); 2658 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2659 phydev->supported, val & ESTATUS_1000_XFULL); 2660 } 2661 2662 /* This is optional functionality. If not supported, we may get an error 2663 * which should be ignored. 2664 */ 2665 genphy_c45_read_eee_abilities(phydev); 2666 2667 return 0; 2668 } 2669 EXPORT_SYMBOL(genphy_read_abilities); 2670 2671 /* This is used for the phy device which doesn't support the MMD extended 2672 * register access, but it does have side effect when we are trying to access 2673 * the MMD register via indirect method. 2674 */ 2675 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2676 { 2677 return -EOPNOTSUPP; 2678 } 2679 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2680 2681 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2682 u16 regnum, u16 val) 2683 { 2684 return -EOPNOTSUPP; 2685 } 2686 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2687 2688 int genphy_suspend(struct phy_device *phydev) 2689 { 2690 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2691 } 2692 EXPORT_SYMBOL(genphy_suspend); 2693 2694 int genphy_resume(struct phy_device *phydev) 2695 { 2696 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2697 } 2698 EXPORT_SYMBOL(genphy_resume); 2699 2700 int genphy_loopback(struct phy_device *phydev, bool enable) 2701 { 2702 if (enable) { 2703 u16 val, ctl = BMCR_LOOPBACK; 2704 int ret; 2705 2706 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2707 2708 phy_modify(phydev, MII_BMCR, ~0, ctl); 2709 2710 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2711 val & BMSR_LSTATUS, 2712 5000, 500000, true); 2713 if (ret) 2714 return ret; 2715 } else { 2716 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2717 2718 phy_config_aneg(phydev); 2719 } 2720 2721 return 0; 2722 } 2723 EXPORT_SYMBOL(genphy_loopback); 2724 2725 /** 2726 * phy_remove_link_mode - Remove a supported link mode 2727 * @phydev: phy_device structure to remove link mode from 2728 * @link_mode: Link mode to be removed 2729 * 2730 * Description: Some MACs don't support all link modes which the PHY 2731 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2732 * to remove a link mode. 2733 */ 2734 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2735 { 2736 linkmode_clear_bit(link_mode, phydev->supported); 2737 phy_advertise_supported(phydev); 2738 } 2739 EXPORT_SYMBOL(phy_remove_link_mode); 2740 2741 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2742 { 2743 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2744 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2745 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2746 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2747 } 2748 2749 /** 2750 * phy_advertise_supported - Advertise all supported modes 2751 * @phydev: target phy_device struct 2752 * 2753 * Description: Called to advertise all supported modes, doesn't touch 2754 * pause mode advertising. 2755 */ 2756 void phy_advertise_supported(struct phy_device *phydev) 2757 { 2758 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2759 2760 linkmode_copy(new, phydev->supported); 2761 phy_copy_pause_bits(new, phydev->advertising); 2762 linkmode_copy(phydev->advertising, new); 2763 } 2764 EXPORT_SYMBOL(phy_advertise_supported); 2765 2766 /** 2767 * phy_support_sym_pause - Enable support of symmetrical pause 2768 * @phydev: target phy_device struct 2769 * 2770 * Description: Called by the MAC to indicate is supports symmetrical 2771 * Pause, but not asym pause. 2772 */ 2773 void phy_support_sym_pause(struct phy_device *phydev) 2774 { 2775 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2776 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2777 } 2778 EXPORT_SYMBOL(phy_support_sym_pause); 2779 2780 /** 2781 * phy_support_asym_pause - Enable support of asym pause 2782 * @phydev: target phy_device struct 2783 * 2784 * Description: Called by the MAC to indicate is supports Asym Pause. 2785 */ 2786 void phy_support_asym_pause(struct phy_device *phydev) 2787 { 2788 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2789 } 2790 EXPORT_SYMBOL(phy_support_asym_pause); 2791 2792 /** 2793 * phy_set_sym_pause - Configure symmetric Pause 2794 * @phydev: target phy_device struct 2795 * @rx: Receiver Pause is supported 2796 * @tx: Transmit Pause is supported 2797 * @autoneg: Auto neg should be used 2798 * 2799 * Description: Configure advertised Pause support depending on if 2800 * receiver pause and pause auto neg is supported. Generally called 2801 * from the set_pauseparam .ndo. 2802 */ 2803 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2804 bool autoneg) 2805 { 2806 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2807 2808 if (rx && tx && autoneg) 2809 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2810 phydev->supported); 2811 2812 linkmode_copy(phydev->advertising, phydev->supported); 2813 } 2814 EXPORT_SYMBOL(phy_set_sym_pause); 2815 2816 /** 2817 * phy_set_asym_pause - Configure Pause and Asym Pause 2818 * @phydev: target phy_device struct 2819 * @rx: Receiver Pause is supported 2820 * @tx: Transmit Pause is supported 2821 * 2822 * Description: Configure advertised Pause support depending on if 2823 * transmit and receiver pause is supported. If there has been a 2824 * change in adverting, trigger a new autoneg. Generally called from 2825 * the set_pauseparam .ndo. 2826 */ 2827 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2828 { 2829 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2830 2831 linkmode_copy(oldadv, phydev->advertising); 2832 linkmode_set_pause(phydev->advertising, tx, rx); 2833 2834 if (!linkmode_equal(oldadv, phydev->advertising) && 2835 phydev->autoneg) 2836 phy_start_aneg(phydev); 2837 } 2838 EXPORT_SYMBOL(phy_set_asym_pause); 2839 2840 /** 2841 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2842 * @phydev: phy_device struct 2843 * @pp: requested pause configuration 2844 * 2845 * Description: Test if the PHY/MAC combination supports the Pause 2846 * configuration the user is requesting. Returns True if it is 2847 * supported, false otherwise. 2848 */ 2849 bool phy_validate_pause(struct phy_device *phydev, 2850 struct ethtool_pauseparam *pp) 2851 { 2852 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2853 phydev->supported) && pp->rx_pause) 2854 return false; 2855 2856 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2857 phydev->supported) && 2858 pp->rx_pause != pp->tx_pause) 2859 return false; 2860 2861 return true; 2862 } 2863 EXPORT_SYMBOL(phy_validate_pause); 2864 2865 /** 2866 * phy_get_pause - resolve negotiated pause modes 2867 * @phydev: phy_device struct 2868 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2869 * enabled. 2870 * @rx_pause: pointer to bool to indicate whether receive pause should be 2871 * enabled. 2872 * 2873 * Resolve and return the flow control modes according to the negotiation 2874 * result. This includes checking that we are operating in full duplex mode. 2875 * See linkmode_resolve_pause() for further details. 2876 */ 2877 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2878 { 2879 if (phydev->duplex != DUPLEX_FULL) { 2880 *tx_pause = false; 2881 *rx_pause = false; 2882 return; 2883 } 2884 2885 return linkmode_resolve_pause(phydev->advertising, 2886 phydev->lp_advertising, 2887 tx_pause, rx_pause); 2888 } 2889 EXPORT_SYMBOL(phy_get_pause); 2890 2891 #if IS_ENABLED(CONFIG_OF_MDIO) 2892 static int phy_get_int_delay_property(struct device *dev, const char *name) 2893 { 2894 s32 int_delay; 2895 int ret; 2896 2897 ret = device_property_read_u32(dev, name, &int_delay); 2898 if (ret) 2899 return ret; 2900 2901 return int_delay; 2902 } 2903 #else 2904 static int phy_get_int_delay_property(struct device *dev, const char *name) 2905 { 2906 return -EINVAL; 2907 } 2908 #endif 2909 2910 /** 2911 * phy_get_internal_delay - returns the index of the internal delay 2912 * @phydev: phy_device struct 2913 * @dev: pointer to the devices device struct 2914 * @delay_values: array of delays the PHY supports 2915 * @size: the size of the delay array 2916 * @is_rx: boolean to indicate to get the rx internal delay 2917 * 2918 * Returns the index within the array of internal delay passed in. 2919 * If the device property is not present then the interface type is checked 2920 * if the interface defines use of internal delay then a 1 is returned otherwise 2921 * a 0 is returned. 2922 * The array must be in ascending order. If PHY does not have an ascending order 2923 * array then size = 0 and the value of the delay property is returned. 2924 * Return -EINVAL if the delay is invalid or cannot be found. 2925 */ 2926 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2927 const int *delay_values, int size, bool is_rx) 2928 { 2929 s32 delay; 2930 int i; 2931 2932 if (is_rx) { 2933 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2934 if (delay < 0 && size == 0) { 2935 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2936 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2937 return 1; 2938 else 2939 return 0; 2940 } 2941 2942 } else { 2943 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2944 if (delay < 0 && size == 0) { 2945 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2946 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2947 return 1; 2948 else 2949 return 0; 2950 } 2951 } 2952 2953 if (delay < 0) 2954 return delay; 2955 2956 if (delay && size == 0) 2957 return delay; 2958 2959 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2960 phydev_err(phydev, "Delay %d is out of range\n", delay); 2961 return -EINVAL; 2962 } 2963 2964 if (delay == delay_values[0]) 2965 return 0; 2966 2967 for (i = 1; i < size; i++) { 2968 if (delay == delay_values[i]) 2969 return i; 2970 2971 /* Find an approximate index by looking up the table */ 2972 if (delay > delay_values[i - 1] && 2973 delay < delay_values[i]) { 2974 if (delay - delay_values[i - 1] < 2975 delay_values[i] - delay) 2976 return i - 1; 2977 else 2978 return i; 2979 } 2980 } 2981 2982 phydev_err(phydev, "error finding internal delay index for %d\n", 2983 delay); 2984 2985 return -EINVAL; 2986 } 2987 EXPORT_SYMBOL(phy_get_internal_delay); 2988 2989 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2990 { 2991 return phydrv->config_intr && phydrv->handle_interrupt; 2992 } 2993 2994 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2995 enum led_brightness value) 2996 { 2997 struct phy_led *phyled = to_phy_led(led_cdev); 2998 struct phy_device *phydev = phyled->phydev; 2999 int err; 3000 3001 mutex_lock(&phydev->lock); 3002 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3003 mutex_unlock(&phydev->lock); 3004 3005 return err; 3006 } 3007 3008 static int phy_led_blink_set(struct led_classdev *led_cdev, 3009 unsigned long *delay_on, 3010 unsigned long *delay_off) 3011 { 3012 struct phy_led *phyled = to_phy_led(led_cdev); 3013 struct phy_device *phydev = phyled->phydev; 3014 int err; 3015 3016 mutex_lock(&phydev->lock); 3017 err = phydev->drv->led_blink_set(phydev, phyled->index, 3018 delay_on, delay_off); 3019 mutex_unlock(&phydev->lock); 3020 3021 return err; 3022 } 3023 3024 static void phy_leds_unregister(struct phy_device *phydev) 3025 { 3026 struct phy_led *phyled; 3027 3028 list_for_each_entry(phyled, &phydev->leds, list) { 3029 led_classdev_unregister(&phyled->led_cdev); 3030 } 3031 } 3032 3033 static int of_phy_led(struct phy_device *phydev, 3034 struct device_node *led) 3035 { 3036 struct device *dev = &phydev->mdio.dev; 3037 struct led_init_data init_data = {}; 3038 struct led_classdev *cdev; 3039 struct phy_led *phyled; 3040 u32 index; 3041 int err; 3042 3043 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3044 if (!phyled) 3045 return -ENOMEM; 3046 3047 cdev = &phyled->led_cdev; 3048 phyled->phydev = phydev; 3049 3050 err = of_property_read_u32(led, "reg", &index); 3051 if (err) 3052 return err; 3053 if (index > U8_MAX) 3054 return -EINVAL; 3055 3056 phyled->index = index; 3057 if (phydev->drv->led_brightness_set) 3058 cdev->brightness_set_blocking = phy_led_set_brightness; 3059 if (phydev->drv->led_blink_set) 3060 cdev->blink_set = phy_led_blink_set; 3061 cdev->max_brightness = 1; 3062 init_data.devicename = dev_name(&phydev->mdio.dev); 3063 init_data.fwnode = of_fwnode_handle(led); 3064 init_data.devname_mandatory = true; 3065 3066 err = led_classdev_register_ext(dev, cdev, &init_data); 3067 if (err) 3068 return err; 3069 3070 list_add(&phyled->list, &phydev->leds); 3071 3072 return 0; 3073 } 3074 3075 static int of_phy_leds(struct phy_device *phydev) 3076 { 3077 struct device_node *node = phydev->mdio.dev.of_node; 3078 struct device_node *leds, *led; 3079 int err; 3080 3081 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3082 return 0; 3083 3084 if (!node) 3085 return 0; 3086 3087 leds = of_get_child_by_name(node, "leds"); 3088 if (!leds) 3089 return 0; 3090 3091 for_each_available_child_of_node(leds, led) { 3092 err = of_phy_led(phydev, led); 3093 if (err) { 3094 of_node_put(led); 3095 phy_leds_unregister(phydev); 3096 return err; 3097 } 3098 } 3099 3100 return 0; 3101 } 3102 3103 /** 3104 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3105 * @fwnode: pointer to the mdio_device's fwnode 3106 * 3107 * If successful, returns a pointer to the mdio_device with the embedded 3108 * struct device refcount incremented by one, or NULL on failure. 3109 * The caller should call put_device() on the mdio_device after its use. 3110 */ 3111 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3112 { 3113 struct device *d; 3114 3115 if (!fwnode) 3116 return NULL; 3117 3118 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3119 if (!d) 3120 return NULL; 3121 3122 return to_mdio_device(d); 3123 } 3124 EXPORT_SYMBOL(fwnode_mdio_find_device); 3125 3126 /** 3127 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3128 * 3129 * @phy_fwnode: Pointer to the phy's fwnode. 3130 * 3131 * If successful, returns a pointer to the phy_device with the embedded 3132 * struct device refcount incremented by one, or NULL on failure. 3133 */ 3134 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3135 { 3136 struct mdio_device *mdiodev; 3137 3138 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3139 if (!mdiodev) 3140 return NULL; 3141 3142 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3143 return to_phy_device(&mdiodev->dev); 3144 3145 put_device(&mdiodev->dev); 3146 3147 return NULL; 3148 } 3149 EXPORT_SYMBOL(fwnode_phy_find_device); 3150 3151 /** 3152 * device_phy_find_device - For the given device, get the phy_device 3153 * @dev: Pointer to the given device 3154 * 3155 * Refer return conditions of fwnode_phy_find_device(). 3156 */ 3157 struct phy_device *device_phy_find_device(struct device *dev) 3158 { 3159 return fwnode_phy_find_device(dev_fwnode(dev)); 3160 } 3161 EXPORT_SYMBOL_GPL(device_phy_find_device); 3162 3163 /** 3164 * fwnode_get_phy_node - Get the phy_node using the named reference. 3165 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3166 * 3167 * Refer return conditions of fwnode_find_reference(). 3168 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3169 * and "phy-device" are not supported in ACPI. DT supports all the three 3170 * named references to the phy node. 3171 */ 3172 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3173 { 3174 struct fwnode_handle *phy_node; 3175 3176 /* Only phy-handle is used for ACPI */ 3177 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3178 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3179 return phy_node; 3180 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3181 if (IS_ERR(phy_node)) 3182 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3183 return phy_node; 3184 } 3185 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3186 3187 /** 3188 * phy_probe - probe and init a PHY device 3189 * @dev: device to probe and init 3190 * 3191 * Take care of setting up the phy_device structure, set the state to READY. 3192 */ 3193 static int phy_probe(struct device *dev) 3194 { 3195 struct phy_device *phydev = to_phy_device(dev); 3196 struct device_driver *drv = phydev->mdio.dev.driver; 3197 struct phy_driver *phydrv = to_phy_driver(drv); 3198 int err = 0; 3199 3200 phydev->drv = phydrv; 3201 3202 /* Disable the interrupt if the PHY doesn't support it 3203 * but the interrupt is still a valid one 3204 */ 3205 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3206 phydev->irq = PHY_POLL; 3207 3208 if (phydrv->flags & PHY_IS_INTERNAL) 3209 phydev->is_internal = true; 3210 3211 /* Deassert the reset signal */ 3212 phy_device_reset(phydev, 0); 3213 3214 if (phydev->drv->probe) { 3215 err = phydev->drv->probe(phydev); 3216 if (err) 3217 goto out; 3218 } 3219 3220 /* Start out supporting everything. Eventually, 3221 * a controller will attach, and may modify one 3222 * or both of these values 3223 */ 3224 if (phydrv->features) { 3225 linkmode_copy(phydev->supported, phydrv->features); 3226 genphy_c45_read_eee_abilities(phydev); 3227 } 3228 else if (phydrv->get_features) 3229 err = phydrv->get_features(phydev); 3230 else if (phydev->is_c45) 3231 err = genphy_c45_pma_read_abilities(phydev); 3232 else 3233 err = genphy_read_abilities(phydev); 3234 3235 if (err) 3236 goto out; 3237 3238 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3239 phydev->supported)) 3240 phydev->autoneg = 0; 3241 3242 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3243 phydev->supported)) 3244 phydev->is_gigabit_capable = 1; 3245 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3246 phydev->supported)) 3247 phydev->is_gigabit_capable = 1; 3248 3249 of_set_phy_supported(phydev); 3250 phy_advertise_supported(phydev); 3251 3252 /* Get PHY default EEE advertising modes and handle them as potentially 3253 * safe initial configuration. 3254 */ 3255 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3256 if (err) 3257 goto out; 3258 3259 /* There is no "enabled" flag. If PHY is advertising, assume it is 3260 * kind of enabled. 3261 */ 3262 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3263 3264 /* Some PHYs may advertise, by default, not support EEE modes. So, 3265 * we need to clean them. 3266 */ 3267 if (phydev->eee_enabled) 3268 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3269 phydev->advertising_eee); 3270 3271 /* Get the EEE modes we want to prohibit. We will ask 3272 * the PHY stop advertising these mode later on 3273 */ 3274 of_set_phy_eee_broken(phydev); 3275 3276 /* The Pause Frame bits indicate that the PHY can support passing 3277 * pause frames. During autonegotiation, the PHYs will determine if 3278 * they should allow pause frames to pass. The MAC driver should then 3279 * use that result to determine whether to enable flow control via 3280 * pause frames. 3281 * 3282 * Normally, PHY drivers should not set the Pause bits, and instead 3283 * allow phylib to do that. However, there may be some situations 3284 * (e.g. hardware erratum) where the driver wants to set only one 3285 * of these bits. 3286 */ 3287 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3288 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3289 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3290 phydev->supported); 3291 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3292 phydev->supported); 3293 } 3294 3295 /* Set the state to READY by default */ 3296 phydev->state = PHY_READY; 3297 3298 /* Get the LEDs from the device tree, and instantiate standard 3299 * LEDs for them. 3300 */ 3301 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3302 err = of_phy_leds(phydev); 3303 3304 out: 3305 /* Re-assert the reset signal on error */ 3306 if (err) 3307 phy_device_reset(phydev, 1); 3308 3309 return err; 3310 } 3311 3312 static int phy_remove(struct device *dev) 3313 { 3314 struct phy_device *phydev = to_phy_device(dev); 3315 3316 cancel_delayed_work_sync(&phydev->state_queue); 3317 3318 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3319 phy_leds_unregister(phydev); 3320 3321 phydev->state = PHY_DOWN; 3322 3323 sfp_bus_del_upstream(phydev->sfp_bus); 3324 phydev->sfp_bus = NULL; 3325 3326 if (phydev->drv && phydev->drv->remove) 3327 phydev->drv->remove(phydev); 3328 3329 /* Assert the reset signal */ 3330 phy_device_reset(phydev, 1); 3331 3332 phydev->drv = NULL; 3333 3334 return 0; 3335 } 3336 3337 static void phy_shutdown(struct device *dev) 3338 { 3339 struct phy_device *phydev = to_phy_device(dev); 3340 3341 if (phydev->state == PHY_READY || !phydev->attached_dev) 3342 return; 3343 3344 phy_disable_interrupts(phydev); 3345 } 3346 3347 /** 3348 * phy_driver_register - register a phy_driver with the PHY layer 3349 * @new_driver: new phy_driver to register 3350 * @owner: module owning this PHY 3351 */ 3352 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3353 { 3354 int retval; 3355 3356 /* Either the features are hard coded, or dynamically 3357 * determined. It cannot be both. 3358 */ 3359 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3360 pr_err("%s: features and get_features must not both be set\n", 3361 new_driver->name); 3362 return -EINVAL; 3363 } 3364 3365 /* PHYLIB device drivers must not match using a DT compatible table 3366 * as this bypasses our checks that the mdiodev that is being matched 3367 * is backed by a struct phy_device. If such a case happens, we will 3368 * make out-of-bounds accesses and lockup in phydev->lock. 3369 */ 3370 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3371 "%s: driver must not provide a DT match table\n", 3372 new_driver->name)) 3373 return -EINVAL; 3374 3375 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3376 new_driver->mdiodrv.driver.name = new_driver->name; 3377 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3378 new_driver->mdiodrv.driver.probe = phy_probe; 3379 new_driver->mdiodrv.driver.remove = phy_remove; 3380 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3381 new_driver->mdiodrv.driver.owner = owner; 3382 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3383 3384 retval = driver_register(&new_driver->mdiodrv.driver); 3385 if (retval) { 3386 pr_err("%s: Error %d in registering driver\n", 3387 new_driver->name, retval); 3388 3389 return retval; 3390 } 3391 3392 pr_debug("%s: Registered new driver\n", new_driver->name); 3393 3394 return 0; 3395 } 3396 EXPORT_SYMBOL(phy_driver_register); 3397 3398 int phy_drivers_register(struct phy_driver *new_driver, int n, 3399 struct module *owner) 3400 { 3401 int i, ret = 0; 3402 3403 for (i = 0; i < n; i++) { 3404 ret = phy_driver_register(new_driver + i, owner); 3405 if (ret) { 3406 while (i-- > 0) 3407 phy_driver_unregister(new_driver + i); 3408 break; 3409 } 3410 } 3411 return ret; 3412 } 3413 EXPORT_SYMBOL(phy_drivers_register); 3414 3415 void phy_driver_unregister(struct phy_driver *drv) 3416 { 3417 driver_unregister(&drv->mdiodrv.driver); 3418 } 3419 EXPORT_SYMBOL(phy_driver_unregister); 3420 3421 void phy_drivers_unregister(struct phy_driver *drv, int n) 3422 { 3423 int i; 3424 3425 for (i = 0; i < n; i++) 3426 phy_driver_unregister(drv + i); 3427 } 3428 EXPORT_SYMBOL(phy_drivers_unregister); 3429 3430 static struct phy_driver genphy_driver = { 3431 .phy_id = 0xffffffff, 3432 .phy_id_mask = 0xffffffff, 3433 .name = "Generic PHY", 3434 .get_features = genphy_read_abilities, 3435 .suspend = genphy_suspend, 3436 .resume = genphy_resume, 3437 .set_loopback = genphy_loopback, 3438 }; 3439 3440 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3441 .get_sset_count = phy_ethtool_get_sset_count, 3442 .get_strings = phy_ethtool_get_strings, 3443 .get_stats = phy_ethtool_get_stats, 3444 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3445 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3446 .get_plca_status = phy_ethtool_get_plca_status, 3447 .start_cable_test = phy_start_cable_test, 3448 .start_cable_test_tdr = phy_start_cable_test_tdr, 3449 }; 3450 3451 static int __init phy_init(void) 3452 { 3453 int rc; 3454 3455 rc = mdio_bus_init(); 3456 if (rc) 3457 return rc; 3458 3459 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3460 features_init(); 3461 3462 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3463 if (rc) 3464 goto err_c45; 3465 3466 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3467 if (rc) { 3468 phy_driver_unregister(&genphy_c45_driver); 3469 err_c45: 3470 mdio_bus_exit(); 3471 } 3472 3473 return rc; 3474 } 3475 3476 static void __exit phy_exit(void) 3477 { 3478 phy_driver_unregister(&genphy_c45_driver); 3479 phy_driver_unregister(&genphy_driver); 3480 mdio_bus_exit(); 3481 ethtool_set_ethtool_phy_ops(NULL); 3482 } 3483 3484 subsys_initcall(phy_init); 3485 module_exit(phy_exit); 3486