xref: /openbmc/linux/drivers/net/phy/phy_device.c (revision 4daedf7a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/bitmap.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mdio.h>
22 #include <linux/mii.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/phy.h>
27 #include <linux/phy_led_triggers.h>
28 #include <linux/property.h>
29 #include <linux/sfp.h>
30 #include <linux/skbuff.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/uaccess.h>
34 #include <linux/unistd.h>
35 
36 MODULE_DESCRIPTION("PHY library");
37 MODULE_AUTHOR("Andy Fleming");
38 MODULE_LICENSE("GPL");
39 
40 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
41 EXPORT_SYMBOL_GPL(phy_basic_features);
42 
43 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
44 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
45 
46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
47 EXPORT_SYMBOL_GPL(phy_gbit_features);
48 
49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
50 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
51 
52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
53 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
54 
55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
56 EXPORT_SYMBOL_GPL(phy_10gbit_features);
57 
58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
59 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
60 
61 const int phy_basic_ports_array[3] = {
62 	ETHTOOL_LINK_MODE_Autoneg_BIT,
63 	ETHTOOL_LINK_MODE_TP_BIT,
64 	ETHTOOL_LINK_MODE_MII_BIT,
65 };
66 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
67 
68 const int phy_fibre_port_array[1] = {
69 	ETHTOOL_LINK_MODE_FIBRE_BIT,
70 };
71 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
72 
73 const int phy_all_ports_features_array[7] = {
74 	ETHTOOL_LINK_MODE_Autoneg_BIT,
75 	ETHTOOL_LINK_MODE_TP_BIT,
76 	ETHTOOL_LINK_MODE_MII_BIT,
77 	ETHTOOL_LINK_MODE_FIBRE_BIT,
78 	ETHTOOL_LINK_MODE_AUI_BIT,
79 	ETHTOOL_LINK_MODE_BNC_BIT,
80 	ETHTOOL_LINK_MODE_Backplane_BIT,
81 };
82 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
83 
84 const int phy_10_100_features_array[4] = {
85 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
86 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
87 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
88 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
89 };
90 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
91 
92 const int phy_basic_t1_features_array[2] = {
93 	ETHTOOL_LINK_MODE_TP_BIT,
94 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
95 };
96 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
97 
98 const int phy_gbit_features_array[2] = {
99 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
100 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
101 };
102 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
103 
104 const int phy_10gbit_features_array[1] = {
105 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
106 };
107 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
108 
109 const int phy_10gbit_fec_features_array[1] = {
110 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
111 };
112 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features_array);
113 
114 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
115 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
116 
117 static const int phy_10gbit_full_features_array[] = {
118 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
119 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
120 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 
124 static void features_init(void)
125 {
126 	/* 10/100 half/full*/
127 	linkmode_set_bit_array(phy_basic_ports_array,
128 			       ARRAY_SIZE(phy_basic_ports_array),
129 			       phy_basic_features);
130 	linkmode_set_bit_array(phy_10_100_features_array,
131 			       ARRAY_SIZE(phy_10_100_features_array),
132 			       phy_basic_features);
133 
134 	/* 100 full, TP */
135 	linkmode_set_bit_array(phy_basic_t1_features_array,
136 			       ARRAY_SIZE(phy_basic_t1_features_array),
137 			       phy_basic_t1_features);
138 
139 	/* 10/100 half/full + 1000 half/full */
140 	linkmode_set_bit_array(phy_basic_ports_array,
141 			       ARRAY_SIZE(phy_basic_ports_array),
142 			       phy_gbit_features);
143 	linkmode_set_bit_array(phy_10_100_features_array,
144 			       ARRAY_SIZE(phy_10_100_features_array),
145 			       phy_gbit_features);
146 	linkmode_set_bit_array(phy_gbit_features_array,
147 			       ARRAY_SIZE(phy_gbit_features_array),
148 			       phy_gbit_features);
149 
150 	/* 10/100 half/full + 1000 half/full + fibre*/
151 	linkmode_set_bit_array(phy_basic_ports_array,
152 			       ARRAY_SIZE(phy_basic_ports_array),
153 			       phy_gbit_fibre_features);
154 	linkmode_set_bit_array(phy_10_100_features_array,
155 			       ARRAY_SIZE(phy_10_100_features_array),
156 			       phy_gbit_fibre_features);
157 	linkmode_set_bit_array(phy_gbit_features_array,
158 			       ARRAY_SIZE(phy_gbit_features_array),
159 			       phy_gbit_fibre_features);
160 	linkmode_set_bit_array(phy_fibre_port_array,
161 			       ARRAY_SIZE(phy_fibre_port_array),
162 			       phy_gbit_fibre_features);
163 
164 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
165 	linkmode_set_bit_array(phy_all_ports_features_array,
166 			       ARRAY_SIZE(phy_all_ports_features_array),
167 			       phy_gbit_all_ports_features);
168 	linkmode_set_bit_array(phy_10_100_features_array,
169 			       ARRAY_SIZE(phy_10_100_features_array),
170 			       phy_gbit_all_ports_features);
171 	linkmode_set_bit_array(phy_gbit_features_array,
172 			       ARRAY_SIZE(phy_gbit_features_array),
173 			       phy_gbit_all_ports_features);
174 
175 	/* 10/100 half/full + 1000 half/full + 10G full*/
176 	linkmode_set_bit_array(phy_all_ports_features_array,
177 			       ARRAY_SIZE(phy_all_ports_features_array),
178 			       phy_10gbit_features);
179 	linkmode_set_bit_array(phy_10_100_features_array,
180 			       ARRAY_SIZE(phy_10_100_features_array),
181 			       phy_10gbit_features);
182 	linkmode_set_bit_array(phy_gbit_features_array,
183 			       ARRAY_SIZE(phy_gbit_features_array),
184 			       phy_10gbit_features);
185 	linkmode_set_bit_array(phy_10gbit_features_array,
186 			       ARRAY_SIZE(phy_10gbit_features_array),
187 			       phy_10gbit_features);
188 
189 	/* 10/100/1000/10G full */
190 	linkmode_set_bit_array(phy_all_ports_features_array,
191 			       ARRAY_SIZE(phy_all_ports_features_array),
192 			       phy_10gbit_full_features);
193 	linkmode_set_bit_array(phy_10gbit_full_features_array,
194 			       ARRAY_SIZE(phy_10gbit_full_features_array),
195 			       phy_10gbit_full_features);
196 	/* 10G FEC only */
197 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
198 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
199 			       phy_10gbit_fec_features);
200 }
201 
202 void phy_device_free(struct phy_device *phydev)
203 {
204 	put_device(&phydev->mdio.dev);
205 }
206 EXPORT_SYMBOL(phy_device_free);
207 
208 static void phy_mdio_device_free(struct mdio_device *mdiodev)
209 {
210 	struct phy_device *phydev;
211 
212 	phydev = container_of(mdiodev, struct phy_device, mdio);
213 	phy_device_free(phydev);
214 }
215 
216 static void phy_device_release(struct device *dev)
217 {
218 	kfree(to_phy_device(dev));
219 }
220 
221 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
222 {
223 	struct phy_device *phydev;
224 
225 	phydev = container_of(mdiodev, struct phy_device, mdio);
226 	phy_device_remove(phydev);
227 }
228 
229 static struct phy_driver genphy_driver;
230 extern struct phy_driver genphy_c45_driver;
231 
232 static LIST_HEAD(phy_fixup_list);
233 static DEFINE_MUTEX(phy_fixup_lock);
234 
235 #ifdef CONFIG_PM
236 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
237 {
238 	struct device_driver *drv = phydev->mdio.dev.driver;
239 	struct phy_driver *phydrv = to_phy_driver(drv);
240 	struct net_device *netdev = phydev->attached_dev;
241 
242 	if (!drv || !phydrv->suspend)
243 		return false;
244 
245 	/* PHY not attached? May suspend if the PHY has not already been
246 	 * suspended as part of a prior call to phy_disconnect() ->
247 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
248 	 * MDIO bus driver and clock gated at this point.
249 	 */
250 	if (!netdev)
251 		goto out;
252 
253 	if (netdev->wol_enabled)
254 		return false;
255 
256 	/* As long as not all affected network drivers support the
257 	 * wol_enabled flag, let's check for hints that WoL is enabled.
258 	 * Don't suspend PHY if the attached netdev parent may wake up.
259 	 * The parent may point to a PCI device, as in tg3 driver.
260 	 */
261 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
262 		return false;
263 
264 	/* Also don't suspend PHY if the netdev itself may wakeup. This
265 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
266 	 * e.g. SoC devices.
267 	 */
268 	if (device_may_wakeup(&netdev->dev))
269 		return false;
270 
271 out:
272 	return !phydev->suspended;
273 }
274 
275 static int mdio_bus_phy_suspend(struct device *dev)
276 {
277 	struct phy_device *phydev = to_phy_device(dev);
278 
279 	/* We must stop the state machine manually, otherwise it stops out of
280 	 * control, possibly with the phydev->lock held. Upon resume, netdev
281 	 * may call phy routines that try to grab the same lock, and that may
282 	 * lead to a deadlock.
283 	 */
284 	if (phydev->attached_dev && phydev->adjust_link)
285 		phy_stop_machine(phydev);
286 
287 	if (!mdio_bus_phy_may_suspend(phydev))
288 		return 0;
289 
290 	phydev->suspended_by_mdio_bus = 1;
291 
292 	return phy_suspend(phydev);
293 }
294 
295 static int mdio_bus_phy_resume(struct device *dev)
296 {
297 	struct phy_device *phydev = to_phy_device(dev);
298 	int ret;
299 
300 	if (!phydev->suspended_by_mdio_bus)
301 		goto no_resume;
302 
303 	phydev->suspended_by_mdio_bus = 0;
304 
305 	ret = phy_resume(phydev);
306 	if (ret < 0)
307 		return ret;
308 
309 no_resume:
310 	if (phydev->attached_dev && phydev->adjust_link)
311 		phy_start_machine(phydev);
312 
313 	return 0;
314 }
315 
316 static int mdio_bus_phy_restore(struct device *dev)
317 {
318 	struct phy_device *phydev = to_phy_device(dev);
319 	struct net_device *netdev = phydev->attached_dev;
320 	int ret;
321 
322 	if (!netdev)
323 		return 0;
324 
325 	ret = phy_init_hw(phydev);
326 	if (ret < 0)
327 		return ret;
328 
329 	if (phydev->attached_dev && phydev->adjust_link)
330 		phy_start_machine(phydev);
331 
332 	return 0;
333 }
334 
335 static const struct dev_pm_ops mdio_bus_phy_pm_ops = {
336 	.suspend = mdio_bus_phy_suspend,
337 	.resume = mdio_bus_phy_resume,
338 	.freeze = mdio_bus_phy_suspend,
339 	.thaw = mdio_bus_phy_resume,
340 	.restore = mdio_bus_phy_restore,
341 };
342 
343 #define MDIO_BUS_PHY_PM_OPS (&mdio_bus_phy_pm_ops)
344 
345 #else
346 
347 #define MDIO_BUS_PHY_PM_OPS NULL
348 
349 #endif /* CONFIG_PM */
350 
351 /**
352  * phy_register_fixup - creates a new phy_fixup and adds it to the list
353  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
354  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
355  *	It can also be PHY_ANY_UID
356  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
357  *	comparison
358  * @run: The actual code to be run when a matching PHY is found
359  */
360 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
361 		       int (*run)(struct phy_device *))
362 {
363 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
364 
365 	if (!fixup)
366 		return -ENOMEM;
367 
368 	strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
369 	fixup->phy_uid = phy_uid;
370 	fixup->phy_uid_mask = phy_uid_mask;
371 	fixup->run = run;
372 
373 	mutex_lock(&phy_fixup_lock);
374 	list_add_tail(&fixup->list, &phy_fixup_list);
375 	mutex_unlock(&phy_fixup_lock);
376 
377 	return 0;
378 }
379 EXPORT_SYMBOL(phy_register_fixup);
380 
381 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
382 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
383 			       int (*run)(struct phy_device *))
384 {
385 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
386 }
387 EXPORT_SYMBOL(phy_register_fixup_for_uid);
388 
389 /* Registers a fixup to be run on the PHY with id string bus_id */
390 int phy_register_fixup_for_id(const char *bus_id,
391 			      int (*run)(struct phy_device *))
392 {
393 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
394 }
395 EXPORT_SYMBOL(phy_register_fixup_for_id);
396 
397 /**
398  * phy_unregister_fixup - remove a phy_fixup from the list
399  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
400  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
401  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
402  */
403 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
404 {
405 	struct list_head *pos, *n;
406 	struct phy_fixup *fixup;
407 	int ret;
408 
409 	ret = -ENODEV;
410 
411 	mutex_lock(&phy_fixup_lock);
412 	list_for_each_safe(pos, n, &phy_fixup_list) {
413 		fixup = list_entry(pos, struct phy_fixup, list);
414 
415 		if ((!strcmp(fixup->bus_id, bus_id)) &&
416 		    ((fixup->phy_uid & phy_uid_mask) ==
417 		     (phy_uid & phy_uid_mask))) {
418 			list_del(&fixup->list);
419 			kfree(fixup);
420 			ret = 0;
421 			break;
422 		}
423 	}
424 	mutex_unlock(&phy_fixup_lock);
425 
426 	return ret;
427 }
428 EXPORT_SYMBOL(phy_unregister_fixup);
429 
430 /* Unregisters a fixup of any PHY with the UID in phy_uid */
431 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
432 {
433 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
434 }
435 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
436 
437 /* Unregisters a fixup of the PHY with id string bus_id */
438 int phy_unregister_fixup_for_id(const char *bus_id)
439 {
440 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
441 }
442 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
443 
444 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
445  * Fixups can be set to match any in one or more fields.
446  */
447 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
448 {
449 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
450 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
451 			return 0;
452 
453 	if ((fixup->phy_uid & fixup->phy_uid_mask) !=
454 	    (phydev->phy_id & fixup->phy_uid_mask))
455 		if (fixup->phy_uid != PHY_ANY_UID)
456 			return 0;
457 
458 	return 1;
459 }
460 
461 /* Runs any matching fixups for this phydev */
462 static int phy_scan_fixups(struct phy_device *phydev)
463 {
464 	struct phy_fixup *fixup;
465 
466 	mutex_lock(&phy_fixup_lock);
467 	list_for_each_entry(fixup, &phy_fixup_list, list) {
468 		if (phy_needs_fixup(phydev, fixup)) {
469 			int err = fixup->run(phydev);
470 
471 			if (err < 0) {
472 				mutex_unlock(&phy_fixup_lock);
473 				return err;
474 			}
475 			phydev->has_fixups = true;
476 		}
477 	}
478 	mutex_unlock(&phy_fixup_lock);
479 
480 	return 0;
481 }
482 
483 static int phy_bus_match(struct device *dev, struct device_driver *drv)
484 {
485 	struct phy_device *phydev = to_phy_device(dev);
486 	struct phy_driver *phydrv = to_phy_driver(drv);
487 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
488 	int i;
489 
490 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
491 		return 0;
492 
493 	if (phydrv->match_phy_device)
494 		return phydrv->match_phy_device(phydev);
495 
496 	if (phydev->is_c45) {
497 		for (i = 1; i < num_ids; i++) {
498 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
499 				continue;
500 
501 			if ((phydrv->phy_id & phydrv->phy_id_mask) ==
502 			    (phydev->c45_ids.device_ids[i] &
503 			     phydrv->phy_id_mask))
504 				return 1;
505 		}
506 		return 0;
507 	} else {
508 		return (phydrv->phy_id & phydrv->phy_id_mask) ==
509 			(phydev->phy_id & phydrv->phy_id_mask);
510 	}
511 }
512 
513 static ssize_t
514 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
515 {
516 	struct phy_device *phydev = to_phy_device(dev);
517 
518 	return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
519 }
520 static DEVICE_ATTR_RO(phy_id);
521 
522 static ssize_t
523 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
524 {
525 	struct phy_device *phydev = to_phy_device(dev);
526 	const char *mode = NULL;
527 
528 	if (phy_is_internal(phydev))
529 		mode = "internal";
530 	else
531 		mode = phy_modes(phydev->interface);
532 
533 	return sprintf(buf, "%s\n", mode);
534 }
535 static DEVICE_ATTR_RO(phy_interface);
536 
537 static ssize_t
538 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
539 		    char *buf)
540 {
541 	struct phy_device *phydev = to_phy_device(dev);
542 
543 	return sprintf(buf, "%d\n", phydev->has_fixups);
544 }
545 static DEVICE_ATTR_RO(phy_has_fixups);
546 
547 static struct attribute *phy_dev_attrs[] = {
548 	&dev_attr_phy_id.attr,
549 	&dev_attr_phy_interface.attr,
550 	&dev_attr_phy_has_fixups.attr,
551 	NULL,
552 };
553 ATTRIBUTE_GROUPS(phy_dev);
554 
555 static const struct device_type mdio_bus_phy_type = {
556 	.name = "PHY",
557 	.groups = phy_dev_groups,
558 	.release = phy_device_release,
559 	.pm = MDIO_BUS_PHY_PM_OPS,
560 };
561 
562 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
563 {
564 	int ret;
565 
566 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
567 			     MDIO_ID_ARGS(phy_id));
568 	/* We only check for failures in executing the usermode binary,
569 	 * not whether a PHY driver module exists for the PHY ID.
570 	 * Accept -ENOENT because this may occur in case no initramfs exists,
571 	 * then modprobe isn't available.
572 	 */
573 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
574 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
575 			   ret, (unsigned long)phy_id);
576 		return ret;
577 	}
578 
579 	return 0;
580 }
581 
582 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
583 				     bool is_c45,
584 				     struct phy_c45_device_ids *c45_ids)
585 {
586 	struct phy_device *dev;
587 	struct mdio_device *mdiodev;
588 	int ret = 0;
589 
590 	/* We allocate the device, and initialize the default values */
591 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
592 	if (!dev)
593 		return ERR_PTR(-ENOMEM);
594 
595 	mdiodev = &dev->mdio;
596 	mdiodev->dev.parent = &bus->dev;
597 	mdiodev->dev.bus = &mdio_bus_type;
598 	mdiodev->dev.type = &mdio_bus_phy_type;
599 	mdiodev->bus = bus;
600 	mdiodev->bus_match = phy_bus_match;
601 	mdiodev->addr = addr;
602 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
603 	mdiodev->device_free = phy_mdio_device_free;
604 	mdiodev->device_remove = phy_mdio_device_remove;
605 
606 	dev->speed = SPEED_UNKNOWN;
607 	dev->duplex = DUPLEX_UNKNOWN;
608 	dev->pause = 0;
609 	dev->asym_pause = 0;
610 	dev->link = 0;
611 	dev->interface = PHY_INTERFACE_MODE_GMII;
612 
613 	dev->autoneg = AUTONEG_ENABLE;
614 
615 	dev->is_c45 = is_c45;
616 	dev->phy_id = phy_id;
617 	if (c45_ids)
618 		dev->c45_ids = *c45_ids;
619 	dev->irq = bus->irq[addr];
620 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
621 
622 	dev->state = PHY_DOWN;
623 
624 	mutex_init(&dev->lock);
625 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
626 
627 	/* Request the appropriate module unconditionally; don't
628 	 * bother trying to do so only if it isn't already loaded,
629 	 * because that gets complicated. A hotplug event would have
630 	 * done an unconditional modprobe anyway.
631 	 * We don't do normal hotplug because it won't work for MDIO
632 	 * -- because it relies on the device staying around for long
633 	 * enough for the driver to get loaded. With MDIO, the NIC
634 	 * driver will get bored and give up as soon as it finds that
635 	 * there's no driver _already_ loaded.
636 	 */
637 	if (is_c45 && c45_ids) {
638 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
639 		int i;
640 
641 		for (i = 1; i < num_ids; i++) {
642 			if (c45_ids->device_ids[i] == 0xffffffff)
643 				continue;
644 
645 			ret = phy_request_driver_module(dev,
646 						c45_ids->device_ids[i]);
647 			if (ret)
648 				break;
649 		}
650 	} else {
651 		ret = phy_request_driver_module(dev, phy_id);
652 	}
653 
654 	if (!ret) {
655 		device_initialize(&mdiodev->dev);
656 	} else {
657 		kfree(dev);
658 		dev = ERR_PTR(ret);
659 	}
660 
661 	return dev;
662 }
663 EXPORT_SYMBOL(phy_device_create);
664 
665 /* phy_c45_probe_present - checks to see if a MMD is present in the package
666  * @bus: the target MII bus
667  * @prtad: PHY package address on the MII bus
668  * @devad: PHY device (MMD) address
669  *
670  * Read the MDIO_STAT2 register, and check whether a device is responding
671  * at this address.
672  *
673  * Returns: negative error number on bus access error, zero if no device
674  * is responding, or positive if a device is present.
675  */
676 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
677 {
678 	int stat2;
679 
680 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
681 	if (stat2 < 0)
682 		return stat2;
683 
684 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
685 }
686 
687 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
688  * @bus: the target MII bus
689  * @addr: PHY address on the MII bus
690  * @dev_addr: MMD address in the PHY.
691  * @devices_in_package: where to store the devices in package information.
692  *
693  * Description: reads devices in package registers of a MMD at @dev_addr
694  * from PHY at @addr on @bus.
695  *
696  * Returns: 0 on success, -EIO on failure.
697  */
698 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
699 				   u32 *devices_in_package)
700 {
701 	int phy_reg;
702 
703 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
704 	if (phy_reg < 0)
705 		return -EIO;
706 	*devices_in_package = phy_reg << 16;
707 
708 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
709 	if (phy_reg < 0)
710 		return -EIO;
711 	*devices_in_package |= phy_reg;
712 
713 	return 0;
714 }
715 
716 /**
717  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
718  * @bus: the target MII bus
719  * @addr: PHY address on the MII bus
720  * @c45_ids: where to store the c45 ID information.
721  *
722  * Read the PHY "devices in package". If this appears to be valid, read
723  * the PHY identifiers for each device. Return the "devices in package"
724  * and identifiers in @c45_ids.
725  *
726  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
727  * the "devices in package" is invalid.
728  */
729 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
730 			   struct phy_c45_device_ids *c45_ids)
731 {
732 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
733 	u32 devs_in_pkg = 0;
734 	int i, ret, phy_reg;
735 
736 	/* Find first non-zero Devices In package. Device zero is reserved
737 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
738 	 */
739 	for (i = 1; i < MDIO_MMD_NUM && devs_in_pkg == 0; i++) {
740 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
741 			/* Check that there is a device present at this
742 			 * address before reading the devices-in-package
743 			 * register to avoid reading garbage from the PHY.
744 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
745 			 * compliant.
746 			 */
747 			ret = phy_c45_probe_present(bus, addr, i);
748 			if (ret < 0)
749 				return -EIO;
750 
751 			if (!ret)
752 				continue;
753 		}
754 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
755 		if (phy_reg < 0)
756 			return -EIO;
757 	}
758 
759 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
760 		/* If mostly Fs, there is no device there, then let's probe
761 		 * MMD 0, as some 10G PHYs have zero Devices In package,
762 		 * e.g. Cortina CS4315/CS4340 PHY.
763 		 */
764 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
765 		if (phy_reg < 0)
766 			return -EIO;
767 
768 		/* no device there, let's get out of here */
769 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
770 			return -ENODEV;
771 	}
772 
773 	/* Now probe Device Identifiers for each device present. */
774 	for (i = 1; i < num_ids; i++) {
775 		if (!(devs_in_pkg & (1 << i)))
776 			continue;
777 
778 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
779 			/* Probe the "Device Present" bits for the vendor MMDs
780 			 * to ignore these if they do not contain IEEE 802.3
781 			 * registers.
782 			 */
783 			ret = phy_c45_probe_present(bus, addr, i);
784 			if (ret < 0)
785 				return ret;
786 
787 			if (!ret)
788 				continue;
789 		}
790 
791 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
792 		if (phy_reg < 0)
793 			return -EIO;
794 		c45_ids->device_ids[i] = phy_reg << 16;
795 
796 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
797 		if (phy_reg < 0)
798 			return -EIO;
799 		c45_ids->device_ids[i] |= phy_reg;
800 	}
801 
802 	c45_ids->devices_in_package = devs_in_pkg;
803 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
804 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
805 
806 	return 0;
807 }
808 
809 /**
810  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
811  * @bus: the target MII bus
812  * @addr: PHY address on the MII bus
813  * @phy_id: where to store the ID retrieved.
814  *
815  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
816  * placing it in @phy_id. Return zero on successful read and the ID is
817  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
818  * or invalid ID.
819  */
820 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
821 {
822 	int phy_reg;
823 
824 	/* Grab the bits from PHYIR1, and put them in the upper half */
825 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
826 	if (phy_reg < 0) {
827 		/* returning -ENODEV doesn't stop bus scanning */
828 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
829 	}
830 
831 	*phy_id = phy_reg << 16;
832 
833 	/* Grab the bits from PHYIR2, and put them in the lower half */
834 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
835 	if (phy_reg < 0) {
836 		/* returning -ENODEV doesn't stop bus scanning */
837 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
838 	}
839 
840 	*phy_id |= phy_reg;
841 
842 	/* If the phy_id is mostly Fs, there is no device there */
843 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
844 		return -ENODEV;
845 
846 	return 0;
847 }
848 
849 /**
850  * get_phy_device - reads the specified PHY device and returns its @phy_device
851  *		    struct
852  * @bus: the target MII bus
853  * @addr: PHY address on the MII bus
854  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
855  *
856  * Probe for a PHY at @addr on @bus.
857  *
858  * When probing for a clause 22 PHY, then read the ID registers. If we find
859  * a valid ID, allocate and return a &struct phy_device.
860  *
861  * When probing for a clause 45 PHY, read the "devices in package" registers.
862  * If the "devices in package" appears valid, read the ID registers for each
863  * MMD, allocate and return a &struct phy_device.
864  *
865  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
866  * no PHY present, or %-EIO on bus access error.
867  */
868 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
869 {
870 	struct phy_c45_device_ids c45_ids;
871 	u32 phy_id = 0;
872 	int r;
873 
874 	c45_ids.devices_in_package = 0;
875 	c45_ids.mmds_present = 0;
876 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
877 
878 	if (is_c45)
879 		r = get_phy_c45_ids(bus, addr, &c45_ids);
880 	else
881 		r = get_phy_c22_id(bus, addr, &phy_id);
882 
883 	if (r)
884 		return ERR_PTR(r);
885 
886 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
887 }
888 EXPORT_SYMBOL(get_phy_device);
889 
890 /**
891  * phy_device_register - Register the phy device on the MDIO bus
892  * @phydev: phy_device structure to be added to the MDIO bus
893  */
894 int phy_device_register(struct phy_device *phydev)
895 {
896 	int err;
897 
898 	err = mdiobus_register_device(&phydev->mdio);
899 	if (err)
900 		return err;
901 
902 	/* Deassert the reset signal */
903 	phy_device_reset(phydev, 0);
904 
905 	/* Run all of the fixups for this PHY */
906 	err = phy_scan_fixups(phydev);
907 	if (err) {
908 		phydev_err(phydev, "failed to initialize\n");
909 		goto out;
910 	}
911 
912 	err = device_add(&phydev->mdio.dev);
913 	if (err) {
914 		phydev_err(phydev, "failed to add\n");
915 		goto out;
916 	}
917 
918 	return 0;
919 
920  out:
921 	/* Assert the reset signal */
922 	phy_device_reset(phydev, 1);
923 
924 	mdiobus_unregister_device(&phydev->mdio);
925 	return err;
926 }
927 EXPORT_SYMBOL(phy_device_register);
928 
929 /**
930  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
931  * @phydev: phy_device structure to remove
932  *
933  * This doesn't free the phy_device itself, it merely reverses the effects
934  * of phy_device_register(). Use phy_device_free() to free the device
935  * after calling this function.
936  */
937 void phy_device_remove(struct phy_device *phydev)
938 {
939 	if (phydev->mii_ts)
940 		unregister_mii_timestamper(phydev->mii_ts);
941 
942 	device_del(&phydev->mdio.dev);
943 
944 	/* Assert the reset signal */
945 	phy_device_reset(phydev, 1);
946 
947 	mdiobus_unregister_device(&phydev->mdio);
948 }
949 EXPORT_SYMBOL(phy_device_remove);
950 
951 /**
952  * phy_find_first - finds the first PHY device on the bus
953  * @bus: the target MII bus
954  */
955 struct phy_device *phy_find_first(struct mii_bus *bus)
956 {
957 	struct phy_device *phydev;
958 	int addr;
959 
960 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
961 		phydev = mdiobus_get_phy(bus, addr);
962 		if (phydev)
963 			return phydev;
964 	}
965 	return NULL;
966 }
967 EXPORT_SYMBOL(phy_find_first);
968 
969 static void phy_link_change(struct phy_device *phydev, bool up)
970 {
971 	struct net_device *netdev = phydev->attached_dev;
972 
973 	if (up)
974 		netif_carrier_on(netdev);
975 	else
976 		netif_carrier_off(netdev);
977 	phydev->adjust_link(netdev);
978 	if (phydev->mii_ts && phydev->mii_ts->link_state)
979 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
980 }
981 
982 /**
983  * phy_prepare_link - prepares the PHY layer to monitor link status
984  * @phydev: target phy_device struct
985  * @handler: callback function for link status change notifications
986  *
987  * Description: Tells the PHY infrastructure to handle the
988  *   gory details on monitoring link status (whether through
989  *   polling or an interrupt), and to call back to the
990  *   connected device driver when the link status changes.
991  *   If you want to monitor your own link state, don't call
992  *   this function.
993  */
994 static void phy_prepare_link(struct phy_device *phydev,
995 			     void (*handler)(struct net_device *))
996 {
997 	phydev->adjust_link = handler;
998 }
999 
1000 /**
1001  * phy_connect_direct - connect an ethernet device to a specific phy_device
1002  * @dev: the network device to connect
1003  * @phydev: the pointer to the phy device
1004  * @handler: callback function for state change notifications
1005  * @interface: PHY device's interface
1006  */
1007 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1008 		       void (*handler)(struct net_device *),
1009 		       phy_interface_t interface)
1010 {
1011 	int rc;
1012 
1013 	if (!dev)
1014 		return -EINVAL;
1015 
1016 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1017 	if (rc)
1018 		return rc;
1019 
1020 	phy_prepare_link(phydev, handler);
1021 	if (phy_interrupt_is_valid(phydev))
1022 		phy_request_interrupt(phydev);
1023 
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL(phy_connect_direct);
1027 
1028 /**
1029  * phy_connect - connect an ethernet device to a PHY device
1030  * @dev: the network device to connect
1031  * @bus_id: the id string of the PHY device to connect
1032  * @handler: callback function for state change notifications
1033  * @interface: PHY device's interface
1034  *
1035  * Description: Convenience function for connecting ethernet
1036  *   devices to PHY devices.  The default behavior is for
1037  *   the PHY infrastructure to handle everything, and only notify
1038  *   the connected driver when the link status changes.  If you
1039  *   don't want, or can't use the provided functionality, you may
1040  *   choose to call only the subset of functions which provide
1041  *   the desired functionality.
1042  */
1043 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1044 			       void (*handler)(struct net_device *),
1045 			       phy_interface_t interface)
1046 {
1047 	struct phy_device *phydev;
1048 	struct device *d;
1049 	int rc;
1050 
1051 	/* Search the list of PHY devices on the mdio bus for the
1052 	 * PHY with the requested name
1053 	 */
1054 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1055 	if (!d) {
1056 		pr_err("PHY %s not found\n", bus_id);
1057 		return ERR_PTR(-ENODEV);
1058 	}
1059 	phydev = to_phy_device(d);
1060 
1061 	rc = phy_connect_direct(dev, phydev, handler, interface);
1062 	put_device(d);
1063 	if (rc)
1064 		return ERR_PTR(rc);
1065 
1066 	return phydev;
1067 }
1068 EXPORT_SYMBOL(phy_connect);
1069 
1070 /**
1071  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1072  *		    device
1073  * @phydev: target phy_device struct
1074  */
1075 void phy_disconnect(struct phy_device *phydev)
1076 {
1077 	if (phy_is_started(phydev))
1078 		phy_stop(phydev);
1079 
1080 	if (phy_interrupt_is_valid(phydev))
1081 		phy_free_interrupt(phydev);
1082 
1083 	phydev->adjust_link = NULL;
1084 
1085 	phy_detach(phydev);
1086 }
1087 EXPORT_SYMBOL(phy_disconnect);
1088 
1089 /**
1090  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1091  * @phydev: The PHY device to poll
1092  *
1093  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1094  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1095  *   register must be polled until the BMCR_RESET bit clears.
1096  *
1097  *   Furthermore, any attempts to write to PHY registers may have no effect
1098  *   or even generate MDIO bus errors until this is complete.
1099  *
1100  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1101  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1102  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1103  *   effort to support such broken PHYs, this function is separate from the
1104  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1105  *   and reapply all driver-specific and board-specific fixups.
1106  */
1107 static int phy_poll_reset(struct phy_device *phydev)
1108 {
1109 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1110 	int ret, val;
1111 
1112 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1113 				    50000, 600000, true);
1114 	if (ret)
1115 		return ret;
1116 	/* Some chips (smsc911x) may still need up to another 1ms after the
1117 	 * BMCR_RESET bit is cleared before they are usable.
1118 	 */
1119 	msleep(1);
1120 	return 0;
1121 }
1122 
1123 int phy_init_hw(struct phy_device *phydev)
1124 {
1125 	int ret = 0;
1126 
1127 	/* Deassert the reset signal */
1128 	phy_device_reset(phydev, 0);
1129 
1130 	if (!phydev->drv)
1131 		return 0;
1132 
1133 	if (phydev->drv->soft_reset) {
1134 		ret = phydev->drv->soft_reset(phydev);
1135 		/* see comment in genphy_soft_reset for an explanation */
1136 		if (!ret)
1137 			phydev->suspended = 0;
1138 	}
1139 
1140 	if (ret < 0)
1141 		return ret;
1142 
1143 	ret = phy_scan_fixups(phydev);
1144 	if (ret < 0)
1145 		return ret;
1146 
1147 	ret = phy_disable_interrupts(phydev);
1148 	if (ret)
1149 		return ret;
1150 
1151 	if (phydev->drv->config_init)
1152 		ret = phydev->drv->config_init(phydev);
1153 
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL(phy_init_hw);
1157 
1158 void phy_attached_info(struct phy_device *phydev)
1159 {
1160 	phy_attached_print(phydev, NULL);
1161 }
1162 EXPORT_SYMBOL(phy_attached_info);
1163 
1164 #define ATTACHED_FMT "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%s)"
1165 char *phy_attached_info_irq(struct phy_device *phydev)
1166 {
1167 	char *irq_str;
1168 	char irq_num[8];
1169 
1170 	switch(phydev->irq) {
1171 	case PHY_POLL:
1172 		irq_str = "POLL";
1173 		break;
1174 	case PHY_IGNORE_INTERRUPT:
1175 		irq_str = "IGNORE";
1176 		break;
1177 	default:
1178 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1179 		irq_str = irq_num;
1180 		break;
1181 	}
1182 
1183 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1184 }
1185 EXPORT_SYMBOL(phy_attached_info_irq);
1186 
1187 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1188 {
1189 	const char *drv_name = phydev->drv ? phydev->drv->name : "unbound";
1190 	char *irq_str = phy_attached_info_irq(phydev);
1191 
1192 	if (!fmt) {
1193 		phydev_info(phydev, ATTACHED_FMT "\n",
1194 			 drv_name, phydev_name(phydev),
1195 			 irq_str);
1196 	} else {
1197 		va_list ap;
1198 
1199 		phydev_info(phydev, ATTACHED_FMT,
1200 			 drv_name, phydev_name(phydev),
1201 			 irq_str);
1202 
1203 		va_start(ap, fmt);
1204 		vprintk(fmt, ap);
1205 		va_end(ap);
1206 	}
1207 	kfree(irq_str);
1208 }
1209 EXPORT_SYMBOL(phy_attached_print);
1210 
1211 static void phy_sysfs_create_links(struct phy_device *phydev)
1212 {
1213 	struct net_device *dev = phydev->attached_dev;
1214 	int err;
1215 
1216 	if (!dev)
1217 		return;
1218 
1219 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1220 				"attached_dev");
1221 	if (err)
1222 		return;
1223 
1224 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1225 				       &phydev->mdio.dev.kobj,
1226 				       "phydev");
1227 	if (err) {
1228 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1229 			kobject_name(&phydev->mdio.dev.kobj),
1230 			err);
1231 		/* non-fatal - some net drivers can use one netdevice
1232 		 * with more then one phy
1233 		 */
1234 	}
1235 
1236 	phydev->sysfs_links = true;
1237 }
1238 
1239 static ssize_t
1240 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1241 		    char *buf)
1242 {
1243 	struct phy_device *phydev = to_phy_device(dev);
1244 
1245 	return sprintf(buf, "%d\n", !phydev->attached_dev);
1246 }
1247 static DEVICE_ATTR_RO(phy_standalone);
1248 
1249 /**
1250  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1251  * @upstream: pointer to the phy device
1252  * @bus: sfp bus representing cage being attached
1253  *
1254  * This is used to fill in the sfp_upstream_ops .attach member.
1255  */
1256 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1257 {
1258 	struct phy_device *phydev = upstream;
1259 
1260 	if (phydev->attached_dev)
1261 		phydev->attached_dev->sfp_bus = bus;
1262 	phydev->sfp_bus_attached = true;
1263 }
1264 EXPORT_SYMBOL(phy_sfp_attach);
1265 
1266 /**
1267  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1268  * @upstream: pointer to the phy device
1269  * @bus: sfp bus representing cage being attached
1270  *
1271  * This is used to fill in the sfp_upstream_ops .detach member.
1272  */
1273 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1274 {
1275 	struct phy_device *phydev = upstream;
1276 
1277 	if (phydev->attached_dev)
1278 		phydev->attached_dev->sfp_bus = NULL;
1279 	phydev->sfp_bus_attached = false;
1280 }
1281 EXPORT_SYMBOL(phy_sfp_detach);
1282 
1283 /**
1284  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1285  * @phydev: Pointer to phy_device
1286  * @ops: SFP's upstream operations
1287  */
1288 int phy_sfp_probe(struct phy_device *phydev,
1289 		  const struct sfp_upstream_ops *ops)
1290 {
1291 	struct sfp_bus *bus;
1292 	int ret = 0;
1293 
1294 	if (phydev->mdio.dev.fwnode) {
1295 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1296 		if (IS_ERR(bus))
1297 			return PTR_ERR(bus);
1298 
1299 		phydev->sfp_bus = bus;
1300 
1301 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1302 		sfp_bus_put(bus);
1303 	}
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(phy_sfp_probe);
1307 
1308 /**
1309  * phy_attach_direct - attach a network device to a given PHY device pointer
1310  * @dev: network device to attach
1311  * @phydev: Pointer to phy_device to attach
1312  * @flags: PHY device's dev_flags
1313  * @interface: PHY device's interface
1314  *
1315  * Description: Called by drivers to attach to a particular PHY
1316  *     device. The phy_device is found, and properly hooked up
1317  *     to the phy_driver.  If no driver is attached, then a
1318  *     generic driver is used.  The phy_device is given a ptr to
1319  *     the attaching device, and given a callback for link status
1320  *     change.  The phy_device is returned to the attaching driver.
1321  *     This function takes a reference on the phy device.
1322  */
1323 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1324 		      u32 flags, phy_interface_t interface)
1325 {
1326 	struct mii_bus *bus = phydev->mdio.bus;
1327 	struct device *d = &phydev->mdio.dev;
1328 	struct module *ndev_owner = NULL;
1329 	bool using_genphy = false;
1330 	int err;
1331 
1332 	/* For Ethernet device drivers that register their own MDIO bus, we
1333 	 * will have bus->owner match ndev_mod, so we do not want to increment
1334 	 * our own module->refcnt here, otherwise we would not be able to
1335 	 * unload later on.
1336 	 */
1337 	if (dev)
1338 		ndev_owner = dev->dev.parent->driver->owner;
1339 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1340 		phydev_err(phydev, "failed to get the bus module\n");
1341 		return -EIO;
1342 	}
1343 
1344 	get_device(d);
1345 
1346 	/* Assume that if there is no driver, that it doesn't
1347 	 * exist, and we should use the genphy driver.
1348 	 */
1349 	if (!d->driver) {
1350 		if (phydev->is_c45)
1351 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1352 		else
1353 			d->driver = &genphy_driver.mdiodrv.driver;
1354 
1355 		using_genphy = true;
1356 	}
1357 
1358 	if (!try_module_get(d->driver->owner)) {
1359 		phydev_err(phydev, "failed to get the device driver module\n");
1360 		err = -EIO;
1361 		goto error_put_device;
1362 	}
1363 
1364 	if (using_genphy) {
1365 		err = d->driver->probe(d);
1366 		if (err >= 0)
1367 			err = device_bind_driver(d);
1368 
1369 		if (err)
1370 			goto error_module_put;
1371 	}
1372 
1373 	if (phydev->attached_dev) {
1374 		dev_err(&dev->dev, "PHY already attached\n");
1375 		err = -EBUSY;
1376 		goto error;
1377 	}
1378 
1379 	phydev->phy_link_change = phy_link_change;
1380 	if (dev) {
1381 		phydev->attached_dev = dev;
1382 		dev->phydev = phydev;
1383 
1384 		if (phydev->sfp_bus_attached)
1385 			dev->sfp_bus = phydev->sfp_bus;
1386 	}
1387 
1388 	/* Some Ethernet drivers try to connect to a PHY device before
1389 	 * calling register_netdevice() -> netdev_register_kobject() and
1390 	 * does the dev->dev.kobj initialization. Here we only check for
1391 	 * success which indicates that the network device kobject is
1392 	 * ready. Once we do that we still need to keep track of whether
1393 	 * links were successfully set up or not for phy_detach() to
1394 	 * remove them accordingly.
1395 	 */
1396 	phydev->sysfs_links = false;
1397 
1398 	phy_sysfs_create_links(phydev);
1399 
1400 	if (!phydev->attached_dev) {
1401 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1402 					&dev_attr_phy_standalone.attr);
1403 		if (err)
1404 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1405 	}
1406 
1407 	phydev->dev_flags |= flags;
1408 
1409 	phydev->interface = interface;
1410 
1411 	phydev->state = PHY_READY;
1412 
1413 	/* Initial carrier state is off as the phy is about to be
1414 	 * (re)initialized.
1415 	 */
1416 	if (dev)
1417 		netif_carrier_off(phydev->attached_dev);
1418 
1419 	/* Do initial configuration here, now that
1420 	 * we have certain key parameters
1421 	 * (dev_flags and interface)
1422 	 */
1423 	err = phy_init_hw(phydev);
1424 	if (err)
1425 		goto error;
1426 
1427 	phy_resume(phydev);
1428 	phy_led_triggers_register(phydev);
1429 
1430 	return err;
1431 
1432 error:
1433 	/* phy_detach() does all of the cleanup below */
1434 	phy_detach(phydev);
1435 	return err;
1436 
1437 error_module_put:
1438 	module_put(d->driver->owner);
1439 error_put_device:
1440 	put_device(d);
1441 	if (ndev_owner != bus->owner)
1442 		module_put(bus->owner);
1443 	return err;
1444 }
1445 EXPORT_SYMBOL(phy_attach_direct);
1446 
1447 /**
1448  * phy_attach - attach a network device to a particular PHY device
1449  * @dev: network device to attach
1450  * @bus_id: Bus ID of PHY device to attach
1451  * @interface: PHY device's interface
1452  *
1453  * Description: Same as phy_attach_direct() except that a PHY bus_id
1454  *     string is passed instead of a pointer to a struct phy_device.
1455  */
1456 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1457 			      phy_interface_t interface)
1458 {
1459 	struct bus_type *bus = &mdio_bus_type;
1460 	struct phy_device *phydev;
1461 	struct device *d;
1462 	int rc;
1463 
1464 	if (!dev)
1465 		return ERR_PTR(-EINVAL);
1466 
1467 	/* Search the list of PHY devices on the mdio bus for the
1468 	 * PHY with the requested name
1469 	 */
1470 	d = bus_find_device_by_name(bus, NULL, bus_id);
1471 	if (!d) {
1472 		pr_err("PHY %s not found\n", bus_id);
1473 		return ERR_PTR(-ENODEV);
1474 	}
1475 	phydev = to_phy_device(d);
1476 
1477 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1478 	put_device(d);
1479 	if (rc)
1480 		return ERR_PTR(rc);
1481 
1482 	return phydev;
1483 }
1484 EXPORT_SYMBOL(phy_attach);
1485 
1486 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1487 				      struct device_driver *driver)
1488 {
1489 	struct device *d = &phydev->mdio.dev;
1490 	bool ret = false;
1491 
1492 	if (!phydev->drv)
1493 		return ret;
1494 
1495 	get_device(d);
1496 	ret = d->driver == driver;
1497 	put_device(d);
1498 
1499 	return ret;
1500 }
1501 
1502 bool phy_driver_is_genphy(struct phy_device *phydev)
1503 {
1504 	return phy_driver_is_genphy_kind(phydev,
1505 					 &genphy_driver.mdiodrv.driver);
1506 }
1507 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1508 
1509 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1510 {
1511 	return phy_driver_is_genphy_kind(phydev,
1512 					 &genphy_c45_driver.mdiodrv.driver);
1513 }
1514 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1515 
1516 /**
1517  * phy_package_join - join a common PHY group
1518  * @phydev: target phy_device struct
1519  * @addr: cookie and PHY address for global register access
1520  * @priv_size: if non-zero allocate this amount of bytes for private data
1521  *
1522  * This joins a PHY group and provides a shared storage for all phydevs in
1523  * this group. This is intended to be used for packages which contain
1524  * more than one PHY, for example a quad PHY transceiver.
1525  *
1526  * The addr parameter serves as a cookie which has to have the same value
1527  * for all members of one group and as a PHY address to access generic
1528  * registers of a PHY package. Usually, one of the PHY addresses of the
1529  * different PHYs in the package provides access to these global registers.
1530  * The address which is given here, will be used in the phy_package_read()
1531  * and phy_package_write() convenience functions. If your PHY doesn't have
1532  * global registers you can just pick any of the PHY addresses.
1533  *
1534  * This will set the shared pointer of the phydev to the shared storage.
1535  * If this is the first call for a this cookie the shared storage will be
1536  * allocated. If priv_size is non-zero, the given amount of bytes are
1537  * allocated for the priv member.
1538  *
1539  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1540  * with the same cookie but a different priv_size is an error.
1541  */
1542 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1543 {
1544 	struct mii_bus *bus = phydev->mdio.bus;
1545 	struct phy_package_shared *shared;
1546 	int ret;
1547 
1548 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1549 		return -EINVAL;
1550 
1551 	mutex_lock(&bus->shared_lock);
1552 	shared = bus->shared[addr];
1553 	if (!shared) {
1554 		ret = -ENOMEM;
1555 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1556 		if (!shared)
1557 			goto err_unlock;
1558 		if (priv_size) {
1559 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1560 			if (!shared->priv)
1561 				goto err_free;
1562 			shared->priv_size = priv_size;
1563 		}
1564 		shared->addr = addr;
1565 		refcount_set(&shared->refcnt, 1);
1566 		bus->shared[addr] = shared;
1567 	} else {
1568 		ret = -EINVAL;
1569 		if (priv_size && priv_size != shared->priv_size)
1570 			goto err_unlock;
1571 		refcount_inc(&shared->refcnt);
1572 	}
1573 	mutex_unlock(&bus->shared_lock);
1574 
1575 	phydev->shared = shared;
1576 
1577 	return 0;
1578 
1579 err_free:
1580 	kfree(shared);
1581 err_unlock:
1582 	mutex_unlock(&bus->shared_lock);
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL_GPL(phy_package_join);
1586 
1587 /**
1588  * phy_package_leave - leave a common PHY group
1589  * @phydev: target phy_device struct
1590  *
1591  * This leaves a PHY group created by phy_package_join(). If this phydev
1592  * was the last user of the shared data between the group, this data is
1593  * freed. Resets the phydev->shared pointer to NULL.
1594  */
1595 void phy_package_leave(struct phy_device *phydev)
1596 {
1597 	struct phy_package_shared *shared = phydev->shared;
1598 	struct mii_bus *bus = phydev->mdio.bus;
1599 
1600 	if (!shared)
1601 		return;
1602 
1603 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1604 		bus->shared[shared->addr] = NULL;
1605 		mutex_unlock(&bus->shared_lock);
1606 		kfree(shared->priv);
1607 		kfree(shared);
1608 	}
1609 
1610 	phydev->shared = NULL;
1611 }
1612 EXPORT_SYMBOL_GPL(phy_package_leave);
1613 
1614 static void devm_phy_package_leave(struct device *dev, void *res)
1615 {
1616 	phy_package_leave(*(struct phy_device **)res);
1617 }
1618 
1619 /**
1620  * devm_phy_package_join - resource managed phy_package_join()
1621  * @dev: device that is registering this PHY package
1622  * @phydev: target phy_device struct
1623  * @addr: cookie and PHY address for global register access
1624  * @priv_size: if non-zero allocate this amount of bytes for private data
1625  *
1626  * Managed phy_package_join(). Shared storage fetched by this function,
1627  * phy_package_leave() is automatically called on driver detach. See
1628  * phy_package_join() for more information.
1629  */
1630 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1631 			  int addr, size_t priv_size)
1632 {
1633 	struct phy_device **ptr;
1634 	int ret;
1635 
1636 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1637 			   GFP_KERNEL);
1638 	if (!ptr)
1639 		return -ENOMEM;
1640 
1641 	ret = phy_package_join(phydev, addr, priv_size);
1642 
1643 	if (!ret) {
1644 		*ptr = phydev;
1645 		devres_add(dev, ptr);
1646 	} else {
1647 		devres_free(ptr);
1648 	}
1649 
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1653 
1654 /**
1655  * phy_detach - detach a PHY device from its network device
1656  * @phydev: target phy_device struct
1657  *
1658  * This detaches the phy device from its network device and the phy
1659  * driver, and drops the reference count taken in phy_attach_direct().
1660  */
1661 void phy_detach(struct phy_device *phydev)
1662 {
1663 	struct net_device *dev = phydev->attached_dev;
1664 	struct module *ndev_owner = NULL;
1665 	struct mii_bus *bus;
1666 
1667 	if (phydev->sysfs_links) {
1668 		if (dev)
1669 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1670 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1671 	}
1672 
1673 	if (!phydev->attached_dev)
1674 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1675 				  &dev_attr_phy_standalone.attr);
1676 
1677 	phy_suspend(phydev);
1678 	if (dev) {
1679 		phydev->attached_dev->phydev = NULL;
1680 		phydev->attached_dev = NULL;
1681 	}
1682 	phydev->phylink = NULL;
1683 
1684 	phy_led_triggers_unregister(phydev);
1685 
1686 	module_put(phydev->mdio.dev.driver->owner);
1687 
1688 	/* If the device had no specific driver before (i.e. - it
1689 	 * was using the generic driver), we unbind the device
1690 	 * from the generic driver so that there's a chance a
1691 	 * real driver could be loaded
1692 	 */
1693 	if (phy_driver_is_genphy(phydev) ||
1694 	    phy_driver_is_genphy_10g(phydev))
1695 		device_release_driver(&phydev->mdio.dev);
1696 
1697 	/*
1698 	 * The phydev might go away on the put_device() below, so avoid
1699 	 * a use-after-free bug by reading the underlying bus first.
1700 	 */
1701 	bus = phydev->mdio.bus;
1702 
1703 	put_device(&phydev->mdio.dev);
1704 	if (dev)
1705 		ndev_owner = dev->dev.parent->driver->owner;
1706 	if (ndev_owner != bus->owner)
1707 		module_put(bus->owner);
1708 
1709 	/* Assert the reset signal */
1710 	phy_device_reset(phydev, 1);
1711 }
1712 EXPORT_SYMBOL(phy_detach);
1713 
1714 int phy_suspend(struct phy_device *phydev)
1715 {
1716 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1717 	struct net_device *netdev = phydev->attached_dev;
1718 	struct phy_driver *phydrv = phydev->drv;
1719 	int ret;
1720 
1721 	if (phydev->suspended)
1722 		return 0;
1723 
1724 	/* If the device has WOL enabled, we cannot suspend the PHY */
1725 	phy_ethtool_get_wol(phydev, &wol);
1726 	if (wol.wolopts || (netdev && netdev->wol_enabled))
1727 		return -EBUSY;
1728 
1729 	if (!phydrv || !phydrv->suspend)
1730 		return 0;
1731 
1732 	ret = phydrv->suspend(phydev);
1733 	if (!ret)
1734 		phydev->suspended = true;
1735 
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL(phy_suspend);
1739 
1740 int __phy_resume(struct phy_device *phydev)
1741 {
1742 	struct phy_driver *phydrv = phydev->drv;
1743 	int ret;
1744 
1745 	WARN_ON(!mutex_is_locked(&phydev->lock));
1746 
1747 	if (!phydrv || !phydrv->resume)
1748 		return 0;
1749 
1750 	ret = phydrv->resume(phydev);
1751 	if (!ret)
1752 		phydev->suspended = false;
1753 
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL(__phy_resume);
1757 
1758 int phy_resume(struct phy_device *phydev)
1759 {
1760 	int ret;
1761 
1762 	mutex_lock(&phydev->lock);
1763 	ret = __phy_resume(phydev);
1764 	mutex_unlock(&phydev->lock);
1765 
1766 	return ret;
1767 }
1768 EXPORT_SYMBOL(phy_resume);
1769 
1770 int phy_loopback(struct phy_device *phydev, bool enable)
1771 {
1772 	struct phy_driver *phydrv = to_phy_driver(phydev->mdio.dev.driver);
1773 	int ret = 0;
1774 
1775 	mutex_lock(&phydev->lock);
1776 
1777 	if (enable && phydev->loopback_enabled) {
1778 		ret = -EBUSY;
1779 		goto out;
1780 	}
1781 
1782 	if (!enable && !phydev->loopback_enabled) {
1783 		ret = -EINVAL;
1784 		goto out;
1785 	}
1786 
1787 	if (phydev->drv && phydrv->set_loopback)
1788 		ret = phydrv->set_loopback(phydev, enable);
1789 	else
1790 		ret = -EOPNOTSUPP;
1791 
1792 	if (ret)
1793 		goto out;
1794 
1795 	phydev->loopback_enabled = enable;
1796 
1797 out:
1798 	mutex_unlock(&phydev->lock);
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL(phy_loopback);
1802 
1803 /**
1804  * phy_reset_after_clk_enable - perform a PHY reset if needed
1805  * @phydev: target phy_device struct
1806  *
1807  * Description: Some PHYs are known to need a reset after their refclk was
1808  *   enabled. This function evaluates the flags and perform the reset if it's
1809  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1810  *   was reset.
1811  */
1812 int phy_reset_after_clk_enable(struct phy_device *phydev)
1813 {
1814 	if (!phydev || !phydev->drv)
1815 		return -ENODEV;
1816 
1817 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1818 		phy_device_reset(phydev, 1);
1819 		phy_device_reset(phydev, 0);
1820 		return 1;
1821 	}
1822 
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1826 
1827 /* Generic PHY support and helper functions */
1828 
1829 /**
1830  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1831  * @phydev: target phy_device struct
1832  *
1833  * Description: Writes MII_ADVERTISE with the appropriate values,
1834  *   after sanitizing the values to make sure we only advertise
1835  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1836  *   hasn't changed, and > 0 if it has changed.
1837  */
1838 static int genphy_config_advert(struct phy_device *phydev)
1839 {
1840 	int err, bmsr, changed = 0;
1841 	u32 adv;
1842 
1843 	/* Only allow advertising what this PHY supports */
1844 	linkmode_and(phydev->advertising, phydev->advertising,
1845 		     phydev->supported);
1846 
1847 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1848 
1849 	/* Setup standard advertisement */
1850 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1851 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1852 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1853 				 adv);
1854 	if (err < 0)
1855 		return err;
1856 	if (err > 0)
1857 		changed = 1;
1858 
1859 	bmsr = phy_read(phydev, MII_BMSR);
1860 	if (bmsr < 0)
1861 		return bmsr;
1862 
1863 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
1864 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
1865 	 * logical 1.
1866 	 */
1867 	if (!(bmsr & BMSR_ESTATEN))
1868 		return changed;
1869 
1870 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
1871 
1872 	err = phy_modify_changed(phydev, MII_CTRL1000,
1873 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
1874 				 adv);
1875 	if (err < 0)
1876 		return err;
1877 	if (err > 0)
1878 		changed = 1;
1879 
1880 	return changed;
1881 }
1882 
1883 /**
1884  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
1885  * @phydev: target phy_device struct
1886  *
1887  * Description: Writes MII_ADVERTISE with the appropriate values,
1888  *   after sanitizing the values to make sure we only advertise
1889  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1890  *   hasn't changed, and > 0 if it has changed. This function is intended
1891  *   for Clause 37 1000Base-X mode.
1892  */
1893 static int genphy_c37_config_advert(struct phy_device *phydev)
1894 {
1895 	u16 adv = 0;
1896 
1897 	/* Only allow advertising what this PHY supports */
1898 	linkmode_and(phydev->advertising, phydev->advertising,
1899 		     phydev->supported);
1900 
1901 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1902 			      phydev->advertising))
1903 		adv |= ADVERTISE_1000XFULL;
1904 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
1905 			      phydev->advertising))
1906 		adv |= ADVERTISE_1000XPAUSE;
1907 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
1908 			      phydev->advertising))
1909 		adv |= ADVERTISE_1000XPSE_ASYM;
1910 
1911 	return phy_modify_changed(phydev, MII_ADVERTISE,
1912 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1913 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
1914 				  adv);
1915 }
1916 
1917 /**
1918  * genphy_config_eee_advert - disable unwanted eee mode advertisement
1919  * @phydev: target phy_device struct
1920  *
1921  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
1922  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
1923  *   changed, and 1 if it has changed.
1924  */
1925 int genphy_config_eee_advert(struct phy_device *phydev)
1926 {
1927 	int err;
1928 
1929 	/* Nothing to disable */
1930 	if (!phydev->eee_broken_modes)
1931 		return 0;
1932 
1933 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
1934 				     phydev->eee_broken_modes, 0);
1935 	/* If the call failed, we assume that EEE is not supported */
1936 	return err < 0 ? 0 : err;
1937 }
1938 EXPORT_SYMBOL(genphy_config_eee_advert);
1939 
1940 /**
1941  * genphy_setup_forced - configures/forces speed/duplex from @phydev
1942  * @phydev: target phy_device struct
1943  *
1944  * Description: Configures MII_BMCR to force speed/duplex
1945  *   to the values in phydev. Assumes that the values are valid.
1946  *   Please see phy_sanitize_settings().
1947  */
1948 int genphy_setup_forced(struct phy_device *phydev)
1949 {
1950 	u16 ctl = 0;
1951 
1952 	phydev->pause = 0;
1953 	phydev->asym_pause = 0;
1954 
1955 	if (SPEED_1000 == phydev->speed)
1956 		ctl |= BMCR_SPEED1000;
1957 	else if (SPEED_100 == phydev->speed)
1958 		ctl |= BMCR_SPEED100;
1959 
1960 	if (DUPLEX_FULL == phydev->duplex)
1961 		ctl |= BMCR_FULLDPLX;
1962 
1963 	return phy_modify(phydev, MII_BMCR,
1964 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
1965 }
1966 EXPORT_SYMBOL(genphy_setup_forced);
1967 
1968 static int genphy_setup_master_slave(struct phy_device *phydev)
1969 {
1970 	u16 ctl = 0;
1971 
1972 	if (!phydev->is_gigabit_capable)
1973 		return 0;
1974 
1975 	switch (phydev->master_slave_set) {
1976 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
1977 		ctl |= CTL1000_PREFER_MASTER;
1978 		break;
1979 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
1980 		break;
1981 	case MASTER_SLAVE_CFG_MASTER_FORCE:
1982 		ctl |= CTL1000_AS_MASTER;
1983 		/* fallthrough */
1984 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
1985 		ctl |= CTL1000_ENABLE_MASTER;
1986 		break;
1987 	case MASTER_SLAVE_CFG_UNKNOWN:
1988 	case MASTER_SLAVE_CFG_UNSUPPORTED:
1989 		return 0;
1990 	default:
1991 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
1992 		return -EOPNOTSUPP;
1993 	}
1994 
1995 	return phy_modify_changed(phydev, MII_CTRL1000,
1996 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
1997 				   CTL1000_PREFER_MASTER), ctl);
1998 }
1999 
2000 static int genphy_read_master_slave(struct phy_device *phydev)
2001 {
2002 	int cfg, state;
2003 	int val;
2004 
2005 	if (!phydev->is_gigabit_capable) {
2006 		phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2007 		phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2008 		return 0;
2009 	}
2010 
2011 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2012 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2013 
2014 	val = phy_read(phydev, MII_CTRL1000);
2015 	if (val < 0)
2016 		return val;
2017 
2018 	if (val & CTL1000_ENABLE_MASTER) {
2019 		if (val & CTL1000_AS_MASTER)
2020 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2021 		else
2022 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2023 	} else {
2024 		if (val & CTL1000_PREFER_MASTER)
2025 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2026 		else
2027 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2028 	}
2029 
2030 	val = phy_read(phydev, MII_STAT1000);
2031 	if (val < 0)
2032 		return val;
2033 
2034 	if (val & LPA_1000MSFAIL) {
2035 		state = MASTER_SLAVE_STATE_ERR;
2036 	} else if (phydev->link) {
2037 		/* this bits are valid only for active link */
2038 		if (val & LPA_1000MSRES)
2039 			state = MASTER_SLAVE_STATE_MASTER;
2040 		else
2041 			state = MASTER_SLAVE_STATE_SLAVE;
2042 	} else {
2043 		state = MASTER_SLAVE_STATE_UNKNOWN;
2044 	}
2045 
2046 	phydev->master_slave_get = cfg;
2047 	phydev->master_slave_state = state;
2048 
2049 	return 0;
2050 }
2051 
2052 /**
2053  * genphy_restart_aneg - Enable and Restart Autonegotiation
2054  * @phydev: target phy_device struct
2055  */
2056 int genphy_restart_aneg(struct phy_device *phydev)
2057 {
2058 	/* Don't isolate the PHY if we're negotiating */
2059 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2060 			  BMCR_ANENABLE | BMCR_ANRESTART);
2061 }
2062 EXPORT_SYMBOL(genphy_restart_aneg);
2063 
2064 /**
2065  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2066  * @phydev: target phy_device struct
2067  * @restart: whether aneg restart is requested
2068  *
2069  * Check, and restart auto-negotiation if needed.
2070  */
2071 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2072 {
2073 	int ret;
2074 
2075 	if (!restart) {
2076 		/* Advertisement hasn't changed, but maybe aneg was never on to
2077 		 * begin with?  Or maybe phy was isolated?
2078 		 */
2079 		ret = phy_read(phydev, MII_BMCR);
2080 		if (ret < 0)
2081 			return ret;
2082 
2083 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2084 			restart = true;
2085 	}
2086 
2087 	if (restart)
2088 		return genphy_restart_aneg(phydev);
2089 
2090 	return 0;
2091 }
2092 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2093 
2094 /**
2095  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2096  * @phydev: target phy_device struct
2097  * @changed: whether autoneg is requested
2098  *
2099  * Description: If auto-negotiation is enabled, we configure the
2100  *   advertising, and then restart auto-negotiation.  If it is not
2101  *   enabled, then we write the BMCR.
2102  */
2103 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2104 {
2105 	int err;
2106 
2107 	if (genphy_config_eee_advert(phydev))
2108 		changed = true;
2109 
2110 	err = genphy_setup_master_slave(phydev);
2111 	if (err < 0)
2112 		return err;
2113 	else if (err)
2114 		changed = true;
2115 
2116 	if (AUTONEG_ENABLE != phydev->autoneg)
2117 		return genphy_setup_forced(phydev);
2118 
2119 	err = genphy_config_advert(phydev);
2120 	if (err < 0) /* error */
2121 		return err;
2122 	else if (err)
2123 		changed = true;
2124 
2125 	return genphy_check_and_restart_aneg(phydev, changed);
2126 }
2127 EXPORT_SYMBOL(__genphy_config_aneg);
2128 
2129 /**
2130  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2131  * @phydev: target phy_device struct
2132  *
2133  * Description: If auto-negotiation is enabled, we configure the
2134  *   advertising, and then restart auto-negotiation.  If it is not
2135  *   enabled, then we write the BMCR. This function is intended
2136  *   for use with Clause 37 1000Base-X mode.
2137  */
2138 int genphy_c37_config_aneg(struct phy_device *phydev)
2139 {
2140 	int err, changed;
2141 
2142 	if (phydev->autoneg != AUTONEG_ENABLE)
2143 		return genphy_setup_forced(phydev);
2144 
2145 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2146 			 BMCR_SPEED1000);
2147 	if (err)
2148 		return err;
2149 
2150 	changed = genphy_c37_config_advert(phydev);
2151 	if (changed < 0) /* error */
2152 		return changed;
2153 
2154 	if (!changed) {
2155 		/* Advertisement hasn't changed, but maybe aneg was never on to
2156 		 * begin with?  Or maybe phy was isolated?
2157 		 */
2158 		int ctl = phy_read(phydev, MII_BMCR);
2159 
2160 		if (ctl < 0)
2161 			return ctl;
2162 
2163 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2164 			changed = 1; /* do restart aneg */
2165 	}
2166 
2167 	/* Only restart aneg if we are advertising something different
2168 	 * than we were before.
2169 	 */
2170 	if (changed > 0)
2171 		return genphy_restart_aneg(phydev);
2172 
2173 	return 0;
2174 }
2175 EXPORT_SYMBOL(genphy_c37_config_aneg);
2176 
2177 /**
2178  * genphy_aneg_done - return auto-negotiation status
2179  * @phydev: target phy_device struct
2180  *
2181  * Description: Reads the status register and returns 0 either if
2182  *   auto-negotiation is incomplete, or if there was an error.
2183  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2184  */
2185 int genphy_aneg_done(struct phy_device *phydev)
2186 {
2187 	int retval = phy_read(phydev, MII_BMSR);
2188 
2189 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2190 }
2191 EXPORT_SYMBOL(genphy_aneg_done);
2192 
2193 /**
2194  * genphy_update_link - update link status in @phydev
2195  * @phydev: target phy_device struct
2196  *
2197  * Description: Update the value in phydev->link to reflect the
2198  *   current link value.  In order to do this, we need to read
2199  *   the status register twice, keeping the second value.
2200  */
2201 int genphy_update_link(struct phy_device *phydev)
2202 {
2203 	int status = 0, bmcr;
2204 
2205 	bmcr = phy_read(phydev, MII_BMCR);
2206 	if (bmcr < 0)
2207 		return bmcr;
2208 
2209 	/* Autoneg is being started, therefore disregard BMSR value and
2210 	 * report link as down.
2211 	 */
2212 	if (bmcr & BMCR_ANRESTART)
2213 		goto done;
2214 
2215 	/* The link state is latched low so that momentary link
2216 	 * drops can be detected. Do not double-read the status
2217 	 * in polling mode to detect such short link drops except
2218 	 * the link was already down.
2219 	 */
2220 	if (!phy_polling_mode(phydev) || !phydev->link) {
2221 		status = phy_read(phydev, MII_BMSR);
2222 		if (status < 0)
2223 			return status;
2224 		else if (status & BMSR_LSTATUS)
2225 			goto done;
2226 	}
2227 
2228 	/* Read link and autonegotiation status */
2229 	status = phy_read(phydev, MII_BMSR);
2230 	if (status < 0)
2231 		return status;
2232 done:
2233 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2234 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2235 
2236 	/* Consider the case that autoneg was started and "aneg complete"
2237 	 * bit has been reset, but "link up" bit not yet.
2238 	 */
2239 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2240 		phydev->link = 0;
2241 
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL(genphy_update_link);
2245 
2246 int genphy_read_lpa(struct phy_device *phydev)
2247 {
2248 	int lpa, lpagb;
2249 
2250 	if (phydev->autoneg == AUTONEG_ENABLE) {
2251 		if (!phydev->autoneg_complete) {
2252 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2253 							0);
2254 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2255 			return 0;
2256 		}
2257 
2258 		if (phydev->is_gigabit_capable) {
2259 			lpagb = phy_read(phydev, MII_STAT1000);
2260 			if (lpagb < 0)
2261 				return lpagb;
2262 
2263 			if (lpagb & LPA_1000MSFAIL) {
2264 				int adv = phy_read(phydev, MII_CTRL1000);
2265 
2266 				if (adv < 0)
2267 					return adv;
2268 
2269 				if (adv & CTL1000_ENABLE_MASTER)
2270 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2271 				else
2272 					phydev_err(phydev, "Master/Slave resolution failed\n");
2273 				return -ENOLINK;
2274 			}
2275 
2276 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2277 							lpagb);
2278 		}
2279 
2280 		lpa = phy_read(phydev, MII_LPA);
2281 		if (lpa < 0)
2282 			return lpa;
2283 
2284 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2285 	} else {
2286 		linkmode_zero(phydev->lp_advertising);
2287 	}
2288 
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL(genphy_read_lpa);
2292 
2293 /**
2294  * genphy_read_status_fixed - read the link parameters for !aneg mode
2295  * @phydev: target phy_device struct
2296  *
2297  * Read the current duplex and speed state for a PHY operating with
2298  * autonegotiation disabled.
2299  */
2300 int genphy_read_status_fixed(struct phy_device *phydev)
2301 {
2302 	int bmcr = phy_read(phydev, MII_BMCR);
2303 
2304 	if (bmcr < 0)
2305 		return bmcr;
2306 
2307 	if (bmcr & BMCR_FULLDPLX)
2308 		phydev->duplex = DUPLEX_FULL;
2309 	else
2310 		phydev->duplex = DUPLEX_HALF;
2311 
2312 	if (bmcr & BMCR_SPEED1000)
2313 		phydev->speed = SPEED_1000;
2314 	else if (bmcr & BMCR_SPEED100)
2315 		phydev->speed = SPEED_100;
2316 	else
2317 		phydev->speed = SPEED_10;
2318 
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(genphy_read_status_fixed);
2322 
2323 /**
2324  * genphy_read_status - check the link status and update current link state
2325  * @phydev: target phy_device struct
2326  *
2327  * Description: Check the link, then figure out the current state
2328  *   by comparing what we advertise with what the link partner
2329  *   advertises.  Start by checking the gigabit possibilities,
2330  *   then move on to 10/100.
2331  */
2332 int genphy_read_status(struct phy_device *phydev)
2333 {
2334 	int err, old_link = phydev->link;
2335 
2336 	/* Update the link, but return if there was an error */
2337 	err = genphy_update_link(phydev);
2338 	if (err)
2339 		return err;
2340 
2341 	/* why bother the PHY if nothing can have changed */
2342 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2343 		return 0;
2344 
2345 	phydev->speed = SPEED_UNKNOWN;
2346 	phydev->duplex = DUPLEX_UNKNOWN;
2347 	phydev->pause = 0;
2348 	phydev->asym_pause = 0;
2349 
2350 	err = genphy_read_master_slave(phydev);
2351 	if (err < 0)
2352 		return err;
2353 
2354 	err = genphy_read_lpa(phydev);
2355 	if (err < 0)
2356 		return err;
2357 
2358 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2359 		phy_resolve_aneg_linkmode(phydev);
2360 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2361 		err = genphy_read_status_fixed(phydev);
2362 		if (err < 0)
2363 			return err;
2364 	}
2365 
2366 	return 0;
2367 }
2368 EXPORT_SYMBOL(genphy_read_status);
2369 
2370 /**
2371  * genphy_c37_read_status - check the link status and update current link state
2372  * @phydev: target phy_device struct
2373  *
2374  * Description: Check the link, then figure out the current state
2375  *   by comparing what we advertise with what the link partner
2376  *   advertises. This function is for Clause 37 1000Base-X mode.
2377  */
2378 int genphy_c37_read_status(struct phy_device *phydev)
2379 {
2380 	int lpa, err, old_link = phydev->link;
2381 
2382 	/* Update the link, but return if there was an error */
2383 	err = genphy_update_link(phydev);
2384 	if (err)
2385 		return err;
2386 
2387 	/* why bother the PHY if nothing can have changed */
2388 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2389 		return 0;
2390 
2391 	phydev->duplex = DUPLEX_UNKNOWN;
2392 	phydev->pause = 0;
2393 	phydev->asym_pause = 0;
2394 
2395 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2396 		lpa = phy_read(phydev, MII_LPA);
2397 		if (lpa < 0)
2398 			return lpa;
2399 
2400 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2401 				 phydev->lp_advertising, lpa & LPA_LPACK);
2402 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2403 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2404 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2405 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2406 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2407 				 phydev->lp_advertising,
2408 				 lpa & LPA_1000XPAUSE_ASYM);
2409 
2410 		phy_resolve_aneg_linkmode(phydev);
2411 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2412 		int bmcr = phy_read(phydev, MII_BMCR);
2413 
2414 		if (bmcr < 0)
2415 			return bmcr;
2416 
2417 		if (bmcr & BMCR_FULLDPLX)
2418 			phydev->duplex = DUPLEX_FULL;
2419 		else
2420 			phydev->duplex = DUPLEX_HALF;
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(genphy_c37_read_status);
2426 
2427 /**
2428  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2429  * @phydev: target phy_device struct
2430  *
2431  * Description: Perform a software PHY reset using the standard
2432  * BMCR_RESET bit and poll for the reset bit to be cleared.
2433  *
2434  * Returns: 0 on success, < 0 on failure
2435  */
2436 int genphy_soft_reset(struct phy_device *phydev)
2437 {
2438 	u16 res = BMCR_RESET;
2439 	int ret;
2440 
2441 	if (phydev->autoneg == AUTONEG_ENABLE)
2442 		res |= BMCR_ANRESTART;
2443 
2444 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2445 	if (ret < 0)
2446 		return ret;
2447 
2448 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2449 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2450 	 * be cleared after soft reset.
2451 	 */
2452 	phydev->suspended = 0;
2453 
2454 	ret = phy_poll_reset(phydev);
2455 	if (ret)
2456 		return ret;
2457 
2458 	/* BMCR may be reset to defaults */
2459 	if (phydev->autoneg == AUTONEG_DISABLE)
2460 		ret = genphy_setup_forced(phydev);
2461 
2462 	return ret;
2463 }
2464 EXPORT_SYMBOL(genphy_soft_reset);
2465 
2466 /**
2467  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2468  * @phydev: target phy_device struct
2469  *
2470  * Description: Reads the PHY's abilities and populates
2471  * phydev->supported accordingly.
2472  *
2473  * Returns: 0 on success, < 0 on failure
2474  */
2475 int genphy_read_abilities(struct phy_device *phydev)
2476 {
2477 	int val;
2478 
2479 	linkmode_set_bit_array(phy_basic_ports_array,
2480 			       ARRAY_SIZE(phy_basic_ports_array),
2481 			       phydev->supported);
2482 
2483 	val = phy_read(phydev, MII_BMSR);
2484 	if (val < 0)
2485 		return val;
2486 
2487 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2488 			 val & BMSR_ANEGCAPABLE);
2489 
2490 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2491 			 val & BMSR_100FULL);
2492 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2493 			 val & BMSR_100HALF);
2494 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2495 			 val & BMSR_10FULL);
2496 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2497 			 val & BMSR_10HALF);
2498 
2499 	if (val & BMSR_ESTATEN) {
2500 		val = phy_read(phydev, MII_ESTATUS);
2501 		if (val < 0)
2502 			return val;
2503 
2504 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2505 				 phydev->supported, val & ESTATUS_1000_TFULL);
2506 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2507 				 phydev->supported, val & ESTATUS_1000_THALF);
2508 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2509 				 phydev->supported, val & ESTATUS_1000_XFULL);
2510 	}
2511 
2512 	return 0;
2513 }
2514 EXPORT_SYMBOL(genphy_read_abilities);
2515 
2516 /* This is used for the phy device which doesn't support the MMD extended
2517  * register access, but it does have side effect when we are trying to access
2518  * the MMD register via indirect method.
2519  */
2520 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2521 {
2522 	return -EOPNOTSUPP;
2523 }
2524 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2525 
2526 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2527 				 u16 regnum, u16 val)
2528 {
2529 	return -EOPNOTSUPP;
2530 }
2531 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2532 
2533 int genphy_suspend(struct phy_device *phydev)
2534 {
2535 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2536 }
2537 EXPORT_SYMBOL(genphy_suspend);
2538 
2539 int genphy_resume(struct phy_device *phydev)
2540 {
2541 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2542 }
2543 EXPORT_SYMBOL(genphy_resume);
2544 
2545 int genphy_loopback(struct phy_device *phydev, bool enable)
2546 {
2547 	return phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK,
2548 			  enable ? BMCR_LOOPBACK : 0);
2549 }
2550 EXPORT_SYMBOL(genphy_loopback);
2551 
2552 /**
2553  * phy_remove_link_mode - Remove a supported link mode
2554  * @phydev: phy_device structure to remove link mode from
2555  * @link_mode: Link mode to be removed
2556  *
2557  * Description: Some MACs don't support all link modes which the PHY
2558  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2559  * to remove a link mode.
2560  */
2561 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2562 {
2563 	linkmode_clear_bit(link_mode, phydev->supported);
2564 	phy_advertise_supported(phydev);
2565 }
2566 EXPORT_SYMBOL(phy_remove_link_mode);
2567 
2568 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2569 {
2570 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2571 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2572 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2573 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2574 }
2575 
2576 /**
2577  * phy_advertise_supported - Advertise all supported modes
2578  * @phydev: target phy_device struct
2579  *
2580  * Description: Called to advertise all supported modes, doesn't touch
2581  * pause mode advertising.
2582  */
2583 void phy_advertise_supported(struct phy_device *phydev)
2584 {
2585 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2586 
2587 	linkmode_copy(new, phydev->supported);
2588 	phy_copy_pause_bits(new, phydev->advertising);
2589 	linkmode_copy(phydev->advertising, new);
2590 }
2591 EXPORT_SYMBOL(phy_advertise_supported);
2592 
2593 /**
2594  * phy_support_sym_pause - Enable support of symmetrical pause
2595  * @phydev: target phy_device struct
2596  *
2597  * Description: Called by the MAC to indicate is supports symmetrical
2598  * Pause, but not asym pause.
2599  */
2600 void phy_support_sym_pause(struct phy_device *phydev)
2601 {
2602 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2603 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2604 }
2605 EXPORT_SYMBOL(phy_support_sym_pause);
2606 
2607 /**
2608  * phy_support_asym_pause - Enable support of asym pause
2609  * @phydev: target phy_device struct
2610  *
2611  * Description: Called by the MAC to indicate is supports Asym Pause.
2612  */
2613 void phy_support_asym_pause(struct phy_device *phydev)
2614 {
2615 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2616 }
2617 EXPORT_SYMBOL(phy_support_asym_pause);
2618 
2619 /**
2620  * phy_set_sym_pause - Configure symmetric Pause
2621  * @phydev: target phy_device struct
2622  * @rx: Receiver Pause is supported
2623  * @tx: Transmit Pause is supported
2624  * @autoneg: Auto neg should be used
2625  *
2626  * Description: Configure advertised Pause support depending on if
2627  * receiver pause and pause auto neg is supported. Generally called
2628  * from the set_pauseparam .ndo.
2629  */
2630 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2631 		       bool autoneg)
2632 {
2633 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2634 
2635 	if (rx && tx && autoneg)
2636 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2637 				 phydev->supported);
2638 
2639 	linkmode_copy(phydev->advertising, phydev->supported);
2640 }
2641 EXPORT_SYMBOL(phy_set_sym_pause);
2642 
2643 /**
2644  * phy_set_asym_pause - Configure Pause and Asym Pause
2645  * @phydev: target phy_device struct
2646  * @rx: Receiver Pause is supported
2647  * @tx: Transmit Pause is supported
2648  *
2649  * Description: Configure advertised Pause support depending on if
2650  * transmit and receiver pause is supported. If there has been a
2651  * change in adverting, trigger a new autoneg. Generally called from
2652  * the set_pauseparam .ndo.
2653  */
2654 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2655 {
2656 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2657 
2658 	linkmode_copy(oldadv, phydev->advertising);
2659 	linkmode_set_pause(phydev->advertising, tx, rx);
2660 
2661 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2662 	    phydev->autoneg)
2663 		phy_start_aneg(phydev);
2664 }
2665 EXPORT_SYMBOL(phy_set_asym_pause);
2666 
2667 /**
2668  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2669  * @phydev: phy_device struct
2670  * @pp: requested pause configuration
2671  *
2672  * Description: Test if the PHY/MAC combination supports the Pause
2673  * configuration the user is requesting. Returns True if it is
2674  * supported, false otherwise.
2675  */
2676 bool phy_validate_pause(struct phy_device *phydev,
2677 			struct ethtool_pauseparam *pp)
2678 {
2679 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2680 			       phydev->supported) && pp->rx_pause)
2681 		return false;
2682 
2683 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2684 			       phydev->supported) &&
2685 	    pp->rx_pause != pp->tx_pause)
2686 		return false;
2687 
2688 	return true;
2689 }
2690 EXPORT_SYMBOL(phy_validate_pause);
2691 
2692 /**
2693  * phy_get_pause - resolve negotiated pause modes
2694  * @phydev: phy_device struct
2695  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2696  * enabled.
2697  * @rx_pause: pointer to bool to indicate whether receive pause should be
2698  * enabled.
2699  *
2700  * Resolve and return the flow control modes according to the negotiation
2701  * result. This includes checking that we are operating in full duplex mode.
2702  * See linkmode_resolve_pause() for further details.
2703  */
2704 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2705 {
2706 	if (phydev->duplex != DUPLEX_FULL) {
2707 		*tx_pause = false;
2708 		*rx_pause = false;
2709 		return;
2710 	}
2711 
2712 	return linkmode_resolve_pause(phydev->advertising,
2713 				      phydev->lp_advertising,
2714 				      tx_pause, rx_pause);
2715 }
2716 EXPORT_SYMBOL(phy_get_pause);
2717 
2718 #if IS_ENABLED(CONFIG_OF_MDIO)
2719 static int phy_get_int_delay_property(struct device *dev, const char *name)
2720 {
2721 	s32 int_delay;
2722 	int ret;
2723 
2724 	ret = device_property_read_u32(dev, name, &int_delay);
2725 	if (ret)
2726 		return ret;
2727 
2728 	return int_delay;
2729 }
2730 #else
2731 static int phy_get_int_delay_property(struct device *dev, const char *name)
2732 {
2733 	return -EINVAL;
2734 }
2735 #endif
2736 
2737 /**
2738  * phy_get_delay_index - returns the index of the internal delay
2739  * @phydev: phy_device struct
2740  * @dev: pointer to the devices device struct
2741  * @delay_values: array of delays the PHY supports
2742  * @size: the size of the delay array
2743  * @is_rx: boolean to indicate to get the rx internal delay
2744  *
2745  * Returns the index within the array of internal delay passed in.
2746  * If the device property is not present then the interface type is checked
2747  * if the interface defines use of internal delay then a 1 is returned otherwise
2748  * a 0 is returned.
2749  * The array must be in ascending order. If PHY does not have an ascending order
2750  * array then size = 0 and the value of the delay property is returned.
2751  * Return -EINVAL if the delay is invalid or cannot be found.
2752  */
2753 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2754 			   const int *delay_values, int size, bool is_rx)
2755 {
2756 	s32 delay;
2757 	int i;
2758 
2759 	if (is_rx) {
2760 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2761 		if (delay < 0 && size == 0) {
2762 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2763 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2764 				return 1;
2765 			else
2766 				return 0;
2767 		}
2768 
2769 	} else {
2770 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2771 		if (delay < 0 && size == 0) {
2772 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2773 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2774 				return 1;
2775 			else
2776 				return 0;
2777 		}
2778 	}
2779 
2780 	if (delay < 0)
2781 		return delay;
2782 
2783 	if (delay && size == 0)
2784 		return delay;
2785 
2786 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2787 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2788 		return -EINVAL;
2789 	}
2790 
2791 	if (delay == delay_values[0])
2792 		return 0;
2793 
2794 	for (i = 1; i < size; i++) {
2795 		if (delay == delay_values[i])
2796 			return i;
2797 
2798 		/* Find an approximate index by looking up the table */
2799 		if (delay > delay_values[i - 1] &&
2800 		    delay < delay_values[i]) {
2801 			if (delay - delay_values[i - 1] <
2802 			    delay_values[i] - delay)
2803 				return i - 1;
2804 			else
2805 				return i;
2806 		}
2807 	}
2808 
2809 	phydev_err(phydev, "error finding internal delay index for %d\n",
2810 		   delay);
2811 
2812 	return -EINVAL;
2813 }
2814 EXPORT_SYMBOL(phy_get_internal_delay);
2815 
2816 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2817 {
2818 	return phydrv->config_intr && phydrv->ack_interrupt;
2819 }
2820 
2821 /**
2822  * phy_probe - probe and init a PHY device
2823  * @dev: device to probe and init
2824  *
2825  * Description: Take care of setting up the phy_device structure,
2826  *   set the state to READY (the driver's init function should
2827  *   set it to STARTING if needed).
2828  */
2829 static int phy_probe(struct device *dev)
2830 {
2831 	struct phy_device *phydev = to_phy_device(dev);
2832 	struct device_driver *drv = phydev->mdio.dev.driver;
2833 	struct phy_driver *phydrv = to_phy_driver(drv);
2834 	int err = 0;
2835 
2836 	phydev->drv = phydrv;
2837 
2838 	/* Disable the interrupt if the PHY doesn't support it
2839 	 * but the interrupt is still a valid one
2840 	 */
2841 	 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
2842 		phydev->irq = PHY_POLL;
2843 
2844 	if (phydrv->flags & PHY_IS_INTERNAL)
2845 		phydev->is_internal = true;
2846 
2847 	mutex_lock(&phydev->lock);
2848 
2849 	/* Deassert the reset signal */
2850 	phy_device_reset(phydev, 0);
2851 
2852 	if (phydev->drv->probe) {
2853 		err = phydev->drv->probe(phydev);
2854 		if (err)
2855 			goto out;
2856 	}
2857 
2858 	/* Start out supporting everything. Eventually,
2859 	 * a controller will attach, and may modify one
2860 	 * or both of these values
2861 	 */
2862 	if (phydrv->features) {
2863 		linkmode_copy(phydev->supported, phydrv->features);
2864 	} else if (phydrv->get_features) {
2865 		err = phydrv->get_features(phydev);
2866 	} else if (phydev->is_c45) {
2867 		err = genphy_c45_pma_read_abilities(phydev);
2868 	} else {
2869 		err = genphy_read_abilities(phydev);
2870 	}
2871 
2872 	if (err)
2873 		goto out;
2874 
2875 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2876 			       phydev->supported))
2877 		phydev->autoneg = 0;
2878 
2879 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2880 			      phydev->supported))
2881 		phydev->is_gigabit_capable = 1;
2882 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2883 			      phydev->supported))
2884 		phydev->is_gigabit_capable = 1;
2885 
2886 	of_set_phy_supported(phydev);
2887 	phy_advertise_supported(phydev);
2888 
2889 	/* Get the EEE modes we want to prohibit. We will ask
2890 	 * the PHY stop advertising these mode later on
2891 	 */
2892 	of_set_phy_eee_broken(phydev);
2893 
2894 	/* The Pause Frame bits indicate that the PHY can support passing
2895 	 * pause frames. During autonegotiation, the PHYs will determine if
2896 	 * they should allow pause frames to pass.  The MAC driver should then
2897 	 * use that result to determine whether to enable flow control via
2898 	 * pause frames.
2899 	 *
2900 	 * Normally, PHY drivers should not set the Pause bits, and instead
2901 	 * allow phylib to do that.  However, there may be some situations
2902 	 * (e.g. hardware erratum) where the driver wants to set only one
2903 	 * of these bits.
2904 	 */
2905 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
2906 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
2907 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2908 				 phydev->supported);
2909 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2910 				 phydev->supported);
2911 	}
2912 
2913 	/* Set the state to READY by default */
2914 	phydev->state = PHY_READY;
2915 
2916 out:
2917 	/* Assert the reset signal */
2918 	if (err)
2919 		phy_device_reset(phydev, 1);
2920 
2921 	mutex_unlock(&phydev->lock);
2922 
2923 	return err;
2924 }
2925 
2926 static int phy_remove(struct device *dev)
2927 {
2928 	struct phy_device *phydev = to_phy_device(dev);
2929 
2930 	cancel_delayed_work_sync(&phydev->state_queue);
2931 
2932 	mutex_lock(&phydev->lock);
2933 	phydev->state = PHY_DOWN;
2934 	mutex_unlock(&phydev->lock);
2935 
2936 	sfp_bus_del_upstream(phydev->sfp_bus);
2937 	phydev->sfp_bus = NULL;
2938 
2939 	if (phydev->drv && phydev->drv->remove)
2940 		phydev->drv->remove(phydev);
2941 
2942 	/* Assert the reset signal */
2943 	phy_device_reset(phydev, 1);
2944 
2945 	phydev->drv = NULL;
2946 
2947 	return 0;
2948 }
2949 
2950 /**
2951  * phy_driver_register - register a phy_driver with the PHY layer
2952  * @new_driver: new phy_driver to register
2953  * @owner: module owning this PHY
2954  */
2955 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
2956 {
2957 	int retval;
2958 
2959 	/* Either the features are hard coded, or dynamically
2960 	 * determined. It cannot be both.
2961 	 */
2962 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
2963 		pr_err("%s: features and get_features must not both be set\n",
2964 		       new_driver->name);
2965 		return -EINVAL;
2966 	}
2967 
2968 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
2969 	new_driver->mdiodrv.driver.name = new_driver->name;
2970 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
2971 	new_driver->mdiodrv.driver.probe = phy_probe;
2972 	new_driver->mdiodrv.driver.remove = phy_remove;
2973 	new_driver->mdiodrv.driver.owner = owner;
2974 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
2975 
2976 	retval = driver_register(&new_driver->mdiodrv.driver);
2977 	if (retval) {
2978 		pr_err("%s: Error %d in registering driver\n",
2979 		       new_driver->name, retval);
2980 
2981 		return retval;
2982 	}
2983 
2984 	pr_debug("%s: Registered new driver\n", new_driver->name);
2985 
2986 	return 0;
2987 }
2988 EXPORT_SYMBOL(phy_driver_register);
2989 
2990 int phy_drivers_register(struct phy_driver *new_driver, int n,
2991 			 struct module *owner)
2992 {
2993 	int i, ret = 0;
2994 
2995 	for (i = 0; i < n; i++) {
2996 		ret = phy_driver_register(new_driver + i, owner);
2997 		if (ret) {
2998 			while (i-- > 0)
2999 				phy_driver_unregister(new_driver + i);
3000 			break;
3001 		}
3002 	}
3003 	return ret;
3004 }
3005 EXPORT_SYMBOL(phy_drivers_register);
3006 
3007 void phy_driver_unregister(struct phy_driver *drv)
3008 {
3009 	driver_unregister(&drv->mdiodrv.driver);
3010 }
3011 EXPORT_SYMBOL(phy_driver_unregister);
3012 
3013 void phy_drivers_unregister(struct phy_driver *drv, int n)
3014 {
3015 	int i;
3016 
3017 	for (i = 0; i < n; i++)
3018 		phy_driver_unregister(drv + i);
3019 }
3020 EXPORT_SYMBOL(phy_drivers_unregister);
3021 
3022 static struct phy_driver genphy_driver = {
3023 	.phy_id		= 0xffffffff,
3024 	.phy_id_mask	= 0xffffffff,
3025 	.name		= "Generic PHY",
3026 	.get_features	= genphy_read_abilities,
3027 	.suspend	= genphy_suspend,
3028 	.resume		= genphy_resume,
3029 	.set_loopback   = genphy_loopback,
3030 };
3031 
3032 static int __init phy_init(void)
3033 {
3034 	int rc;
3035 
3036 	rc = mdio_bus_init();
3037 	if (rc)
3038 		return rc;
3039 
3040 	features_init();
3041 
3042 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3043 	if (rc)
3044 		goto err_c45;
3045 
3046 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3047 	if (rc) {
3048 		phy_driver_unregister(&genphy_c45_driver);
3049 err_c45:
3050 		mdio_bus_exit();
3051 	}
3052 
3053 	return rc;
3054 }
3055 
3056 static void __exit phy_exit(void)
3057 {
3058 	phy_driver_unregister(&genphy_c45_driver);
3059 	phy_driver_unregister(&genphy_driver);
3060 	mdio_bus_exit();
3061 }
3062 
3063 subsys_initcall(phy_init);
3064 module_exit(phy_exit);
3065