xref: /openbmc/linux/drivers/net/phy/phy_device.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phy_led_triggers.h>
31 #include <linux/pse-pd/pse.h>
32 #include <linux/property.h>
33 #include <linux/sfp.h>
34 #include <linux/skbuff.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/uaccess.h>
38 #include <linux/unistd.h>
39 
40 MODULE_DESCRIPTION("PHY library");
41 MODULE_AUTHOR("Andy Fleming");
42 MODULE_LICENSE("GPL");
43 
44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
45 EXPORT_SYMBOL_GPL(phy_basic_features);
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_gbit_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
61 
62 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
63 EXPORT_SYMBOL_GPL(phy_10gbit_features);
64 
65 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
66 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
67 
68 const int phy_basic_ports_array[3] = {
69 	ETHTOOL_LINK_MODE_Autoneg_BIT,
70 	ETHTOOL_LINK_MODE_TP_BIT,
71 	ETHTOOL_LINK_MODE_MII_BIT,
72 };
73 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
74 
75 const int phy_fibre_port_array[1] = {
76 	ETHTOOL_LINK_MODE_FIBRE_BIT,
77 };
78 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
79 
80 const int phy_all_ports_features_array[7] = {
81 	ETHTOOL_LINK_MODE_Autoneg_BIT,
82 	ETHTOOL_LINK_MODE_TP_BIT,
83 	ETHTOOL_LINK_MODE_MII_BIT,
84 	ETHTOOL_LINK_MODE_FIBRE_BIT,
85 	ETHTOOL_LINK_MODE_AUI_BIT,
86 	ETHTOOL_LINK_MODE_BNC_BIT,
87 	ETHTOOL_LINK_MODE_Backplane_BIT,
88 };
89 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
90 
91 const int phy_10_100_features_array[4] = {
92 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
93 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
94 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
96 };
97 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
98 
99 const int phy_basic_t1_features_array[3] = {
100 	ETHTOOL_LINK_MODE_TP_BIT,
101 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
102 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
103 };
104 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
105 
106 const int phy_basic_t1s_p2mp_features_array[2] = {
107 	ETHTOOL_LINK_MODE_TP_BIT,
108 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
109 };
110 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
111 
112 const int phy_gbit_features_array[2] = {
113 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
114 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
115 };
116 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
117 
118 const int phy_10gbit_features_array[1] = {
119 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
120 };
121 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
122 
123 static const int phy_10gbit_fec_features_array[1] = {
124 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
125 };
126 
127 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
128 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
129 
130 static const int phy_10gbit_full_features_array[] = {
131 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
132 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
133 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
135 };
136 
137 static const int phy_eee_cap1_features_array[] = {
138 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
139 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
140 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
143 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
144 };
145 
146 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
147 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
148 
149 static void features_init(void)
150 {
151 	/* 10/100 half/full*/
152 	linkmode_set_bit_array(phy_basic_ports_array,
153 			       ARRAY_SIZE(phy_basic_ports_array),
154 			       phy_basic_features);
155 	linkmode_set_bit_array(phy_10_100_features_array,
156 			       ARRAY_SIZE(phy_10_100_features_array),
157 			       phy_basic_features);
158 
159 	/* 100 full, TP */
160 	linkmode_set_bit_array(phy_basic_t1_features_array,
161 			       ARRAY_SIZE(phy_basic_t1_features_array),
162 			       phy_basic_t1_features);
163 
164 	/* 10 half, P2MP, TP */
165 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
166 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
167 			       phy_basic_t1s_p2mp_features);
168 
169 	/* 10/100 half/full + 1000 half/full */
170 	linkmode_set_bit_array(phy_basic_ports_array,
171 			       ARRAY_SIZE(phy_basic_ports_array),
172 			       phy_gbit_features);
173 	linkmode_set_bit_array(phy_10_100_features_array,
174 			       ARRAY_SIZE(phy_10_100_features_array),
175 			       phy_gbit_features);
176 	linkmode_set_bit_array(phy_gbit_features_array,
177 			       ARRAY_SIZE(phy_gbit_features_array),
178 			       phy_gbit_features);
179 
180 	/* 10/100 half/full + 1000 half/full + fibre*/
181 	linkmode_set_bit_array(phy_basic_ports_array,
182 			       ARRAY_SIZE(phy_basic_ports_array),
183 			       phy_gbit_fibre_features);
184 	linkmode_set_bit_array(phy_10_100_features_array,
185 			       ARRAY_SIZE(phy_10_100_features_array),
186 			       phy_gbit_fibre_features);
187 	linkmode_set_bit_array(phy_gbit_features_array,
188 			       ARRAY_SIZE(phy_gbit_features_array),
189 			       phy_gbit_fibre_features);
190 	linkmode_set_bit_array(phy_fibre_port_array,
191 			       ARRAY_SIZE(phy_fibre_port_array),
192 			       phy_gbit_fibre_features);
193 
194 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
195 	linkmode_set_bit_array(phy_all_ports_features_array,
196 			       ARRAY_SIZE(phy_all_ports_features_array),
197 			       phy_gbit_all_ports_features);
198 	linkmode_set_bit_array(phy_10_100_features_array,
199 			       ARRAY_SIZE(phy_10_100_features_array),
200 			       phy_gbit_all_ports_features);
201 	linkmode_set_bit_array(phy_gbit_features_array,
202 			       ARRAY_SIZE(phy_gbit_features_array),
203 			       phy_gbit_all_ports_features);
204 
205 	/* 10/100 half/full + 1000 half/full + 10G full*/
206 	linkmode_set_bit_array(phy_all_ports_features_array,
207 			       ARRAY_SIZE(phy_all_ports_features_array),
208 			       phy_10gbit_features);
209 	linkmode_set_bit_array(phy_10_100_features_array,
210 			       ARRAY_SIZE(phy_10_100_features_array),
211 			       phy_10gbit_features);
212 	linkmode_set_bit_array(phy_gbit_features_array,
213 			       ARRAY_SIZE(phy_gbit_features_array),
214 			       phy_10gbit_features);
215 	linkmode_set_bit_array(phy_10gbit_features_array,
216 			       ARRAY_SIZE(phy_10gbit_features_array),
217 			       phy_10gbit_features);
218 
219 	/* 10/100/1000/10G full */
220 	linkmode_set_bit_array(phy_all_ports_features_array,
221 			       ARRAY_SIZE(phy_all_ports_features_array),
222 			       phy_10gbit_full_features);
223 	linkmode_set_bit_array(phy_10gbit_full_features_array,
224 			       ARRAY_SIZE(phy_10gbit_full_features_array),
225 			       phy_10gbit_full_features);
226 	/* 10G FEC only */
227 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
228 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
229 			       phy_10gbit_fec_features);
230 	linkmode_set_bit_array(phy_eee_cap1_features_array,
231 			       ARRAY_SIZE(phy_eee_cap1_features_array),
232 			       phy_eee_cap1_features);
233 
234 }
235 
236 void phy_device_free(struct phy_device *phydev)
237 {
238 	put_device(&phydev->mdio.dev);
239 }
240 EXPORT_SYMBOL(phy_device_free);
241 
242 static void phy_mdio_device_free(struct mdio_device *mdiodev)
243 {
244 	struct phy_device *phydev;
245 
246 	phydev = container_of(mdiodev, struct phy_device, mdio);
247 	phy_device_free(phydev);
248 }
249 
250 static void phy_device_release(struct device *dev)
251 {
252 	fwnode_handle_put(dev->fwnode);
253 	kfree(to_phy_device(dev));
254 }
255 
256 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
257 {
258 	struct phy_device *phydev;
259 
260 	phydev = container_of(mdiodev, struct phy_device, mdio);
261 	phy_device_remove(phydev);
262 }
263 
264 static struct phy_driver genphy_driver;
265 
266 static LIST_HEAD(phy_fixup_list);
267 static DEFINE_MUTEX(phy_fixup_lock);
268 
269 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
270 {
271 	struct device_driver *drv = phydev->mdio.dev.driver;
272 	struct phy_driver *phydrv = to_phy_driver(drv);
273 	struct net_device *netdev = phydev->attached_dev;
274 
275 	if (!drv || !phydrv->suspend)
276 		return false;
277 
278 	/* PHY not attached? May suspend if the PHY has not already been
279 	 * suspended as part of a prior call to phy_disconnect() ->
280 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
281 	 * MDIO bus driver and clock gated at this point.
282 	 */
283 	if (!netdev)
284 		goto out;
285 
286 	if (netdev->wol_enabled)
287 		return false;
288 
289 	/* As long as not all affected network drivers support the
290 	 * wol_enabled flag, let's check for hints that WoL is enabled.
291 	 * Don't suspend PHY if the attached netdev parent may wake up.
292 	 * The parent may point to a PCI device, as in tg3 driver.
293 	 */
294 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
295 		return false;
296 
297 	/* Also don't suspend PHY if the netdev itself may wakeup. This
298 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
299 	 * e.g. SoC devices.
300 	 */
301 	if (device_may_wakeup(&netdev->dev))
302 		return false;
303 
304 out:
305 	return !phydev->suspended;
306 }
307 
308 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
309 {
310 	struct phy_device *phydev = to_phy_device(dev);
311 
312 	if (phydev->mac_managed_pm)
313 		return 0;
314 
315 	/* Wakeup interrupts may occur during the system sleep transition when
316 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
317 	 * has resumed. Wait for concurrent interrupt handler to complete.
318 	 */
319 	if (phy_interrupt_is_valid(phydev)) {
320 		phydev->irq_suspended = 1;
321 		synchronize_irq(phydev->irq);
322 	}
323 
324 	/* We must stop the state machine manually, otherwise it stops out of
325 	 * control, possibly with the phydev->lock held. Upon resume, netdev
326 	 * may call phy routines that try to grab the same lock, and that may
327 	 * lead to a deadlock.
328 	 */
329 	if (phydev->attached_dev && phydev->adjust_link)
330 		phy_stop_machine(phydev);
331 
332 	if (!mdio_bus_phy_may_suspend(phydev))
333 		return 0;
334 
335 	phydev->suspended_by_mdio_bus = 1;
336 
337 	return phy_suspend(phydev);
338 }
339 
340 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
341 {
342 	struct phy_device *phydev = to_phy_device(dev);
343 	int ret;
344 
345 	if (phydev->mac_managed_pm)
346 		return 0;
347 
348 	if (!phydev->suspended_by_mdio_bus)
349 		goto no_resume;
350 
351 	phydev->suspended_by_mdio_bus = 0;
352 
353 	/* If we managed to get here with the PHY state machine in a state
354 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
355 	 * that something went wrong and we should most likely be using
356 	 * MAC managed PM, but we are not.
357 	 */
358 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
359 		phydev->state != PHY_UP);
360 
361 	ret = phy_init_hw(phydev);
362 	if (ret < 0)
363 		return ret;
364 
365 	ret = phy_resume(phydev);
366 	if (ret < 0)
367 		return ret;
368 no_resume:
369 	if (phy_interrupt_is_valid(phydev)) {
370 		phydev->irq_suspended = 0;
371 		synchronize_irq(phydev->irq);
372 
373 		/* Rerun interrupts which were postponed by phy_interrupt()
374 		 * because they occurred during the system sleep transition.
375 		 */
376 		if (phydev->irq_rerun) {
377 			phydev->irq_rerun = 0;
378 			enable_irq(phydev->irq);
379 			irq_wake_thread(phydev->irq, phydev);
380 		}
381 	}
382 
383 	if (phydev->attached_dev && phydev->adjust_link)
384 		phy_start_machine(phydev);
385 
386 	return 0;
387 }
388 
389 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
390 			 mdio_bus_phy_resume);
391 
392 /**
393  * phy_register_fixup - creates a new phy_fixup and adds it to the list
394  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
395  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
396  *	It can also be PHY_ANY_UID
397  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
398  *	comparison
399  * @run: The actual code to be run when a matching PHY is found
400  */
401 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
402 		       int (*run)(struct phy_device *))
403 {
404 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
405 
406 	if (!fixup)
407 		return -ENOMEM;
408 
409 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
410 	fixup->phy_uid = phy_uid;
411 	fixup->phy_uid_mask = phy_uid_mask;
412 	fixup->run = run;
413 
414 	mutex_lock(&phy_fixup_lock);
415 	list_add_tail(&fixup->list, &phy_fixup_list);
416 	mutex_unlock(&phy_fixup_lock);
417 
418 	return 0;
419 }
420 EXPORT_SYMBOL(phy_register_fixup);
421 
422 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
423 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
424 			       int (*run)(struct phy_device *))
425 {
426 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
427 }
428 EXPORT_SYMBOL(phy_register_fixup_for_uid);
429 
430 /* Registers a fixup to be run on the PHY with id string bus_id */
431 int phy_register_fixup_for_id(const char *bus_id,
432 			      int (*run)(struct phy_device *))
433 {
434 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
435 }
436 EXPORT_SYMBOL(phy_register_fixup_for_id);
437 
438 /**
439  * phy_unregister_fixup - remove a phy_fixup from the list
440  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
441  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
442  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
443  */
444 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
445 {
446 	struct list_head *pos, *n;
447 	struct phy_fixup *fixup;
448 	int ret;
449 
450 	ret = -ENODEV;
451 
452 	mutex_lock(&phy_fixup_lock);
453 	list_for_each_safe(pos, n, &phy_fixup_list) {
454 		fixup = list_entry(pos, struct phy_fixup, list);
455 
456 		if ((!strcmp(fixup->bus_id, bus_id)) &&
457 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
458 			list_del(&fixup->list);
459 			kfree(fixup);
460 			ret = 0;
461 			break;
462 		}
463 	}
464 	mutex_unlock(&phy_fixup_lock);
465 
466 	return ret;
467 }
468 EXPORT_SYMBOL(phy_unregister_fixup);
469 
470 /* Unregisters a fixup of any PHY with the UID in phy_uid */
471 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
472 {
473 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
474 }
475 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
476 
477 /* Unregisters a fixup of the PHY with id string bus_id */
478 int phy_unregister_fixup_for_id(const char *bus_id)
479 {
480 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
481 }
482 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
483 
484 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
485  * Fixups can be set to match any in one or more fields.
486  */
487 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
488 {
489 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
490 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
491 			return 0;
492 
493 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
494 			    fixup->phy_uid_mask))
495 		if (fixup->phy_uid != PHY_ANY_UID)
496 			return 0;
497 
498 	return 1;
499 }
500 
501 /* Runs any matching fixups for this phydev */
502 static int phy_scan_fixups(struct phy_device *phydev)
503 {
504 	struct phy_fixup *fixup;
505 
506 	mutex_lock(&phy_fixup_lock);
507 	list_for_each_entry(fixup, &phy_fixup_list, list) {
508 		if (phy_needs_fixup(phydev, fixup)) {
509 			int err = fixup->run(phydev);
510 
511 			if (err < 0) {
512 				mutex_unlock(&phy_fixup_lock);
513 				return err;
514 			}
515 			phydev->has_fixups = true;
516 		}
517 	}
518 	mutex_unlock(&phy_fixup_lock);
519 
520 	return 0;
521 }
522 
523 static int phy_bus_match(struct device *dev, struct device_driver *drv)
524 {
525 	struct phy_device *phydev = to_phy_device(dev);
526 	struct phy_driver *phydrv = to_phy_driver(drv);
527 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
528 	int i;
529 
530 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
531 		return 0;
532 
533 	if (phydrv->match_phy_device)
534 		return phydrv->match_phy_device(phydev);
535 
536 	if (phydev->is_c45) {
537 		for (i = 1; i < num_ids; i++) {
538 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
539 				continue;
540 
541 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
542 					   phydrv->phy_id, phydrv->phy_id_mask))
543 				return 1;
544 		}
545 		return 0;
546 	} else {
547 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
548 				      phydrv->phy_id_mask);
549 	}
550 }
551 
552 static ssize_t
553 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
554 {
555 	struct phy_device *phydev = to_phy_device(dev);
556 
557 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
558 }
559 static DEVICE_ATTR_RO(phy_id);
560 
561 static ssize_t
562 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
563 {
564 	struct phy_device *phydev = to_phy_device(dev);
565 	const char *mode = NULL;
566 
567 	if (phy_is_internal(phydev))
568 		mode = "internal";
569 	else
570 		mode = phy_modes(phydev->interface);
571 
572 	return sysfs_emit(buf, "%s\n", mode);
573 }
574 static DEVICE_ATTR_RO(phy_interface);
575 
576 static ssize_t
577 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
578 		    char *buf)
579 {
580 	struct phy_device *phydev = to_phy_device(dev);
581 
582 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
583 }
584 static DEVICE_ATTR_RO(phy_has_fixups);
585 
586 static ssize_t phy_dev_flags_show(struct device *dev,
587 				  struct device_attribute *attr,
588 				  char *buf)
589 {
590 	struct phy_device *phydev = to_phy_device(dev);
591 
592 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
593 }
594 static DEVICE_ATTR_RO(phy_dev_flags);
595 
596 static struct attribute *phy_dev_attrs[] = {
597 	&dev_attr_phy_id.attr,
598 	&dev_attr_phy_interface.attr,
599 	&dev_attr_phy_has_fixups.attr,
600 	&dev_attr_phy_dev_flags.attr,
601 	NULL,
602 };
603 ATTRIBUTE_GROUPS(phy_dev);
604 
605 static const struct device_type mdio_bus_phy_type = {
606 	.name = "PHY",
607 	.groups = phy_dev_groups,
608 	.release = phy_device_release,
609 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
610 };
611 
612 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
613 {
614 	int ret;
615 
616 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
617 			     MDIO_ID_ARGS(phy_id));
618 	/* We only check for failures in executing the usermode binary,
619 	 * not whether a PHY driver module exists for the PHY ID.
620 	 * Accept -ENOENT because this may occur in case no initramfs exists,
621 	 * then modprobe isn't available.
622 	 */
623 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
624 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
625 			   ret, (unsigned long)phy_id);
626 		return ret;
627 	}
628 
629 	return 0;
630 }
631 
632 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
633 				     bool is_c45,
634 				     struct phy_c45_device_ids *c45_ids)
635 {
636 	struct phy_device *dev;
637 	struct mdio_device *mdiodev;
638 	int ret = 0;
639 
640 	/* We allocate the device, and initialize the default values */
641 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
642 	if (!dev)
643 		return ERR_PTR(-ENOMEM);
644 
645 	mdiodev = &dev->mdio;
646 	mdiodev->dev.parent = &bus->dev;
647 	mdiodev->dev.bus = &mdio_bus_type;
648 	mdiodev->dev.type = &mdio_bus_phy_type;
649 	mdiodev->bus = bus;
650 	mdiodev->bus_match = phy_bus_match;
651 	mdiodev->addr = addr;
652 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
653 	mdiodev->device_free = phy_mdio_device_free;
654 	mdiodev->device_remove = phy_mdio_device_remove;
655 
656 	dev->speed = SPEED_UNKNOWN;
657 	dev->duplex = DUPLEX_UNKNOWN;
658 	dev->pause = 0;
659 	dev->asym_pause = 0;
660 	dev->link = 0;
661 	dev->port = PORT_TP;
662 	dev->interface = PHY_INTERFACE_MODE_GMII;
663 
664 	dev->autoneg = AUTONEG_ENABLE;
665 
666 	dev->pma_extable = -ENODATA;
667 	dev->is_c45 = is_c45;
668 	dev->phy_id = phy_id;
669 	if (c45_ids)
670 		dev->c45_ids = *c45_ids;
671 	dev->irq = bus->irq[addr];
672 
673 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
674 	device_initialize(&mdiodev->dev);
675 
676 	dev->state = PHY_DOWN;
677 	INIT_LIST_HEAD(&dev->leds);
678 
679 	mutex_init(&dev->lock);
680 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
681 
682 	/* Request the appropriate module unconditionally; don't
683 	 * bother trying to do so only if it isn't already loaded,
684 	 * because that gets complicated. A hotplug event would have
685 	 * done an unconditional modprobe anyway.
686 	 * We don't do normal hotplug because it won't work for MDIO
687 	 * -- because it relies on the device staying around for long
688 	 * enough for the driver to get loaded. With MDIO, the NIC
689 	 * driver will get bored and give up as soon as it finds that
690 	 * there's no driver _already_ loaded.
691 	 */
692 	if (is_c45 && c45_ids) {
693 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
694 		int i;
695 
696 		for (i = 1; i < num_ids; i++) {
697 			if (c45_ids->device_ids[i] == 0xffffffff)
698 				continue;
699 
700 			ret = phy_request_driver_module(dev,
701 						c45_ids->device_ids[i]);
702 			if (ret)
703 				break;
704 		}
705 	} else {
706 		ret = phy_request_driver_module(dev, phy_id);
707 	}
708 
709 	if (ret) {
710 		put_device(&mdiodev->dev);
711 		dev = ERR_PTR(ret);
712 	}
713 
714 	return dev;
715 }
716 EXPORT_SYMBOL(phy_device_create);
717 
718 /* phy_c45_probe_present - checks to see if a MMD is present in the package
719  * @bus: the target MII bus
720  * @prtad: PHY package address on the MII bus
721  * @devad: PHY device (MMD) address
722  *
723  * Read the MDIO_STAT2 register, and check whether a device is responding
724  * at this address.
725  *
726  * Returns: negative error number on bus access error, zero if no device
727  * is responding, or positive if a device is present.
728  */
729 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
730 {
731 	int stat2;
732 
733 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
734 	if (stat2 < 0)
735 		return stat2;
736 
737 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
738 }
739 
740 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
741  * @bus: the target MII bus
742  * @addr: PHY address on the MII bus
743  * @dev_addr: MMD address in the PHY.
744  * @devices_in_package: where to store the devices in package information.
745  *
746  * Description: reads devices in package registers of a MMD at @dev_addr
747  * from PHY at @addr on @bus.
748  *
749  * Returns: 0 on success, -EIO on failure.
750  */
751 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
752 				   u32 *devices_in_package)
753 {
754 	int phy_reg;
755 
756 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
757 	if (phy_reg < 0)
758 		return -EIO;
759 	*devices_in_package = phy_reg << 16;
760 
761 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
762 	if (phy_reg < 0)
763 		return -EIO;
764 	*devices_in_package |= phy_reg;
765 
766 	return 0;
767 }
768 
769 /**
770  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
771  * @bus: the target MII bus
772  * @addr: PHY address on the MII bus
773  * @c45_ids: where to store the c45 ID information.
774  *
775  * Read the PHY "devices in package". If this appears to be valid, read
776  * the PHY identifiers for each device. Return the "devices in package"
777  * and identifiers in @c45_ids.
778  *
779  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
780  * the "devices in package" is invalid.
781  */
782 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
783 			   struct phy_c45_device_ids *c45_ids)
784 {
785 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
786 	u32 devs_in_pkg = 0;
787 	int i, ret, phy_reg;
788 
789 	/* Find first non-zero Devices In package. Device zero is reserved
790 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
791 	 */
792 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
793 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
794 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
795 			/* Check that there is a device present at this
796 			 * address before reading the devices-in-package
797 			 * register to avoid reading garbage from the PHY.
798 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
799 			 * compliant.
800 			 */
801 			ret = phy_c45_probe_present(bus, addr, i);
802 			if (ret < 0)
803 				return -EIO;
804 
805 			if (!ret)
806 				continue;
807 		}
808 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
809 		if (phy_reg < 0)
810 			return -EIO;
811 	}
812 
813 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
814 		/* If mostly Fs, there is no device there, then let's probe
815 		 * MMD 0, as some 10G PHYs have zero Devices In package,
816 		 * e.g. Cortina CS4315/CS4340 PHY.
817 		 */
818 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
819 		if (phy_reg < 0)
820 			return -EIO;
821 
822 		/* no device there, let's get out of here */
823 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
824 			return -ENODEV;
825 	}
826 
827 	/* Now probe Device Identifiers for each device present. */
828 	for (i = 1; i < num_ids; i++) {
829 		if (!(devs_in_pkg & (1 << i)))
830 			continue;
831 
832 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
833 			/* Probe the "Device Present" bits for the vendor MMDs
834 			 * to ignore these if they do not contain IEEE 802.3
835 			 * registers.
836 			 */
837 			ret = phy_c45_probe_present(bus, addr, i);
838 			if (ret < 0)
839 				return ret;
840 
841 			if (!ret)
842 				continue;
843 		}
844 
845 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
846 		if (phy_reg < 0)
847 			return -EIO;
848 		c45_ids->device_ids[i] = phy_reg << 16;
849 
850 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
851 		if (phy_reg < 0)
852 			return -EIO;
853 		c45_ids->device_ids[i] |= phy_reg;
854 	}
855 
856 	c45_ids->devices_in_package = devs_in_pkg;
857 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
858 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
859 
860 	return 0;
861 }
862 
863 /**
864  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
865  * @bus: the target MII bus
866  * @addr: PHY address on the MII bus
867  * @phy_id: where to store the ID retrieved.
868  *
869  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
870  * placing it in @phy_id. Return zero on successful read and the ID is
871  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
872  * or invalid ID.
873  */
874 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
875 {
876 	int phy_reg;
877 
878 	/* Grab the bits from PHYIR1, and put them in the upper half */
879 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
880 	if (phy_reg < 0) {
881 		/* returning -ENODEV doesn't stop bus scanning */
882 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
883 	}
884 
885 	*phy_id = phy_reg << 16;
886 
887 	/* Grab the bits from PHYIR2, and put them in the lower half */
888 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
889 	if (phy_reg < 0) {
890 		/* returning -ENODEV doesn't stop bus scanning */
891 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
892 	}
893 
894 	*phy_id |= phy_reg;
895 
896 	/* If the phy_id is mostly Fs, there is no device there */
897 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
898 		return -ENODEV;
899 
900 	return 0;
901 }
902 
903 /* Extract the phy ID from the compatible string of the form
904  * ethernet-phy-idAAAA.BBBB.
905  */
906 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
907 {
908 	unsigned int upper, lower;
909 	const char *cp;
910 	int ret;
911 
912 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
913 	if (ret)
914 		return ret;
915 
916 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
917 		return -EINVAL;
918 
919 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
920 	return 0;
921 }
922 EXPORT_SYMBOL(fwnode_get_phy_id);
923 
924 /**
925  * get_phy_device - reads the specified PHY device and returns its @phy_device
926  *		    struct
927  * @bus: the target MII bus
928  * @addr: PHY address on the MII bus
929  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
930  *
931  * Probe for a PHY at @addr on @bus.
932  *
933  * When probing for a clause 22 PHY, then read the ID registers. If we find
934  * a valid ID, allocate and return a &struct phy_device.
935  *
936  * When probing for a clause 45 PHY, read the "devices in package" registers.
937  * If the "devices in package" appears valid, read the ID registers for each
938  * MMD, allocate and return a &struct phy_device.
939  *
940  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
941  * no PHY present, or %-EIO on bus access error.
942  */
943 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
944 {
945 	struct phy_c45_device_ids c45_ids;
946 	u32 phy_id = 0;
947 	int r;
948 
949 	c45_ids.devices_in_package = 0;
950 	c45_ids.mmds_present = 0;
951 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
952 
953 	if (is_c45)
954 		r = get_phy_c45_ids(bus, addr, &c45_ids);
955 	else
956 		r = get_phy_c22_id(bus, addr, &phy_id);
957 
958 	if (r)
959 		return ERR_PTR(r);
960 
961 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
962 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
963 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
964 	 * space, if successful, create the C45 PHY device.
965 	 */
966 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
967 		r = get_phy_c45_ids(bus, addr, &c45_ids);
968 		if (!r)
969 			return phy_device_create(bus, addr, phy_id,
970 						 true, &c45_ids);
971 	}
972 
973 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
974 }
975 EXPORT_SYMBOL(get_phy_device);
976 
977 /**
978  * phy_device_register - Register the phy device on the MDIO bus
979  * @phydev: phy_device structure to be added to the MDIO bus
980  */
981 int phy_device_register(struct phy_device *phydev)
982 {
983 	int err;
984 
985 	err = mdiobus_register_device(&phydev->mdio);
986 	if (err)
987 		return err;
988 
989 	/* Deassert the reset signal */
990 	phy_device_reset(phydev, 0);
991 
992 	/* Run all of the fixups for this PHY */
993 	err = phy_scan_fixups(phydev);
994 	if (err) {
995 		phydev_err(phydev, "failed to initialize\n");
996 		goto out;
997 	}
998 
999 	err = device_add(&phydev->mdio.dev);
1000 	if (err) {
1001 		phydev_err(phydev, "failed to add\n");
1002 		goto out;
1003 	}
1004 
1005 	return 0;
1006 
1007  out:
1008 	/* Assert the reset signal */
1009 	phy_device_reset(phydev, 1);
1010 
1011 	mdiobus_unregister_device(&phydev->mdio);
1012 	return err;
1013 }
1014 EXPORT_SYMBOL(phy_device_register);
1015 
1016 /**
1017  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1018  * @phydev: phy_device structure to remove
1019  *
1020  * This doesn't free the phy_device itself, it merely reverses the effects
1021  * of phy_device_register(). Use phy_device_free() to free the device
1022  * after calling this function.
1023  */
1024 void phy_device_remove(struct phy_device *phydev)
1025 {
1026 	unregister_mii_timestamper(phydev->mii_ts);
1027 	pse_control_put(phydev->psec);
1028 
1029 	device_del(&phydev->mdio.dev);
1030 
1031 	/* Assert the reset signal */
1032 	phy_device_reset(phydev, 1);
1033 
1034 	mdiobus_unregister_device(&phydev->mdio);
1035 }
1036 EXPORT_SYMBOL(phy_device_remove);
1037 
1038 /**
1039  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1040  * @phydev: phy_device structure to read 802.3-c45 IDs
1041  *
1042  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1043  * the "devices in package" is invalid.
1044  */
1045 int phy_get_c45_ids(struct phy_device *phydev)
1046 {
1047 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1048 			       &phydev->c45_ids);
1049 }
1050 EXPORT_SYMBOL(phy_get_c45_ids);
1051 
1052 /**
1053  * phy_find_first - finds the first PHY device on the bus
1054  * @bus: the target MII bus
1055  */
1056 struct phy_device *phy_find_first(struct mii_bus *bus)
1057 {
1058 	struct phy_device *phydev;
1059 	int addr;
1060 
1061 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1062 		phydev = mdiobus_get_phy(bus, addr);
1063 		if (phydev)
1064 			return phydev;
1065 	}
1066 	return NULL;
1067 }
1068 EXPORT_SYMBOL(phy_find_first);
1069 
1070 static void phy_link_change(struct phy_device *phydev, bool up)
1071 {
1072 	struct net_device *netdev = phydev->attached_dev;
1073 
1074 	if (up)
1075 		netif_carrier_on(netdev);
1076 	else
1077 		netif_carrier_off(netdev);
1078 	phydev->adjust_link(netdev);
1079 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1080 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1081 }
1082 
1083 /**
1084  * phy_prepare_link - prepares the PHY layer to monitor link status
1085  * @phydev: target phy_device struct
1086  * @handler: callback function for link status change notifications
1087  *
1088  * Description: Tells the PHY infrastructure to handle the
1089  *   gory details on monitoring link status (whether through
1090  *   polling or an interrupt), and to call back to the
1091  *   connected device driver when the link status changes.
1092  *   If you want to monitor your own link state, don't call
1093  *   this function.
1094  */
1095 static void phy_prepare_link(struct phy_device *phydev,
1096 			     void (*handler)(struct net_device *))
1097 {
1098 	phydev->adjust_link = handler;
1099 }
1100 
1101 /**
1102  * phy_connect_direct - connect an ethernet device to a specific phy_device
1103  * @dev: the network device to connect
1104  * @phydev: the pointer to the phy device
1105  * @handler: callback function for state change notifications
1106  * @interface: PHY device's interface
1107  */
1108 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1109 		       void (*handler)(struct net_device *),
1110 		       phy_interface_t interface)
1111 {
1112 	int rc;
1113 
1114 	if (!dev)
1115 		return -EINVAL;
1116 
1117 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1118 	if (rc)
1119 		return rc;
1120 
1121 	phy_prepare_link(phydev, handler);
1122 	if (phy_interrupt_is_valid(phydev))
1123 		phy_request_interrupt(phydev);
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL(phy_connect_direct);
1128 
1129 /**
1130  * phy_connect - connect an ethernet device to a PHY device
1131  * @dev: the network device to connect
1132  * @bus_id: the id string of the PHY device to connect
1133  * @handler: callback function for state change notifications
1134  * @interface: PHY device's interface
1135  *
1136  * Description: Convenience function for connecting ethernet
1137  *   devices to PHY devices.  The default behavior is for
1138  *   the PHY infrastructure to handle everything, and only notify
1139  *   the connected driver when the link status changes.  If you
1140  *   don't want, or can't use the provided functionality, you may
1141  *   choose to call only the subset of functions which provide
1142  *   the desired functionality.
1143  */
1144 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1145 			       void (*handler)(struct net_device *),
1146 			       phy_interface_t interface)
1147 {
1148 	struct phy_device *phydev;
1149 	struct device *d;
1150 	int rc;
1151 
1152 	/* Search the list of PHY devices on the mdio bus for the
1153 	 * PHY with the requested name
1154 	 */
1155 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1156 	if (!d) {
1157 		pr_err("PHY %s not found\n", bus_id);
1158 		return ERR_PTR(-ENODEV);
1159 	}
1160 	phydev = to_phy_device(d);
1161 
1162 	rc = phy_connect_direct(dev, phydev, handler, interface);
1163 	put_device(d);
1164 	if (rc)
1165 		return ERR_PTR(rc);
1166 
1167 	return phydev;
1168 }
1169 EXPORT_SYMBOL(phy_connect);
1170 
1171 /**
1172  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1173  *		    device
1174  * @phydev: target phy_device struct
1175  */
1176 void phy_disconnect(struct phy_device *phydev)
1177 {
1178 	if (phy_is_started(phydev))
1179 		phy_stop(phydev);
1180 
1181 	if (phy_interrupt_is_valid(phydev))
1182 		phy_free_interrupt(phydev);
1183 
1184 	phydev->adjust_link = NULL;
1185 
1186 	phy_detach(phydev);
1187 }
1188 EXPORT_SYMBOL(phy_disconnect);
1189 
1190 /**
1191  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1192  * @phydev: The PHY device to poll
1193  *
1194  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1195  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1196  *   register must be polled until the BMCR_RESET bit clears.
1197  *
1198  *   Furthermore, any attempts to write to PHY registers may have no effect
1199  *   or even generate MDIO bus errors until this is complete.
1200  *
1201  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1202  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1203  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1204  *   effort to support such broken PHYs, this function is separate from the
1205  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1206  *   and reapply all driver-specific and board-specific fixups.
1207  */
1208 static int phy_poll_reset(struct phy_device *phydev)
1209 {
1210 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1211 	int ret, val;
1212 
1213 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1214 				    50000, 600000, true);
1215 	if (ret)
1216 		return ret;
1217 	/* Some chips (smsc911x) may still need up to another 1ms after the
1218 	 * BMCR_RESET bit is cleared before they are usable.
1219 	 */
1220 	msleep(1);
1221 	return 0;
1222 }
1223 
1224 int phy_init_hw(struct phy_device *phydev)
1225 {
1226 	int ret = 0;
1227 
1228 	/* Deassert the reset signal */
1229 	phy_device_reset(phydev, 0);
1230 
1231 	if (!phydev->drv)
1232 		return 0;
1233 
1234 	if (phydev->drv->soft_reset) {
1235 		ret = phydev->drv->soft_reset(phydev);
1236 		/* see comment in genphy_soft_reset for an explanation */
1237 		if (!ret)
1238 			phydev->suspended = 0;
1239 	}
1240 
1241 	if (ret < 0)
1242 		return ret;
1243 
1244 	ret = phy_scan_fixups(phydev);
1245 	if (ret < 0)
1246 		return ret;
1247 
1248 	if (phydev->drv->config_init) {
1249 		ret = phydev->drv->config_init(phydev);
1250 		if (ret < 0)
1251 			return ret;
1252 	}
1253 
1254 	if (phydev->drv->config_intr) {
1255 		ret = phydev->drv->config_intr(phydev);
1256 		if (ret < 0)
1257 			return ret;
1258 	}
1259 
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL(phy_init_hw);
1263 
1264 void phy_attached_info(struct phy_device *phydev)
1265 {
1266 	phy_attached_print(phydev, NULL);
1267 }
1268 EXPORT_SYMBOL(phy_attached_info);
1269 
1270 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1271 char *phy_attached_info_irq(struct phy_device *phydev)
1272 {
1273 	char *irq_str;
1274 	char irq_num[8];
1275 
1276 	switch(phydev->irq) {
1277 	case PHY_POLL:
1278 		irq_str = "POLL";
1279 		break;
1280 	case PHY_MAC_INTERRUPT:
1281 		irq_str = "MAC";
1282 		break;
1283 	default:
1284 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1285 		irq_str = irq_num;
1286 		break;
1287 	}
1288 
1289 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1290 }
1291 EXPORT_SYMBOL(phy_attached_info_irq);
1292 
1293 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1294 {
1295 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1296 	char *irq_str = phy_attached_info_irq(phydev);
1297 
1298 	if (!fmt) {
1299 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1300 			    phydev_name(phydev), irq_str);
1301 	} else {
1302 		va_list ap;
1303 
1304 		phydev_info(phydev, ATTACHED_FMT, unbound,
1305 			    phydev_name(phydev), irq_str);
1306 
1307 		va_start(ap, fmt);
1308 		vprintk(fmt, ap);
1309 		va_end(ap);
1310 	}
1311 	kfree(irq_str);
1312 }
1313 EXPORT_SYMBOL(phy_attached_print);
1314 
1315 static void phy_sysfs_create_links(struct phy_device *phydev)
1316 {
1317 	struct net_device *dev = phydev->attached_dev;
1318 	int err;
1319 
1320 	if (!dev)
1321 		return;
1322 
1323 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1324 				"attached_dev");
1325 	if (err)
1326 		return;
1327 
1328 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1329 				       &phydev->mdio.dev.kobj,
1330 				       "phydev");
1331 	if (err) {
1332 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1333 			kobject_name(&phydev->mdio.dev.kobj),
1334 			err);
1335 		/* non-fatal - some net drivers can use one netdevice
1336 		 * with more then one phy
1337 		 */
1338 	}
1339 
1340 	phydev->sysfs_links = true;
1341 }
1342 
1343 static ssize_t
1344 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1345 		    char *buf)
1346 {
1347 	struct phy_device *phydev = to_phy_device(dev);
1348 
1349 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1350 }
1351 static DEVICE_ATTR_RO(phy_standalone);
1352 
1353 /**
1354  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1355  * @upstream: pointer to the phy device
1356  * @bus: sfp bus representing cage being attached
1357  *
1358  * This is used to fill in the sfp_upstream_ops .attach member.
1359  */
1360 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1361 {
1362 	struct phy_device *phydev = upstream;
1363 
1364 	if (phydev->attached_dev)
1365 		phydev->attached_dev->sfp_bus = bus;
1366 	phydev->sfp_bus_attached = true;
1367 }
1368 EXPORT_SYMBOL(phy_sfp_attach);
1369 
1370 /**
1371  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1372  * @upstream: pointer to the phy device
1373  * @bus: sfp bus representing cage being attached
1374  *
1375  * This is used to fill in the sfp_upstream_ops .detach member.
1376  */
1377 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1378 {
1379 	struct phy_device *phydev = upstream;
1380 
1381 	if (phydev->attached_dev)
1382 		phydev->attached_dev->sfp_bus = NULL;
1383 	phydev->sfp_bus_attached = false;
1384 }
1385 EXPORT_SYMBOL(phy_sfp_detach);
1386 
1387 /**
1388  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1389  * @phydev: Pointer to phy_device
1390  * @ops: SFP's upstream operations
1391  */
1392 int phy_sfp_probe(struct phy_device *phydev,
1393 		  const struct sfp_upstream_ops *ops)
1394 {
1395 	struct sfp_bus *bus;
1396 	int ret = 0;
1397 
1398 	if (phydev->mdio.dev.fwnode) {
1399 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1400 		if (IS_ERR(bus))
1401 			return PTR_ERR(bus);
1402 
1403 		phydev->sfp_bus = bus;
1404 
1405 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1406 		sfp_bus_put(bus);
1407 	}
1408 	return ret;
1409 }
1410 EXPORT_SYMBOL(phy_sfp_probe);
1411 
1412 /**
1413  * phy_attach_direct - attach a network device to a given PHY device pointer
1414  * @dev: network device to attach
1415  * @phydev: Pointer to phy_device to attach
1416  * @flags: PHY device's dev_flags
1417  * @interface: PHY device's interface
1418  *
1419  * Description: Called by drivers to attach to a particular PHY
1420  *     device. The phy_device is found, and properly hooked up
1421  *     to the phy_driver.  If no driver is attached, then a
1422  *     generic driver is used.  The phy_device is given a ptr to
1423  *     the attaching device, and given a callback for link status
1424  *     change.  The phy_device is returned to the attaching driver.
1425  *     This function takes a reference on the phy device.
1426  */
1427 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1428 		      u32 flags, phy_interface_t interface)
1429 {
1430 	struct mii_bus *bus = phydev->mdio.bus;
1431 	struct device *d = &phydev->mdio.dev;
1432 	struct module *ndev_owner = NULL;
1433 	bool using_genphy = false;
1434 	int err;
1435 
1436 	/* For Ethernet device drivers that register their own MDIO bus, we
1437 	 * will have bus->owner match ndev_mod, so we do not want to increment
1438 	 * our own module->refcnt here, otherwise we would not be able to
1439 	 * unload later on.
1440 	 */
1441 	if (dev)
1442 		ndev_owner = dev->dev.parent->driver->owner;
1443 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1444 		phydev_err(phydev, "failed to get the bus module\n");
1445 		return -EIO;
1446 	}
1447 
1448 	get_device(d);
1449 
1450 	/* Assume that if there is no driver, that it doesn't
1451 	 * exist, and we should use the genphy driver.
1452 	 */
1453 	if (!d->driver) {
1454 		if (phydev->is_c45)
1455 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1456 		else
1457 			d->driver = &genphy_driver.mdiodrv.driver;
1458 
1459 		using_genphy = true;
1460 	}
1461 
1462 	if (!try_module_get(d->driver->owner)) {
1463 		phydev_err(phydev, "failed to get the device driver module\n");
1464 		err = -EIO;
1465 		goto error_put_device;
1466 	}
1467 
1468 	if (using_genphy) {
1469 		err = d->driver->probe(d);
1470 		if (err >= 0)
1471 			err = device_bind_driver(d);
1472 
1473 		if (err)
1474 			goto error_module_put;
1475 	}
1476 
1477 	if (phydev->attached_dev) {
1478 		dev_err(&dev->dev, "PHY already attached\n");
1479 		err = -EBUSY;
1480 		goto error;
1481 	}
1482 
1483 	phydev->phy_link_change = phy_link_change;
1484 	if (dev) {
1485 		phydev->attached_dev = dev;
1486 		dev->phydev = phydev;
1487 
1488 		if (phydev->sfp_bus_attached)
1489 			dev->sfp_bus = phydev->sfp_bus;
1490 		else if (dev->sfp_bus)
1491 			phydev->is_on_sfp_module = true;
1492 	}
1493 
1494 	/* Some Ethernet drivers try to connect to a PHY device before
1495 	 * calling register_netdevice() -> netdev_register_kobject() and
1496 	 * does the dev->dev.kobj initialization. Here we only check for
1497 	 * success which indicates that the network device kobject is
1498 	 * ready. Once we do that we still need to keep track of whether
1499 	 * links were successfully set up or not for phy_detach() to
1500 	 * remove them accordingly.
1501 	 */
1502 	phydev->sysfs_links = false;
1503 
1504 	phy_sysfs_create_links(phydev);
1505 
1506 	if (!phydev->attached_dev) {
1507 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1508 					&dev_attr_phy_standalone.attr);
1509 		if (err)
1510 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1511 	}
1512 
1513 	phydev->dev_flags |= flags;
1514 
1515 	phydev->interface = interface;
1516 
1517 	phydev->state = PHY_READY;
1518 
1519 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1520 
1521 	/* PHYs can request to use poll mode even though they have an
1522 	 * associated interrupt line. This could be the case if they
1523 	 * detect a broken interrupt handling.
1524 	 */
1525 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1526 		phydev->irq = PHY_POLL;
1527 
1528 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1529 	 * it to different value depending on the PHY configuration. If we have
1530 	 * the generic PHY driver we can't figure it out, thus set the old
1531 	 * legacy PORT_MII value.
1532 	 */
1533 	if (using_genphy)
1534 		phydev->port = PORT_MII;
1535 
1536 	/* Initial carrier state is off as the phy is about to be
1537 	 * (re)initialized.
1538 	 */
1539 	if (dev)
1540 		netif_carrier_off(phydev->attached_dev);
1541 
1542 	/* Do initial configuration here, now that
1543 	 * we have certain key parameters
1544 	 * (dev_flags and interface)
1545 	 */
1546 	err = phy_init_hw(phydev);
1547 	if (err)
1548 		goto error;
1549 
1550 	phy_resume(phydev);
1551 	phy_led_triggers_register(phydev);
1552 
1553 	/**
1554 	 * If the external phy used by current mac interface is managed by
1555 	 * another mac interface, so we should create a device link between
1556 	 * phy dev and mac dev.
1557 	 */
1558 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1559 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1560 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1561 
1562 	return err;
1563 
1564 error:
1565 	/* phy_detach() does all of the cleanup below */
1566 	phy_detach(phydev);
1567 	return err;
1568 
1569 error_module_put:
1570 	module_put(d->driver->owner);
1571 	d->driver = NULL;
1572 error_put_device:
1573 	put_device(d);
1574 	if (ndev_owner != bus->owner)
1575 		module_put(bus->owner);
1576 	return err;
1577 }
1578 EXPORT_SYMBOL(phy_attach_direct);
1579 
1580 /**
1581  * phy_attach - attach a network device to a particular PHY device
1582  * @dev: network device to attach
1583  * @bus_id: Bus ID of PHY device to attach
1584  * @interface: PHY device's interface
1585  *
1586  * Description: Same as phy_attach_direct() except that a PHY bus_id
1587  *     string is passed instead of a pointer to a struct phy_device.
1588  */
1589 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1590 			      phy_interface_t interface)
1591 {
1592 	struct bus_type *bus = &mdio_bus_type;
1593 	struct phy_device *phydev;
1594 	struct device *d;
1595 	int rc;
1596 
1597 	if (!dev)
1598 		return ERR_PTR(-EINVAL);
1599 
1600 	/* Search the list of PHY devices on the mdio bus for the
1601 	 * PHY with the requested name
1602 	 */
1603 	d = bus_find_device_by_name(bus, NULL, bus_id);
1604 	if (!d) {
1605 		pr_err("PHY %s not found\n", bus_id);
1606 		return ERR_PTR(-ENODEV);
1607 	}
1608 	phydev = to_phy_device(d);
1609 
1610 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1611 	put_device(d);
1612 	if (rc)
1613 		return ERR_PTR(rc);
1614 
1615 	return phydev;
1616 }
1617 EXPORT_SYMBOL(phy_attach);
1618 
1619 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1620 				      struct device_driver *driver)
1621 {
1622 	struct device *d = &phydev->mdio.dev;
1623 	bool ret = false;
1624 
1625 	if (!phydev->drv)
1626 		return ret;
1627 
1628 	get_device(d);
1629 	ret = d->driver == driver;
1630 	put_device(d);
1631 
1632 	return ret;
1633 }
1634 
1635 bool phy_driver_is_genphy(struct phy_device *phydev)
1636 {
1637 	return phy_driver_is_genphy_kind(phydev,
1638 					 &genphy_driver.mdiodrv.driver);
1639 }
1640 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1641 
1642 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1643 {
1644 	return phy_driver_is_genphy_kind(phydev,
1645 					 &genphy_c45_driver.mdiodrv.driver);
1646 }
1647 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1648 
1649 /**
1650  * phy_package_join - join a common PHY group
1651  * @phydev: target phy_device struct
1652  * @addr: cookie and PHY address for global register access
1653  * @priv_size: if non-zero allocate this amount of bytes for private data
1654  *
1655  * This joins a PHY group and provides a shared storage for all phydevs in
1656  * this group. This is intended to be used for packages which contain
1657  * more than one PHY, for example a quad PHY transceiver.
1658  *
1659  * The addr parameter serves as a cookie which has to have the same value
1660  * for all members of one group and as a PHY address to access generic
1661  * registers of a PHY package. Usually, one of the PHY addresses of the
1662  * different PHYs in the package provides access to these global registers.
1663  * The address which is given here, will be used in the phy_package_read()
1664  * and phy_package_write() convenience functions. If your PHY doesn't have
1665  * global registers you can just pick any of the PHY addresses.
1666  *
1667  * This will set the shared pointer of the phydev to the shared storage.
1668  * If this is the first call for a this cookie the shared storage will be
1669  * allocated. If priv_size is non-zero, the given amount of bytes are
1670  * allocated for the priv member.
1671  *
1672  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1673  * with the same cookie but a different priv_size is an error.
1674  */
1675 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1676 {
1677 	struct mii_bus *bus = phydev->mdio.bus;
1678 	struct phy_package_shared *shared;
1679 	int ret;
1680 
1681 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1682 		return -EINVAL;
1683 
1684 	mutex_lock(&bus->shared_lock);
1685 	shared = bus->shared[addr];
1686 	if (!shared) {
1687 		ret = -ENOMEM;
1688 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1689 		if (!shared)
1690 			goto err_unlock;
1691 		if (priv_size) {
1692 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1693 			if (!shared->priv)
1694 				goto err_free;
1695 			shared->priv_size = priv_size;
1696 		}
1697 		shared->addr = addr;
1698 		refcount_set(&shared->refcnt, 1);
1699 		bus->shared[addr] = shared;
1700 	} else {
1701 		ret = -EINVAL;
1702 		if (priv_size && priv_size != shared->priv_size)
1703 			goto err_unlock;
1704 		refcount_inc(&shared->refcnt);
1705 	}
1706 	mutex_unlock(&bus->shared_lock);
1707 
1708 	phydev->shared = shared;
1709 
1710 	return 0;
1711 
1712 err_free:
1713 	kfree(shared);
1714 err_unlock:
1715 	mutex_unlock(&bus->shared_lock);
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL_GPL(phy_package_join);
1719 
1720 /**
1721  * phy_package_leave - leave a common PHY group
1722  * @phydev: target phy_device struct
1723  *
1724  * This leaves a PHY group created by phy_package_join(). If this phydev
1725  * was the last user of the shared data between the group, this data is
1726  * freed. Resets the phydev->shared pointer to NULL.
1727  */
1728 void phy_package_leave(struct phy_device *phydev)
1729 {
1730 	struct phy_package_shared *shared = phydev->shared;
1731 	struct mii_bus *bus = phydev->mdio.bus;
1732 
1733 	if (!shared)
1734 		return;
1735 
1736 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1737 		bus->shared[shared->addr] = NULL;
1738 		mutex_unlock(&bus->shared_lock);
1739 		kfree(shared->priv);
1740 		kfree(shared);
1741 	}
1742 
1743 	phydev->shared = NULL;
1744 }
1745 EXPORT_SYMBOL_GPL(phy_package_leave);
1746 
1747 static void devm_phy_package_leave(struct device *dev, void *res)
1748 {
1749 	phy_package_leave(*(struct phy_device **)res);
1750 }
1751 
1752 /**
1753  * devm_phy_package_join - resource managed phy_package_join()
1754  * @dev: device that is registering this PHY package
1755  * @phydev: target phy_device struct
1756  * @addr: cookie and PHY address for global register access
1757  * @priv_size: if non-zero allocate this amount of bytes for private data
1758  *
1759  * Managed phy_package_join(). Shared storage fetched by this function,
1760  * phy_package_leave() is automatically called on driver detach. See
1761  * phy_package_join() for more information.
1762  */
1763 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1764 			  int addr, size_t priv_size)
1765 {
1766 	struct phy_device **ptr;
1767 	int ret;
1768 
1769 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1770 			   GFP_KERNEL);
1771 	if (!ptr)
1772 		return -ENOMEM;
1773 
1774 	ret = phy_package_join(phydev, addr, priv_size);
1775 
1776 	if (!ret) {
1777 		*ptr = phydev;
1778 		devres_add(dev, ptr);
1779 	} else {
1780 		devres_free(ptr);
1781 	}
1782 
1783 	return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1786 
1787 /**
1788  * phy_detach - detach a PHY device from its network device
1789  * @phydev: target phy_device struct
1790  *
1791  * This detaches the phy device from its network device and the phy
1792  * driver, and drops the reference count taken in phy_attach_direct().
1793  */
1794 void phy_detach(struct phy_device *phydev)
1795 {
1796 	struct net_device *dev = phydev->attached_dev;
1797 	struct module *ndev_owner = NULL;
1798 	struct mii_bus *bus;
1799 
1800 	if (phydev->devlink)
1801 		device_link_del(phydev->devlink);
1802 
1803 	if (phydev->sysfs_links) {
1804 		if (dev)
1805 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1806 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1807 	}
1808 
1809 	if (!phydev->attached_dev)
1810 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1811 				  &dev_attr_phy_standalone.attr);
1812 
1813 	phy_suspend(phydev);
1814 	if (dev) {
1815 		phydev->attached_dev->phydev = NULL;
1816 		phydev->attached_dev = NULL;
1817 	}
1818 	phydev->phylink = NULL;
1819 
1820 	phy_led_triggers_unregister(phydev);
1821 
1822 	if (phydev->mdio.dev.driver)
1823 		module_put(phydev->mdio.dev.driver->owner);
1824 
1825 	/* If the device had no specific driver before (i.e. - it
1826 	 * was using the generic driver), we unbind the device
1827 	 * from the generic driver so that there's a chance a
1828 	 * real driver could be loaded
1829 	 */
1830 	if (phy_driver_is_genphy(phydev) ||
1831 	    phy_driver_is_genphy_10g(phydev))
1832 		device_release_driver(&phydev->mdio.dev);
1833 
1834 	/* Assert the reset signal */
1835 	phy_device_reset(phydev, 1);
1836 
1837 	/*
1838 	 * The phydev might go away on the put_device() below, so avoid
1839 	 * a use-after-free bug by reading the underlying bus first.
1840 	 */
1841 	bus = phydev->mdio.bus;
1842 
1843 	put_device(&phydev->mdio.dev);
1844 	if (dev)
1845 		ndev_owner = dev->dev.parent->driver->owner;
1846 	if (ndev_owner != bus->owner)
1847 		module_put(bus->owner);
1848 }
1849 EXPORT_SYMBOL(phy_detach);
1850 
1851 int phy_suspend(struct phy_device *phydev)
1852 {
1853 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1854 	struct net_device *netdev = phydev->attached_dev;
1855 	struct phy_driver *phydrv = phydev->drv;
1856 	int ret;
1857 
1858 	if (phydev->suspended)
1859 		return 0;
1860 
1861 	phy_ethtool_get_wol(phydev, &wol);
1862 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1863 	/* If the device has WOL enabled, we cannot suspend the PHY */
1864 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1865 		return -EBUSY;
1866 
1867 	if (!phydrv || !phydrv->suspend)
1868 		return 0;
1869 
1870 	ret = phydrv->suspend(phydev);
1871 	if (!ret)
1872 		phydev->suspended = true;
1873 
1874 	return ret;
1875 }
1876 EXPORT_SYMBOL(phy_suspend);
1877 
1878 int __phy_resume(struct phy_device *phydev)
1879 {
1880 	struct phy_driver *phydrv = phydev->drv;
1881 	int ret;
1882 
1883 	lockdep_assert_held(&phydev->lock);
1884 
1885 	if (!phydrv || !phydrv->resume)
1886 		return 0;
1887 
1888 	ret = phydrv->resume(phydev);
1889 	if (!ret)
1890 		phydev->suspended = false;
1891 
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL(__phy_resume);
1895 
1896 int phy_resume(struct phy_device *phydev)
1897 {
1898 	int ret;
1899 
1900 	mutex_lock(&phydev->lock);
1901 	ret = __phy_resume(phydev);
1902 	mutex_unlock(&phydev->lock);
1903 
1904 	return ret;
1905 }
1906 EXPORT_SYMBOL(phy_resume);
1907 
1908 int phy_loopback(struct phy_device *phydev, bool enable)
1909 {
1910 	int ret = 0;
1911 
1912 	if (!phydev->drv)
1913 		return -EIO;
1914 
1915 	mutex_lock(&phydev->lock);
1916 
1917 	if (enable && phydev->loopback_enabled) {
1918 		ret = -EBUSY;
1919 		goto out;
1920 	}
1921 
1922 	if (!enable && !phydev->loopback_enabled) {
1923 		ret = -EINVAL;
1924 		goto out;
1925 	}
1926 
1927 	if (phydev->drv->set_loopback)
1928 		ret = phydev->drv->set_loopback(phydev, enable);
1929 	else
1930 		ret = genphy_loopback(phydev, enable);
1931 
1932 	if (ret)
1933 		goto out;
1934 
1935 	phydev->loopback_enabled = enable;
1936 
1937 out:
1938 	mutex_unlock(&phydev->lock);
1939 	return ret;
1940 }
1941 EXPORT_SYMBOL(phy_loopback);
1942 
1943 /**
1944  * phy_reset_after_clk_enable - perform a PHY reset if needed
1945  * @phydev: target phy_device struct
1946  *
1947  * Description: Some PHYs are known to need a reset after their refclk was
1948  *   enabled. This function evaluates the flags and perform the reset if it's
1949  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1950  *   was reset.
1951  */
1952 int phy_reset_after_clk_enable(struct phy_device *phydev)
1953 {
1954 	if (!phydev || !phydev->drv)
1955 		return -ENODEV;
1956 
1957 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1958 		phy_device_reset(phydev, 1);
1959 		phy_device_reset(phydev, 0);
1960 		return 1;
1961 	}
1962 
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1966 
1967 /* Generic PHY support and helper functions */
1968 
1969 /**
1970  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1971  * @phydev: target phy_device struct
1972  *
1973  * Description: Writes MII_ADVERTISE with the appropriate values,
1974  *   after sanitizing the values to make sure we only advertise
1975  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1976  *   hasn't changed, and > 0 if it has changed.
1977  */
1978 static int genphy_config_advert(struct phy_device *phydev)
1979 {
1980 	int err, bmsr, changed = 0;
1981 	u32 adv;
1982 
1983 	/* Only allow advertising what this PHY supports */
1984 	linkmode_and(phydev->advertising, phydev->advertising,
1985 		     phydev->supported);
1986 
1987 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1988 
1989 	/* Setup standard advertisement */
1990 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1991 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1992 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1993 				 adv);
1994 	if (err < 0)
1995 		return err;
1996 	if (err > 0)
1997 		changed = 1;
1998 
1999 	bmsr = phy_read(phydev, MII_BMSR);
2000 	if (bmsr < 0)
2001 		return bmsr;
2002 
2003 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2004 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2005 	 * logical 1.
2006 	 */
2007 	if (!(bmsr & BMSR_ESTATEN))
2008 		return changed;
2009 
2010 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2011 
2012 	err = phy_modify_changed(phydev, MII_CTRL1000,
2013 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2014 				 adv);
2015 	if (err < 0)
2016 		return err;
2017 	if (err > 0)
2018 		changed = 1;
2019 
2020 	return changed;
2021 }
2022 
2023 /**
2024  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2025  * @phydev: target phy_device struct
2026  *
2027  * Description: Writes MII_ADVERTISE with the appropriate values,
2028  *   after sanitizing the values to make sure we only advertise
2029  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2030  *   hasn't changed, and > 0 if it has changed. This function is intended
2031  *   for Clause 37 1000Base-X mode.
2032  */
2033 static int genphy_c37_config_advert(struct phy_device *phydev)
2034 {
2035 	u16 adv = 0;
2036 
2037 	/* Only allow advertising what this PHY supports */
2038 	linkmode_and(phydev->advertising, phydev->advertising,
2039 		     phydev->supported);
2040 
2041 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2042 			      phydev->advertising))
2043 		adv |= ADVERTISE_1000XFULL;
2044 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2045 			      phydev->advertising))
2046 		adv |= ADVERTISE_1000XPAUSE;
2047 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2048 			      phydev->advertising))
2049 		adv |= ADVERTISE_1000XPSE_ASYM;
2050 
2051 	return phy_modify_changed(phydev, MII_ADVERTISE,
2052 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2053 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2054 				  adv);
2055 }
2056 
2057 /**
2058  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2059  * @phydev: target phy_device struct
2060  *
2061  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2062  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2063  *   changed, and 1 if it has changed.
2064  */
2065 int genphy_config_eee_advert(struct phy_device *phydev)
2066 {
2067 	int err;
2068 
2069 	/* Nothing to disable */
2070 	if (!phydev->eee_broken_modes)
2071 		return 0;
2072 
2073 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2074 				     phydev->eee_broken_modes, 0);
2075 	/* If the call failed, we assume that EEE is not supported */
2076 	return err < 0 ? 0 : err;
2077 }
2078 EXPORT_SYMBOL(genphy_config_eee_advert);
2079 
2080 /**
2081  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2082  * @phydev: target phy_device struct
2083  *
2084  * Description: Configures MII_BMCR to force speed/duplex
2085  *   to the values in phydev. Assumes that the values are valid.
2086  *   Please see phy_sanitize_settings().
2087  */
2088 int genphy_setup_forced(struct phy_device *phydev)
2089 {
2090 	u16 ctl;
2091 
2092 	phydev->pause = 0;
2093 	phydev->asym_pause = 0;
2094 
2095 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2096 
2097 	return phy_modify(phydev, MII_BMCR,
2098 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2099 }
2100 EXPORT_SYMBOL(genphy_setup_forced);
2101 
2102 static int genphy_setup_master_slave(struct phy_device *phydev)
2103 {
2104 	u16 ctl = 0;
2105 
2106 	if (!phydev->is_gigabit_capable)
2107 		return 0;
2108 
2109 	switch (phydev->master_slave_set) {
2110 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2111 		ctl |= CTL1000_PREFER_MASTER;
2112 		break;
2113 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2114 		break;
2115 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2116 		ctl |= CTL1000_AS_MASTER;
2117 		fallthrough;
2118 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2119 		ctl |= CTL1000_ENABLE_MASTER;
2120 		break;
2121 	case MASTER_SLAVE_CFG_UNKNOWN:
2122 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2123 		return 0;
2124 	default:
2125 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2126 		return -EOPNOTSUPP;
2127 	}
2128 
2129 	return phy_modify_changed(phydev, MII_CTRL1000,
2130 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2131 				   CTL1000_PREFER_MASTER), ctl);
2132 }
2133 
2134 int genphy_read_master_slave(struct phy_device *phydev)
2135 {
2136 	int cfg, state;
2137 	int val;
2138 
2139 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2140 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2141 
2142 	val = phy_read(phydev, MII_CTRL1000);
2143 	if (val < 0)
2144 		return val;
2145 
2146 	if (val & CTL1000_ENABLE_MASTER) {
2147 		if (val & CTL1000_AS_MASTER)
2148 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2149 		else
2150 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2151 	} else {
2152 		if (val & CTL1000_PREFER_MASTER)
2153 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2154 		else
2155 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2156 	}
2157 
2158 	val = phy_read(phydev, MII_STAT1000);
2159 	if (val < 0)
2160 		return val;
2161 
2162 	if (val & LPA_1000MSFAIL) {
2163 		state = MASTER_SLAVE_STATE_ERR;
2164 	} else if (phydev->link) {
2165 		/* this bits are valid only for active link */
2166 		if (val & LPA_1000MSRES)
2167 			state = MASTER_SLAVE_STATE_MASTER;
2168 		else
2169 			state = MASTER_SLAVE_STATE_SLAVE;
2170 	} else {
2171 		state = MASTER_SLAVE_STATE_UNKNOWN;
2172 	}
2173 
2174 	phydev->master_slave_get = cfg;
2175 	phydev->master_slave_state = state;
2176 
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL(genphy_read_master_slave);
2180 
2181 /**
2182  * genphy_restart_aneg - Enable and Restart Autonegotiation
2183  * @phydev: target phy_device struct
2184  */
2185 int genphy_restart_aneg(struct phy_device *phydev)
2186 {
2187 	/* Don't isolate the PHY if we're negotiating */
2188 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2189 			  BMCR_ANENABLE | BMCR_ANRESTART);
2190 }
2191 EXPORT_SYMBOL(genphy_restart_aneg);
2192 
2193 /**
2194  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2195  * @phydev: target phy_device struct
2196  * @restart: whether aneg restart is requested
2197  *
2198  * Check, and restart auto-negotiation if needed.
2199  */
2200 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2201 {
2202 	int ret;
2203 
2204 	if (!restart) {
2205 		/* Advertisement hasn't changed, but maybe aneg was never on to
2206 		 * begin with?  Or maybe phy was isolated?
2207 		 */
2208 		ret = phy_read(phydev, MII_BMCR);
2209 		if (ret < 0)
2210 			return ret;
2211 
2212 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2213 			restart = true;
2214 	}
2215 
2216 	if (restart)
2217 		return genphy_restart_aneg(phydev);
2218 
2219 	return 0;
2220 }
2221 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2222 
2223 /**
2224  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2225  * @phydev: target phy_device struct
2226  * @changed: whether autoneg is requested
2227  *
2228  * Description: If auto-negotiation is enabled, we configure the
2229  *   advertising, and then restart auto-negotiation.  If it is not
2230  *   enabled, then we write the BMCR.
2231  */
2232 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2233 {
2234 	int err;
2235 
2236 	err = genphy_c45_an_config_eee_aneg(phydev);
2237 	if (err < 0)
2238 		return err;
2239 	else if (err)
2240 		changed = true;
2241 
2242 	err = genphy_setup_master_slave(phydev);
2243 	if (err < 0)
2244 		return err;
2245 	else if (err)
2246 		changed = true;
2247 
2248 	if (AUTONEG_ENABLE != phydev->autoneg)
2249 		return genphy_setup_forced(phydev);
2250 
2251 	err = genphy_config_advert(phydev);
2252 	if (err < 0) /* error */
2253 		return err;
2254 	else if (err)
2255 		changed = true;
2256 
2257 	return genphy_check_and_restart_aneg(phydev, changed);
2258 }
2259 EXPORT_SYMBOL(__genphy_config_aneg);
2260 
2261 /**
2262  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2263  * @phydev: target phy_device struct
2264  *
2265  * Description: If auto-negotiation is enabled, we configure the
2266  *   advertising, and then restart auto-negotiation.  If it is not
2267  *   enabled, then we write the BMCR. This function is intended
2268  *   for use with Clause 37 1000Base-X mode.
2269  */
2270 int genphy_c37_config_aneg(struct phy_device *phydev)
2271 {
2272 	int err, changed;
2273 
2274 	if (phydev->autoneg != AUTONEG_ENABLE)
2275 		return genphy_setup_forced(phydev);
2276 
2277 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2278 			 BMCR_SPEED1000);
2279 	if (err)
2280 		return err;
2281 
2282 	changed = genphy_c37_config_advert(phydev);
2283 	if (changed < 0) /* error */
2284 		return changed;
2285 
2286 	if (!changed) {
2287 		/* Advertisement hasn't changed, but maybe aneg was never on to
2288 		 * begin with?  Or maybe phy was isolated?
2289 		 */
2290 		int ctl = phy_read(phydev, MII_BMCR);
2291 
2292 		if (ctl < 0)
2293 			return ctl;
2294 
2295 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2296 			changed = 1; /* do restart aneg */
2297 	}
2298 
2299 	/* Only restart aneg if we are advertising something different
2300 	 * than we were before.
2301 	 */
2302 	if (changed > 0)
2303 		return genphy_restart_aneg(phydev);
2304 
2305 	return 0;
2306 }
2307 EXPORT_SYMBOL(genphy_c37_config_aneg);
2308 
2309 /**
2310  * genphy_aneg_done - return auto-negotiation status
2311  * @phydev: target phy_device struct
2312  *
2313  * Description: Reads the status register and returns 0 either if
2314  *   auto-negotiation is incomplete, or if there was an error.
2315  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2316  */
2317 int genphy_aneg_done(struct phy_device *phydev)
2318 {
2319 	int retval = phy_read(phydev, MII_BMSR);
2320 
2321 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2322 }
2323 EXPORT_SYMBOL(genphy_aneg_done);
2324 
2325 /**
2326  * genphy_update_link - update link status in @phydev
2327  * @phydev: target phy_device struct
2328  *
2329  * Description: Update the value in phydev->link to reflect the
2330  *   current link value.  In order to do this, we need to read
2331  *   the status register twice, keeping the second value.
2332  */
2333 int genphy_update_link(struct phy_device *phydev)
2334 {
2335 	int status = 0, bmcr;
2336 
2337 	bmcr = phy_read(phydev, MII_BMCR);
2338 	if (bmcr < 0)
2339 		return bmcr;
2340 
2341 	/* Autoneg is being started, therefore disregard BMSR value and
2342 	 * report link as down.
2343 	 */
2344 	if (bmcr & BMCR_ANRESTART)
2345 		goto done;
2346 
2347 	/* The link state is latched low so that momentary link
2348 	 * drops can be detected. Do not double-read the status
2349 	 * in polling mode to detect such short link drops except
2350 	 * the link was already down.
2351 	 */
2352 	if (!phy_polling_mode(phydev) || !phydev->link) {
2353 		status = phy_read(phydev, MII_BMSR);
2354 		if (status < 0)
2355 			return status;
2356 		else if (status & BMSR_LSTATUS)
2357 			goto done;
2358 	}
2359 
2360 	/* Read link and autonegotiation status */
2361 	status = phy_read(phydev, MII_BMSR);
2362 	if (status < 0)
2363 		return status;
2364 done:
2365 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2366 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2367 
2368 	/* Consider the case that autoneg was started and "aneg complete"
2369 	 * bit has been reset, but "link up" bit not yet.
2370 	 */
2371 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2372 		phydev->link = 0;
2373 
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL(genphy_update_link);
2377 
2378 int genphy_read_lpa(struct phy_device *phydev)
2379 {
2380 	int lpa, lpagb;
2381 
2382 	if (phydev->autoneg == AUTONEG_ENABLE) {
2383 		if (!phydev->autoneg_complete) {
2384 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2385 							0);
2386 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2387 			return 0;
2388 		}
2389 
2390 		if (phydev->is_gigabit_capable) {
2391 			lpagb = phy_read(phydev, MII_STAT1000);
2392 			if (lpagb < 0)
2393 				return lpagb;
2394 
2395 			if (lpagb & LPA_1000MSFAIL) {
2396 				int adv = phy_read(phydev, MII_CTRL1000);
2397 
2398 				if (adv < 0)
2399 					return adv;
2400 
2401 				if (adv & CTL1000_ENABLE_MASTER)
2402 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2403 				else
2404 					phydev_err(phydev, "Master/Slave resolution failed\n");
2405 				return -ENOLINK;
2406 			}
2407 
2408 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2409 							lpagb);
2410 		}
2411 
2412 		lpa = phy_read(phydev, MII_LPA);
2413 		if (lpa < 0)
2414 			return lpa;
2415 
2416 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2417 	} else {
2418 		linkmode_zero(phydev->lp_advertising);
2419 	}
2420 
2421 	return 0;
2422 }
2423 EXPORT_SYMBOL(genphy_read_lpa);
2424 
2425 /**
2426  * genphy_read_status_fixed - read the link parameters for !aneg mode
2427  * @phydev: target phy_device struct
2428  *
2429  * Read the current duplex and speed state for a PHY operating with
2430  * autonegotiation disabled.
2431  */
2432 int genphy_read_status_fixed(struct phy_device *phydev)
2433 {
2434 	int bmcr = phy_read(phydev, MII_BMCR);
2435 
2436 	if (bmcr < 0)
2437 		return bmcr;
2438 
2439 	if (bmcr & BMCR_FULLDPLX)
2440 		phydev->duplex = DUPLEX_FULL;
2441 	else
2442 		phydev->duplex = DUPLEX_HALF;
2443 
2444 	if (bmcr & BMCR_SPEED1000)
2445 		phydev->speed = SPEED_1000;
2446 	else if (bmcr & BMCR_SPEED100)
2447 		phydev->speed = SPEED_100;
2448 	else
2449 		phydev->speed = SPEED_10;
2450 
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL(genphy_read_status_fixed);
2454 
2455 /**
2456  * genphy_read_status - check the link status and update current link state
2457  * @phydev: target phy_device struct
2458  *
2459  * Description: Check the link, then figure out the current state
2460  *   by comparing what we advertise with what the link partner
2461  *   advertises.  Start by checking the gigabit possibilities,
2462  *   then move on to 10/100.
2463  */
2464 int genphy_read_status(struct phy_device *phydev)
2465 {
2466 	int err, old_link = phydev->link;
2467 
2468 	/* Update the link, but return if there was an error */
2469 	err = genphy_update_link(phydev);
2470 	if (err)
2471 		return err;
2472 
2473 	/* why bother the PHY if nothing can have changed */
2474 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2475 		return 0;
2476 
2477 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2478 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2479 	phydev->speed = SPEED_UNKNOWN;
2480 	phydev->duplex = DUPLEX_UNKNOWN;
2481 	phydev->pause = 0;
2482 	phydev->asym_pause = 0;
2483 
2484 	if (phydev->is_gigabit_capable) {
2485 		err = genphy_read_master_slave(phydev);
2486 		if (err < 0)
2487 			return err;
2488 	}
2489 
2490 	err = genphy_read_lpa(phydev);
2491 	if (err < 0)
2492 		return err;
2493 
2494 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2495 		phy_resolve_aneg_linkmode(phydev);
2496 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2497 		err = genphy_read_status_fixed(phydev);
2498 		if (err < 0)
2499 			return err;
2500 	}
2501 
2502 	return 0;
2503 }
2504 EXPORT_SYMBOL(genphy_read_status);
2505 
2506 /**
2507  * genphy_c37_read_status - check the link status and update current link state
2508  * @phydev: target phy_device struct
2509  *
2510  * Description: Check the link, then figure out the current state
2511  *   by comparing what we advertise with what the link partner
2512  *   advertises. This function is for Clause 37 1000Base-X mode.
2513  */
2514 int genphy_c37_read_status(struct phy_device *phydev)
2515 {
2516 	int lpa, err, old_link = phydev->link;
2517 
2518 	/* Update the link, but return if there was an error */
2519 	err = genphy_update_link(phydev);
2520 	if (err)
2521 		return err;
2522 
2523 	/* why bother the PHY if nothing can have changed */
2524 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2525 		return 0;
2526 
2527 	phydev->duplex = DUPLEX_UNKNOWN;
2528 	phydev->pause = 0;
2529 	phydev->asym_pause = 0;
2530 
2531 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2532 		lpa = phy_read(phydev, MII_LPA);
2533 		if (lpa < 0)
2534 			return lpa;
2535 
2536 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2537 				 phydev->lp_advertising, lpa & LPA_LPACK);
2538 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2539 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2540 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2541 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2542 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2543 				 phydev->lp_advertising,
2544 				 lpa & LPA_1000XPAUSE_ASYM);
2545 
2546 		phy_resolve_aneg_linkmode(phydev);
2547 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2548 		int bmcr = phy_read(phydev, MII_BMCR);
2549 
2550 		if (bmcr < 0)
2551 			return bmcr;
2552 
2553 		if (bmcr & BMCR_FULLDPLX)
2554 			phydev->duplex = DUPLEX_FULL;
2555 		else
2556 			phydev->duplex = DUPLEX_HALF;
2557 	}
2558 
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL(genphy_c37_read_status);
2562 
2563 /**
2564  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2565  * @phydev: target phy_device struct
2566  *
2567  * Description: Perform a software PHY reset using the standard
2568  * BMCR_RESET bit and poll for the reset bit to be cleared.
2569  *
2570  * Returns: 0 on success, < 0 on failure
2571  */
2572 int genphy_soft_reset(struct phy_device *phydev)
2573 {
2574 	u16 res = BMCR_RESET;
2575 	int ret;
2576 
2577 	if (phydev->autoneg == AUTONEG_ENABLE)
2578 		res |= BMCR_ANRESTART;
2579 
2580 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2581 	if (ret < 0)
2582 		return ret;
2583 
2584 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2585 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2586 	 * be cleared after soft reset.
2587 	 */
2588 	phydev->suspended = 0;
2589 
2590 	ret = phy_poll_reset(phydev);
2591 	if (ret)
2592 		return ret;
2593 
2594 	/* BMCR may be reset to defaults */
2595 	if (phydev->autoneg == AUTONEG_DISABLE)
2596 		ret = genphy_setup_forced(phydev);
2597 
2598 	return ret;
2599 }
2600 EXPORT_SYMBOL(genphy_soft_reset);
2601 
2602 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2603 {
2604 	/* It seems there are cases where the interrupts are handled by another
2605 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2606 	 * need any other interraction from phylib. In this case, just trigger
2607 	 * the state machine directly.
2608 	 */
2609 	phy_trigger_machine(phydev);
2610 
2611 	return 0;
2612 }
2613 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2614 
2615 /**
2616  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2617  * @phydev: target phy_device struct
2618  *
2619  * Description: Reads the PHY's abilities and populates
2620  * phydev->supported accordingly.
2621  *
2622  * Returns: 0 on success, < 0 on failure
2623  */
2624 int genphy_read_abilities(struct phy_device *phydev)
2625 {
2626 	int val;
2627 
2628 	linkmode_set_bit_array(phy_basic_ports_array,
2629 			       ARRAY_SIZE(phy_basic_ports_array),
2630 			       phydev->supported);
2631 
2632 	val = phy_read(phydev, MII_BMSR);
2633 	if (val < 0)
2634 		return val;
2635 
2636 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2637 			 val & BMSR_ANEGCAPABLE);
2638 
2639 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2640 			 val & BMSR_100FULL);
2641 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2642 			 val & BMSR_100HALF);
2643 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2644 			 val & BMSR_10FULL);
2645 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2646 			 val & BMSR_10HALF);
2647 
2648 	if (val & BMSR_ESTATEN) {
2649 		val = phy_read(phydev, MII_ESTATUS);
2650 		if (val < 0)
2651 			return val;
2652 
2653 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2654 				 phydev->supported, val & ESTATUS_1000_TFULL);
2655 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2656 				 phydev->supported, val & ESTATUS_1000_THALF);
2657 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2658 				 phydev->supported, val & ESTATUS_1000_XFULL);
2659 	}
2660 
2661 	/* This is optional functionality. If not supported, we may get an error
2662 	 * which should be ignored.
2663 	 */
2664 	genphy_c45_read_eee_abilities(phydev);
2665 
2666 	return 0;
2667 }
2668 EXPORT_SYMBOL(genphy_read_abilities);
2669 
2670 /* This is used for the phy device which doesn't support the MMD extended
2671  * register access, but it does have side effect when we are trying to access
2672  * the MMD register via indirect method.
2673  */
2674 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2675 {
2676 	return -EOPNOTSUPP;
2677 }
2678 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2679 
2680 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2681 				 u16 regnum, u16 val)
2682 {
2683 	return -EOPNOTSUPP;
2684 }
2685 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2686 
2687 int genphy_suspend(struct phy_device *phydev)
2688 {
2689 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2690 }
2691 EXPORT_SYMBOL(genphy_suspend);
2692 
2693 int genphy_resume(struct phy_device *phydev)
2694 {
2695 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2696 }
2697 EXPORT_SYMBOL(genphy_resume);
2698 
2699 int genphy_loopback(struct phy_device *phydev, bool enable)
2700 {
2701 	if (enable) {
2702 		u16 val, ctl = BMCR_LOOPBACK;
2703 		int ret;
2704 
2705 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2706 
2707 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2708 
2709 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2710 					    val & BMSR_LSTATUS,
2711 				    5000, 500000, true);
2712 		if (ret)
2713 			return ret;
2714 	} else {
2715 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2716 
2717 		phy_config_aneg(phydev);
2718 	}
2719 
2720 	return 0;
2721 }
2722 EXPORT_SYMBOL(genphy_loopback);
2723 
2724 /**
2725  * phy_remove_link_mode - Remove a supported link mode
2726  * @phydev: phy_device structure to remove link mode from
2727  * @link_mode: Link mode to be removed
2728  *
2729  * Description: Some MACs don't support all link modes which the PHY
2730  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2731  * to remove a link mode.
2732  */
2733 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2734 {
2735 	linkmode_clear_bit(link_mode, phydev->supported);
2736 	phy_advertise_supported(phydev);
2737 }
2738 EXPORT_SYMBOL(phy_remove_link_mode);
2739 
2740 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2741 {
2742 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2743 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2744 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2745 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2746 }
2747 
2748 /**
2749  * phy_advertise_supported - Advertise all supported modes
2750  * @phydev: target phy_device struct
2751  *
2752  * Description: Called to advertise all supported modes, doesn't touch
2753  * pause mode advertising.
2754  */
2755 void phy_advertise_supported(struct phy_device *phydev)
2756 {
2757 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2758 
2759 	linkmode_copy(new, phydev->supported);
2760 	phy_copy_pause_bits(new, phydev->advertising);
2761 	linkmode_copy(phydev->advertising, new);
2762 }
2763 EXPORT_SYMBOL(phy_advertise_supported);
2764 
2765 /**
2766  * phy_support_sym_pause - Enable support of symmetrical pause
2767  * @phydev: target phy_device struct
2768  *
2769  * Description: Called by the MAC to indicate is supports symmetrical
2770  * Pause, but not asym pause.
2771  */
2772 void phy_support_sym_pause(struct phy_device *phydev)
2773 {
2774 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2775 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2776 }
2777 EXPORT_SYMBOL(phy_support_sym_pause);
2778 
2779 /**
2780  * phy_support_asym_pause - Enable support of asym pause
2781  * @phydev: target phy_device struct
2782  *
2783  * Description: Called by the MAC to indicate is supports Asym Pause.
2784  */
2785 void phy_support_asym_pause(struct phy_device *phydev)
2786 {
2787 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2788 }
2789 EXPORT_SYMBOL(phy_support_asym_pause);
2790 
2791 /**
2792  * phy_set_sym_pause - Configure symmetric Pause
2793  * @phydev: target phy_device struct
2794  * @rx: Receiver Pause is supported
2795  * @tx: Transmit Pause is supported
2796  * @autoneg: Auto neg should be used
2797  *
2798  * Description: Configure advertised Pause support depending on if
2799  * receiver pause and pause auto neg is supported. Generally called
2800  * from the set_pauseparam .ndo.
2801  */
2802 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2803 		       bool autoneg)
2804 {
2805 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2806 
2807 	if (rx && tx && autoneg)
2808 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2809 				 phydev->supported);
2810 
2811 	linkmode_copy(phydev->advertising, phydev->supported);
2812 }
2813 EXPORT_SYMBOL(phy_set_sym_pause);
2814 
2815 /**
2816  * phy_set_asym_pause - Configure Pause and Asym Pause
2817  * @phydev: target phy_device struct
2818  * @rx: Receiver Pause is supported
2819  * @tx: Transmit Pause is supported
2820  *
2821  * Description: Configure advertised Pause support depending on if
2822  * transmit and receiver pause is supported. If there has been a
2823  * change in adverting, trigger a new autoneg. Generally called from
2824  * the set_pauseparam .ndo.
2825  */
2826 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2827 {
2828 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2829 
2830 	linkmode_copy(oldadv, phydev->advertising);
2831 	linkmode_set_pause(phydev->advertising, tx, rx);
2832 
2833 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2834 	    phydev->autoneg)
2835 		phy_start_aneg(phydev);
2836 }
2837 EXPORT_SYMBOL(phy_set_asym_pause);
2838 
2839 /**
2840  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2841  * @phydev: phy_device struct
2842  * @pp: requested pause configuration
2843  *
2844  * Description: Test if the PHY/MAC combination supports the Pause
2845  * configuration the user is requesting. Returns True if it is
2846  * supported, false otherwise.
2847  */
2848 bool phy_validate_pause(struct phy_device *phydev,
2849 			struct ethtool_pauseparam *pp)
2850 {
2851 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2852 			       phydev->supported) && pp->rx_pause)
2853 		return false;
2854 
2855 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2856 			       phydev->supported) &&
2857 	    pp->rx_pause != pp->tx_pause)
2858 		return false;
2859 
2860 	return true;
2861 }
2862 EXPORT_SYMBOL(phy_validate_pause);
2863 
2864 /**
2865  * phy_get_pause - resolve negotiated pause modes
2866  * @phydev: phy_device struct
2867  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2868  * enabled.
2869  * @rx_pause: pointer to bool to indicate whether receive pause should be
2870  * enabled.
2871  *
2872  * Resolve and return the flow control modes according to the negotiation
2873  * result. This includes checking that we are operating in full duplex mode.
2874  * See linkmode_resolve_pause() for further details.
2875  */
2876 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2877 {
2878 	if (phydev->duplex != DUPLEX_FULL) {
2879 		*tx_pause = false;
2880 		*rx_pause = false;
2881 		return;
2882 	}
2883 
2884 	return linkmode_resolve_pause(phydev->advertising,
2885 				      phydev->lp_advertising,
2886 				      tx_pause, rx_pause);
2887 }
2888 EXPORT_SYMBOL(phy_get_pause);
2889 
2890 #if IS_ENABLED(CONFIG_OF_MDIO)
2891 static int phy_get_int_delay_property(struct device *dev, const char *name)
2892 {
2893 	s32 int_delay;
2894 	int ret;
2895 
2896 	ret = device_property_read_u32(dev, name, &int_delay);
2897 	if (ret)
2898 		return ret;
2899 
2900 	return int_delay;
2901 }
2902 #else
2903 static int phy_get_int_delay_property(struct device *dev, const char *name)
2904 {
2905 	return -EINVAL;
2906 }
2907 #endif
2908 
2909 /**
2910  * phy_get_internal_delay - returns the index of the internal delay
2911  * @phydev: phy_device struct
2912  * @dev: pointer to the devices device struct
2913  * @delay_values: array of delays the PHY supports
2914  * @size: the size of the delay array
2915  * @is_rx: boolean to indicate to get the rx internal delay
2916  *
2917  * Returns the index within the array of internal delay passed in.
2918  * If the device property is not present then the interface type is checked
2919  * if the interface defines use of internal delay then a 1 is returned otherwise
2920  * a 0 is returned.
2921  * The array must be in ascending order. If PHY does not have an ascending order
2922  * array then size = 0 and the value of the delay property is returned.
2923  * Return -EINVAL if the delay is invalid or cannot be found.
2924  */
2925 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2926 			   const int *delay_values, int size, bool is_rx)
2927 {
2928 	s32 delay;
2929 	int i;
2930 
2931 	if (is_rx) {
2932 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2933 		if (delay < 0 && size == 0) {
2934 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2935 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2936 				return 1;
2937 			else
2938 				return 0;
2939 		}
2940 
2941 	} else {
2942 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2943 		if (delay < 0 && size == 0) {
2944 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2945 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2946 				return 1;
2947 			else
2948 				return 0;
2949 		}
2950 	}
2951 
2952 	if (delay < 0)
2953 		return delay;
2954 
2955 	if (delay && size == 0)
2956 		return delay;
2957 
2958 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2959 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2960 		return -EINVAL;
2961 	}
2962 
2963 	if (delay == delay_values[0])
2964 		return 0;
2965 
2966 	for (i = 1; i < size; i++) {
2967 		if (delay == delay_values[i])
2968 			return i;
2969 
2970 		/* Find an approximate index by looking up the table */
2971 		if (delay > delay_values[i - 1] &&
2972 		    delay < delay_values[i]) {
2973 			if (delay - delay_values[i - 1] <
2974 			    delay_values[i] - delay)
2975 				return i - 1;
2976 			else
2977 				return i;
2978 		}
2979 	}
2980 
2981 	phydev_err(phydev, "error finding internal delay index for %d\n",
2982 		   delay);
2983 
2984 	return -EINVAL;
2985 }
2986 EXPORT_SYMBOL(phy_get_internal_delay);
2987 
2988 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2989 {
2990 	return phydrv->config_intr && phydrv->handle_interrupt;
2991 }
2992 
2993 static int phy_led_set_brightness(struct led_classdev *led_cdev,
2994 				  enum led_brightness value)
2995 {
2996 	struct phy_led *phyled = to_phy_led(led_cdev);
2997 	struct phy_device *phydev = phyled->phydev;
2998 	int err;
2999 
3000 	mutex_lock(&phydev->lock);
3001 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3002 	mutex_unlock(&phydev->lock);
3003 
3004 	return err;
3005 }
3006 
3007 static int phy_led_blink_set(struct led_classdev *led_cdev,
3008 			     unsigned long *delay_on,
3009 			     unsigned long *delay_off)
3010 {
3011 	struct phy_led *phyled = to_phy_led(led_cdev);
3012 	struct phy_device *phydev = phyled->phydev;
3013 	int err;
3014 
3015 	mutex_lock(&phydev->lock);
3016 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3017 					 delay_on, delay_off);
3018 	mutex_unlock(&phydev->lock);
3019 
3020 	return err;
3021 }
3022 
3023 static void phy_leds_unregister(struct phy_device *phydev)
3024 {
3025 	struct phy_led *phyled;
3026 
3027 	list_for_each_entry(phyled, &phydev->leds, list) {
3028 		led_classdev_unregister(&phyled->led_cdev);
3029 	}
3030 }
3031 
3032 static int of_phy_led(struct phy_device *phydev,
3033 		      struct device_node *led)
3034 {
3035 	struct device *dev = &phydev->mdio.dev;
3036 	struct led_init_data init_data = {};
3037 	struct led_classdev *cdev;
3038 	struct phy_led *phyled;
3039 	u32 index;
3040 	int err;
3041 
3042 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3043 	if (!phyled)
3044 		return -ENOMEM;
3045 
3046 	cdev = &phyled->led_cdev;
3047 	phyled->phydev = phydev;
3048 
3049 	err = of_property_read_u32(led, "reg", &index);
3050 	if (err)
3051 		return err;
3052 	if (index > U8_MAX)
3053 		return -EINVAL;
3054 
3055 	phyled->index = index;
3056 	if (phydev->drv->led_brightness_set)
3057 		cdev->brightness_set_blocking = phy_led_set_brightness;
3058 	if (phydev->drv->led_blink_set)
3059 		cdev->blink_set = phy_led_blink_set;
3060 	cdev->max_brightness = 1;
3061 	init_data.devicename = dev_name(&phydev->mdio.dev);
3062 	init_data.fwnode = of_fwnode_handle(led);
3063 	init_data.devname_mandatory = true;
3064 
3065 	err = led_classdev_register_ext(dev, cdev, &init_data);
3066 	if (err)
3067 		return err;
3068 
3069 	list_add(&phyled->list, &phydev->leds);
3070 
3071 	return 0;
3072 }
3073 
3074 static int of_phy_leds(struct phy_device *phydev)
3075 {
3076 	struct device_node *node = phydev->mdio.dev.of_node;
3077 	struct device_node *leds, *led;
3078 	int err;
3079 
3080 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3081 		return 0;
3082 
3083 	if (!node)
3084 		return 0;
3085 
3086 	leds = of_get_child_by_name(node, "leds");
3087 	if (!leds)
3088 		return 0;
3089 
3090 	for_each_available_child_of_node(leds, led) {
3091 		err = of_phy_led(phydev, led);
3092 		if (err) {
3093 			of_node_put(led);
3094 			phy_leds_unregister(phydev);
3095 			return err;
3096 		}
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 /**
3103  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3104  * @fwnode: pointer to the mdio_device's fwnode
3105  *
3106  * If successful, returns a pointer to the mdio_device with the embedded
3107  * struct device refcount incremented by one, or NULL on failure.
3108  * The caller should call put_device() on the mdio_device after its use.
3109  */
3110 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3111 {
3112 	struct device *d;
3113 
3114 	if (!fwnode)
3115 		return NULL;
3116 
3117 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3118 	if (!d)
3119 		return NULL;
3120 
3121 	return to_mdio_device(d);
3122 }
3123 EXPORT_SYMBOL(fwnode_mdio_find_device);
3124 
3125 /**
3126  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3127  *
3128  * @phy_fwnode: Pointer to the phy's fwnode.
3129  *
3130  * If successful, returns a pointer to the phy_device with the embedded
3131  * struct device refcount incremented by one, or NULL on failure.
3132  */
3133 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3134 {
3135 	struct mdio_device *mdiodev;
3136 
3137 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3138 	if (!mdiodev)
3139 		return NULL;
3140 
3141 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3142 		return to_phy_device(&mdiodev->dev);
3143 
3144 	put_device(&mdiodev->dev);
3145 
3146 	return NULL;
3147 }
3148 EXPORT_SYMBOL(fwnode_phy_find_device);
3149 
3150 /**
3151  * device_phy_find_device - For the given device, get the phy_device
3152  * @dev: Pointer to the given device
3153  *
3154  * Refer return conditions of fwnode_phy_find_device().
3155  */
3156 struct phy_device *device_phy_find_device(struct device *dev)
3157 {
3158 	return fwnode_phy_find_device(dev_fwnode(dev));
3159 }
3160 EXPORT_SYMBOL_GPL(device_phy_find_device);
3161 
3162 /**
3163  * fwnode_get_phy_node - Get the phy_node using the named reference.
3164  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3165  *
3166  * Refer return conditions of fwnode_find_reference().
3167  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3168  * and "phy-device" are not supported in ACPI. DT supports all the three
3169  * named references to the phy node.
3170  */
3171 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3172 {
3173 	struct fwnode_handle *phy_node;
3174 
3175 	/* Only phy-handle is used for ACPI */
3176 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3177 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3178 		return phy_node;
3179 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3180 	if (IS_ERR(phy_node))
3181 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3182 	return phy_node;
3183 }
3184 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3185 
3186 /**
3187  * phy_probe - probe and init a PHY device
3188  * @dev: device to probe and init
3189  *
3190  * Take care of setting up the phy_device structure, set the state to READY.
3191  */
3192 static int phy_probe(struct device *dev)
3193 {
3194 	struct phy_device *phydev = to_phy_device(dev);
3195 	struct device_driver *drv = phydev->mdio.dev.driver;
3196 	struct phy_driver *phydrv = to_phy_driver(drv);
3197 	int err = 0;
3198 
3199 	phydev->drv = phydrv;
3200 
3201 	/* Disable the interrupt if the PHY doesn't support it
3202 	 * but the interrupt is still a valid one
3203 	 */
3204 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3205 		phydev->irq = PHY_POLL;
3206 
3207 	if (phydrv->flags & PHY_IS_INTERNAL)
3208 		phydev->is_internal = true;
3209 
3210 	/* Deassert the reset signal */
3211 	phy_device_reset(phydev, 0);
3212 
3213 	if (phydev->drv->probe) {
3214 		err = phydev->drv->probe(phydev);
3215 		if (err)
3216 			goto out;
3217 	}
3218 
3219 	/* Start out supporting everything. Eventually,
3220 	 * a controller will attach, and may modify one
3221 	 * or both of these values
3222 	 */
3223 	if (phydrv->features) {
3224 		linkmode_copy(phydev->supported, phydrv->features);
3225 		genphy_c45_read_eee_abilities(phydev);
3226 	}
3227 	else if (phydrv->get_features)
3228 		err = phydrv->get_features(phydev);
3229 	else if (phydev->is_c45)
3230 		err = genphy_c45_pma_read_abilities(phydev);
3231 	else
3232 		err = genphy_read_abilities(phydev);
3233 
3234 	if (err)
3235 		goto out;
3236 
3237 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3238 			       phydev->supported))
3239 		phydev->autoneg = 0;
3240 
3241 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3242 			      phydev->supported))
3243 		phydev->is_gigabit_capable = 1;
3244 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3245 			      phydev->supported))
3246 		phydev->is_gigabit_capable = 1;
3247 
3248 	of_set_phy_supported(phydev);
3249 	phy_advertise_supported(phydev);
3250 
3251 	/* Get PHY default EEE advertising modes and handle them as potentially
3252 	 * safe initial configuration.
3253 	 */
3254 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3255 	if (err)
3256 		goto out;
3257 
3258 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3259 	 * kind of enabled.
3260 	 */
3261 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3262 
3263 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3264 	 * we need to clean them.
3265 	 */
3266 	if (phydev->eee_enabled)
3267 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3268 			     phydev->advertising_eee);
3269 
3270 	/* Get the EEE modes we want to prohibit. We will ask
3271 	 * the PHY stop advertising these mode later on
3272 	 */
3273 	of_set_phy_eee_broken(phydev);
3274 
3275 	/* The Pause Frame bits indicate that the PHY can support passing
3276 	 * pause frames. During autonegotiation, the PHYs will determine if
3277 	 * they should allow pause frames to pass.  The MAC driver should then
3278 	 * use that result to determine whether to enable flow control via
3279 	 * pause frames.
3280 	 *
3281 	 * Normally, PHY drivers should not set the Pause bits, and instead
3282 	 * allow phylib to do that.  However, there may be some situations
3283 	 * (e.g. hardware erratum) where the driver wants to set only one
3284 	 * of these bits.
3285 	 */
3286 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3287 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3288 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3289 				 phydev->supported);
3290 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3291 				 phydev->supported);
3292 	}
3293 
3294 	/* Set the state to READY by default */
3295 	phydev->state = PHY_READY;
3296 
3297 	/* Get the LEDs from the device tree, and instantiate standard
3298 	 * LEDs for them.
3299 	 */
3300 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3301 		err = of_phy_leds(phydev);
3302 
3303 out:
3304 	/* Re-assert the reset signal on error */
3305 	if (err)
3306 		phy_device_reset(phydev, 1);
3307 
3308 	return err;
3309 }
3310 
3311 static int phy_remove(struct device *dev)
3312 {
3313 	struct phy_device *phydev = to_phy_device(dev);
3314 
3315 	cancel_delayed_work_sync(&phydev->state_queue);
3316 
3317 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3318 		phy_leds_unregister(phydev);
3319 
3320 	phydev->state = PHY_DOWN;
3321 
3322 	sfp_bus_del_upstream(phydev->sfp_bus);
3323 	phydev->sfp_bus = NULL;
3324 
3325 	if (phydev->drv && phydev->drv->remove)
3326 		phydev->drv->remove(phydev);
3327 
3328 	/* Assert the reset signal */
3329 	phy_device_reset(phydev, 1);
3330 
3331 	phydev->drv = NULL;
3332 
3333 	return 0;
3334 }
3335 
3336 static void phy_shutdown(struct device *dev)
3337 {
3338 	struct phy_device *phydev = to_phy_device(dev);
3339 
3340 	if (phydev->state == PHY_READY || !phydev->attached_dev)
3341 		return;
3342 
3343 	phy_disable_interrupts(phydev);
3344 }
3345 
3346 /**
3347  * phy_driver_register - register a phy_driver with the PHY layer
3348  * @new_driver: new phy_driver to register
3349  * @owner: module owning this PHY
3350  */
3351 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3352 {
3353 	int retval;
3354 
3355 	/* Either the features are hard coded, or dynamically
3356 	 * determined. It cannot be both.
3357 	 */
3358 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3359 		pr_err("%s: features and get_features must not both be set\n",
3360 		       new_driver->name);
3361 		return -EINVAL;
3362 	}
3363 
3364 	/* PHYLIB device drivers must not match using a DT compatible table
3365 	 * as this bypasses our checks that the mdiodev that is being matched
3366 	 * is backed by a struct phy_device. If such a case happens, we will
3367 	 * make out-of-bounds accesses and lockup in phydev->lock.
3368 	 */
3369 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3370 		 "%s: driver must not provide a DT match table\n",
3371 		 new_driver->name))
3372 		return -EINVAL;
3373 
3374 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3375 	new_driver->mdiodrv.driver.name = new_driver->name;
3376 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3377 	new_driver->mdiodrv.driver.probe = phy_probe;
3378 	new_driver->mdiodrv.driver.remove = phy_remove;
3379 	new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3380 	new_driver->mdiodrv.driver.owner = owner;
3381 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3382 
3383 	retval = driver_register(&new_driver->mdiodrv.driver);
3384 	if (retval) {
3385 		pr_err("%s: Error %d in registering driver\n",
3386 		       new_driver->name, retval);
3387 
3388 		return retval;
3389 	}
3390 
3391 	pr_debug("%s: Registered new driver\n", new_driver->name);
3392 
3393 	return 0;
3394 }
3395 EXPORT_SYMBOL(phy_driver_register);
3396 
3397 int phy_drivers_register(struct phy_driver *new_driver, int n,
3398 			 struct module *owner)
3399 {
3400 	int i, ret = 0;
3401 
3402 	for (i = 0; i < n; i++) {
3403 		ret = phy_driver_register(new_driver + i, owner);
3404 		if (ret) {
3405 			while (i-- > 0)
3406 				phy_driver_unregister(new_driver + i);
3407 			break;
3408 		}
3409 	}
3410 	return ret;
3411 }
3412 EXPORT_SYMBOL(phy_drivers_register);
3413 
3414 void phy_driver_unregister(struct phy_driver *drv)
3415 {
3416 	driver_unregister(&drv->mdiodrv.driver);
3417 }
3418 EXPORT_SYMBOL(phy_driver_unregister);
3419 
3420 void phy_drivers_unregister(struct phy_driver *drv, int n)
3421 {
3422 	int i;
3423 
3424 	for (i = 0; i < n; i++)
3425 		phy_driver_unregister(drv + i);
3426 }
3427 EXPORT_SYMBOL(phy_drivers_unregister);
3428 
3429 static struct phy_driver genphy_driver = {
3430 	.phy_id		= 0xffffffff,
3431 	.phy_id_mask	= 0xffffffff,
3432 	.name		= "Generic PHY",
3433 	.get_features	= genphy_read_abilities,
3434 	.suspend	= genphy_suspend,
3435 	.resume		= genphy_resume,
3436 	.set_loopback   = genphy_loopback,
3437 };
3438 
3439 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3440 	.get_sset_count		= phy_ethtool_get_sset_count,
3441 	.get_strings		= phy_ethtool_get_strings,
3442 	.get_stats		= phy_ethtool_get_stats,
3443 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3444 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3445 	.get_plca_status	= phy_ethtool_get_plca_status,
3446 	.start_cable_test	= phy_start_cable_test,
3447 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3448 };
3449 
3450 static int __init phy_init(void)
3451 {
3452 	int rc;
3453 
3454 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3455 
3456 	rc = mdio_bus_init();
3457 	if (rc)
3458 		goto err_ethtool_phy_ops;
3459 
3460 	features_init();
3461 
3462 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3463 	if (rc)
3464 		goto err_mdio_bus;
3465 
3466 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3467 	if (rc)
3468 		goto err_c45;
3469 
3470 	return 0;
3471 
3472 err_c45:
3473 	phy_driver_unregister(&genphy_c45_driver);
3474 err_mdio_bus:
3475 	mdio_bus_exit();
3476 err_ethtool_phy_ops:
3477 	ethtool_set_ethtool_phy_ops(NULL);
3478 
3479 	return rc;
3480 }
3481 
3482 static void __exit phy_exit(void)
3483 {
3484 	phy_driver_unregister(&genphy_c45_driver);
3485 	phy_driver_unregister(&genphy_driver);
3486 	mdio_bus_exit();
3487 	ethtool_set_ethtool_phy_ops(NULL);
3488 }
3489 
3490 subsys_initcall(phy_init);
3491 module_exit(phy_exit);
3492