1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/bitmap.h> 13 #include <linux/delay.h> 14 #include <linux/errno.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ethtool.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/mdio.h> 22 #include <linux/mii.h> 23 #include <linux/mm.h> 24 #include <linux/module.h> 25 #include <linux/netdevice.h> 26 #include <linux/phy.h> 27 #include <linux/phy_led_triggers.h> 28 #include <linux/property.h> 29 #include <linux/sfp.h> 30 #include <linux/skbuff.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/uaccess.h> 34 #include <linux/unistd.h> 35 36 MODULE_DESCRIPTION("PHY library"); 37 MODULE_AUTHOR("Andy Fleming"); 38 MODULE_LICENSE("GPL"); 39 40 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 41 EXPORT_SYMBOL_GPL(phy_basic_features); 42 43 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 44 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_gbit_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_10gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 60 61 const int phy_basic_ports_array[3] = { 62 ETHTOOL_LINK_MODE_Autoneg_BIT, 63 ETHTOOL_LINK_MODE_TP_BIT, 64 ETHTOOL_LINK_MODE_MII_BIT, 65 }; 66 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 67 68 const int phy_fibre_port_array[1] = { 69 ETHTOOL_LINK_MODE_FIBRE_BIT, 70 }; 71 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 72 73 const int phy_all_ports_features_array[7] = { 74 ETHTOOL_LINK_MODE_Autoneg_BIT, 75 ETHTOOL_LINK_MODE_TP_BIT, 76 ETHTOOL_LINK_MODE_MII_BIT, 77 ETHTOOL_LINK_MODE_FIBRE_BIT, 78 ETHTOOL_LINK_MODE_AUI_BIT, 79 ETHTOOL_LINK_MODE_BNC_BIT, 80 ETHTOOL_LINK_MODE_Backplane_BIT, 81 }; 82 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 83 84 const int phy_10_100_features_array[4] = { 85 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 86 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 87 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 89 }; 90 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 91 92 const int phy_basic_t1_features_array[2] = { 93 ETHTOOL_LINK_MODE_TP_BIT, 94 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 95 }; 96 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 97 98 const int phy_gbit_features_array[2] = { 99 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 100 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 101 }; 102 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 103 104 const int phy_10gbit_features_array[1] = { 105 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 106 }; 107 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 108 109 static const int phy_10gbit_fec_features_array[1] = { 110 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 111 }; 112 113 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 114 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 115 116 static const int phy_10gbit_full_features_array[] = { 117 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 118 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 119 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 121 }; 122 123 static void features_init(void) 124 { 125 /* 10/100 half/full*/ 126 linkmode_set_bit_array(phy_basic_ports_array, 127 ARRAY_SIZE(phy_basic_ports_array), 128 phy_basic_features); 129 linkmode_set_bit_array(phy_10_100_features_array, 130 ARRAY_SIZE(phy_10_100_features_array), 131 phy_basic_features); 132 133 /* 100 full, TP */ 134 linkmode_set_bit_array(phy_basic_t1_features_array, 135 ARRAY_SIZE(phy_basic_t1_features_array), 136 phy_basic_t1_features); 137 138 /* 10/100 half/full + 1000 half/full */ 139 linkmode_set_bit_array(phy_basic_ports_array, 140 ARRAY_SIZE(phy_basic_ports_array), 141 phy_gbit_features); 142 linkmode_set_bit_array(phy_10_100_features_array, 143 ARRAY_SIZE(phy_10_100_features_array), 144 phy_gbit_features); 145 linkmode_set_bit_array(phy_gbit_features_array, 146 ARRAY_SIZE(phy_gbit_features_array), 147 phy_gbit_features); 148 149 /* 10/100 half/full + 1000 half/full + fibre*/ 150 linkmode_set_bit_array(phy_basic_ports_array, 151 ARRAY_SIZE(phy_basic_ports_array), 152 phy_gbit_fibre_features); 153 linkmode_set_bit_array(phy_10_100_features_array, 154 ARRAY_SIZE(phy_10_100_features_array), 155 phy_gbit_fibre_features); 156 linkmode_set_bit_array(phy_gbit_features_array, 157 ARRAY_SIZE(phy_gbit_features_array), 158 phy_gbit_fibre_features); 159 linkmode_set_bit_array(phy_fibre_port_array, 160 ARRAY_SIZE(phy_fibre_port_array), 161 phy_gbit_fibre_features); 162 163 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 164 linkmode_set_bit_array(phy_all_ports_features_array, 165 ARRAY_SIZE(phy_all_ports_features_array), 166 phy_gbit_all_ports_features); 167 linkmode_set_bit_array(phy_10_100_features_array, 168 ARRAY_SIZE(phy_10_100_features_array), 169 phy_gbit_all_ports_features); 170 linkmode_set_bit_array(phy_gbit_features_array, 171 ARRAY_SIZE(phy_gbit_features_array), 172 phy_gbit_all_ports_features); 173 174 /* 10/100 half/full + 1000 half/full + 10G full*/ 175 linkmode_set_bit_array(phy_all_ports_features_array, 176 ARRAY_SIZE(phy_all_ports_features_array), 177 phy_10gbit_features); 178 linkmode_set_bit_array(phy_10_100_features_array, 179 ARRAY_SIZE(phy_10_100_features_array), 180 phy_10gbit_features); 181 linkmode_set_bit_array(phy_gbit_features_array, 182 ARRAY_SIZE(phy_gbit_features_array), 183 phy_10gbit_features); 184 linkmode_set_bit_array(phy_10gbit_features_array, 185 ARRAY_SIZE(phy_10gbit_features_array), 186 phy_10gbit_features); 187 188 /* 10/100/1000/10G full */ 189 linkmode_set_bit_array(phy_all_ports_features_array, 190 ARRAY_SIZE(phy_all_ports_features_array), 191 phy_10gbit_full_features); 192 linkmode_set_bit_array(phy_10gbit_full_features_array, 193 ARRAY_SIZE(phy_10gbit_full_features_array), 194 phy_10gbit_full_features); 195 /* 10G FEC only */ 196 linkmode_set_bit_array(phy_10gbit_fec_features_array, 197 ARRAY_SIZE(phy_10gbit_fec_features_array), 198 phy_10gbit_fec_features); 199 } 200 201 void phy_device_free(struct phy_device *phydev) 202 { 203 put_device(&phydev->mdio.dev); 204 } 205 EXPORT_SYMBOL(phy_device_free); 206 207 static void phy_mdio_device_free(struct mdio_device *mdiodev) 208 { 209 struct phy_device *phydev; 210 211 phydev = container_of(mdiodev, struct phy_device, mdio); 212 phy_device_free(phydev); 213 } 214 215 static void phy_device_release(struct device *dev) 216 { 217 kfree(to_phy_device(dev)); 218 } 219 220 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 221 { 222 struct phy_device *phydev; 223 224 phydev = container_of(mdiodev, struct phy_device, mdio); 225 phy_device_remove(phydev); 226 } 227 228 static struct phy_driver genphy_driver; 229 230 static LIST_HEAD(phy_fixup_list); 231 static DEFINE_MUTEX(phy_fixup_lock); 232 233 #ifdef CONFIG_PM 234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 235 { 236 struct device_driver *drv = phydev->mdio.dev.driver; 237 struct phy_driver *phydrv = to_phy_driver(drv); 238 struct net_device *netdev = phydev->attached_dev; 239 240 if (!drv || !phydrv->suspend) 241 return false; 242 243 /* PHY not attached? May suspend if the PHY has not already been 244 * suspended as part of a prior call to phy_disconnect() -> 245 * phy_detach() -> phy_suspend() because the parent netdev might be the 246 * MDIO bus driver and clock gated at this point. 247 */ 248 if (!netdev) 249 goto out; 250 251 if (netdev->wol_enabled) 252 return false; 253 254 /* As long as not all affected network drivers support the 255 * wol_enabled flag, let's check for hints that WoL is enabled. 256 * Don't suspend PHY if the attached netdev parent may wake up. 257 * The parent may point to a PCI device, as in tg3 driver. 258 */ 259 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 260 return false; 261 262 /* Also don't suspend PHY if the netdev itself may wakeup. This 263 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 264 * e.g. SoC devices. 265 */ 266 if (device_may_wakeup(&netdev->dev)) 267 return false; 268 269 out: 270 return !phydev->suspended; 271 } 272 273 static int mdio_bus_phy_suspend(struct device *dev) 274 { 275 struct phy_device *phydev = to_phy_device(dev); 276 277 /* We must stop the state machine manually, otherwise it stops out of 278 * control, possibly with the phydev->lock held. Upon resume, netdev 279 * may call phy routines that try to grab the same lock, and that may 280 * lead to a deadlock. 281 */ 282 if (phydev->attached_dev && phydev->adjust_link) 283 phy_stop_machine(phydev); 284 285 if (!mdio_bus_phy_may_suspend(phydev)) 286 return 0; 287 288 phydev->suspended_by_mdio_bus = 1; 289 290 return phy_suspend(phydev); 291 } 292 293 static int mdio_bus_phy_resume(struct device *dev) 294 { 295 struct phy_device *phydev = to_phy_device(dev); 296 int ret; 297 298 if (!phydev->suspended_by_mdio_bus) 299 goto no_resume; 300 301 phydev->suspended_by_mdio_bus = 0; 302 303 ret = phy_resume(phydev); 304 if (ret < 0) 305 return ret; 306 307 no_resume: 308 if (phydev->attached_dev && phydev->adjust_link) 309 phy_start_machine(phydev); 310 311 return 0; 312 } 313 314 static int mdio_bus_phy_restore(struct device *dev) 315 { 316 struct phy_device *phydev = to_phy_device(dev); 317 struct net_device *netdev = phydev->attached_dev; 318 int ret; 319 320 if (!netdev) 321 return 0; 322 323 ret = phy_init_hw(phydev); 324 if (ret < 0) 325 return ret; 326 327 if (phydev->attached_dev && phydev->adjust_link) 328 phy_start_machine(phydev); 329 330 return 0; 331 } 332 333 static const struct dev_pm_ops mdio_bus_phy_pm_ops = { 334 .suspend = mdio_bus_phy_suspend, 335 .resume = mdio_bus_phy_resume, 336 .freeze = mdio_bus_phy_suspend, 337 .thaw = mdio_bus_phy_resume, 338 .restore = mdio_bus_phy_restore, 339 }; 340 341 #define MDIO_BUS_PHY_PM_OPS (&mdio_bus_phy_pm_ops) 342 343 #else 344 345 #define MDIO_BUS_PHY_PM_OPS NULL 346 347 #endif /* CONFIG_PM */ 348 349 /** 350 * phy_register_fixup - creates a new phy_fixup and adds it to the list 351 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 352 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 353 * It can also be PHY_ANY_UID 354 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 355 * comparison 356 * @run: The actual code to be run when a matching PHY is found 357 */ 358 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 359 int (*run)(struct phy_device *)) 360 { 361 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 362 363 if (!fixup) 364 return -ENOMEM; 365 366 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 367 fixup->phy_uid = phy_uid; 368 fixup->phy_uid_mask = phy_uid_mask; 369 fixup->run = run; 370 371 mutex_lock(&phy_fixup_lock); 372 list_add_tail(&fixup->list, &phy_fixup_list); 373 mutex_unlock(&phy_fixup_lock); 374 375 return 0; 376 } 377 EXPORT_SYMBOL(phy_register_fixup); 378 379 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 380 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 381 int (*run)(struct phy_device *)) 382 { 383 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 384 } 385 EXPORT_SYMBOL(phy_register_fixup_for_uid); 386 387 /* Registers a fixup to be run on the PHY with id string bus_id */ 388 int phy_register_fixup_for_id(const char *bus_id, 389 int (*run)(struct phy_device *)) 390 { 391 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 392 } 393 EXPORT_SYMBOL(phy_register_fixup_for_id); 394 395 /** 396 * phy_unregister_fixup - remove a phy_fixup from the list 397 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 398 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 399 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 400 */ 401 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 402 { 403 struct list_head *pos, *n; 404 struct phy_fixup *fixup; 405 int ret; 406 407 ret = -ENODEV; 408 409 mutex_lock(&phy_fixup_lock); 410 list_for_each_safe(pos, n, &phy_fixup_list) { 411 fixup = list_entry(pos, struct phy_fixup, list); 412 413 if ((!strcmp(fixup->bus_id, bus_id)) && 414 ((fixup->phy_uid & phy_uid_mask) == 415 (phy_uid & phy_uid_mask))) { 416 list_del(&fixup->list); 417 kfree(fixup); 418 ret = 0; 419 break; 420 } 421 } 422 mutex_unlock(&phy_fixup_lock); 423 424 return ret; 425 } 426 EXPORT_SYMBOL(phy_unregister_fixup); 427 428 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 429 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 430 { 431 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 432 } 433 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 434 435 /* Unregisters a fixup of the PHY with id string bus_id */ 436 int phy_unregister_fixup_for_id(const char *bus_id) 437 { 438 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 439 } 440 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 441 442 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 443 * Fixups can be set to match any in one or more fields. 444 */ 445 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 446 { 447 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 448 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 449 return 0; 450 451 if ((fixup->phy_uid & fixup->phy_uid_mask) != 452 (phydev->phy_id & fixup->phy_uid_mask)) 453 if (fixup->phy_uid != PHY_ANY_UID) 454 return 0; 455 456 return 1; 457 } 458 459 /* Runs any matching fixups for this phydev */ 460 static int phy_scan_fixups(struct phy_device *phydev) 461 { 462 struct phy_fixup *fixup; 463 464 mutex_lock(&phy_fixup_lock); 465 list_for_each_entry(fixup, &phy_fixup_list, list) { 466 if (phy_needs_fixup(phydev, fixup)) { 467 int err = fixup->run(phydev); 468 469 if (err < 0) { 470 mutex_unlock(&phy_fixup_lock); 471 return err; 472 } 473 phydev->has_fixups = true; 474 } 475 } 476 mutex_unlock(&phy_fixup_lock); 477 478 return 0; 479 } 480 481 static int phy_bus_match(struct device *dev, struct device_driver *drv) 482 { 483 struct phy_device *phydev = to_phy_device(dev); 484 struct phy_driver *phydrv = to_phy_driver(drv); 485 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 486 int i; 487 488 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 489 return 0; 490 491 if (phydrv->match_phy_device) 492 return phydrv->match_phy_device(phydev); 493 494 if (phydev->is_c45) { 495 for (i = 1; i < num_ids; i++) { 496 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 497 continue; 498 499 if ((phydrv->phy_id & phydrv->phy_id_mask) == 500 (phydev->c45_ids.device_ids[i] & 501 phydrv->phy_id_mask)) 502 return 1; 503 } 504 return 0; 505 } else { 506 return (phydrv->phy_id & phydrv->phy_id_mask) == 507 (phydev->phy_id & phydrv->phy_id_mask); 508 } 509 } 510 511 static ssize_t 512 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 513 { 514 struct phy_device *phydev = to_phy_device(dev); 515 516 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 517 } 518 static DEVICE_ATTR_RO(phy_id); 519 520 static ssize_t 521 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 522 { 523 struct phy_device *phydev = to_phy_device(dev); 524 const char *mode = NULL; 525 526 if (phy_is_internal(phydev)) 527 mode = "internal"; 528 else 529 mode = phy_modes(phydev->interface); 530 531 return sprintf(buf, "%s\n", mode); 532 } 533 static DEVICE_ATTR_RO(phy_interface); 534 535 static ssize_t 536 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 537 char *buf) 538 { 539 struct phy_device *phydev = to_phy_device(dev); 540 541 return sprintf(buf, "%d\n", phydev->has_fixups); 542 } 543 static DEVICE_ATTR_RO(phy_has_fixups); 544 545 static struct attribute *phy_dev_attrs[] = { 546 &dev_attr_phy_id.attr, 547 &dev_attr_phy_interface.attr, 548 &dev_attr_phy_has_fixups.attr, 549 NULL, 550 }; 551 ATTRIBUTE_GROUPS(phy_dev); 552 553 static const struct device_type mdio_bus_phy_type = { 554 .name = "PHY", 555 .groups = phy_dev_groups, 556 .release = phy_device_release, 557 .pm = MDIO_BUS_PHY_PM_OPS, 558 }; 559 560 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 561 { 562 int ret; 563 564 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 565 MDIO_ID_ARGS(phy_id)); 566 /* We only check for failures in executing the usermode binary, 567 * not whether a PHY driver module exists for the PHY ID. 568 * Accept -ENOENT because this may occur in case no initramfs exists, 569 * then modprobe isn't available. 570 */ 571 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 572 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 573 ret, (unsigned long)phy_id); 574 return ret; 575 } 576 577 return 0; 578 } 579 580 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 581 bool is_c45, 582 struct phy_c45_device_ids *c45_ids) 583 { 584 struct phy_device *dev; 585 struct mdio_device *mdiodev; 586 int ret = 0; 587 588 /* We allocate the device, and initialize the default values */ 589 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 590 if (!dev) 591 return ERR_PTR(-ENOMEM); 592 593 mdiodev = &dev->mdio; 594 mdiodev->dev.parent = &bus->dev; 595 mdiodev->dev.bus = &mdio_bus_type; 596 mdiodev->dev.type = &mdio_bus_phy_type; 597 mdiodev->bus = bus; 598 mdiodev->bus_match = phy_bus_match; 599 mdiodev->addr = addr; 600 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 601 mdiodev->device_free = phy_mdio_device_free; 602 mdiodev->device_remove = phy_mdio_device_remove; 603 604 dev->speed = SPEED_UNKNOWN; 605 dev->duplex = DUPLEX_UNKNOWN; 606 dev->pause = 0; 607 dev->asym_pause = 0; 608 dev->link = 0; 609 dev->interface = PHY_INTERFACE_MODE_GMII; 610 611 dev->autoneg = AUTONEG_ENABLE; 612 613 dev->is_c45 = is_c45; 614 dev->phy_id = phy_id; 615 if (c45_ids) 616 dev->c45_ids = *c45_ids; 617 dev->irq = bus->irq[addr]; 618 619 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 620 device_initialize(&mdiodev->dev); 621 622 dev->state = PHY_DOWN; 623 624 mutex_init(&dev->lock); 625 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 626 627 /* Request the appropriate module unconditionally; don't 628 * bother trying to do so only if it isn't already loaded, 629 * because that gets complicated. A hotplug event would have 630 * done an unconditional modprobe anyway. 631 * We don't do normal hotplug because it won't work for MDIO 632 * -- because it relies on the device staying around for long 633 * enough for the driver to get loaded. With MDIO, the NIC 634 * driver will get bored and give up as soon as it finds that 635 * there's no driver _already_ loaded. 636 */ 637 if (is_c45 && c45_ids) { 638 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 639 int i; 640 641 for (i = 1; i < num_ids; i++) { 642 if (c45_ids->device_ids[i] == 0xffffffff) 643 continue; 644 645 ret = phy_request_driver_module(dev, 646 c45_ids->device_ids[i]); 647 if (ret) 648 break; 649 } 650 } else { 651 ret = phy_request_driver_module(dev, phy_id); 652 } 653 654 if (ret) { 655 put_device(&mdiodev->dev); 656 dev = ERR_PTR(ret); 657 } 658 659 return dev; 660 } 661 EXPORT_SYMBOL(phy_device_create); 662 663 /* phy_c45_probe_present - checks to see if a MMD is present in the package 664 * @bus: the target MII bus 665 * @prtad: PHY package address on the MII bus 666 * @devad: PHY device (MMD) address 667 * 668 * Read the MDIO_STAT2 register, and check whether a device is responding 669 * at this address. 670 * 671 * Returns: negative error number on bus access error, zero if no device 672 * is responding, or positive if a device is present. 673 */ 674 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 675 { 676 int stat2; 677 678 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 679 if (stat2 < 0) 680 return stat2; 681 682 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 683 } 684 685 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 686 * @bus: the target MII bus 687 * @addr: PHY address on the MII bus 688 * @dev_addr: MMD address in the PHY. 689 * @devices_in_package: where to store the devices in package information. 690 * 691 * Description: reads devices in package registers of a MMD at @dev_addr 692 * from PHY at @addr on @bus. 693 * 694 * Returns: 0 on success, -EIO on failure. 695 */ 696 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 697 u32 *devices_in_package) 698 { 699 int phy_reg; 700 701 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 702 if (phy_reg < 0) 703 return -EIO; 704 *devices_in_package = phy_reg << 16; 705 706 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 707 if (phy_reg < 0) 708 return -EIO; 709 *devices_in_package |= phy_reg; 710 711 return 0; 712 } 713 714 /** 715 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 716 * @bus: the target MII bus 717 * @addr: PHY address on the MII bus 718 * @c45_ids: where to store the c45 ID information. 719 * 720 * Read the PHY "devices in package". If this appears to be valid, read 721 * the PHY identifiers for each device. Return the "devices in package" 722 * and identifiers in @c45_ids. 723 * 724 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 725 * the "devices in package" is invalid. 726 */ 727 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 728 struct phy_c45_device_ids *c45_ids) 729 { 730 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 731 u32 devs_in_pkg = 0; 732 int i, ret, phy_reg; 733 734 /* Find first non-zero Devices In package. Device zero is reserved 735 * for 802.3 c45 complied PHYs, so don't probe it at first. 736 */ 737 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 738 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 739 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 740 /* Check that there is a device present at this 741 * address before reading the devices-in-package 742 * register to avoid reading garbage from the PHY. 743 * Some PHYs (88x3310) vendor space is not IEEE802.3 744 * compliant. 745 */ 746 ret = phy_c45_probe_present(bus, addr, i); 747 if (ret < 0) 748 return -EIO; 749 750 if (!ret) 751 continue; 752 } 753 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 754 if (phy_reg < 0) 755 return -EIO; 756 } 757 758 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 759 /* If mostly Fs, there is no device there, then let's probe 760 * MMD 0, as some 10G PHYs have zero Devices In package, 761 * e.g. Cortina CS4315/CS4340 PHY. 762 */ 763 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 764 if (phy_reg < 0) 765 return -EIO; 766 767 /* no device there, let's get out of here */ 768 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 769 return -ENODEV; 770 } 771 772 /* Now probe Device Identifiers for each device present. */ 773 for (i = 1; i < num_ids; i++) { 774 if (!(devs_in_pkg & (1 << i))) 775 continue; 776 777 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 778 /* Probe the "Device Present" bits for the vendor MMDs 779 * to ignore these if they do not contain IEEE 802.3 780 * registers. 781 */ 782 ret = phy_c45_probe_present(bus, addr, i); 783 if (ret < 0) 784 return ret; 785 786 if (!ret) 787 continue; 788 } 789 790 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 791 if (phy_reg < 0) 792 return -EIO; 793 c45_ids->device_ids[i] = phy_reg << 16; 794 795 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 796 if (phy_reg < 0) 797 return -EIO; 798 c45_ids->device_ids[i] |= phy_reg; 799 } 800 801 c45_ids->devices_in_package = devs_in_pkg; 802 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 803 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 804 805 return 0; 806 } 807 808 /** 809 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 810 * @bus: the target MII bus 811 * @addr: PHY address on the MII bus 812 * @phy_id: where to store the ID retrieved. 813 * 814 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 815 * placing it in @phy_id. Return zero on successful read and the ID is 816 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 817 * or invalid ID. 818 */ 819 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 820 { 821 int phy_reg; 822 823 /* Grab the bits from PHYIR1, and put them in the upper half */ 824 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 825 if (phy_reg < 0) { 826 /* returning -ENODEV doesn't stop bus scanning */ 827 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 828 } 829 830 *phy_id = phy_reg << 16; 831 832 /* Grab the bits from PHYIR2, and put them in the lower half */ 833 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 834 if (phy_reg < 0) { 835 /* returning -ENODEV doesn't stop bus scanning */ 836 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 837 } 838 839 *phy_id |= phy_reg; 840 841 /* If the phy_id is mostly Fs, there is no device there */ 842 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 843 return -ENODEV; 844 845 return 0; 846 } 847 848 /** 849 * get_phy_device - reads the specified PHY device and returns its @phy_device 850 * struct 851 * @bus: the target MII bus 852 * @addr: PHY address on the MII bus 853 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 854 * 855 * Probe for a PHY at @addr on @bus. 856 * 857 * When probing for a clause 22 PHY, then read the ID registers. If we find 858 * a valid ID, allocate and return a &struct phy_device. 859 * 860 * When probing for a clause 45 PHY, read the "devices in package" registers. 861 * If the "devices in package" appears valid, read the ID registers for each 862 * MMD, allocate and return a &struct phy_device. 863 * 864 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 865 * no PHY present, or %-EIO on bus access error. 866 */ 867 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 868 { 869 struct phy_c45_device_ids c45_ids; 870 u32 phy_id = 0; 871 int r; 872 873 c45_ids.devices_in_package = 0; 874 c45_ids.mmds_present = 0; 875 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 876 877 if (is_c45) 878 r = get_phy_c45_ids(bus, addr, &c45_ids); 879 else 880 r = get_phy_c22_id(bus, addr, &phy_id); 881 882 if (r) 883 return ERR_PTR(r); 884 885 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 886 } 887 EXPORT_SYMBOL(get_phy_device); 888 889 /** 890 * phy_device_register - Register the phy device on the MDIO bus 891 * @phydev: phy_device structure to be added to the MDIO bus 892 */ 893 int phy_device_register(struct phy_device *phydev) 894 { 895 int err; 896 897 err = mdiobus_register_device(&phydev->mdio); 898 if (err) 899 return err; 900 901 /* Deassert the reset signal */ 902 phy_device_reset(phydev, 0); 903 904 /* Run all of the fixups for this PHY */ 905 err = phy_scan_fixups(phydev); 906 if (err) { 907 phydev_err(phydev, "failed to initialize\n"); 908 goto out; 909 } 910 911 err = device_add(&phydev->mdio.dev); 912 if (err) { 913 phydev_err(phydev, "failed to add\n"); 914 goto out; 915 } 916 917 return 0; 918 919 out: 920 /* Assert the reset signal */ 921 phy_device_reset(phydev, 1); 922 923 mdiobus_unregister_device(&phydev->mdio); 924 return err; 925 } 926 EXPORT_SYMBOL(phy_device_register); 927 928 /** 929 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 930 * @phydev: phy_device structure to remove 931 * 932 * This doesn't free the phy_device itself, it merely reverses the effects 933 * of phy_device_register(). Use phy_device_free() to free the device 934 * after calling this function. 935 */ 936 void phy_device_remove(struct phy_device *phydev) 937 { 938 if (phydev->mii_ts) 939 unregister_mii_timestamper(phydev->mii_ts); 940 941 device_del(&phydev->mdio.dev); 942 943 /* Assert the reset signal */ 944 phy_device_reset(phydev, 1); 945 946 mdiobus_unregister_device(&phydev->mdio); 947 } 948 EXPORT_SYMBOL(phy_device_remove); 949 950 /** 951 * phy_find_first - finds the first PHY device on the bus 952 * @bus: the target MII bus 953 */ 954 struct phy_device *phy_find_first(struct mii_bus *bus) 955 { 956 struct phy_device *phydev; 957 int addr; 958 959 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 960 phydev = mdiobus_get_phy(bus, addr); 961 if (phydev) 962 return phydev; 963 } 964 return NULL; 965 } 966 EXPORT_SYMBOL(phy_find_first); 967 968 static void phy_link_change(struct phy_device *phydev, bool up) 969 { 970 struct net_device *netdev = phydev->attached_dev; 971 972 if (up) 973 netif_carrier_on(netdev); 974 else 975 netif_carrier_off(netdev); 976 phydev->adjust_link(netdev); 977 if (phydev->mii_ts && phydev->mii_ts->link_state) 978 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 979 } 980 981 /** 982 * phy_prepare_link - prepares the PHY layer to monitor link status 983 * @phydev: target phy_device struct 984 * @handler: callback function for link status change notifications 985 * 986 * Description: Tells the PHY infrastructure to handle the 987 * gory details on monitoring link status (whether through 988 * polling or an interrupt), and to call back to the 989 * connected device driver when the link status changes. 990 * If you want to monitor your own link state, don't call 991 * this function. 992 */ 993 static void phy_prepare_link(struct phy_device *phydev, 994 void (*handler)(struct net_device *)) 995 { 996 phydev->adjust_link = handler; 997 } 998 999 /** 1000 * phy_connect_direct - connect an ethernet device to a specific phy_device 1001 * @dev: the network device to connect 1002 * @phydev: the pointer to the phy device 1003 * @handler: callback function for state change notifications 1004 * @interface: PHY device's interface 1005 */ 1006 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1007 void (*handler)(struct net_device *), 1008 phy_interface_t interface) 1009 { 1010 int rc; 1011 1012 if (!dev) 1013 return -EINVAL; 1014 1015 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1016 if (rc) 1017 return rc; 1018 1019 phy_prepare_link(phydev, handler); 1020 if (phy_interrupt_is_valid(phydev)) 1021 phy_request_interrupt(phydev); 1022 1023 return 0; 1024 } 1025 EXPORT_SYMBOL(phy_connect_direct); 1026 1027 /** 1028 * phy_connect - connect an ethernet device to a PHY device 1029 * @dev: the network device to connect 1030 * @bus_id: the id string of the PHY device to connect 1031 * @handler: callback function for state change notifications 1032 * @interface: PHY device's interface 1033 * 1034 * Description: Convenience function for connecting ethernet 1035 * devices to PHY devices. The default behavior is for 1036 * the PHY infrastructure to handle everything, and only notify 1037 * the connected driver when the link status changes. If you 1038 * don't want, or can't use the provided functionality, you may 1039 * choose to call only the subset of functions which provide 1040 * the desired functionality. 1041 */ 1042 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1043 void (*handler)(struct net_device *), 1044 phy_interface_t interface) 1045 { 1046 struct phy_device *phydev; 1047 struct device *d; 1048 int rc; 1049 1050 /* Search the list of PHY devices on the mdio bus for the 1051 * PHY with the requested name 1052 */ 1053 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1054 if (!d) { 1055 pr_err("PHY %s not found\n", bus_id); 1056 return ERR_PTR(-ENODEV); 1057 } 1058 phydev = to_phy_device(d); 1059 1060 rc = phy_connect_direct(dev, phydev, handler, interface); 1061 put_device(d); 1062 if (rc) 1063 return ERR_PTR(rc); 1064 1065 return phydev; 1066 } 1067 EXPORT_SYMBOL(phy_connect); 1068 1069 /** 1070 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1071 * device 1072 * @phydev: target phy_device struct 1073 */ 1074 void phy_disconnect(struct phy_device *phydev) 1075 { 1076 if (phy_is_started(phydev)) 1077 phy_stop(phydev); 1078 1079 if (phy_interrupt_is_valid(phydev)) 1080 phy_free_interrupt(phydev); 1081 1082 phydev->adjust_link = NULL; 1083 1084 phy_detach(phydev); 1085 } 1086 EXPORT_SYMBOL(phy_disconnect); 1087 1088 /** 1089 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1090 * @phydev: The PHY device to poll 1091 * 1092 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1093 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1094 * register must be polled until the BMCR_RESET bit clears. 1095 * 1096 * Furthermore, any attempts to write to PHY registers may have no effect 1097 * or even generate MDIO bus errors until this is complete. 1098 * 1099 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1100 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1101 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1102 * effort to support such broken PHYs, this function is separate from the 1103 * standard phy_init_hw() which will zero all the other bits in the BMCR 1104 * and reapply all driver-specific and board-specific fixups. 1105 */ 1106 static int phy_poll_reset(struct phy_device *phydev) 1107 { 1108 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1109 int ret, val; 1110 1111 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1112 50000, 600000, true); 1113 if (ret) 1114 return ret; 1115 /* Some chips (smsc911x) may still need up to another 1ms after the 1116 * BMCR_RESET bit is cleared before they are usable. 1117 */ 1118 msleep(1); 1119 return 0; 1120 } 1121 1122 int phy_init_hw(struct phy_device *phydev) 1123 { 1124 int ret = 0; 1125 1126 /* Deassert the reset signal */ 1127 phy_device_reset(phydev, 0); 1128 1129 if (!phydev->drv) 1130 return 0; 1131 1132 if (phydev->drv->soft_reset) { 1133 ret = phydev->drv->soft_reset(phydev); 1134 /* see comment in genphy_soft_reset for an explanation */ 1135 if (!ret) 1136 phydev->suspended = 0; 1137 } 1138 1139 if (ret < 0) 1140 return ret; 1141 1142 ret = phy_scan_fixups(phydev); 1143 if (ret < 0) 1144 return ret; 1145 1146 ret = phy_disable_interrupts(phydev); 1147 if (ret) 1148 return ret; 1149 1150 if (phydev->drv->config_init) 1151 ret = phydev->drv->config_init(phydev); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(phy_init_hw); 1156 1157 void phy_attached_info(struct phy_device *phydev) 1158 { 1159 phy_attached_print(phydev, NULL); 1160 } 1161 EXPORT_SYMBOL(phy_attached_info); 1162 1163 #define ATTACHED_FMT "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%s)" 1164 char *phy_attached_info_irq(struct phy_device *phydev) 1165 { 1166 char *irq_str; 1167 char irq_num[8]; 1168 1169 switch(phydev->irq) { 1170 case PHY_POLL: 1171 irq_str = "POLL"; 1172 break; 1173 case PHY_IGNORE_INTERRUPT: 1174 irq_str = "IGNORE"; 1175 break; 1176 default: 1177 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1178 irq_str = irq_num; 1179 break; 1180 } 1181 1182 return kasprintf(GFP_KERNEL, "%s", irq_str); 1183 } 1184 EXPORT_SYMBOL(phy_attached_info_irq); 1185 1186 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1187 { 1188 const char *drv_name = phydev->drv ? phydev->drv->name : "unbound"; 1189 char *irq_str = phy_attached_info_irq(phydev); 1190 1191 if (!fmt) { 1192 phydev_info(phydev, ATTACHED_FMT "\n", 1193 drv_name, phydev_name(phydev), 1194 irq_str); 1195 } else { 1196 va_list ap; 1197 1198 phydev_info(phydev, ATTACHED_FMT, 1199 drv_name, phydev_name(phydev), 1200 irq_str); 1201 1202 va_start(ap, fmt); 1203 vprintk(fmt, ap); 1204 va_end(ap); 1205 } 1206 kfree(irq_str); 1207 } 1208 EXPORT_SYMBOL(phy_attached_print); 1209 1210 static void phy_sysfs_create_links(struct phy_device *phydev) 1211 { 1212 struct net_device *dev = phydev->attached_dev; 1213 int err; 1214 1215 if (!dev) 1216 return; 1217 1218 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1219 "attached_dev"); 1220 if (err) 1221 return; 1222 1223 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1224 &phydev->mdio.dev.kobj, 1225 "phydev"); 1226 if (err) { 1227 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1228 kobject_name(&phydev->mdio.dev.kobj), 1229 err); 1230 /* non-fatal - some net drivers can use one netdevice 1231 * with more then one phy 1232 */ 1233 } 1234 1235 phydev->sysfs_links = true; 1236 } 1237 1238 static ssize_t 1239 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1240 char *buf) 1241 { 1242 struct phy_device *phydev = to_phy_device(dev); 1243 1244 return sprintf(buf, "%d\n", !phydev->attached_dev); 1245 } 1246 static DEVICE_ATTR_RO(phy_standalone); 1247 1248 /** 1249 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1250 * @upstream: pointer to the phy device 1251 * @bus: sfp bus representing cage being attached 1252 * 1253 * This is used to fill in the sfp_upstream_ops .attach member. 1254 */ 1255 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1256 { 1257 struct phy_device *phydev = upstream; 1258 1259 if (phydev->attached_dev) 1260 phydev->attached_dev->sfp_bus = bus; 1261 phydev->sfp_bus_attached = true; 1262 } 1263 EXPORT_SYMBOL(phy_sfp_attach); 1264 1265 /** 1266 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1267 * @upstream: pointer to the phy device 1268 * @bus: sfp bus representing cage being attached 1269 * 1270 * This is used to fill in the sfp_upstream_ops .detach member. 1271 */ 1272 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1273 { 1274 struct phy_device *phydev = upstream; 1275 1276 if (phydev->attached_dev) 1277 phydev->attached_dev->sfp_bus = NULL; 1278 phydev->sfp_bus_attached = false; 1279 } 1280 EXPORT_SYMBOL(phy_sfp_detach); 1281 1282 /** 1283 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1284 * @phydev: Pointer to phy_device 1285 * @ops: SFP's upstream operations 1286 */ 1287 int phy_sfp_probe(struct phy_device *phydev, 1288 const struct sfp_upstream_ops *ops) 1289 { 1290 struct sfp_bus *bus; 1291 int ret = 0; 1292 1293 if (phydev->mdio.dev.fwnode) { 1294 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1295 if (IS_ERR(bus)) 1296 return PTR_ERR(bus); 1297 1298 phydev->sfp_bus = bus; 1299 1300 ret = sfp_bus_add_upstream(bus, phydev, ops); 1301 sfp_bus_put(bus); 1302 } 1303 return ret; 1304 } 1305 EXPORT_SYMBOL(phy_sfp_probe); 1306 1307 /** 1308 * phy_attach_direct - attach a network device to a given PHY device pointer 1309 * @dev: network device to attach 1310 * @phydev: Pointer to phy_device to attach 1311 * @flags: PHY device's dev_flags 1312 * @interface: PHY device's interface 1313 * 1314 * Description: Called by drivers to attach to a particular PHY 1315 * device. The phy_device is found, and properly hooked up 1316 * to the phy_driver. If no driver is attached, then a 1317 * generic driver is used. The phy_device is given a ptr to 1318 * the attaching device, and given a callback for link status 1319 * change. The phy_device is returned to the attaching driver. 1320 * This function takes a reference on the phy device. 1321 */ 1322 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1323 u32 flags, phy_interface_t interface) 1324 { 1325 struct mii_bus *bus = phydev->mdio.bus; 1326 struct device *d = &phydev->mdio.dev; 1327 struct module *ndev_owner = NULL; 1328 bool using_genphy = false; 1329 int err; 1330 1331 /* For Ethernet device drivers that register their own MDIO bus, we 1332 * will have bus->owner match ndev_mod, so we do not want to increment 1333 * our own module->refcnt here, otherwise we would not be able to 1334 * unload later on. 1335 */ 1336 if (dev) 1337 ndev_owner = dev->dev.parent->driver->owner; 1338 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1339 phydev_err(phydev, "failed to get the bus module\n"); 1340 return -EIO; 1341 } 1342 1343 get_device(d); 1344 1345 /* Assume that if there is no driver, that it doesn't 1346 * exist, and we should use the genphy driver. 1347 */ 1348 if (!d->driver) { 1349 if (phydev->is_c45) 1350 d->driver = &genphy_c45_driver.mdiodrv.driver; 1351 else 1352 d->driver = &genphy_driver.mdiodrv.driver; 1353 1354 using_genphy = true; 1355 } 1356 1357 if (!try_module_get(d->driver->owner)) { 1358 phydev_err(phydev, "failed to get the device driver module\n"); 1359 err = -EIO; 1360 goto error_put_device; 1361 } 1362 1363 if (using_genphy) { 1364 err = d->driver->probe(d); 1365 if (err >= 0) 1366 err = device_bind_driver(d); 1367 1368 if (err) 1369 goto error_module_put; 1370 } 1371 1372 if (phydev->attached_dev) { 1373 dev_err(&dev->dev, "PHY already attached\n"); 1374 err = -EBUSY; 1375 goto error; 1376 } 1377 1378 phydev->phy_link_change = phy_link_change; 1379 if (dev) { 1380 phydev->attached_dev = dev; 1381 dev->phydev = phydev; 1382 1383 if (phydev->sfp_bus_attached) 1384 dev->sfp_bus = phydev->sfp_bus; 1385 } 1386 1387 /* Some Ethernet drivers try to connect to a PHY device before 1388 * calling register_netdevice() -> netdev_register_kobject() and 1389 * does the dev->dev.kobj initialization. Here we only check for 1390 * success which indicates that the network device kobject is 1391 * ready. Once we do that we still need to keep track of whether 1392 * links were successfully set up or not for phy_detach() to 1393 * remove them accordingly. 1394 */ 1395 phydev->sysfs_links = false; 1396 1397 phy_sysfs_create_links(phydev); 1398 1399 if (!phydev->attached_dev) { 1400 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1401 &dev_attr_phy_standalone.attr); 1402 if (err) 1403 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1404 } 1405 1406 phydev->dev_flags |= flags; 1407 1408 phydev->interface = interface; 1409 1410 phydev->state = PHY_READY; 1411 1412 /* Initial carrier state is off as the phy is about to be 1413 * (re)initialized. 1414 */ 1415 if (dev) 1416 netif_carrier_off(phydev->attached_dev); 1417 1418 /* Do initial configuration here, now that 1419 * we have certain key parameters 1420 * (dev_flags and interface) 1421 */ 1422 err = phy_init_hw(phydev); 1423 if (err) 1424 goto error; 1425 1426 phy_resume(phydev); 1427 phy_led_triggers_register(phydev); 1428 1429 return err; 1430 1431 error: 1432 /* phy_detach() does all of the cleanup below */ 1433 phy_detach(phydev); 1434 return err; 1435 1436 error_module_put: 1437 module_put(d->driver->owner); 1438 error_put_device: 1439 put_device(d); 1440 if (ndev_owner != bus->owner) 1441 module_put(bus->owner); 1442 return err; 1443 } 1444 EXPORT_SYMBOL(phy_attach_direct); 1445 1446 /** 1447 * phy_attach - attach a network device to a particular PHY device 1448 * @dev: network device to attach 1449 * @bus_id: Bus ID of PHY device to attach 1450 * @interface: PHY device's interface 1451 * 1452 * Description: Same as phy_attach_direct() except that a PHY bus_id 1453 * string is passed instead of a pointer to a struct phy_device. 1454 */ 1455 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1456 phy_interface_t interface) 1457 { 1458 struct bus_type *bus = &mdio_bus_type; 1459 struct phy_device *phydev; 1460 struct device *d; 1461 int rc; 1462 1463 if (!dev) 1464 return ERR_PTR(-EINVAL); 1465 1466 /* Search the list of PHY devices on the mdio bus for the 1467 * PHY with the requested name 1468 */ 1469 d = bus_find_device_by_name(bus, NULL, bus_id); 1470 if (!d) { 1471 pr_err("PHY %s not found\n", bus_id); 1472 return ERR_PTR(-ENODEV); 1473 } 1474 phydev = to_phy_device(d); 1475 1476 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1477 put_device(d); 1478 if (rc) 1479 return ERR_PTR(rc); 1480 1481 return phydev; 1482 } 1483 EXPORT_SYMBOL(phy_attach); 1484 1485 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1486 struct device_driver *driver) 1487 { 1488 struct device *d = &phydev->mdio.dev; 1489 bool ret = false; 1490 1491 if (!phydev->drv) 1492 return ret; 1493 1494 get_device(d); 1495 ret = d->driver == driver; 1496 put_device(d); 1497 1498 return ret; 1499 } 1500 1501 bool phy_driver_is_genphy(struct phy_device *phydev) 1502 { 1503 return phy_driver_is_genphy_kind(phydev, 1504 &genphy_driver.mdiodrv.driver); 1505 } 1506 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1507 1508 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1509 { 1510 return phy_driver_is_genphy_kind(phydev, 1511 &genphy_c45_driver.mdiodrv.driver); 1512 } 1513 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1514 1515 /** 1516 * phy_package_join - join a common PHY group 1517 * @phydev: target phy_device struct 1518 * @addr: cookie and PHY address for global register access 1519 * @priv_size: if non-zero allocate this amount of bytes for private data 1520 * 1521 * This joins a PHY group and provides a shared storage for all phydevs in 1522 * this group. This is intended to be used for packages which contain 1523 * more than one PHY, for example a quad PHY transceiver. 1524 * 1525 * The addr parameter serves as a cookie which has to have the same value 1526 * for all members of one group and as a PHY address to access generic 1527 * registers of a PHY package. Usually, one of the PHY addresses of the 1528 * different PHYs in the package provides access to these global registers. 1529 * The address which is given here, will be used in the phy_package_read() 1530 * and phy_package_write() convenience functions. If your PHY doesn't have 1531 * global registers you can just pick any of the PHY addresses. 1532 * 1533 * This will set the shared pointer of the phydev to the shared storage. 1534 * If this is the first call for a this cookie the shared storage will be 1535 * allocated. If priv_size is non-zero, the given amount of bytes are 1536 * allocated for the priv member. 1537 * 1538 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1539 * with the same cookie but a different priv_size is an error. 1540 */ 1541 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1542 { 1543 struct mii_bus *bus = phydev->mdio.bus; 1544 struct phy_package_shared *shared; 1545 int ret; 1546 1547 if (addr < 0 || addr >= PHY_MAX_ADDR) 1548 return -EINVAL; 1549 1550 mutex_lock(&bus->shared_lock); 1551 shared = bus->shared[addr]; 1552 if (!shared) { 1553 ret = -ENOMEM; 1554 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1555 if (!shared) 1556 goto err_unlock; 1557 if (priv_size) { 1558 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1559 if (!shared->priv) 1560 goto err_free; 1561 shared->priv_size = priv_size; 1562 } 1563 shared->addr = addr; 1564 refcount_set(&shared->refcnt, 1); 1565 bus->shared[addr] = shared; 1566 } else { 1567 ret = -EINVAL; 1568 if (priv_size && priv_size != shared->priv_size) 1569 goto err_unlock; 1570 refcount_inc(&shared->refcnt); 1571 } 1572 mutex_unlock(&bus->shared_lock); 1573 1574 phydev->shared = shared; 1575 1576 return 0; 1577 1578 err_free: 1579 kfree(shared); 1580 err_unlock: 1581 mutex_unlock(&bus->shared_lock); 1582 return ret; 1583 } 1584 EXPORT_SYMBOL_GPL(phy_package_join); 1585 1586 /** 1587 * phy_package_leave - leave a common PHY group 1588 * @phydev: target phy_device struct 1589 * 1590 * This leaves a PHY group created by phy_package_join(). If this phydev 1591 * was the last user of the shared data between the group, this data is 1592 * freed. Resets the phydev->shared pointer to NULL. 1593 */ 1594 void phy_package_leave(struct phy_device *phydev) 1595 { 1596 struct phy_package_shared *shared = phydev->shared; 1597 struct mii_bus *bus = phydev->mdio.bus; 1598 1599 if (!shared) 1600 return; 1601 1602 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1603 bus->shared[shared->addr] = NULL; 1604 mutex_unlock(&bus->shared_lock); 1605 kfree(shared->priv); 1606 kfree(shared); 1607 } 1608 1609 phydev->shared = NULL; 1610 } 1611 EXPORT_SYMBOL_GPL(phy_package_leave); 1612 1613 static void devm_phy_package_leave(struct device *dev, void *res) 1614 { 1615 phy_package_leave(*(struct phy_device **)res); 1616 } 1617 1618 /** 1619 * devm_phy_package_join - resource managed phy_package_join() 1620 * @dev: device that is registering this PHY package 1621 * @phydev: target phy_device struct 1622 * @addr: cookie and PHY address for global register access 1623 * @priv_size: if non-zero allocate this amount of bytes for private data 1624 * 1625 * Managed phy_package_join(). Shared storage fetched by this function, 1626 * phy_package_leave() is automatically called on driver detach. See 1627 * phy_package_join() for more information. 1628 */ 1629 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1630 int addr, size_t priv_size) 1631 { 1632 struct phy_device **ptr; 1633 int ret; 1634 1635 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1636 GFP_KERNEL); 1637 if (!ptr) 1638 return -ENOMEM; 1639 1640 ret = phy_package_join(phydev, addr, priv_size); 1641 1642 if (!ret) { 1643 *ptr = phydev; 1644 devres_add(dev, ptr); 1645 } else { 1646 devres_free(ptr); 1647 } 1648 1649 return ret; 1650 } 1651 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1652 1653 /** 1654 * phy_detach - detach a PHY device from its network device 1655 * @phydev: target phy_device struct 1656 * 1657 * This detaches the phy device from its network device and the phy 1658 * driver, and drops the reference count taken in phy_attach_direct(). 1659 */ 1660 void phy_detach(struct phy_device *phydev) 1661 { 1662 struct net_device *dev = phydev->attached_dev; 1663 struct module *ndev_owner = NULL; 1664 struct mii_bus *bus; 1665 1666 if (phydev->sysfs_links) { 1667 if (dev) 1668 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1669 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1670 } 1671 1672 if (!phydev->attached_dev) 1673 sysfs_remove_file(&phydev->mdio.dev.kobj, 1674 &dev_attr_phy_standalone.attr); 1675 1676 phy_suspend(phydev); 1677 if (dev) { 1678 phydev->attached_dev->phydev = NULL; 1679 phydev->attached_dev = NULL; 1680 } 1681 phydev->phylink = NULL; 1682 1683 phy_led_triggers_unregister(phydev); 1684 1685 module_put(phydev->mdio.dev.driver->owner); 1686 1687 /* If the device had no specific driver before (i.e. - it 1688 * was using the generic driver), we unbind the device 1689 * from the generic driver so that there's a chance a 1690 * real driver could be loaded 1691 */ 1692 if (phy_driver_is_genphy(phydev) || 1693 phy_driver_is_genphy_10g(phydev)) 1694 device_release_driver(&phydev->mdio.dev); 1695 1696 /* 1697 * The phydev might go away on the put_device() below, so avoid 1698 * a use-after-free bug by reading the underlying bus first. 1699 */ 1700 bus = phydev->mdio.bus; 1701 1702 put_device(&phydev->mdio.dev); 1703 if (dev) 1704 ndev_owner = dev->dev.parent->driver->owner; 1705 if (ndev_owner != bus->owner) 1706 module_put(bus->owner); 1707 1708 /* Assert the reset signal */ 1709 phy_device_reset(phydev, 1); 1710 } 1711 EXPORT_SYMBOL(phy_detach); 1712 1713 int phy_suspend(struct phy_device *phydev) 1714 { 1715 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1716 struct net_device *netdev = phydev->attached_dev; 1717 struct phy_driver *phydrv = phydev->drv; 1718 int ret; 1719 1720 if (phydev->suspended) 1721 return 0; 1722 1723 /* If the device has WOL enabled, we cannot suspend the PHY */ 1724 phy_ethtool_get_wol(phydev, &wol); 1725 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1726 return -EBUSY; 1727 1728 if (!phydrv || !phydrv->suspend) 1729 return 0; 1730 1731 ret = phydrv->suspend(phydev); 1732 if (!ret) 1733 phydev->suspended = true; 1734 1735 return ret; 1736 } 1737 EXPORT_SYMBOL(phy_suspend); 1738 1739 int __phy_resume(struct phy_device *phydev) 1740 { 1741 struct phy_driver *phydrv = phydev->drv; 1742 int ret; 1743 1744 WARN_ON(!mutex_is_locked(&phydev->lock)); 1745 1746 if (!phydrv || !phydrv->resume) 1747 return 0; 1748 1749 ret = phydrv->resume(phydev); 1750 if (!ret) 1751 phydev->suspended = false; 1752 1753 return ret; 1754 } 1755 EXPORT_SYMBOL(__phy_resume); 1756 1757 int phy_resume(struct phy_device *phydev) 1758 { 1759 int ret; 1760 1761 mutex_lock(&phydev->lock); 1762 ret = __phy_resume(phydev); 1763 mutex_unlock(&phydev->lock); 1764 1765 return ret; 1766 } 1767 EXPORT_SYMBOL(phy_resume); 1768 1769 int phy_loopback(struct phy_device *phydev, bool enable) 1770 { 1771 struct phy_driver *phydrv = to_phy_driver(phydev->mdio.dev.driver); 1772 int ret = 0; 1773 1774 mutex_lock(&phydev->lock); 1775 1776 if (enable && phydev->loopback_enabled) { 1777 ret = -EBUSY; 1778 goto out; 1779 } 1780 1781 if (!enable && !phydev->loopback_enabled) { 1782 ret = -EINVAL; 1783 goto out; 1784 } 1785 1786 if (phydev->drv && phydrv->set_loopback) 1787 ret = phydrv->set_loopback(phydev, enable); 1788 else 1789 ret = -EOPNOTSUPP; 1790 1791 if (ret) 1792 goto out; 1793 1794 phydev->loopback_enabled = enable; 1795 1796 out: 1797 mutex_unlock(&phydev->lock); 1798 return ret; 1799 } 1800 EXPORT_SYMBOL(phy_loopback); 1801 1802 /** 1803 * phy_reset_after_clk_enable - perform a PHY reset if needed 1804 * @phydev: target phy_device struct 1805 * 1806 * Description: Some PHYs are known to need a reset after their refclk was 1807 * enabled. This function evaluates the flags and perform the reset if it's 1808 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1809 * was reset. 1810 */ 1811 int phy_reset_after_clk_enable(struct phy_device *phydev) 1812 { 1813 if (!phydev || !phydev->drv) 1814 return -ENODEV; 1815 1816 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1817 phy_device_reset(phydev, 1); 1818 phy_device_reset(phydev, 0); 1819 return 1; 1820 } 1821 1822 return 0; 1823 } 1824 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1825 1826 /* Generic PHY support and helper functions */ 1827 1828 /** 1829 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1830 * @phydev: target phy_device struct 1831 * 1832 * Description: Writes MII_ADVERTISE with the appropriate values, 1833 * after sanitizing the values to make sure we only advertise 1834 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1835 * hasn't changed, and > 0 if it has changed. 1836 */ 1837 static int genphy_config_advert(struct phy_device *phydev) 1838 { 1839 int err, bmsr, changed = 0; 1840 u32 adv; 1841 1842 /* Only allow advertising what this PHY supports */ 1843 linkmode_and(phydev->advertising, phydev->advertising, 1844 phydev->supported); 1845 1846 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1847 1848 /* Setup standard advertisement */ 1849 err = phy_modify_changed(phydev, MII_ADVERTISE, 1850 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1851 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1852 adv); 1853 if (err < 0) 1854 return err; 1855 if (err > 0) 1856 changed = 1; 1857 1858 bmsr = phy_read(phydev, MII_BMSR); 1859 if (bmsr < 0) 1860 return bmsr; 1861 1862 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1863 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1864 * logical 1. 1865 */ 1866 if (!(bmsr & BMSR_ESTATEN)) 1867 return changed; 1868 1869 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1870 1871 err = phy_modify_changed(phydev, MII_CTRL1000, 1872 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1873 adv); 1874 if (err < 0) 1875 return err; 1876 if (err > 0) 1877 changed = 1; 1878 1879 return changed; 1880 } 1881 1882 /** 1883 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1884 * @phydev: target phy_device struct 1885 * 1886 * Description: Writes MII_ADVERTISE with the appropriate values, 1887 * after sanitizing the values to make sure we only advertise 1888 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1889 * hasn't changed, and > 0 if it has changed. This function is intended 1890 * for Clause 37 1000Base-X mode. 1891 */ 1892 static int genphy_c37_config_advert(struct phy_device *phydev) 1893 { 1894 u16 adv = 0; 1895 1896 /* Only allow advertising what this PHY supports */ 1897 linkmode_and(phydev->advertising, phydev->advertising, 1898 phydev->supported); 1899 1900 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1901 phydev->advertising)) 1902 adv |= ADVERTISE_1000XFULL; 1903 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1904 phydev->advertising)) 1905 adv |= ADVERTISE_1000XPAUSE; 1906 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1907 phydev->advertising)) 1908 adv |= ADVERTISE_1000XPSE_ASYM; 1909 1910 return phy_modify_changed(phydev, MII_ADVERTISE, 1911 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1912 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1913 adv); 1914 } 1915 1916 /** 1917 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1918 * @phydev: target phy_device struct 1919 * 1920 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1921 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 1922 * changed, and 1 if it has changed. 1923 */ 1924 int genphy_config_eee_advert(struct phy_device *phydev) 1925 { 1926 int err; 1927 1928 /* Nothing to disable */ 1929 if (!phydev->eee_broken_modes) 1930 return 0; 1931 1932 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 1933 phydev->eee_broken_modes, 0); 1934 /* If the call failed, we assume that EEE is not supported */ 1935 return err < 0 ? 0 : err; 1936 } 1937 EXPORT_SYMBOL(genphy_config_eee_advert); 1938 1939 /** 1940 * genphy_setup_forced - configures/forces speed/duplex from @phydev 1941 * @phydev: target phy_device struct 1942 * 1943 * Description: Configures MII_BMCR to force speed/duplex 1944 * to the values in phydev. Assumes that the values are valid. 1945 * Please see phy_sanitize_settings(). 1946 */ 1947 int genphy_setup_forced(struct phy_device *phydev) 1948 { 1949 u16 ctl = 0; 1950 1951 phydev->pause = 0; 1952 phydev->asym_pause = 0; 1953 1954 if (SPEED_1000 == phydev->speed) 1955 ctl |= BMCR_SPEED1000; 1956 else if (SPEED_100 == phydev->speed) 1957 ctl |= BMCR_SPEED100; 1958 1959 if (DUPLEX_FULL == phydev->duplex) 1960 ctl |= BMCR_FULLDPLX; 1961 1962 return phy_modify(phydev, MII_BMCR, 1963 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 1964 } 1965 EXPORT_SYMBOL(genphy_setup_forced); 1966 1967 static int genphy_setup_master_slave(struct phy_device *phydev) 1968 { 1969 u16 ctl = 0; 1970 1971 if (!phydev->is_gigabit_capable) 1972 return 0; 1973 1974 switch (phydev->master_slave_set) { 1975 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 1976 ctl |= CTL1000_PREFER_MASTER; 1977 break; 1978 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 1979 break; 1980 case MASTER_SLAVE_CFG_MASTER_FORCE: 1981 ctl |= CTL1000_AS_MASTER; 1982 fallthrough; 1983 case MASTER_SLAVE_CFG_SLAVE_FORCE: 1984 ctl |= CTL1000_ENABLE_MASTER; 1985 break; 1986 case MASTER_SLAVE_CFG_UNKNOWN: 1987 case MASTER_SLAVE_CFG_UNSUPPORTED: 1988 return 0; 1989 default: 1990 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 1991 return -EOPNOTSUPP; 1992 } 1993 1994 return phy_modify_changed(phydev, MII_CTRL1000, 1995 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 1996 CTL1000_PREFER_MASTER), ctl); 1997 } 1998 1999 static int genphy_read_master_slave(struct phy_device *phydev) 2000 { 2001 int cfg, state; 2002 int val; 2003 2004 if (!phydev->is_gigabit_capable) { 2005 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2006 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2007 return 0; 2008 } 2009 2010 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2011 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2012 2013 val = phy_read(phydev, MII_CTRL1000); 2014 if (val < 0) 2015 return val; 2016 2017 if (val & CTL1000_ENABLE_MASTER) { 2018 if (val & CTL1000_AS_MASTER) 2019 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2020 else 2021 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2022 } else { 2023 if (val & CTL1000_PREFER_MASTER) 2024 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2025 else 2026 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2027 } 2028 2029 val = phy_read(phydev, MII_STAT1000); 2030 if (val < 0) 2031 return val; 2032 2033 if (val & LPA_1000MSFAIL) { 2034 state = MASTER_SLAVE_STATE_ERR; 2035 } else if (phydev->link) { 2036 /* this bits are valid only for active link */ 2037 if (val & LPA_1000MSRES) 2038 state = MASTER_SLAVE_STATE_MASTER; 2039 else 2040 state = MASTER_SLAVE_STATE_SLAVE; 2041 } else { 2042 state = MASTER_SLAVE_STATE_UNKNOWN; 2043 } 2044 2045 phydev->master_slave_get = cfg; 2046 phydev->master_slave_state = state; 2047 2048 return 0; 2049 } 2050 2051 /** 2052 * genphy_restart_aneg - Enable and Restart Autonegotiation 2053 * @phydev: target phy_device struct 2054 */ 2055 int genphy_restart_aneg(struct phy_device *phydev) 2056 { 2057 /* Don't isolate the PHY if we're negotiating */ 2058 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2059 BMCR_ANENABLE | BMCR_ANRESTART); 2060 } 2061 EXPORT_SYMBOL(genphy_restart_aneg); 2062 2063 /** 2064 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2065 * @phydev: target phy_device struct 2066 * @restart: whether aneg restart is requested 2067 * 2068 * Check, and restart auto-negotiation if needed. 2069 */ 2070 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2071 { 2072 int ret; 2073 2074 if (!restart) { 2075 /* Advertisement hasn't changed, but maybe aneg was never on to 2076 * begin with? Or maybe phy was isolated? 2077 */ 2078 ret = phy_read(phydev, MII_BMCR); 2079 if (ret < 0) 2080 return ret; 2081 2082 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2083 restart = true; 2084 } 2085 2086 if (restart) 2087 return genphy_restart_aneg(phydev); 2088 2089 return 0; 2090 } 2091 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2092 2093 /** 2094 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2095 * @phydev: target phy_device struct 2096 * @changed: whether autoneg is requested 2097 * 2098 * Description: If auto-negotiation is enabled, we configure the 2099 * advertising, and then restart auto-negotiation. If it is not 2100 * enabled, then we write the BMCR. 2101 */ 2102 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2103 { 2104 int err; 2105 2106 if (genphy_config_eee_advert(phydev)) 2107 changed = true; 2108 2109 err = genphy_setup_master_slave(phydev); 2110 if (err < 0) 2111 return err; 2112 else if (err) 2113 changed = true; 2114 2115 if (AUTONEG_ENABLE != phydev->autoneg) 2116 return genphy_setup_forced(phydev); 2117 2118 err = genphy_config_advert(phydev); 2119 if (err < 0) /* error */ 2120 return err; 2121 else if (err) 2122 changed = true; 2123 2124 return genphy_check_and_restart_aneg(phydev, changed); 2125 } 2126 EXPORT_SYMBOL(__genphy_config_aneg); 2127 2128 /** 2129 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2130 * @phydev: target phy_device struct 2131 * 2132 * Description: If auto-negotiation is enabled, we configure the 2133 * advertising, and then restart auto-negotiation. If it is not 2134 * enabled, then we write the BMCR. This function is intended 2135 * for use with Clause 37 1000Base-X mode. 2136 */ 2137 int genphy_c37_config_aneg(struct phy_device *phydev) 2138 { 2139 int err, changed; 2140 2141 if (phydev->autoneg != AUTONEG_ENABLE) 2142 return genphy_setup_forced(phydev); 2143 2144 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2145 BMCR_SPEED1000); 2146 if (err) 2147 return err; 2148 2149 changed = genphy_c37_config_advert(phydev); 2150 if (changed < 0) /* error */ 2151 return changed; 2152 2153 if (!changed) { 2154 /* Advertisement hasn't changed, but maybe aneg was never on to 2155 * begin with? Or maybe phy was isolated? 2156 */ 2157 int ctl = phy_read(phydev, MII_BMCR); 2158 2159 if (ctl < 0) 2160 return ctl; 2161 2162 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2163 changed = 1; /* do restart aneg */ 2164 } 2165 2166 /* Only restart aneg if we are advertising something different 2167 * than we were before. 2168 */ 2169 if (changed > 0) 2170 return genphy_restart_aneg(phydev); 2171 2172 return 0; 2173 } 2174 EXPORT_SYMBOL(genphy_c37_config_aneg); 2175 2176 /** 2177 * genphy_aneg_done - return auto-negotiation status 2178 * @phydev: target phy_device struct 2179 * 2180 * Description: Reads the status register and returns 0 either if 2181 * auto-negotiation is incomplete, or if there was an error. 2182 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2183 */ 2184 int genphy_aneg_done(struct phy_device *phydev) 2185 { 2186 int retval = phy_read(phydev, MII_BMSR); 2187 2188 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2189 } 2190 EXPORT_SYMBOL(genphy_aneg_done); 2191 2192 /** 2193 * genphy_update_link - update link status in @phydev 2194 * @phydev: target phy_device struct 2195 * 2196 * Description: Update the value in phydev->link to reflect the 2197 * current link value. In order to do this, we need to read 2198 * the status register twice, keeping the second value. 2199 */ 2200 int genphy_update_link(struct phy_device *phydev) 2201 { 2202 int status = 0, bmcr; 2203 2204 bmcr = phy_read(phydev, MII_BMCR); 2205 if (bmcr < 0) 2206 return bmcr; 2207 2208 /* Autoneg is being started, therefore disregard BMSR value and 2209 * report link as down. 2210 */ 2211 if (bmcr & BMCR_ANRESTART) 2212 goto done; 2213 2214 /* The link state is latched low so that momentary link 2215 * drops can be detected. Do not double-read the status 2216 * in polling mode to detect such short link drops except 2217 * the link was already down. 2218 */ 2219 if (!phy_polling_mode(phydev) || !phydev->link) { 2220 status = phy_read(phydev, MII_BMSR); 2221 if (status < 0) 2222 return status; 2223 else if (status & BMSR_LSTATUS) 2224 goto done; 2225 } 2226 2227 /* Read link and autonegotiation status */ 2228 status = phy_read(phydev, MII_BMSR); 2229 if (status < 0) 2230 return status; 2231 done: 2232 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2233 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2234 2235 /* Consider the case that autoneg was started and "aneg complete" 2236 * bit has been reset, but "link up" bit not yet. 2237 */ 2238 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2239 phydev->link = 0; 2240 2241 return 0; 2242 } 2243 EXPORT_SYMBOL(genphy_update_link); 2244 2245 int genphy_read_lpa(struct phy_device *phydev) 2246 { 2247 int lpa, lpagb; 2248 2249 if (phydev->autoneg == AUTONEG_ENABLE) { 2250 if (!phydev->autoneg_complete) { 2251 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2252 0); 2253 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2254 return 0; 2255 } 2256 2257 if (phydev->is_gigabit_capable) { 2258 lpagb = phy_read(phydev, MII_STAT1000); 2259 if (lpagb < 0) 2260 return lpagb; 2261 2262 if (lpagb & LPA_1000MSFAIL) { 2263 int adv = phy_read(phydev, MII_CTRL1000); 2264 2265 if (adv < 0) 2266 return adv; 2267 2268 if (adv & CTL1000_ENABLE_MASTER) 2269 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2270 else 2271 phydev_err(phydev, "Master/Slave resolution failed\n"); 2272 return -ENOLINK; 2273 } 2274 2275 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2276 lpagb); 2277 } 2278 2279 lpa = phy_read(phydev, MII_LPA); 2280 if (lpa < 0) 2281 return lpa; 2282 2283 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2284 } else { 2285 linkmode_zero(phydev->lp_advertising); 2286 } 2287 2288 return 0; 2289 } 2290 EXPORT_SYMBOL(genphy_read_lpa); 2291 2292 /** 2293 * genphy_read_status_fixed - read the link parameters for !aneg mode 2294 * @phydev: target phy_device struct 2295 * 2296 * Read the current duplex and speed state for a PHY operating with 2297 * autonegotiation disabled. 2298 */ 2299 int genphy_read_status_fixed(struct phy_device *phydev) 2300 { 2301 int bmcr = phy_read(phydev, MII_BMCR); 2302 2303 if (bmcr < 0) 2304 return bmcr; 2305 2306 if (bmcr & BMCR_FULLDPLX) 2307 phydev->duplex = DUPLEX_FULL; 2308 else 2309 phydev->duplex = DUPLEX_HALF; 2310 2311 if (bmcr & BMCR_SPEED1000) 2312 phydev->speed = SPEED_1000; 2313 else if (bmcr & BMCR_SPEED100) 2314 phydev->speed = SPEED_100; 2315 else 2316 phydev->speed = SPEED_10; 2317 2318 return 0; 2319 } 2320 EXPORT_SYMBOL(genphy_read_status_fixed); 2321 2322 /** 2323 * genphy_read_status - check the link status and update current link state 2324 * @phydev: target phy_device struct 2325 * 2326 * Description: Check the link, then figure out the current state 2327 * by comparing what we advertise with what the link partner 2328 * advertises. Start by checking the gigabit possibilities, 2329 * then move on to 10/100. 2330 */ 2331 int genphy_read_status(struct phy_device *phydev) 2332 { 2333 int err, old_link = phydev->link; 2334 2335 /* Update the link, but return if there was an error */ 2336 err = genphy_update_link(phydev); 2337 if (err) 2338 return err; 2339 2340 /* why bother the PHY if nothing can have changed */ 2341 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2342 return 0; 2343 2344 phydev->speed = SPEED_UNKNOWN; 2345 phydev->duplex = DUPLEX_UNKNOWN; 2346 phydev->pause = 0; 2347 phydev->asym_pause = 0; 2348 2349 err = genphy_read_master_slave(phydev); 2350 if (err < 0) 2351 return err; 2352 2353 err = genphy_read_lpa(phydev); 2354 if (err < 0) 2355 return err; 2356 2357 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2358 phy_resolve_aneg_linkmode(phydev); 2359 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2360 err = genphy_read_status_fixed(phydev); 2361 if (err < 0) 2362 return err; 2363 } 2364 2365 return 0; 2366 } 2367 EXPORT_SYMBOL(genphy_read_status); 2368 2369 /** 2370 * genphy_c37_read_status - check the link status and update current link state 2371 * @phydev: target phy_device struct 2372 * 2373 * Description: Check the link, then figure out the current state 2374 * by comparing what we advertise with what the link partner 2375 * advertises. This function is for Clause 37 1000Base-X mode. 2376 */ 2377 int genphy_c37_read_status(struct phy_device *phydev) 2378 { 2379 int lpa, err, old_link = phydev->link; 2380 2381 /* Update the link, but return if there was an error */ 2382 err = genphy_update_link(phydev); 2383 if (err) 2384 return err; 2385 2386 /* why bother the PHY if nothing can have changed */ 2387 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2388 return 0; 2389 2390 phydev->duplex = DUPLEX_UNKNOWN; 2391 phydev->pause = 0; 2392 phydev->asym_pause = 0; 2393 2394 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2395 lpa = phy_read(phydev, MII_LPA); 2396 if (lpa < 0) 2397 return lpa; 2398 2399 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2400 phydev->lp_advertising, lpa & LPA_LPACK); 2401 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2402 phydev->lp_advertising, lpa & LPA_1000XFULL); 2403 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2404 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2405 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2406 phydev->lp_advertising, 2407 lpa & LPA_1000XPAUSE_ASYM); 2408 2409 phy_resolve_aneg_linkmode(phydev); 2410 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2411 int bmcr = phy_read(phydev, MII_BMCR); 2412 2413 if (bmcr < 0) 2414 return bmcr; 2415 2416 if (bmcr & BMCR_FULLDPLX) 2417 phydev->duplex = DUPLEX_FULL; 2418 else 2419 phydev->duplex = DUPLEX_HALF; 2420 } 2421 2422 return 0; 2423 } 2424 EXPORT_SYMBOL(genphy_c37_read_status); 2425 2426 /** 2427 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2428 * @phydev: target phy_device struct 2429 * 2430 * Description: Perform a software PHY reset using the standard 2431 * BMCR_RESET bit and poll for the reset bit to be cleared. 2432 * 2433 * Returns: 0 on success, < 0 on failure 2434 */ 2435 int genphy_soft_reset(struct phy_device *phydev) 2436 { 2437 u16 res = BMCR_RESET; 2438 int ret; 2439 2440 if (phydev->autoneg == AUTONEG_ENABLE) 2441 res |= BMCR_ANRESTART; 2442 2443 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2444 if (ret < 0) 2445 return ret; 2446 2447 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2448 * to their default value. Therefore the POWER DOWN bit is supposed to 2449 * be cleared after soft reset. 2450 */ 2451 phydev->suspended = 0; 2452 2453 ret = phy_poll_reset(phydev); 2454 if (ret) 2455 return ret; 2456 2457 /* BMCR may be reset to defaults */ 2458 if (phydev->autoneg == AUTONEG_DISABLE) 2459 ret = genphy_setup_forced(phydev); 2460 2461 return ret; 2462 } 2463 EXPORT_SYMBOL(genphy_soft_reset); 2464 2465 /** 2466 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2467 * @phydev: target phy_device struct 2468 * 2469 * Description: Reads the PHY's abilities and populates 2470 * phydev->supported accordingly. 2471 * 2472 * Returns: 0 on success, < 0 on failure 2473 */ 2474 int genphy_read_abilities(struct phy_device *phydev) 2475 { 2476 int val; 2477 2478 linkmode_set_bit_array(phy_basic_ports_array, 2479 ARRAY_SIZE(phy_basic_ports_array), 2480 phydev->supported); 2481 2482 val = phy_read(phydev, MII_BMSR); 2483 if (val < 0) 2484 return val; 2485 2486 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2487 val & BMSR_ANEGCAPABLE); 2488 2489 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2490 val & BMSR_100FULL); 2491 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2492 val & BMSR_100HALF); 2493 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2494 val & BMSR_10FULL); 2495 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2496 val & BMSR_10HALF); 2497 2498 if (val & BMSR_ESTATEN) { 2499 val = phy_read(phydev, MII_ESTATUS); 2500 if (val < 0) 2501 return val; 2502 2503 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2504 phydev->supported, val & ESTATUS_1000_TFULL); 2505 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2506 phydev->supported, val & ESTATUS_1000_THALF); 2507 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2508 phydev->supported, val & ESTATUS_1000_XFULL); 2509 } 2510 2511 return 0; 2512 } 2513 EXPORT_SYMBOL(genphy_read_abilities); 2514 2515 /* This is used for the phy device which doesn't support the MMD extended 2516 * register access, but it does have side effect when we are trying to access 2517 * the MMD register via indirect method. 2518 */ 2519 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2520 { 2521 return -EOPNOTSUPP; 2522 } 2523 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2524 2525 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2526 u16 regnum, u16 val) 2527 { 2528 return -EOPNOTSUPP; 2529 } 2530 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2531 2532 int genphy_suspend(struct phy_device *phydev) 2533 { 2534 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2535 } 2536 EXPORT_SYMBOL(genphy_suspend); 2537 2538 int genphy_resume(struct phy_device *phydev) 2539 { 2540 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2541 } 2542 EXPORT_SYMBOL(genphy_resume); 2543 2544 int genphy_loopback(struct phy_device *phydev, bool enable) 2545 { 2546 return phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 2547 enable ? BMCR_LOOPBACK : 0); 2548 } 2549 EXPORT_SYMBOL(genphy_loopback); 2550 2551 /** 2552 * phy_remove_link_mode - Remove a supported link mode 2553 * @phydev: phy_device structure to remove link mode from 2554 * @link_mode: Link mode to be removed 2555 * 2556 * Description: Some MACs don't support all link modes which the PHY 2557 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2558 * to remove a link mode. 2559 */ 2560 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2561 { 2562 linkmode_clear_bit(link_mode, phydev->supported); 2563 phy_advertise_supported(phydev); 2564 } 2565 EXPORT_SYMBOL(phy_remove_link_mode); 2566 2567 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2568 { 2569 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2570 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2571 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2572 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2573 } 2574 2575 /** 2576 * phy_advertise_supported - Advertise all supported modes 2577 * @phydev: target phy_device struct 2578 * 2579 * Description: Called to advertise all supported modes, doesn't touch 2580 * pause mode advertising. 2581 */ 2582 void phy_advertise_supported(struct phy_device *phydev) 2583 { 2584 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2585 2586 linkmode_copy(new, phydev->supported); 2587 phy_copy_pause_bits(new, phydev->advertising); 2588 linkmode_copy(phydev->advertising, new); 2589 } 2590 EXPORT_SYMBOL(phy_advertise_supported); 2591 2592 /** 2593 * phy_support_sym_pause - Enable support of symmetrical pause 2594 * @phydev: target phy_device struct 2595 * 2596 * Description: Called by the MAC to indicate is supports symmetrical 2597 * Pause, but not asym pause. 2598 */ 2599 void phy_support_sym_pause(struct phy_device *phydev) 2600 { 2601 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2602 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2603 } 2604 EXPORT_SYMBOL(phy_support_sym_pause); 2605 2606 /** 2607 * phy_support_asym_pause - Enable support of asym pause 2608 * @phydev: target phy_device struct 2609 * 2610 * Description: Called by the MAC to indicate is supports Asym Pause. 2611 */ 2612 void phy_support_asym_pause(struct phy_device *phydev) 2613 { 2614 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2615 } 2616 EXPORT_SYMBOL(phy_support_asym_pause); 2617 2618 /** 2619 * phy_set_sym_pause - Configure symmetric Pause 2620 * @phydev: target phy_device struct 2621 * @rx: Receiver Pause is supported 2622 * @tx: Transmit Pause is supported 2623 * @autoneg: Auto neg should be used 2624 * 2625 * Description: Configure advertised Pause support depending on if 2626 * receiver pause and pause auto neg is supported. Generally called 2627 * from the set_pauseparam .ndo. 2628 */ 2629 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2630 bool autoneg) 2631 { 2632 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2633 2634 if (rx && tx && autoneg) 2635 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2636 phydev->supported); 2637 2638 linkmode_copy(phydev->advertising, phydev->supported); 2639 } 2640 EXPORT_SYMBOL(phy_set_sym_pause); 2641 2642 /** 2643 * phy_set_asym_pause - Configure Pause and Asym Pause 2644 * @phydev: target phy_device struct 2645 * @rx: Receiver Pause is supported 2646 * @tx: Transmit Pause is supported 2647 * 2648 * Description: Configure advertised Pause support depending on if 2649 * transmit and receiver pause is supported. If there has been a 2650 * change in adverting, trigger a new autoneg. Generally called from 2651 * the set_pauseparam .ndo. 2652 */ 2653 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2654 { 2655 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2656 2657 linkmode_copy(oldadv, phydev->advertising); 2658 linkmode_set_pause(phydev->advertising, tx, rx); 2659 2660 if (!linkmode_equal(oldadv, phydev->advertising) && 2661 phydev->autoneg) 2662 phy_start_aneg(phydev); 2663 } 2664 EXPORT_SYMBOL(phy_set_asym_pause); 2665 2666 /** 2667 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2668 * @phydev: phy_device struct 2669 * @pp: requested pause configuration 2670 * 2671 * Description: Test if the PHY/MAC combination supports the Pause 2672 * configuration the user is requesting. Returns True if it is 2673 * supported, false otherwise. 2674 */ 2675 bool phy_validate_pause(struct phy_device *phydev, 2676 struct ethtool_pauseparam *pp) 2677 { 2678 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2679 phydev->supported) && pp->rx_pause) 2680 return false; 2681 2682 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2683 phydev->supported) && 2684 pp->rx_pause != pp->tx_pause) 2685 return false; 2686 2687 return true; 2688 } 2689 EXPORT_SYMBOL(phy_validate_pause); 2690 2691 /** 2692 * phy_get_pause - resolve negotiated pause modes 2693 * @phydev: phy_device struct 2694 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2695 * enabled. 2696 * @rx_pause: pointer to bool to indicate whether receive pause should be 2697 * enabled. 2698 * 2699 * Resolve and return the flow control modes according to the negotiation 2700 * result. This includes checking that we are operating in full duplex mode. 2701 * See linkmode_resolve_pause() for further details. 2702 */ 2703 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2704 { 2705 if (phydev->duplex != DUPLEX_FULL) { 2706 *tx_pause = false; 2707 *rx_pause = false; 2708 return; 2709 } 2710 2711 return linkmode_resolve_pause(phydev->advertising, 2712 phydev->lp_advertising, 2713 tx_pause, rx_pause); 2714 } 2715 EXPORT_SYMBOL(phy_get_pause); 2716 2717 #if IS_ENABLED(CONFIG_OF_MDIO) 2718 static int phy_get_int_delay_property(struct device *dev, const char *name) 2719 { 2720 s32 int_delay; 2721 int ret; 2722 2723 ret = device_property_read_u32(dev, name, &int_delay); 2724 if (ret) 2725 return ret; 2726 2727 return int_delay; 2728 } 2729 #else 2730 static int phy_get_int_delay_property(struct device *dev, const char *name) 2731 { 2732 return -EINVAL; 2733 } 2734 #endif 2735 2736 /** 2737 * phy_get_delay_index - returns the index of the internal delay 2738 * @phydev: phy_device struct 2739 * @dev: pointer to the devices device struct 2740 * @delay_values: array of delays the PHY supports 2741 * @size: the size of the delay array 2742 * @is_rx: boolean to indicate to get the rx internal delay 2743 * 2744 * Returns the index within the array of internal delay passed in. 2745 * If the device property is not present then the interface type is checked 2746 * if the interface defines use of internal delay then a 1 is returned otherwise 2747 * a 0 is returned. 2748 * The array must be in ascending order. If PHY does not have an ascending order 2749 * array then size = 0 and the value of the delay property is returned. 2750 * Return -EINVAL if the delay is invalid or cannot be found. 2751 */ 2752 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2753 const int *delay_values, int size, bool is_rx) 2754 { 2755 s32 delay; 2756 int i; 2757 2758 if (is_rx) { 2759 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2760 if (delay < 0 && size == 0) { 2761 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2762 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2763 return 1; 2764 else 2765 return 0; 2766 } 2767 2768 } else { 2769 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2770 if (delay < 0 && size == 0) { 2771 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2772 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2773 return 1; 2774 else 2775 return 0; 2776 } 2777 } 2778 2779 if (delay < 0) 2780 return delay; 2781 2782 if (delay && size == 0) 2783 return delay; 2784 2785 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2786 phydev_err(phydev, "Delay %d is out of range\n", delay); 2787 return -EINVAL; 2788 } 2789 2790 if (delay == delay_values[0]) 2791 return 0; 2792 2793 for (i = 1; i < size; i++) { 2794 if (delay == delay_values[i]) 2795 return i; 2796 2797 /* Find an approximate index by looking up the table */ 2798 if (delay > delay_values[i - 1] && 2799 delay < delay_values[i]) { 2800 if (delay - delay_values[i - 1] < 2801 delay_values[i] - delay) 2802 return i - 1; 2803 else 2804 return i; 2805 } 2806 } 2807 2808 phydev_err(phydev, "error finding internal delay index for %d\n", 2809 delay); 2810 2811 return -EINVAL; 2812 } 2813 EXPORT_SYMBOL(phy_get_internal_delay); 2814 2815 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2816 { 2817 return phydrv->config_intr && phydrv->ack_interrupt; 2818 } 2819 2820 /** 2821 * phy_probe - probe and init a PHY device 2822 * @dev: device to probe and init 2823 * 2824 * Description: Take care of setting up the phy_device structure, 2825 * set the state to READY (the driver's init function should 2826 * set it to STARTING if needed). 2827 */ 2828 static int phy_probe(struct device *dev) 2829 { 2830 struct phy_device *phydev = to_phy_device(dev); 2831 struct device_driver *drv = phydev->mdio.dev.driver; 2832 struct phy_driver *phydrv = to_phy_driver(drv); 2833 int err = 0; 2834 2835 phydev->drv = phydrv; 2836 2837 /* Disable the interrupt if the PHY doesn't support it 2838 * but the interrupt is still a valid one 2839 */ 2840 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 2841 phydev->irq = PHY_POLL; 2842 2843 if (phydrv->flags & PHY_IS_INTERNAL) 2844 phydev->is_internal = true; 2845 2846 mutex_lock(&phydev->lock); 2847 2848 /* Deassert the reset signal */ 2849 phy_device_reset(phydev, 0); 2850 2851 if (phydev->drv->probe) { 2852 err = phydev->drv->probe(phydev); 2853 if (err) 2854 goto out; 2855 } 2856 2857 /* Start out supporting everything. Eventually, 2858 * a controller will attach, and may modify one 2859 * or both of these values 2860 */ 2861 if (phydrv->features) { 2862 linkmode_copy(phydev->supported, phydrv->features); 2863 } else if (phydrv->get_features) { 2864 err = phydrv->get_features(phydev); 2865 } else if (phydev->is_c45) { 2866 err = genphy_c45_pma_read_abilities(phydev); 2867 } else { 2868 err = genphy_read_abilities(phydev); 2869 } 2870 2871 if (err) 2872 goto out; 2873 2874 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2875 phydev->supported)) 2876 phydev->autoneg = 0; 2877 2878 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2879 phydev->supported)) 2880 phydev->is_gigabit_capable = 1; 2881 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2882 phydev->supported)) 2883 phydev->is_gigabit_capable = 1; 2884 2885 of_set_phy_supported(phydev); 2886 phy_advertise_supported(phydev); 2887 2888 /* Get the EEE modes we want to prohibit. We will ask 2889 * the PHY stop advertising these mode later on 2890 */ 2891 of_set_phy_eee_broken(phydev); 2892 2893 /* The Pause Frame bits indicate that the PHY can support passing 2894 * pause frames. During autonegotiation, the PHYs will determine if 2895 * they should allow pause frames to pass. The MAC driver should then 2896 * use that result to determine whether to enable flow control via 2897 * pause frames. 2898 * 2899 * Normally, PHY drivers should not set the Pause bits, and instead 2900 * allow phylib to do that. However, there may be some situations 2901 * (e.g. hardware erratum) where the driver wants to set only one 2902 * of these bits. 2903 */ 2904 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 2905 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 2906 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2907 phydev->supported); 2908 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2909 phydev->supported); 2910 } 2911 2912 /* Set the state to READY by default */ 2913 phydev->state = PHY_READY; 2914 2915 out: 2916 /* Assert the reset signal */ 2917 if (err) 2918 phy_device_reset(phydev, 1); 2919 2920 mutex_unlock(&phydev->lock); 2921 2922 return err; 2923 } 2924 2925 static int phy_remove(struct device *dev) 2926 { 2927 struct phy_device *phydev = to_phy_device(dev); 2928 2929 cancel_delayed_work_sync(&phydev->state_queue); 2930 2931 mutex_lock(&phydev->lock); 2932 phydev->state = PHY_DOWN; 2933 mutex_unlock(&phydev->lock); 2934 2935 sfp_bus_del_upstream(phydev->sfp_bus); 2936 phydev->sfp_bus = NULL; 2937 2938 if (phydev->drv && phydev->drv->remove) 2939 phydev->drv->remove(phydev); 2940 2941 /* Assert the reset signal */ 2942 phy_device_reset(phydev, 1); 2943 2944 phydev->drv = NULL; 2945 2946 return 0; 2947 } 2948 2949 /** 2950 * phy_driver_register - register a phy_driver with the PHY layer 2951 * @new_driver: new phy_driver to register 2952 * @owner: module owning this PHY 2953 */ 2954 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 2955 { 2956 int retval; 2957 2958 /* Either the features are hard coded, or dynamically 2959 * determined. It cannot be both. 2960 */ 2961 if (WARN_ON(new_driver->features && new_driver->get_features)) { 2962 pr_err("%s: features and get_features must not both be set\n", 2963 new_driver->name); 2964 return -EINVAL; 2965 } 2966 2967 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 2968 new_driver->mdiodrv.driver.name = new_driver->name; 2969 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 2970 new_driver->mdiodrv.driver.probe = phy_probe; 2971 new_driver->mdiodrv.driver.remove = phy_remove; 2972 new_driver->mdiodrv.driver.owner = owner; 2973 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 2974 2975 retval = driver_register(&new_driver->mdiodrv.driver); 2976 if (retval) { 2977 pr_err("%s: Error %d in registering driver\n", 2978 new_driver->name, retval); 2979 2980 return retval; 2981 } 2982 2983 pr_debug("%s: Registered new driver\n", new_driver->name); 2984 2985 return 0; 2986 } 2987 EXPORT_SYMBOL(phy_driver_register); 2988 2989 int phy_drivers_register(struct phy_driver *new_driver, int n, 2990 struct module *owner) 2991 { 2992 int i, ret = 0; 2993 2994 for (i = 0; i < n; i++) { 2995 ret = phy_driver_register(new_driver + i, owner); 2996 if (ret) { 2997 while (i-- > 0) 2998 phy_driver_unregister(new_driver + i); 2999 break; 3000 } 3001 } 3002 return ret; 3003 } 3004 EXPORT_SYMBOL(phy_drivers_register); 3005 3006 void phy_driver_unregister(struct phy_driver *drv) 3007 { 3008 driver_unregister(&drv->mdiodrv.driver); 3009 } 3010 EXPORT_SYMBOL(phy_driver_unregister); 3011 3012 void phy_drivers_unregister(struct phy_driver *drv, int n) 3013 { 3014 int i; 3015 3016 for (i = 0; i < n; i++) 3017 phy_driver_unregister(drv + i); 3018 } 3019 EXPORT_SYMBOL(phy_drivers_unregister); 3020 3021 static struct phy_driver genphy_driver = { 3022 .phy_id = 0xffffffff, 3023 .phy_id_mask = 0xffffffff, 3024 .name = "Generic PHY", 3025 .get_features = genphy_read_abilities, 3026 .suspend = genphy_suspend, 3027 .resume = genphy_resume, 3028 .set_loopback = genphy_loopback, 3029 }; 3030 3031 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3032 .get_sset_count = phy_ethtool_get_sset_count, 3033 .get_strings = phy_ethtool_get_strings, 3034 .get_stats = phy_ethtool_get_stats, 3035 .start_cable_test = phy_start_cable_test, 3036 .start_cable_test_tdr = phy_start_cable_test_tdr, 3037 }; 3038 3039 static int __init phy_init(void) 3040 { 3041 int rc; 3042 3043 rc = mdio_bus_init(); 3044 if (rc) 3045 return rc; 3046 3047 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3048 features_init(); 3049 3050 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3051 if (rc) 3052 goto err_c45; 3053 3054 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3055 if (rc) { 3056 phy_driver_unregister(&genphy_c45_driver); 3057 err_c45: 3058 mdio_bus_exit(); 3059 } 3060 3061 return rc; 3062 } 3063 3064 static void __exit phy_exit(void) 3065 { 3066 phy_driver_unregister(&genphy_c45_driver); 3067 phy_driver_unregister(&genphy_driver); 3068 mdio_bus_exit(); 3069 ethtool_set_ethtool_phy_ops(NULL); 3070 } 3071 3072 subsys_initcall(phy_init); 3073 module_exit(phy_exit); 3074