1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[3] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 97 }; 98 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 99 100 const int phy_gbit_features_array[2] = { 101 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 102 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 103 }; 104 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 105 106 const int phy_10gbit_features_array[1] = { 107 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 108 }; 109 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 110 111 static const int phy_10gbit_fec_features_array[1] = { 112 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 113 }; 114 115 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 116 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 117 118 static const int phy_10gbit_full_features_array[] = { 119 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 122 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 123 }; 124 125 static void features_init(void) 126 { 127 /* 10/100 half/full*/ 128 linkmode_set_bit_array(phy_basic_ports_array, 129 ARRAY_SIZE(phy_basic_ports_array), 130 phy_basic_features); 131 linkmode_set_bit_array(phy_10_100_features_array, 132 ARRAY_SIZE(phy_10_100_features_array), 133 phy_basic_features); 134 135 /* 100 full, TP */ 136 linkmode_set_bit_array(phy_basic_t1_features_array, 137 ARRAY_SIZE(phy_basic_t1_features_array), 138 phy_basic_t1_features); 139 140 /* 10/100 half/full + 1000 half/full */ 141 linkmode_set_bit_array(phy_basic_ports_array, 142 ARRAY_SIZE(phy_basic_ports_array), 143 phy_gbit_features); 144 linkmode_set_bit_array(phy_10_100_features_array, 145 ARRAY_SIZE(phy_10_100_features_array), 146 phy_gbit_features); 147 linkmode_set_bit_array(phy_gbit_features_array, 148 ARRAY_SIZE(phy_gbit_features_array), 149 phy_gbit_features); 150 151 /* 10/100 half/full + 1000 half/full + fibre*/ 152 linkmode_set_bit_array(phy_basic_ports_array, 153 ARRAY_SIZE(phy_basic_ports_array), 154 phy_gbit_fibre_features); 155 linkmode_set_bit_array(phy_10_100_features_array, 156 ARRAY_SIZE(phy_10_100_features_array), 157 phy_gbit_fibre_features); 158 linkmode_set_bit_array(phy_gbit_features_array, 159 ARRAY_SIZE(phy_gbit_features_array), 160 phy_gbit_fibre_features); 161 linkmode_set_bit_array(phy_fibre_port_array, 162 ARRAY_SIZE(phy_fibre_port_array), 163 phy_gbit_fibre_features); 164 165 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 166 linkmode_set_bit_array(phy_all_ports_features_array, 167 ARRAY_SIZE(phy_all_ports_features_array), 168 phy_gbit_all_ports_features); 169 linkmode_set_bit_array(phy_10_100_features_array, 170 ARRAY_SIZE(phy_10_100_features_array), 171 phy_gbit_all_ports_features); 172 linkmode_set_bit_array(phy_gbit_features_array, 173 ARRAY_SIZE(phy_gbit_features_array), 174 phy_gbit_all_ports_features); 175 176 /* 10/100 half/full + 1000 half/full + 10G full*/ 177 linkmode_set_bit_array(phy_all_ports_features_array, 178 ARRAY_SIZE(phy_all_ports_features_array), 179 phy_10gbit_features); 180 linkmode_set_bit_array(phy_10_100_features_array, 181 ARRAY_SIZE(phy_10_100_features_array), 182 phy_10gbit_features); 183 linkmode_set_bit_array(phy_gbit_features_array, 184 ARRAY_SIZE(phy_gbit_features_array), 185 phy_10gbit_features); 186 linkmode_set_bit_array(phy_10gbit_features_array, 187 ARRAY_SIZE(phy_10gbit_features_array), 188 phy_10gbit_features); 189 190 /* 10/100/1000/10G full */ 191 linkmode_set_bit_array(phy_all_ports_features_array, 192 ARRAY_SIZE(phy_all_ports_features_array), 193 phy_10gbit_full_features); 194 linkmode_set_bit_array(phy_10gbit_full_features_array, 195 ARRAY_SIZE(phy_10gbit_full_features_array), 196 phy_10gbit_full_features); 197 /* 10G FEC only */ 198 linkmode_set_bit_array(phy_10gbit_fec_features_array, 199 ARRAY_SIZE(phy_10gbit_fec_features_array), 200 phy_10gbit_fec_features); 201 } 202 203 void phy_device_free(struct phy_device *phydev) 204 { 205 put_device(&phydev->mdio.dev); 206 } 207 EXPORT_SYMBOL(phy_device_free); 208 209 static void phy_mdio_device_free(struct mdio_device *mdiodev) 210 { 211 struct phy_device *phydev; 212 213 phydev = container_of(mdiodev, struct phy_device, mdio); 214 phy_device_free(phydev); 215 } 216 217 static void phy_device_release(struct device *dev) 218 { 219 kfree(to_phy_device(dev)); 220 } 221 222 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 223 { 224 struct phy_device *phydev; 225 226 phydev = container_of(mdiodev, struct phy_device, mdio); 227 phy_device_remove(phydev); 228 } 229 230 static struct phy_driver genphy_driver; 231 232 static LIST_HEAD(phy_fixup_list); 233 static DEFINE_MUTEX(phy_fixup_lock); 234 235 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 236 { 237 struct device_driver *drv = phydev->mdio.dev.driver; 238 struct phy_driver *phydrv = to_phy_driver(drv); 239 struct net_device *netdev = phydev->attached_dev; 240 241 if (!drv || !phydrv->suspend) 242 return false; 243 244 /* PHY not attached? May suspend if the PHY has not already been 245 * suspended as part of a prior call to phy_disconnect() -> 246 * phy_detach() -> phy_suspend() because the parent netdev might be the 247 * MDIO bus driver and clock gated at this point. 248 */ 249 if (!netdev) 250 goto out; 251 252 if (netdev->wol_enabled) 253 return false; 254 255 /* As long as not all affected network drivers support the 256 * wol_enabled flag, let's check for hints that WoL is enabled. 257 * Don't suspend PHY if the attached netdev parent may wake up. 258 * The parent may point to a PCI device, as in tg3 driver. 259 */ 260 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 261 return false; 262 263 /* Also don't suspend PHY if the netdev itself may wakeup. This 264 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 265 * e.g. SoC devices. 266 */ 267 if (device_may_wakeup(&netdev->dev)) 268 return false; 269 270 out: 271 return !phydev->suspended; 272 } 273 274 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 275 { 276 struct phy_device *phydev = to_phy_device(dev); 277 278 if (phydev->mac_managed_pm) 279 return 0; 280 281 /* Wakeup interrupts may occur during the system sleep transition when 282 * the PHY is inaccessible. Set flag to postpone handling until the PHY 283 * has resumed. Wait for concurrent interrupt handler to complete. 284 */ 285 if (phy_interrupt_is_valid(phydev)) { 286 phydev->irq_suspended = 1; 287 synchronize_irq(phydev->irq); 288 } 289 290 /* We must stop the state machine manually, otherwise it stops out of 291 * control, possibly with the phydev->lock held. Upon resume, netdev 292 * may call phy routines that try to grab the same lock, and that may 293 * lead to a deadlock. 294 */ 295 if (phydev->attached_dev && phydev->adjust_link) 296 phy_stop_machine(phydev); 297 298 if (!mdio_bus_phy_may_suspend(phydev)) 299 return 0; 300 301 phydev->suspended_by_mdio_bus = 1; 302 303 return phy_suspend(phydev); 304 } 305 306 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 307 { 308 struct phy_device *phydev = to_phy_device(dev); 309 int ret; 310 311 if (phydev->mac_managed_pm) 312 return 0; 313 314 if (!phydev->suspended_by_mdio_bus) 315 goto no_resume; 316 317 phydev->suspended_by_mdio_bus = 0; 318 319 ret = phy_init_hw(phydev); 320 if (ret < 0) 321 return ret; 322 323 ret = phy_resume(phydev); 324 if (ret < 0) 325 return ret; 326 no_resume: 327 if (phy_interrupt_is_valid(phydev)) { 328 phydev->irq_suspended = 0; 329 synchronize_irq(phydev->irq); 330 331 /* Rerun interrupts which were postponed by phy_interrupt() 332 * because they occurred during the system sleep transition. 333 */ 334 if (phydev->irq_rerun) { 335 phydev->irq_rerun = 0; 336 enable_irq(phydev->irq); 337 irq_wake_thread(phydev->irq, phydev); 338 } 339 } 340 341 if (phydev->attached_dev && phydev->adjust_link) 342 phy_start_machine(phydev); 343 344 return 0; 345 } 346 347 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 348 mdio_bus_phy_resume); 349 350 /** 351 * phy_register_fixup - creates a new phy_fixup and adds it to the list 352 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 353 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 354 * It can also be PHY_ANY_UID 355 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 356 * comparison 357 * @run: The actual code to be run when a matching PHY is found 358 */ 359 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 360 int (*run)(struct phy_device *)) 361 { 362 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 363 364 if (!fixup) 365 return -ENOMEM; 366 367 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 368 fixup->phy_uid = phy_uid; 369 fixup->phy_uid_mask = phy_uid_mask; 370 fixup->run = run; 371 372 mutex_lock(&phy_fixup_lock); 373 list_add_tail(&fixup->list, &phy_fixup_list); 374 mutex_unlock(&phy_fixup_lock); 375 376 return 0; 377 } 378 EXPORT_SYMBOL(phy_register_fixup); 379 380 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 381 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 382 int (*run)(struct phy_device *)) 383 { 384 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 385 } 386 EXPORT_SYMBOL(phy_register_fixup_for_uid); 387 388 /* Registers a fixup to be run on the PHY with id string bus_id */ 389 int phy_register_fixup_for_id(const char *bus_id, 390 int (*run)(struct phy_device *)) 391 { 392 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 393 } 394 EXPORT_SYMBOL(phy_register_fixup_for_id); 395 396 /** 397 * phy_unregister_fixup - remove a phy_fixup from the list 398 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 399 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 400 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 401 */ 402 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 403 { 404 struct list_head *pos, *n; 405 struct phy_fixup *fixup; 406 int ret; 407 408 ret = -ENODEV; 409 410 mutex_lock(&phy_fixup_lock); 411 list_for_each_safe(pos, n, &phy_fixup_list) { 412 fixup = list_entry(pos, struct phy_fixup, list); 413 414 if ((!strcmp(fixup->bus_id, bus_id)) && 415 ((fixup->phy_uid & phy_uid_mask) == 416 (phy_uid & phy_uid_mask))) { 417 list_del(&fixup->list); 418 kfree(fixup); 419 ret = 0; 420 break; 421 } 422 } 423 mutex_unlock(&phy_fixup_lock); 424 425 return ret; 426 } 427 EXPORT_SYMBOL(phy_unregister_fixup); 428 429 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 430 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 431 { 432 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 433 } 434 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 435 436 /* Unregisters a fixup of the PHY with id string bus_id */ 437 int phy_unregister_fixup_for_id(const char *bus_id) 438 { 439 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 440 } 441 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 442 443 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 444 * Fixups can be set to match any in one or more fields. 445 */ 446 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 447 { 448 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 449 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 450 return 0; 451 452 if ((fixup->phy_uid & fixup->phy_uid_mask) != 453 (phydev->phy_id & fixup->phy_uid_mask)) 454 if (fixup->phy_uid != PHY_ANY_UID) 455 return 0; 456 457 return 1; 458 } 459 460 /* Runs any matching fixups for this phydev */ 461 static int phy_scan_fixups(struct phy_device *phydev) 462 { 463 struct phy_fixup *fixup; 464 465 mutex_lock(&phy_fixup_lock); 466 list_for_each_entry(fixup, &phy_fixup_list, list) { 467 if (phy_needs_fixup(phydev, fixup)) { 468 int err = fixup->run(phydev); 469 470 if (err < 0) { 471 mutex_unlock(&phy_fixup_lock); 472 return err; 473 } 474 phydev->has_fixups = true; 475 } 476 } 477 mutex_unlock(&phy_fixup_lock); 478 479 return 0; 480 } 481 482 static int phy_bus_match(struct device *dev, struct device_driver *drv) 483 { 484 struct phy_device *phydev = to_phy_device(dev); 485 struct phy_driver *phydrv = to_phy_driver(drv); 486 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 487 int i; 488 489 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 490 return 0; 491 492 if (phydrv->match_phy_device) 493 return phydrv->match_phy_device(phydev); 494 495 if (phydev->is_c45) { 496 for (i = 1; i < num_ids; i++) { 497 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 498 continue; 499 500 if ((phydrv->phy_id & phydrv->phy_id_mask) == 501 (phydev->c45_ids.device_ids[i] & 502 phydrv->phy_id_mask)) 503 return 1; 504 } 505 return 0; 506 } else { 507 return (phydrv->phy_id & phydrv->phy_id_mask) == 508 (phydev->phy_id & phydrv->phy_id_mask); 509 } 510 } 511 512 static ssize_t 513 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 514 { 515 struct phy_device *phydev = to_phy_device(dev); 516 517 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 518 } 519 static DEVICE_ATTR_RO(phy_id); 520 521 static ssize_t 522 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct phy_device *phydev = to_phy_device(dev); 525 const char *mode = NULL; 526 527 if (phy_is_internal(phydev)) 528 mode = "internal"; 529 else 530 mode = phy_modes(phydev->interface); 531 532 return sprintf(buf, "%s\n", mode); 533 } 534 static DEVICE_ATTR_RO(phy_interface); 535 536 static ssize_t 537 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 538 char *buf) 539 { 540 struct phy_device *phydev = to_phy_device(dev); 541 542 return sprintf(buf, "%d\n", phydev->has_fixups); 543 } 544 static DEVICE_ATTR_RO(phy_has_fixups); 545 546 static ssize_t phy_dev_flags_show(struct device *dev, 547 struct device_attribute *attr, 548 char *buf) 549 { 550 struct phy_device *phydev = to_phy_device(dev); 551 552 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 553 } 554 static DEVICE_ATTR_RO(phy_dev_flags); 555 556 static struct attribute *phy_dev_attrs[] = { 557 &dev_attr_phy_id.attr, 558 &dev_attr_phy_interface.attr, 559 &dev_attr_phy_has_fixups.attr, 560 &dev_attr_phy_dev_flags.attr, 561 NULL, 562 }; 563 ATTRIBUTE_GROUPS(phy_dev); 564 565 static const struct device_type mdio_bus_phy_type = { 566 .name = "PHY", 567 .groups = phy_dev_groups, 568 .release = phy_device_release, 569 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 570 }; 571 572 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 573 { 574 int ret; 575 576 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 577 MDIO_ID_ARGS(phy_id)); 578 /* We only check for failures in executing the usermode binary, 579 * not whether a PHY driver module exists for the PHY ID. 580 * Accept -ENOENT because this may occur in case no initramfs exists, 581 * then modprobe isn't available. 582 */ 583 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 584 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 585 ret, (unsigned long)phy_id); 586 return ret; 587 } 588 589 return 0; 590 } 591 592 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 593 bool is_c45, 594 struct phy_c45_device_ids *c45_ids) 595 { 596 struct phy_device *dev; 597 struct mdio_device *mdiodev; 598 int ret = 0; 599 600 /* We allocate the device, and initialize the default values */ 601 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 602 if (!dev) 603 return ERR_PTR(-ENOMEM); 604 605 mdiodev = &dev->mdio; 606 mdiodev->dev.parent = &bus->dev; 607 mdiodev->dev.bus = &mdio_bus_type; 608 mdiodev->dev.type = &mdio_bus_phy_type; 609 mdiodev->bus = bus; 610 mdiodev->bus_match = phy_bus_match; 611 mdiodev->addr = addr; 612 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 613 mdiodev->device_free = phy_mdio_device_free; 614 mdiodev->device_remove = phy_mdio_device_remove; 615 616 dev->speed = SPEED_UNKNOWN; 617 dev->duplex = DUPLEX_UNKNOWN; 618 dev->pause = 0; 619 dev->asym_pause = 0; 620 dev->link = 0; 621 dev->port = PORT_TP; 622 dev->interface = PHY_INTERFACE_MODE_GMII; 623 624 dev->autoneg = AUTONEG_ENABLE; 625 626 dev->pma_extable = -ENODATA; 627 dev->is_c45 = is_c45; 628 dev->phy_id = phy_id; 629 if (c45_ids) 630 dev->c45_ids = *c45_ids; 631 dev->irq = bus->irq[addr]; 632 633 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 634 device_initialize(&mdiodev->dev); 635 636 dev->state = PHY_DOWN; 637 638 mutex_init(&dev->lock); 639 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 640 641 /* Request the appropriate module unconditionally; don't 642 * bother trying to do so only if it isn't already loaded, 643 * because that gets complicated. A hotplug event would have 644 * done an unconditional modprobe anyway. 645 * We don't do normal hotplug because it won't work for MDIO 646 * -- because it relies on the device staying around for long 647 * enough for the driver to get loaded. With MDIO, the NIC 648 * driver will get bored and give up as soon as it finds that 649 * there's no driver _already_ loaded. 650 */ 651 if (is_c45 && c45_ids) { 652 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 653 int i; 654 655 for (i = 1; i < num_ids; i++) { 656 if (c45_ids->device_ids[i] == 0xffffffff) 657 continue; 658 659 ret = phy_request_driver_module(dev, 660 c45_ids->device_ids[i]); 661 if (ret) 662 break; 663 } 664 } else { 665 ret = phy_request_driver_module(dev, phy_id); 666 } 667 668 if (ret) { 669 put_device(&mdiodev->dev); 670 dev = ERR_PTR(ret); 671 } 672 673 return dev; 674 } 675 EXPORT_SYMBOL(phy_device_create); 676 677 /* phy_c45_probe_present - checks to see if a MMD is present in the package 678 * @bus: the target MII bus 679 * @prtad: PHY package address on the MII bus 680 * @devad: PHY device (MMD) address 681 * 682 * Read the MDIO_STAT2 register, and check whether a device is responding 683 * at this address. 684 * 685 * Returns: negative error number on bus access error, zero if no device 686 * is responding, or positive if a device is present. 687 */ 688 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 689 { 690 int stat2; 691 692 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 693 if (stat2 < 0) 694 return stat2; 695 696 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 697 } 698 699 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 700 * @bus: the target MII bus 701 * @addr: PHY address on the MII bus 702 * @dev_addr: MMD address in the PHY. 703 * @devices_in_package: where to store the devices in package information. 704 * 705 * Description: reads devices in package registers of a MMD at @dev_addr 706 * from PHY at @addr on @bus. 707 * 708 * Returns: 0 on success, -EIO on failure. 709 */ 710 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 711 u32 *devices_in_package) 712 { 713 int phy_reg; 714 715 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 716 if (phy_reg < 0) 717 return -EIO; 718 *devices_in_package = phy_reg << 16; 719 720 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 721 if (phy_reg < 0) 722 return -EIO; 723 *devices_in_package |= phy_reg; 724 725 return 0; 726 } 727 728 /** 729 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 730 * @bus: the target MII bus 731 * @addr: PHY address on the MII bus 732 * @c45_ids: where to store the c45 ID information. 733 * 734 * Read the PHY "devices in package". If this appears to be valid, read 735 * the PHY identifiers for each device. Return the "devices in package" 736 * and identifiers in @c45_ids. 737 * 738 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 739 * the "devices in package" is invalid. 740 */ 741 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 742 struct phy_c45_device_ids *c45_ids) 743 { 744 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 745 u32 devs_in_pkg = 0; 746 int i, ret, phy_reg; 747 748 /* Find first non-zero Devices In package. Device zero is reserved 749 * for 802.3 c45 complied PHYs, so don't probe it at first. 750 */ 751 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 752 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 753 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 754 /* Check that there is a device present at this 755 * address before reading the devices-in-package 756 * register to avoid reading garbage from the PHY. 757 * Some PHYs (88x3310) vendor space is not IEEE802.3 758 * compliant. 759 */ 760 ret = phy_c45_probe_present(bus, addr, i); 761 if (ret < 0) 762 return -EIO; 763 764 if (!ret) 765 continue; 766 } 767 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 768 if (phy_reg < 0) 769 return -EIO; 770 } 771 772 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 773 /* If mostly Fs, there is no device there, then let's probe 774 * MMD 0, as some 10G PHYs have zero Devices In package, 775 * e.g. Cortina CS4315/CS4340 PHY. 776 */ 777 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 778 if (phy_reg < 0) 779 return -EIO; 780 781 /* no device there, let's get out of here */ 782 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 783 return -ENODEV; 784 } 785 786 /* Now probe Device Identifiers for each device present. */ 787 for (i = 1; i < num_ids; i++) { 788 if (!(devs_in_pkg & (1 << i))) 789 continue; 790 791 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 792 /* Probe the "Device Present" bits for the vendor MMDs 793 * to ignore these if they do not contain IEEE 802.3 794 * registers. 795 */ 796 ret = phy_c45_probe_present(bus, addr, i); 797 if (ret < 0) 798 return ret; 799 800 if (!ret) 801 continue; 802 } 803 804 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 805 if (phy_reg < 0) 806 return -EIO; 807 c45_ids->device_ids[i] = phy_reg << 16; 808 809 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 810 if (phy_reg < 0) 811 return -EIO; 812 c45_ids->device_ids[i] |= phy_reg; 813 } 814 815 c45_ids->devices_in_package = devs_in_pkg; 816 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 817 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 818 819 return 0; 820 } 821 822 /** 823 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 824 * @bus: the target MII bus 825 * @addr: PHY address on the MII bus 826 * @phy_id: where to store the ID retrieved. 827 * 828 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 829 * placing it in @phy_id. Return zero on successful read and the ID is 830 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 831 * or invalid ID. 832 */ 833 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 834 { 835 int phy_reg; 836 837 /* Grab the bits from PHYIR1, and put them in the upper half */ 838 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 839 if (phy_reg < 0) { 840 /* returning -ENODEV doesn't stop bus scanning */ 841 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 842 } 843 844 *phy_id = phy_reg << 16; 845 846 /* Grab the bits from PHYIR2, and put them in the lower half */ 847 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 848 if (phy_reg < 0) { 849 /* returning -ENODEV doesn't stop bus scanning */ 850 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 851 } 852 853 *phy_id |= phy_reg; 854 855 /* If the phy_id is mostly Fs, there is no device there */ 856 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 857 return -ENODEV; 858 859 return 0; 860 } 861 862 /* Extract the phy ID from the compatible string of the form 863 * ethernet-phy-idAAAA.BBBB. 864 */ 865 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 866 { 867 unsigned int upper, lower; 868 const char *cp; 869 int ret; 870 871 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 872 if (ret) 873 return ret; 874 875 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 876 return -EINVAL; 877 878 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 879 return 0; 880 } 881 EXPORT_SYMBOL(fwnode_get_phy_id); 882 883 /** 884 * get_phy_device - reads the specified PHY device and returns its @phy_device 885 * struct 886 * @bus: the target MII bus 887 * @addr: PHY address on the MII bus 888 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 889 * 890 * Probe for a PHY at @addr on @bus. 891 * 892 * When probing for a clause 22 PHY, then read the ID registers. If we find 893 * a valid ID, allocate and return a &struct phy_device. 894 * 895 * When probing for a clause 45 PHY, read the "devices in package" registers. 896 * If the "devices in package" appears valid, read the ID registers for each 897 * MMD, allocate and return a &struct phy_device. 898 * 899 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 900 * no PHY present, or %-EIO on bus access error. 901 */ 902 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 903 { 904 struct phy_c45_device_ids c45_ids; 905 u32 phy_id = 0; 906 int r; 907 908 c45_ids.devices_in_package = 0; 909 c45_ids.mmds_present = 0; 910 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 911 912 if (is_c45) 913 r = get_phy_c45_ids(bus, addr, &c45_ids); 914 else 915 r = get_phy_c22_id(bus, addr, &phy_id); 916 917 if (r) 918 return ERR_PTR(r); 919 920 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 921 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 922 * probe with C45 to see if we're able to get a valid PHY ID in the C45 923 * space, if successful, create the C45 PHY device. 924 */ 925 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 926 r = get_phy_c45_ids(bus, addr, &c45_ids); 927 if (!r) 928 return phy_device_create(bus, addr, phy_id, 929 true, &c45_ids); 930 } 931 932 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 933 } 934 EXPORT_SYMBOL(get_phy_device); 935 936 /** 937 * phy_device_register - Register the phy device on the MDIO bus 938 * @phydev: phy_device structure to be added to the MDIO bus 939 */ 940 int phy_device_register(struct phy_device *phydev) 941 { 942 int err; 943 944 err = mdiobus_register_device(&phydev->mdio); 945 if (err) 946 return err; 947 948 /* Deassert the reset signal */ 949 phy_device_reset(phydev, 0); 950 951 /* Run all of the fixups for this PHY */ 952 err = phy_scan_fixups(phydev); 953 if (err) { 954 phydev_err(phydev, "failed to initialize\n"); 955 goto out; 956 } 957 958 err = device_add(&phydev->mdio.dev); 959 if (err) { 960 phydev_err(phydev, "failed to add\n"); 961 goto out; 962 } 963 964 return 0; 965 966 out: 967 /* Assert the reset signal */ 968 phy_device_reset(phydev, 1); 969 970 mdiobus_unregister_device(&phydev->mdio); 971 return err; 972 } 973 EXPORT_SYMBOL(phy_device_register); 974 975 /** 976 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 977 * @phydev: phy_device structure to remove 978 * 979 * This doesn't free the phy_device itself, it merely reverses the effects 980 * of phy_device_register(). Use phy_device_free() to free the device 981 * after calling this function. 982 */ 983 void phy_device_remove(struct phy_device *phydev) 984 { 985 unregister_mii_timestamper(phydev->mii_ts); 986 987 device_del(&phydev->mdio.dev); 988 989 /* Assert the reset signal */ 990 phy_device_reset(phydev, 1); 991 992 mdiobus_unregister_device(&phydev->mdio); 993 } 994 EXPORT_SYMBOL(phy_device_remove); 995 996 /** 997 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 998 * @phydev: phy_device structure to read 802.3-c45 IDs 999 * 1000 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1001 * the "devices in package" is invalid. 1002 */ 1003 int phy_get_c45_ids(struct phy_device *phydev) 1004 { 1005 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1006 &phydev->c45_ids); 1007 } 1008 EXPORT_SYMBOL(phy_get_c45_ids); 1009 1010 /** 1011 * phy_find_first - finds the first PHY device on the bus 1012 * @bus: the target MII bus 1013 */ 1014 struct phy_device *phy_find_first(struct mii_bus *bus) 1015 { 1016 struct phy_device *phydev; 1017 int addr; 1018 1019 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1020 phydev = mdiobus_get_phy(bus, addr); 1021 if (phydev) 1022 return phydev; 1023 } 1024 return NULL; 1025 } 1026 EXPORT_SYMBOL(phy_find_first); 1027 1028 static void phy_link_change(struct phy_device *phydev, bool up) 1029 { 1030 struct net_device *netdev = phydev->attached_dev; 1031 1032 if (up) 1033 netif_carrier_on(netdev); 1034 else 1035 netif_carrier_off(netdev); 1036 phydev->adjust_link(netdev); 1037 if (phydev->mii_ts && phydev->mii_ts->link_state) 1038 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1039 } 1040 1041 /** 1042 * phy_prepare_link - prepares the PHY layer to monitor link status 1043 * @phydev: target phy_device struct 1044 * @handler: callback function for link status change notifications 1045 * 1046 * Description: Tells the PHY infrastructure to handle the 1047 * gory details on monitoring link status (whether through 1048 * polling or an interrupt), and to call back to the 1049 * connected device driver when the link status changes. 1050 * If you want to monitor your own link state, don't call 1051 * this function. 1052 */ 1053 static void phy_prepare_link(struct phy_device *phydev, 1054 void (*handler)(struct net_device *)) 1055 { 1056 phydev->adjust_link = handler; 1057 } 1058 1059 /** 1060 * phy_connect_direct - connect an ethernet device to a specific phy_device 1061 * @dev: the network device to connect 1062 * @phydev: the pointer to the phy device 1063 * @handler: callback function for state change notifications 1064 * @interface: PHY device's interface 1065 */ 1066 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1067 void (*handler)(struct net_device *), 1068 phy_interface_t interface) 1069 { 1070 int rc; 1071 1072 if (!dev) 1073 return -EINVAL; 1074 1075 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1076 if (rc) 1077 return rc; 1078 1079 phy_prepare_link(phydev, handler); 1080 if (phy_interrupt_is_valid(phydev)) 1081 phy_request_interrupt(phydev); 1082 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(phy_connect_direct); 1086 1087 /** 1088 * phy_connect - connect an ethernet device to a PHY device 1089 * @dev: the network device to connect 1090 * @bus_id: the id string of the PHY device to connect 1091 * @handler: callback function for state change notifications 1092 * @interface: PHY device's interface 1093 * 1094 * Description: Convenience function for connecting ethernet 1095 * devices to PHY devices. The default behavior is for 1096 * the PHY infrastructure to handle everything, and only notify 1097 * the connected driver when the link status changes. If you 1098 * don't want, or can't use the provided functionality, you may 1099 * choose to call only the subset of functions which provide 1100 * the desired functionality. 1101 */ 1102 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1103 void (*handler)(struct net_device *), 1104 phy_interface_t interface) 1105 { 1106 struct phy_device *phydev; 1107 struct device *d; 1108 int rc; 1109 1110 /* Search the list of PHY devices on the mdio bus for the 1111 * PHY with the requested name 1112 */ 1113 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1114 if (!d) { 1115 pr_err("PHY %s not found\n", bus_id); 1116 return ERR_PTR(-ENODEV); 1117 } 1118 phydev = to_phy_device(d); 1119 1120 rc = phy_connect_direct(dev, phydev, handler, interface); 1121 put_device(d); 1122 if (rc) 1123 return ERR_PTR(rc); 1124 1125 return phydev; 1126 } 1127 EXPORT_SYMBOL(phy_connect); 1128 1129 /** 1130 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1131 * device 1132 * @phydev: target phy_device struct 1133 */ 1134 void phy_disconnect(struct phy_device *phydev) 1135 { 1136 if (phy_is_started(phydev)) 1137 phy_stop(phydev); 1138 1139 if (phy_interrupt_is_valid(phydev)) 1140 phy_free_interrupt(phydev); 1141 1142 phydev->adjust_link = NULL; 1143 1144 phy_detach(phydev); 1145 } 1146 EXPORT_SYMBOL(phy_disconnect); 1147 1148 /** 1149 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1150 * @phydev: The PHY device to poll 1151 * 1152 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1153 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1154 * register must be polled until the BMCR_RESET bit clears. 1155 * 1156 * Furthermore, any attempts to write to PHY registers may have no effect 1157 * or even generate MDIO bus errors until this is complete. 1158 * 1159 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1160 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1161 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1162 * effort to support such broken PHYs, this function is separate from the 1163 * standard phy_init_hw() which will zero all the other bits in the BMCR 1164 * and reapply all driver-specific and board-specific fixups. 1165 */ 1166 static int phy_poll_reset(struct phy_device *phydev) 1167 { 1168 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1169 int ret, val; 1170 1171 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1172 50000, 600000, true); 1173 if (ret) 1174 return ret; 1175 /* Some chips (smsc911x) may still need up to another 1ms after the 1176 * BMCR_RESET bit is cleared before they are usable. 1177 */ 1178 msleep(1); 1179 return 0; 1180 } 1181 1182 int phy_init_hw(struct phy_device *phydev) 1183 { 1184 int ret = 0; 1185 1186 /* Deassert the reset signal */ 1187 phy_device_reset(phydev, 0); 1188 1189 if (!phydev->drv) 1190 return 0; 1191 1192 if (phydev->drv->soft_reset) { 1193 ret = phydev->drv->soft_reset(phydev); 1194 /* see comment in genphy_soft_reset for an explanation */ 1195 if (!ret) 1196 phydev->suspended = 0; 1197 } 1198 1199 if (ret < 0) 1200 return ret; 1201 1202 ret = phy_scan_fixups(phydev); 1203 if (ret < 0) 1204 return ret; 1205 1206 if (phydev->drv->config_init) { 1207 ret = phydev->drv->config_init(phydev); 1208 if (ret < 0) 1209 return ret; 1210 } 1211 1212 if (phydev->drv->config_intr) { 1213 ret = phydev->drv->config_intr(phydev); 1214 if (ret < 0) 1215 return ret; 1216 } 1217 1218 return 0; 1219 } 1220 EXPORT_SYMBOL(phy_init_hw); 1221 1222 void phy_attached_info(struct phy_device *phydev) 1223 { 1224 phy_attached_print(phydev, NULL); 1225 } 1226 EXPORT_SYMBOL(phy_attached_info); 1227 1228 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1229 char *phy_attached_info_irq(struct phy_device *phydev) 1230 { 1231 char *irq_str; 1232 char irq_num[8]; 1233 1234 switch(phydev->irq) { 1235 case PHY_POLL: 1236 irq_str = "POLL"; 1237 break; 1238 case PHY_MAC_INTERRUPT: 1239 irq_str = "MAC"; 1240 break; 1241 default: 1242 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1243 irq_str = irq_num; 1244 break; 1245 } 1246 1247 return kasprintf(GFP_KERNEL, "%s", irq_str); 1248 } 1249 EXPORT_SYMBOL(phy_attached_info_irq); 1250 1251 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1252 { 1253 const char *unbound = phydev->drv ? "" : "[unbound] "; 1254 char *irq_str = phy_attached_info_irq(phydev); 1255 1256 if (!fmt) { 1257 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1258 phydev_name(phydev), irq_str); 1259 } else { 1260 va_list ap; 1261 1262 phydev_info(phydev, ATTACHED_FMT, unbound, 1263 phydev_name(phydev), irq_str); 1264 1265 va_start(ap, fmt); 1266 vprintk(fmt, ap); 1267 va_end(ap); 1268 } 1269 kfree(irq_str); 1270 } 1271 EXPORT_SYMBOL(phy_attached_print); 1272 1273 static void phy_sysfs_create_links(struct phy_device *phydev) 1274 { 1275 struct net_device *dev = phydev->attached_dev; 1276 int err; 1277 1278 if (!dev) 1279 return; 1280 1281 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1282 "attached_dev"); 1283 if (err) 1284 return; 1285 1286 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1287 &phydev->mdio.dev.kobj, 1288 "phydev"); 1289 if (err) { 1290 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1291 kobject_name(&phydev->mdio.dev.kobj), 1292 err); 1293 /* non-fatal - some net drivers can use one netdevice 1294 * with more then one phy 1295 */ 1296 } 1297 1298 phydev->sysfs_links = true; 1299 } 1300 1301 static ssize_t 1302 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1303 char *buf) 1304 { 1305 struct phy_device *phydev = to_phy_device(dev); 1306 1307 return sprintf(buf, "%d\n", !phydev->attached_dev); 1308 } 1309 static DEVICE_ATTR_RO(phy_standalone); 1310 1311 /** 1312 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1313 * @upstream: pointer to the phy device 1314 * @bus: sfp bus representing cage being attached 1315 * 1316 * This is used to fill in the sfp_upstream_ops .attach member. 1317 */ 1318 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1319 { 1320 struct phy_device *phydev = upstream; 1321 1322 if (phydev->attached_dev) 1323 phydev->attached_dev->sfp_bus = bus; 1324 phydev->sfp_bus_attached = true; 1325 } 1326 EXPORT_SYMBOL(phy_sfp_attach); 1327 1328 /** 1329 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1330 * @upstream: pointer to the phy device 1331 * @bus: sfp bus representing cage being attached 1332 * 1333 * This is used to fill in the sfp_upstream_ops .detach member. 1334 */ 1335 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1336 { 1337 struct phy_device *phydev = upstream; 1338 1339 if (phydev->attached_dev) 1340 phydev->attached_dev->sfp_bus = NULL; 1341 phydev->sfp_bus_attached = false; 1342 } 1343 EXPORT_SYMBOL(phy_sfp_detach); 1344 1345 /** 1346 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1347 * @phydev: Pointer to phy_device 1348 * @ops: SFP's upstream operations 1349 */ 1350 int phy_sfp_probe(struct phy_device *phydev, 1351 const struct sfp_upstream_ops *ops) 1352 { 1353 struct sfp_bus *bus; 1354 int ret = 0; 1355 1356 if (phydev->mdio.dev.fwnode) { 1357 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1358 if (IS_ERR(bus)) 1359 return PTR_ERR(bus); 1360 1361 phydev->sfp_bus = bus; 1362 1363 ret = sfp_bus_add_upstream(bus, phydev, ops); 1364 sfp_bus_put(bus); 1365 } 1366 return ret; 1367 } 1368 EXPORT_SYMBOL(phy_sfp_probe); 1369 1370 /** 1371 * phy_attach_direct - attach a network device to a given PHY device pointer 1372 * @dev: network device to attach 1373 * @phydev: Pointer to phy_device to attach 1374 * @flags: PHY device's dev_flags 1375 * @interface: PHY device's interface 1376 * 1377 * Description: Called by drivers to attach to a particular PHY 1378 * device. The phy_device is found, and properly hooked up 1379 * to the phy_driver. If no driver is attached, then a 1380 * generic driver is used. The phy_device is given a ptr to 1381 * the attaching device, and given a callback for link status 1382 * change. The phy_device is returned to the attaching driver. 1383 * This function takes a reference on the phy device. 1384 */ 1385 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1386 u32 flags, phy_interface_t interface) 1387 { 1388 struct mii_bus *bus = phydev->mdio.bus; 1389 struct device *d = &phydev->mdio.dev; 1390 struct module *ndev_owner = NULL; 1391 bool using_genphy = false; 1392 int err; 1393 1394 /* For Ethernet device drivers that register their own MDIO bus, we 1395 * will have bus->owner match ndev_mod, so we do not want to increment 1396 * our own module->refcnt here, otherwise we would not be able to 1397 * unload later on. 1398 */ 1399 if (dev) 1400 ndev_owner = dev->dev.parent->driver->owner; 1401 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1402 phydev_err(phydev, "failed to get the bus module\n"); 1403 return -EIO; 1404 } 1405 1406 get_device(d); 1407 1408 /* Assume that if there is no driver, that it doesn't 1409 * exist, and we should use the genphy driver. 1410 */ 1411 if (!d->driver) { 1412 if (phydev->is_c45) 1413 d->driver = &genphy_c45_driver.mdiodrv.driver; 1414 else 1415 d->driver = &genphy_driver.mdiodrv.driver; 1416 1417 using_genphy = true; 1418 } 1419 1420 if (!try_module_get(d->driver->owner)) { 1421 phydev_err(phydev, "failed to get the device driver module\n"); 1422 err = -EIO; 1423 goto error_put_device; 1424 } 1425 1426 if (using_genphy) { 1427 err = d->driver->probe(d); 1428 if (err >= 0) 1429 err = device_bind_driver(d); 1430 1431 if (err) 1432 goto error_module_put; 1433 } 1434 1435 if (phydev->attached_dev) { 1436 dev_err(&dev->dev, "PHY already attached\n"); 1437 err = -EBUSY; 1438 goto error; 1439 } 1440 1441 phydev->phy_link_change = phy_link_change; 1442 if (dev) { 1443 phydev->attached_dev = dev; 1444 dev->phydev = phydev; 1445 1446 if (phydev->sfp_bus_attached) 1447 dev->sfp_bus = phydev->sfp_bus; 1448 else if (dev->sfp_bus) 1449 phydev->is_on_sfp_module = true; 1450 } 1451 1452 /* Some Ethernet drivers try to connect to a PHY device before 1453 * calling register_netdevice() -> netdev_register_kobject() and 1454 * does the dev->dev.kobj initialization. Here we only check for 1455 * success which indicates that the network device kobject is 1456 * ready. Once we do that we still need to keep track of whether 1457 * links were successfully set up or not for phy_detach() to 1458 * remove them accordingly. 1459 */ 1460 phydev->sysfs_links = false; 1461 1462 phy_sysfs_create_links(phydev); 1463 1464 if (!phydev->attached_dev) { 1465 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1466 &dev_attr_phy_standalone.attr); 1467 if (err) 1468 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1469 } 1470 1471 phydev->dev_flags |= flags; 1472 1473 phydev->interface = interface; 1474 1475 phydev->state = PHY_READY; 1476 1477 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1478 1479 /* Port is set to PORT_TP by default and the actual PHY driver will set 1480 * it to different value depending on the PHY configuration. If we have 1481 * the generic PHY driver we can't figure it out, thus set the old 1482 * legacy PORT_MII value. 1483 */ 1484 if (using_genphy) 1485 phydev->port = PORT_MII; 1486 1487 /* Initial carrier state is off as the phy is about to be 1488 * (re)initialized. 1489 */ 1490 if (dev) 1491 netif_carrier_off(phydev->attached_dev); 1492 1493 /* Do initial configuration here, now that 1494 * we have certain key parameters 1495 * (dev_flags and interface) 1496 */ 1497 err = phy_init_hw(phydev); 1498 if (err) 1499 goto error; 1500 1501 phy_resume(phydev); 1502 phy_led_triggers_register(phydev); 1503 1504 return err; 1505 1506 error: 1507 /* phy_detach() does all of the cleanup below */ 1508 phy_detach(phydev); 1509 return err; 1510 1511 error_module_put: 1512 module_put(d->driver->owner); 1513 error_put_device: 1514 put_device(d); 1515 if (ndev_owner != bus->owner) 1516 module_put(bus->owner); 1517 return err; 1518 } 1519 EXPORT_SYMBOL(phy_attach_direct); 1520 1521 /** 1522 * phy_attach - attach a network device to a particular PHY device 1523 * @dev: network device to attach 1524 * @bus_id: Bus ID of PHY device to attach 1525 * @interface: PHY device's interface 1526 * 1527 * Description: Same as phy_attach_direct() except that a PHY bus_id 1528 * string is passed instead of a pointer to a struct phy_device. 1529 */ 1530 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1531 phy_interface_t interface) 1532 { 1533 struct bus_type *bus = &mdio_bus_type; 1534 struct phy_device *phydev; 1535 struct device *d; 1536 int rc; 1537 1538 if (!dev) 1539 return ERR_PTR(-EINVAL); 1540 1541 /* Search the list of PHY devices on the mdio bus for the 1542 * PHY with the requested name 1543 */ 1544 d = bus_find_device_by_name(bus, NULL, bus_id); 1545 if (!d) { 1546 pr_err("PHY %s not found\n", bus_id); 1547 return ERR_PTR(-ENODEV); 1548 } 1549 phydev = to_phy_device(d); 1550 1551 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1552 put_device(d); 1553 if (rc) 1554 return ERR_PTR(rc); 1555 1556 return phydev; 1557 } 1558 EXPORT_SYMBOL(phy_attach); 1559 1560 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1561 struct device_driver *driver) 1562 { 1563 struct device *d = &phydev->mdio.dev; 1564 bool ret = false; 1565 1566 if (!phydev->drv) 1567 return ret; 1568 1569 get_device(d); 1570 ret = d->driver == driver; 1571 put_device(d); 1572 1573 return ret; 1574 } 1575 1576 bool phy_driver_is_genphy(struct phy_device *phydev) 1577 { 1578 return phy_driver_is_genphy_kind(phydev, 1579 &genphy_driver.mdiodrv.driver); 1580 } 1581 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1582 1583 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1584 { 1585 return phy_driver_is_genphy_kind(phydev, 1586 &genphy_c45_driver.mdiodrv.driver); 1587 } 1588 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1589 1590 /** 1591 * phy_package_join - join a common PHY group 1592 * @phydev: target phy_device struct 1593 * @addr: cookie and PHY address for global register access 1594 * @priv_size: if non-zero allocate this amount of bytes for private data 1595 * 1596 * This joins a PHY group and provides a shared storage for all phydevs in 1597 * this group. This is intended to be used for packages which contain 1598 * more than one PHY, for example a quad PHY transceiver. 1599 * 1600 * The addr parameter serves as a cookie which has to have the same value 1601 * for all members of one group and as a PHY address to access generic 1602 * registers of a PHY package. Usually, one of the PHY addresses of the 1603 * different PHYs in the package provides access to these global registers. 1604 * The address which is given here, will be used in the phy_package_read() 1605 * and phy_package_write() convenience functions. If your PHY doesn't have 1606 * global registers you can just pick any of the PHY addresses. 1607 * 1608 * This will set the shared pointer of the phydev to the shared storage. 1609 * If this is the first call for a this cookie the shared storage will be 1610 * allocated. If priv_size is non-zero, the given amount of bytes are 1611 * allocated for the priv member. 1612 * 1613 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1614 * with the same cookie but a different priv_size is an error. 1615 */ 1616 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1617 { 1618 struct mii_bus *bus = phydev->mdio.bus; 1619 struct phy_package_shared *shared; 1620 int ret; 1621 1622 if (addr < 0 || addr >= PHY_MAX_ADDR) 1623 return -EINVAL; 1624 1625 mutex_lock(&bus->shared_lock); 1626 shared = bus->shared[addr]; 1627 if (!shared) { 1628 ret = -ENOMEM; 1629 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1630 if (!shared) 1631 goto err_unlock; 1632 if (priv_size) { 1633 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1634 if (!shared->priv) 1635 goto err_free; 1636 shared->priv_size = priv_size; 1637 } 1638 shared->addr = addr; 1639 refcount_set(&shared->refcnt, 1); 1640 bus->shared[addr] = shared; 1641 } else { 1642 ret = -EINVAL; 1643 if (priv_size && priv_size != shared->priv_size) 1644 goto err_unlock; 1645 refcount_inc(&shared->refcnt); 1646 } 1647 mutex_unlock(&bus->shared_lock); 1648 1649 phydev->shared = shared; 1650 1651 return 0; 1652 1653 err_free: 1654 kfree(shared); 1655 err_unlock: 1656 mutex_unlock(&bus->shared_lock); 1657 return ret; 1658 } 1659 EXPORT_SYMBOL_GPL(phy_package_join); 1660 1661 /** 1662 * phy_package_leave - leave a common PHY group 1663 * @phydev: target phy_device struct 1664 * 1665 * This leaves a PHY group created by phy_package_join(). If this phydev 1666 * was the last user of the shared data between the group, this data is 1667 * freed. Resets the phydev->shared pointer to NULL. 1668 */ 1669 void phy_package_leave(struct phy_device *phydev) 1670 { 1671 struct phy_package_shared *shared = phydev->shared; 1672 struct mii_bus *bus = phydev->mdio.bus; 1673 1674 if (!shared) 1675 return; 1676 1677 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1678 bus->shared[shared->addr] = NULL; 1679 mutex_unlock(&bus->shared_lock); 1680 kfree(shared->priv); 1681 kfree(shared); 1682 } 1683 1684 phydev->shared = NULL; 1685 } 1686 EXPORT_SYMBOL_GPL(phy_package_leave); 1687 1688 static void devm_phy_package_leave(struct device *dev, void *res) 1689 { 1690 phy_package_leave(*(struct phy_device **)res); 1691 } 1692 1693 /** 1694 * devm_phy_package_join - resource managed phy_package_join() 1695 * @dev: device that is registering this PHY package 1696 * @phydev: target phy_device struct 1697 * @addr: cookie and PHY address for global register access 1698 * @priv_size: if non-zero allocate this amount of bytes for private data 1699 * 1700 * Managed phy_package_join(). Shared storage fetched by this function, 1701 * phy_package_leave() is automatically called on driver detach. See 1702 * phy_package_join() for more information. 1703 */ 1704 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1705 int addr, size_t priv_size) 1706 { 1707 struct phy_device **ptr; 1708 int ret; 1709 1710 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1711 GFP_KERNEL); 1712 if (!ptr) 1713 return -ENOMEM; 1714 1715 ret = phy_package_join(phydev, addr, priv_size); 1716 1717 if (!ret) { 1718 *ptr = phydev; 1719 devres_add(dev, ptr); 1720 } else { 1721 devres_free(ptr); 1722 } 1723 1724 return ret; 1725 } 1726 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1727 1728 /** 1729 * phy_detach - detach a PHY device from its network device 1730 * @phydev: target phy_device struct 1731 * 1732 * This detaches the phy device from its network device and the phy 1733 * driver, and drops the reference count taken in phy_attach_direct(). 1734 */ 1735 void phy_detach(struct phy_device *phydev) 1736 { 1737 struct net_device *dev = phydev->attached_dev; 1738 struct module *ndev_owner = NULL; 1739 struct mii_bus *bus; 1740 1741 if (phydev->sysfs_links) { 1742 if (dev) 1743 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1744 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1745 } 1746 1747 if (!phydev->attached_dev) 1748 sysfs_remove_file(&phydev->mdio.dev.kobj, 1749 &dev_attr_phy_standalone.attr); 1750 1751 phy_suspend(phydev); 1752 if (dev) { 1753 phydev->attached_dev->phydev = NULL; 1754 phydev->attached_dev = NULL; 1755 } 1756 phydev->phylink = NULL; 1757 1758 phy_led_triggers_unregister(phydev); 1759 1760 if (phydev->mdio.dev.driver) 1761 module_put(phydev->mdio.dev.driver->owner); 1762 1763 /* If the device had no specific driver before (i.e. - it 1764 * was using the generic driver), we unbind the device 1765 * from the generic driver so that there's a chance a 1766 * real driver could be loaded 1767 */ 1768 if (phy_driver_is_genphy(phydev) || 1769 phy_driver_is_genphy_10g(phydev)) 1770 device_release_driver(&phydev->mdio.dev); 1771 1772 /* Assert the reset signal */ 1773 phy_device_reset(phydev, 1); 1774 1775 /* 1776 * The phydev might go away on the put_device() below, so avoid 1777 * a use-after-free bug by reading the underlying bus first. 1778 */ 1779 bus = phydev->mdio.bus; 1780 1781 put_device(&phydev->mdio.dev); 1782 if (dev) 1783 ndev_owner = dev->dev.parent->driver->owner; 1784 if (ndev_owner != bus->owner) 1785 module_put(bus->owner); 1786 } 1787 EXPORT_SYMBOL(phy_detach); 1788 1789 int phy_suspend(struct phy_device *phydev) 1790 { 1791 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1792 struct net_device *netdev = phydev->attached_dev; 1793 struct phy_driver *phydrv = phydev->drv; 1794 int ret; 1795 1796 if (phydev->suspended) 1797 return 0; 1798 1799 /* If the device has WOL enabled, we cannot suspend the PHY */ 1800 phy_ethtool_get_wol(phydev, &wol); 1801 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1802 return -EBUSY; 1803 1804 if (!phydrv || !phydrv->suspend) 1805 return 0; 1806 1807 ret = phydrv->suspend(phydev); 1808 if (!ret) 1809 phydev->suspended = true; 1810 1811 return ret; 1812 } 1813 EXPORT_SYMBOL(phy_suspend); 1814 1815 int __phy_resume(struct phy_device *phydev) 1816 { 1817 struct phy_driver *phydrv = phydev->drv; 1818 int ret; 1819 1820 lockdep_assert_held(&phydev->lock); 1821 1822 if (!phydrv || !phydrv->resume) 1823 return 0; 1824 1825 ret = phydrv->resume(phydev); 1826 if (!ret) 1827 phydev->suspended = false; 1828 1829 return ret; 1830 } 1831 EXPORT_SYMBOL(__phy_resume); 1832 1833 int phy_resume(struct phy_device *phydev) 1834 { 1835 int ret; 1836 1837 mutex_lock(&phydev->lock); 1838 ret = __phy_resume(phydev); 1839 mutex_unlock(&phydev->lock); 1840 1841 return ret; 1842 } 1843 EXPORT_SYMBOL(phy_resume); 1844 1845 int phy_loopback(struct phy_device *phydev, bool enable) 1846 { 1847 int ret = 0; 1848 1849 if (!phydev->drv) 1850 return -EIO; 1851 1852 mutex_lock(&phydev->lock); 1853 1854 if (enable && phydev->loopback_enabled) { 1855 ret = -EBUSY; 1856 goto out; 1857 } 1858 1859 if (!enable && !phydev->loopback_enabled) { 1860 ret = -EINVAL; 1861 goto out; 1862 } 1863 1864 if (phydev->drv->set_loopback) 1865 ret = phydev->drv->set_loopback(phydev, enable); 1866 else 1867 ret = genphy_loopback(phydev, enable); 1868 1869 if (ret) 1870 goto out; 1871 1872 phydev->loopback_enabled = enable; 1873 1874 out: 1875 mutex_unlock(&phydev->lock); 1876 return ret; 1877 } 1878 EXPORT_SYMBOL(phy_loopback); 1879 1880 /** 1881 * phy_reset_after_clk_enable - perform a PHY reset if needed 1882 * @phydev: target phy_device struct 1883 * 1884 * Description: Some PHYs are known to need a reset after their refclk was 1885 * enabled. This function evaluates the flags and perform the reset if it's 1886 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1887 * was reset. 1888 */ 1889 int phy_reset_after_clk_enable(struct phy_device *phydev) 1890 { 1891 if (!phydev || !phydev->drv) 1892 return -ENODEV; 1893 1894 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1895 phy_device_reset(phydev, 1); 1896 phy_device_reset(phydev, 0); 1897 return 1; 1898 } 1899 1900 return 0; 1901 } 1902 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1903 1904 /* Generic PHY support and helper functions */ 1905 1906 /** 1907 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1908 * @phydev: target phy_device struct 1909 * 1910 * Description: Writes MII_ADVERTISE with the appropriate values, 1911 * after sanitizing the values to make sure we only advertise 1912 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1913 * hasn't changed, and > 0 if it has changed. 1914 */ 1915 static int genphy_config_advert(struct phy_device *phydev) 1916 { 1917 int err, bmsr, changed = 0; 1918 u32 adv; 1919 1920 /* Only allow advertising what this PHY supports */ 1921 linkmode_and(phydev->advertising, phydev->advertising, 1922 phydev->supported); 1923 1924 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1925 1926 /* Setup standard advertisement */ 1927 err = phy_modify_changed(phydev, MII_ADVERTISE, 1928 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1929 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1930 adv); 1931 if (err < 0) 1932 return err; 1933 if (err > 0) 1934 changed = 1; 1935 1936 bmsr = phy_read(phydev, MII_BMSR); 1937 if (bmsr < 0) 1938 return bmsr; 1939 1940 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1941 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1942 * logical 1. 1943 */ 1944 if (!(bmsr & BMSR_ESTATEN)) 1945 return changed; 1946 1947 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1948 1949 err = phy_modify_changed(phydev, MII_CTRL1000, 1950 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1951 adv); 1952 if (err < 0) 1953 return err; 1954 if (err > 0) 1955 changed = 1; 1956 1957 return changed; 1958 } 1959 1960 /** 1961 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1962 * @phydev: target phy_device struct 1963 * 1964 * Description: Writes MII_ADVERTISE with the appropriate values, 1965 * after sanitizing the values to make sure we only advertise 1966 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1967 * hasn't changed, and > 0 if it has changed. This function is intended 1968 * for Clause 37 1000Base-X mode. 1969 */ 1970 static int genphy_c37_config_advert(struct phy_device *phydev) 1971 { 1972 u16 adv = 0; 1973 1974 /* Only allow advertising what this PHY supports */ 1975 linkmode_and(phydev->advertising, phydev->advertising, 1976 phydev->supported); 1977 1978 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1979 phydev->advertising)) 1980 adv |= ADVERTISE_1000XFULL; 1981 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1982 phydev->advertising)) 1983 adv |= ADVERTISE_1000XPAUSE; 1984 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1985 phydev->advertising)) 1986 adv |= ADVERTISE_1000XPSE_ASYM; 1987 1988 return phy_modify_changed(phydev, MII_ADVERTISE, 1989 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1990 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1991 adv); 1992 } 1993 1994 /** 1995 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1996 * @phydev: target phy_device struct 1997 * 1998 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1999 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2000 * changed, and 1 if it has changed. 2001 */ 2002 int genphy_config_eee_advert(struct phy_device *phydev) 2003 { 2004 int err; 2005 2006 /* Nothing to disable */ 2007 if (!phydev->eee_broken_modes) 2008 return 0; 2009 2010 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2011 phydev->eee_broken_modes, 0); 2012 /* If the call failed, we assume that EEE is not supported */ 2013 return err < 0 ? 0 : err; 2014 } 2015 EXPORT_SYMBOL(genphy_config_eee_advert); 2016 2017 /** 2018 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2019 * @phydev: target phy_device struct 2020 * 2021 * Description: Configures MII_BMCR to force speed/duplex 2022 * to the values in phydev. Assumes that the values are valid. 2023 * Please see phy_sanitize_settings(). 2024 */ 2025 int genphy_setup_forced(struct phy_device *phydev) 2026 { 2027 u16 ctl = 0; 2028 2029 phydev->pause = 0; 2030 phydev->asym_pause = 0; 2031 2032 if (SPEED_1000 == phydev->speed) 2033 ctl |= BMCR_SPEED1000; 2034 else if (SPEED_100 == phydev->speed) 2035 ctl |= BMCR_SPEED100; 2036 2037 if (DUPLEX_FULL == phydev->duplex) 2038 ctl |= BMCR_FULLDPLX; 2039 2040 return phy_modify(phydev, MII_BMCR, 2041 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2042 } 2043 EXPORT_SYMBOL(genphy_setup_forced); 2044 2045 static int genphy_setup_master_slave(struct phy_device *phydev) 2046 { 2047 u16 ctl = 0; 2048 2049 if (!phydev->is_gigabit_capable) 2050 return 0; 2051 2052 switch (phydev->master_slave_set) { 2053 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2054 ctl |= CTL1000_PREFER_MASTER; 2055 break; 2056 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2057 break; 2058 case MASTER_SLAVE_CFG_MASTER_FORCE: 2059 ctl |= CTL1000_AS_MASTER; 2060 fallthrough; 2061 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2062 ctl |= CTL1000_ENABLE_MASTER; 2063 break; 2064 case MASTER_SLAVE_CFG_UNKNOWN: 2065 case MASTER_SLAVE_CFG_UNSUPPORTED: 2066 return 0; 2067 default: 2068 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2069 return -EOPNOTSUPP; 2070 } 2071 2072 return phy_modify_changed(phydev, MII_CTRL1000, 2073 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2074 CTL1000_PREFER_MASTER), ctl); 2075 } 2076 2077 int genphy_read_master_slave(struct phy_device *phydev) 2078 { 2079 int cfg, state; 2080 int val; 2081 2082 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2083 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2084 2085 val = phy_read(phydev, MII_CTRL1000); 2086 if (val < 0) 2087 return val; 2088 2089 if (val & CTL1000_ENABLE_MASTER) { 2090 if (val & CTL1000_AS_MASTER) 2091 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2092 else 2093 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2094 } else { 2095 if (val & CTL1000_PREFER_MASTER) 2096 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2097 else 2098 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2099 } 2100 2101 val = phy_read(phydev, MII_STAT1000); 2102 if (val < 0) 2103 return val; 2104 2105 if (val & LPA_1000MSFAIL) { 2106 state = MASTER_SLAVE_STATE_ERR; 2107 } else if (phydev->link) { 2108 /* this bits are valid only for active link */ 2109 if (val & LPA_1000MSRES) 2110 state = MASTER_SLAVE_STATE_MASTER; 2111 else 2112 state = MASTER_SLAVE_STATE_SLAVE; 2113 } else { 2114 state = MASTER_SLAVE_STATE_UNKNOWN; 2115 } 2116 2117 phydev->master_slave_get = cfg; 2118 phydev->master_slave_state = state; 2119 2120 return 0; 2121 } 2122 EXPORT_SYMBOL(genphy_read_master_slave); 2123 2124 /** 2125 * genphy_restart_aneg - Enable and Restart Autonegotiation 2126 * @phydev: target phy_device struct 2127 */ 2128 int genphy_restart_aneg(struct phy_device *phydev) 2129 { 2130 /* Don't isolate the PHY if we're negotiating */ 2131 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2132 BMCR_ANENABLE | BMCR_ANRESTART); 2133 } 2134 EXPORT_SYMBOL(genphy_restart_aneg); 2135 2136 /** 2137 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2138 * @phydev: target phy_device struct 2139 * @restart: whether aneg restart is requested 2140 * 2141 * Check, and restart auto-negotiation if needed. 2142 */ 2143 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2144 { 2145 int ret; 2146 2147 if (!restart) { 2148 /* Advertisement hasn't changed, but maybe aneg was never on to 2149 * begin with? Or maybe phy was isolated? 2150 */ 2151 ret = phy_read(phydev, MII_BMCR); 2152 if (ret < 0) 2153 return ret; 2154 2155 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2156 restart = true; 2157 } 2158 2159 if (restart) 2160 return genphy_restart_aneg(phydev); 2161 2162 return 0; 2163 } 2164 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2165 2166 /** 2167 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2168 * @phydev: target phy_device struct 2169 * @changed: whether autoneg is requested 2170 * 2171 * Description: If auto-negotiation is enabled, we configure the 2172 * advertising, and then restart auto-negotiation. If it is not 2173 * enabled, then we write the BMCR. 2174 */ 2175 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2176 { 2177 int err; 2178 2179 if (genphy_config_eee_advert(phydev)) 2180 changed = true; 2181 2182 err = genphy_setup_master_slave(phydev); 2183 if (err < 0) 2184 return err; 2185 else if (err) 2186 changed = true; 2187 2188 if (AUTONEG_ENABLE != phydev->autoneg) 2189 return genphy_setup_forced(phydev); 2190 2191 err = genphy_config_advert(phydev); 2192 if (err < 0) /* error */ 2193 return err; 2194 else if (err) 2195 changed = true; 2196 2197 return genphy_check_and_restart_aneg(phydev, changed); 2198 } 2199 EXPORT_SYMBOL(__genphy_config_aneg); 2200 2201 /** 2202 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2203 * @phydev: target phy_device struct 2204 * 2205 * Description: If auto-negotiation is enabled, we configure the 2206 * advertising, and then restart auto-negotiation. If it is not 2207 * enabled, then we write the BMCR. This function is intended 2208 * for use with Clause 37 1000Base-X mode. 2209 */ 2210 int genphy_c37_config_aneg(struct phy_device *phydev) 2211 { 2212 int err, changed; 2213 2214 if (phydev->autoneg != AUTONEG_ENABLE) 2215 return genphy_setup_forced(phydev); 2216 2217 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2218 BMCR_SPEED1000); 2219 if (err) 2220 return err; 2221 2222 changed = genphy_c37_config_advert(phydev); 2223 if (changed < 0) /* error */ 2224 return changed; 2225 2226 if (!changed) { 2227 /* Advertisement hasn't changed, but maybe aneg was never on to 2228 * begin with? Or maybe phy was isolated? 2229 */ 2230 int ctl = phy_read(phydev, MII_BMCR); 2231 2232 if (ctl < 0) 2233 return ctl; 2234 2235 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2236 changed = 1; /* do restart aneg */ 2237 } 2238 2239 /* Only restart aneg if we are advertising something different 2240 * than we were before. 2241 */ 2242 if (changed > 0) 2243 return genphy_restart_aneg(phydev); 2244 2245 return 0; 2246 } 2247 EXPORT_SYMBOL(genphy_c37_config_aneg); 2248 2249 /** 2250 * genphy_aneg_done - return auto-negotiation status 2251 * @phydev: target phy_device struct 2252 * 2253 * Description: Reads the status register and returns 0 either if 2254 * auto-negotiation is incomplete, or if there was an error. 2255 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2256 */ 2257 int genphy_aneg_done(struct phy_device *phydev) 2258 { 2259 int retval = phy_read(phydev, MII_BMSR); 2260 2261 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2262 } 2263 EXPORT_SYMBOL(genphy_aneg_done); 2264 2265 /** 2266 * genphy_update_link - update link status in @phydev 2267 * @phydev: target phy_device struct 2268 * 2269 * Description: Update the value in phydev->link to reflect the 2270 * current link value. In order to do this, we need to read 2271 * the status register twice, keeping the second value. 2272 */ 2273 int genphy_update_link(struct phy_device *phydev) 2274 { 2275 int status = 0, bmcr; 2276 2277 bmcr = phy_read(phydev, MII_BMCR); 2278 if (bmcr < 0) 2279 return bmcr; 2280 2281 /* Autoneg is being started, therefore disregard BMSR value and 2282 * report link as down. 2283 */ 2284 if (bmcr & BMCR_ANRESTART) 2285 goto done; 2286 2287 /* The link state is latched low so that momentary link 2288 * drops can be detected. Do not double-read the status 2289 * in polling mode to detect such short link drops except 2290 * the link was already down. 2291 */ 2292 if (!phy_polling_mode(phydev) || !phydev->link) { 2293 status = phy_read(phydev, MII_BMSR); 2294 if (status < 0) 2295 return status; 2296 else if (status & BMSR_LSTATUS) 2297 goto done; 2298 } 2299 2300 /* Read link and autonegotiation status */ 2301 status = phy_read(phydev, MII_BMSR); 2302 if (status < 0) 2303 return status; 2304 done: 2305 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2306 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2307 2308 /* Consider the case that autoneg was started and "aneg complete" 2309 * bit has been reset, but "link up" bit not yet. 2310 */ 2311 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2312 phydev->link = 0; 2313 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(genphy_update_link); 2317 2318 int genphy_read_lpa(struct phy_device *phydev) 2319 { 2320 int lpa, lpagb; 2321 2322 if (phydev->autoneg == AUTONEG_ENABLE) { 2323 if (!phydev->autoneg_complete) { 2324 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2325 0); 2326 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2327 return 0; 2328 } 2329 2330 if (phydev->is_gigabit_capable) { 2331 lpagb = phy_read(phydev, MII_STAT1000); 2332 if (lpagb < 0) 2333 return lpagb; 2334 2335 if (lpagb & LPA_1000MSFAIL) { 2336 int adv = phy_read(phydev, MII_CTRL1000); 2337 2338 if (adv < 0) 2339 return adv; 2340 2341 if (adv & CTL1000_ENABLE_MASTER) 2342 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2343 else 2344 phydev_err(phydev, "Master/Slave resolution failed\n"); 2345 return -ENOLINK; 2346 } 2347 2348 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2349 lpagb); 2350 } 2351 2352 lpa = phy_read(phydev, MII_LPA); 2353 if (lpa < 0) 2354 return lpa; 2355 2356 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2357 } else { 2358 linkmode_zero(phydev->lp_advertising); 2359 } 2360 2361 return 0; 2362 } 2363 EXPORT_SYMBOL(genphy_read_lpa); 2364 2365 /** 2366 * genphy_read_status_fixed - read the link parameters for !aneg mode 2367 * @phydev: target phy_device struct 2368 * 2369 * Read the current duplex and speed state for a PHY operating with 2370 * autonegotiation disabled. 2371 */ 2372 int genphy_read_status_fixed(struct phy_device *phydev) 2373 { 2374 int bmcr = phy_read(phydev, MII_BMCR); 2375 2376 if (bmcr < 0) 2377 return bmcr; 2378 2379 if (bmcr & BMCR_FULLDPLX) 2380 phydev->duplex = DUPLEX_FULL; 2381 else 2382 phydev->duplex = DUPLEX_HALF; 2383 2384 if (bmcr & BMCR_SPEED1000) 2385 phydev->speed = SPEED_1000; 2386 else if (bmcr & BMCR_SPEED100) 2387 phydev->speed = SPEED_100; 2388 else 2389 phydev->speed = SPEED_10; 2390 2391 return 0; 2392 } 2393 EXPORT_SYMBOL(genphy_read_status_fixed); 2394 2395 /** 2396 * genphy_read_status - check the link status and update current link state 2397 * @phydev: target phy_device struct 2398 * 2399 * Description: Check the link, then figure out the current state 2400 * by comparing what we advertise with what the link partner 2401 * advertises. Start by checking the gigabit possibilities, 2402 * then move on to 10/100. 2403 */ 2404 int genphy_read_status(struct phy_device *phydev) 2405 { 2406 int err, old_link = phydev->link; 2407 2408 /* Update the link, but return if there was an error */ 2409 err = genphy_update_link(phydev); 2410 if (err) 2411 return err; 2412 2413 /* why bother the PHY if nothing can have changed */ 2414 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2415 return 0; 2416 2417 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2418 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2419 phydev->speed = SPEED_UNKNOWN; 2420 phydev->duplex = DUPLEX_UNKNOWN; 2421 phydev->pause = 0; 2422 phydev->asym_pause = 0; 2423 2424 if (phydev->is_gigabit_capable) { 2425 err = genphy_read_master_slave(phydev); 2426 if (err < 0) 2427 return err; 2428 } 2429 2430 err = genphy_read_lpa(phydev); 2431 if (err < 0) 2432 return err; 2433 2434 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2435 phy_resolve_aneg_linkmode(phydev); 2436 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2437 err = genphy_read_status_fixed(phydev); 2438 if (err < 0) 2439 return err; 2440 } 2441 2442 return 0; 2443 } 2444 EXPORT_SYMBOL(genphy_read_status); 2445 2446 /** 2447 * genphy_c37_read_status - check the link status and update current link state 2448 * @phydev: target phy_device struct 2449 * 2450 * Description: Check the link, then figure out the current state 2451 * by comparing what we advertise with what the link partner 2452 * advertises. This function is for Clause 37 1000Base-X mode. 2453 */ 2454 int genphy_c37_read_status(struct phy_device *phydev) 2455 { 2456 int lpa, err, old_link = phydev->link; 2457 2458 /* Update the link, but return if there was an error */ 2459 err = genphy_update_link(phydev); 2460 if (err) 2461 return err; 2462 2463 /* why bother the PHY if nothing can have changed */ 2464 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2465 return 0; 2466 2467 phydev->duplex = DUPLEX_UNKNOWN; 2468 phydev->pause = 0; 2469 phydev->asym_pause = 0; 2470 2471 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2472 lpa = phy_read(phydev, MII_LPA); 2473 if (lpa < 0) 2474 return lpa; 2475 2476 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2477 phydev->lp_advertising, lpa & LPA_LPACK); 2478 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2479 phydev->lp_advertising, lpa & LPA_1000XFULL); 2480 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2481 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2482 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2483 phydev->lp_advertising, 2484 lpa & LPA_1000XPAUSE_ASYM); 2485 2486 phy_resolve_aneg_linkmode(phydev); 2487 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2488 int bmcr = phy_read(phydev, MII_BMCR); 2489 2490 if (bmcr < 0) 2491 return bmcr; 2492 2493 if (bmcr & BMCR_FULLDPLX) 2494 phydev->duplex = DUPLEX_FULL; 2495 else 2496 phydev->duplex = DUPLEX_HALF; 2497 } 2498 2499 return 0; 2500 } 2501 EXPORT_SYMBOL(genphy_c37_read_status); 2502 2503 /** 2504 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2505 * @phydev: target phy_device struct 2506 * 2507 * Description: Perform a software PHY reset using the standard 2508 * BMCR_RESET bit and poll for the reset bit to be cleared. 2509 * 2510 * Returns: 0 on success, < 0 on failure 2511 */ 2512 int genphy_soft_reset(struct phy_device *phydev) 2513 { 2514 u16 res = BMCR_RESET; 2515 int ret; 2516 2517 if (phydev->autoneg == AUTONEG_ENABLE) 2518 res |= BMCR_ANRESTART; 2519 2520 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2521 if (ret < 0) 2522 return ret; 2523 2524 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2525 * to their default value. Therefore the POWER DOWN bit is supposed to 2526 * be cleared after soft reset. 2527 */ 2528 phydev->suspended = 0; 2529 2530 ret = phy_poll_reset(phydev); 2531 if (ret) 2532 return ret; 2533 2534 /* BMCR may be reset to defaults */ 2535 if (phydev->autoneg == AUTONEG_DISABLE) 2536 ret = genphy_setup_forced(phydev); 2537 2538 return ret; 2539 } 2540 EXPORT_SYMBOL(genphy_soft_reset); 2541 2542 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2543 { 2544 /* It seems there are cases where the interrupts are handled by another 2545 * entity (ie an IRQ controller embedded inside the PHY) and do not 2546 * need any other interraction from phylib. In this case, just trigger 2547 * the state machine directly. 2548 */ 2549 phy_trigger_machine(phydev); 2550 2551 return 0; 2552 } 2553 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2554 2555 /** 2556 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2557 * @phydev: target phy_device struct 2558 * 2559 * Description: Reads the PHY's abilities and populates 2560 * phydev->supported accordingly. 2561 * 2562 * Returns: 0 on success, < 0 on failure 2563 */ 2564 int genphy_read_abilities(struct phy_device *phydev) 2565 { 2566 int val; 2567 2568 linkmode_set_bit_array(phy_basic_ports_array, 2569 ARRAY_SIZE(phy_basic_ports_array), 2570 phydev->supported); 2571 2572 val = phy_read(phydev, MII_BMSR); 2573 if (val < 0) 2574 return val; 2575 2576 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2577 val & BMSR_ANEGCAPABLE); 2578 2579 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2580 val & BMSR_100FULL); 2581 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2582 val & BMSR_100HALF); 2583 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2584 val & BMSR_10FULL); 2585 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2586 val & BMSR_10HALF); 2587 2588 if (val & BMSR_ESTATEN) { 2589 val = phy_read(phydev, MII_ESTATUS); 2590 if (val < 0) 2591 return val; 2592 2593 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2594 phydev->supported, val & ESTATUS_1000_TFULL); 2595 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2596 phydev->supported, val & ESTATUS_1000_THALF); 2597 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2598 phydev->supported, val & ESTATUS_1000_XFULL); 2599 } 2600 2601 return 0; 2602 } 2603 EXPORT_SYMBOL(genphy_read_abilities); 2604 2605 /* This is used for the phy device which doesn't support the MMD extended 2606 * register access, but it does have side effect when we are trying to access 2607 * the MMD register via indirect method. 2608 */ 2609 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2610 { 2611 return -EOPNOTSUPP; 2612 } 2613 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2614 2615 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2616 u16 regnum, u16 val) 2617 { 2618 return -EOPNOTSUPP; 2619 } 2620 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2621 2622 int genphy_suspend(struct phy_device *phydev) 2623 { 2624 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2625 } 2626 EXPORT_SYMBOL(genphy_suspend); 2627 2628 int genphy_resume(struct phy_device *phydev) 2629 { 2630 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2631 } 2632 EXPORT_SYMBOL(genphy_resume); 2633 2634 int genphy_loopback(struct phy_device *phydev, bool enable) 2635 { 2636 if (enable) { 2637 u16 val, ctl = BMCR_LOOPBACK; 2638 int ret; 2639 2640 if (phydev->speed == SPEED_1000) 2641 ctl |= BMCR_SPEED1000; 2642 else if (phydev->speed == SPEED_100) 2643 ctl |= BMCR_SPEED100; 2644 2645 if (phydev->duplex == DUPLEX_FULL) 2646 ctl |= BMCR_FULLDPLX; 2647 2648 phy_modify(phydev, MII_BMCR, ~0, ctl); 2649 2650 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2651 val & BMSR_LSTATUS, 2652 5000, 500000, true); 2653 if (ret) 2654 return ret; 2655 } else { 2656 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2657 2658 phy_config_aneg(phydev); 2659 } 2660 2661 return 0; 2662 } 2663 EXPORT_SYMBOL(genphy_loopback); 2664 2665 /** 2666 * phy_remove_link_mode - Remove a supported link mode 2667 * @phydev: phy_device structure to remove link mode from 2668 * @link_mode: Link mode to be removed 2669 * 2670 * Description: Some MACs don't support all link modes which the PHY 2671 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2672 * to remove a link mode. 2673 */ 2674 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2675 { 2676 linkmode_clear_bit(link_mode, phydev->supported); 2677 phy_advertise_supported(phydev); 2678 } 2679 EXPORT_SYMBOL(phy_remove_link_mode); 2680 2681 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2682 { 2683 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2684 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2685 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2686 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2687 } 2688 2689 /** 2690 * phy_advertise_supported - Advertise all supported modes 2691 * @phydev: target phy_device struct 2692 * 2693 * Description: Called to advertise all supported modes, doesn't touch 2694 * pause mode advertising. 2695 */ 2696 void phy_advertise_supported(struct phy_device *phydev) 2697 { 2698 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2699 2700 linkmode_copy(new, phydev->supported); 2701 phy_copy_pause_bits(new, phydev->advertising); 2702 linkmode_copy(phydev->advertising, new); 2703 } 2704 EXPORT_SYMBOL(phy_advertise_supported); 2705 2706 /** 2707 * phy_support_sym_pause - Enable support of symmetrical pause 2708 * @phydev: target phy_device struct 2709 * 2710 * Description: Called by the MAC to indicate is supports symmetrical 2711 * Pause, but not asym pause. 2712 */ 2713 void phy_support_sym_pause(struct phy_device *phydev) 2714 { 2715 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2716 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2717 } 2718 EXPORT_SYMBOL(phy_support_sym_pause); 2719 2720 /** 2721 * phy_support_asym_pause - Enable support of asym pause 2722 * @phydev: target phy_device struct 2723 * 2724 * Description: Called by the MAC to indicate is supports Asym Pause. 2725 */ 2726 void phy_support_asym_pause(struct phy_device *phydev) 2727 { 2728 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2729 } 2730 EXPORT_SYMBOL(phy_support_asym_pause); 2731 2732 /** 2733 * phy_set_sym_pause - Configure symmetric Pause 2734 * @phydev: target phy_device struct 2735 * @rx: Receiver Pause is supported 2736 * @tx: Transmit Pause is supported 2737 * @autoneg: Auto neg should be used 2738 * 2739 * Description: Configure advertised Pause support depending on if 2740 * receiver pause and pause auto neg is supported. Generally called 2741 * from the set_pauseparam .ndo. 2742 */ 2743 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2744 bool autoneg) 2745 { 2746 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2747 2748 if (rx && tx && autoneg) 2749 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2750 phydev->supported); 2751 2752 linkmode_copy(phydev->advertising, phydev->supported); 2753 } 2754 EXPORT_SYMBOL(phy_set_sym_pause); 2755 2756 /** 2757 * phy_set_asym_pause - Configure Pause and Asym Pause 2758 * @phydev: target phy_device struct 2759 * @rx: Receiver Pause is supported 2760 * @tx: Transmit Pause is supported 2761 * 2762 * Description: Configure advertised Pause support depending on if 2763 * transmit and receiver pause is supported. If there has been a 2764 * change in adverting, trigger a new autoneg. Generally called from 2765 * the set_pauseparam .ndo. 2766 */ 2767 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2768 { 2769 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2770 2771 linkmode_copy(oldadv, phydev->advertising); 2772 linkmode_set_pause(phydev->advertising, tx, rx); 2773 2774 if (!linkmode_equal(oldadv, phydev->advertising) && 2775 phydev->autoneg) 2776 phy_start_aneg(phydev); 2777 } 2778 EXPORT_SYMBOL(phy_set_asym_pause); 2779 2780 /** 2781 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2782 * @phydev: phy_device struct 2783 * @pp: requested pause configuration 2784 * 2785 * Description: Test if the PHY/MAC combination supports the Pause 2786 * configuration the user is requesting. Returns True if it is 2787 * supported, false otherwise. 2788 */ 2789 bool phy_validate_pause(struct phy_device *phydev, 2790 struct ethtool_pauseparam *pp) 2791 { 2792 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2793 phydev->supported) && pp->rx_pause) 2794 return false; 2795 2796 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2797 phydev->supported) && 2798 pp->rx_pause != pp->tx_pause) 2799 return false; 2800 2801 return true; 2802 } 2803 EXPORT_SYMBOL(phy_validate_pause); 2804 2805 /** 2806 * phy_get_pause - resolve negotiated pause modes 2807 * @phydev: phy_device struct 2808 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2809 * enabled. 2810 * @rx_pause: pointer to bool to indicate whether receive pause should be 2811 * enabled. 2812 * 2813 * Resolve and return the flow control modes according to the negotiation 2814 * result. This includes checking that we are operating in full duplex mode. 2815 * See linkmode_resolve_pause() for further details. 2816 */ 2817 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2818 { 2819 if (phydev->duplex != DUPLEX_FULL) { 2820 *tx_pause = false; 2821 *rx_pause = false; 2822 return; 2823 } 2824 2825 return linkmode_resolve_pause(phydev->advertising, 2826 phydev->lp_advertising, 2827 tx_pause, rx_pause); 2828 } 2829 EXPORT_SYMBOL(phy_get_pause); 2830 2831 #if IS_ENABLED(CONFIG_OF_MDIO) 2832 static int phy_get_int_delay_property(struct device *dev, const char *name) 2833 { 2834 s32 int_delay; 2835 int ret; 2836 2837 ret = device_property_read_u32(dev, name, &int_delay); 2838 if (ret) 2839 return ret; 2840 2841 return int_delay; 2842 } 2843 #else 2844 static int phy_get_int_delay_property(struct device *dev, const char *name) 2845 { 2846 return -EINVAL; 2847 } 2848 #endif 2849 2850 /** 2851 * phy_get_internal_delay - returns the index of the internal delay 2852 * @phydev: phy_device struct 2853 * @dev: pointer to the devices device struct 2854 * @delay_values: array of delays the PHY supports 2855 * @size: the size of the delay array 2856 * @is_rx: boolean to indicate to get the rx internal delay 2857 * 2858 * Returns the index within the array of internal delay passed in. 2859 * If the device property is not present then the interface type is checked 2860 * if the interface defines use of internal delay then a 1 is returned otherwise 2861 * a 0 is returned. 2862 * The array must be in ascending order. If PHY does not have an ascending order 2863 * array then size = 0 and the value of the delay property is returned. 2864 * Return -EINVAL if the delay is invalid or cannot be found. 2865 */ 2866 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2867 const int *delay_values, int size, bool is_rx) 2868 { 2869 s32 delay; 2870 int i; 2871 2872 if (is_rx) { 2873 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2874 if (delay < 0 && size == 0) { 2875 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2876 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2877 return 1; 2878 else 2879 return 0; 2880 } 2881 2882 } else { 2883 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2884 if (delay < 0 && size == 0) { 2885 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2886 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2887 return 1; 2888 else 2889 return 0; 2890 } 2891 } 2892 2893 if (delay < 0) 2894 return delay; 2895 2896 if (delay && size == 0) 2897 return delay; 2898 2899 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2900 phydev_err(phydev, "Delay %d is out of range\n", delay); 2901 return -EINVAL; 2902 } 2903 2904 if (delay == delay_values[0]) 2905 return 0; 2906 2907 for (i = 1; i < size; i++) { 2908 if (delay == delay_values[i]) 2909 return i; 2910 2911 /* Find an approximate index by looking up the table */ 2912 if (delay > delay_values[i - 1] && 2913 delay < delay_values[i]) { 2914 if (delay - delay_values[i - 1] < 2915 delay_values[i] - delay) 2916 return i - 1; 2917 else 2918 return i; 2919 } 2920 } 2921 2922 phydev_err(phydev, "error finding internal delay index for %d\n", 2923 delay); 2924 2925 return -EINVAL; 2926 } 2927 EXPORT_SYMBOL(phy_get_internal_delay); 2928 2929 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2930 { 2931 return phydrv->config_intr && phydrv->handle_interrupt; 2932 } 2933 2934 /** 2935 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2936 * @fwnode: pointer to the mdio_device's fwnode 2937 * 2938 * If successful, returns a pointer to the mdio_device with the embedded 2939 * struct device refcount incremented by one, or NULL on failure. 2940 * The caller should call put_device() on the mdio_device after its use. 2941 */ 2942 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2943 { 2944 struct device *d; 2945 2946 if (!fwnode) 2947 return NULL; 2948 2949 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2950 if (!d) 2951 return NULL; 2952 2953 return to_mdio_device(d); 2954 } 2955 EXPORT_SYMBOL(fwnode_mdio_find_device); 2956 2957 /** 2958 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2959 * 2960 * @phy_fwnode: Pointer to the phy's fwnode. 2961 * 2962 * If successful, returns a pointer to the phy_device with the embedded 2963 * struct device refcount incremented by one, or NULL on failure. 2964 */ 2965 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2966 { 2967 struct mdio_device *mdiodev; 2968 2969 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2970 if (!mdiodev) 2971 return NULL; 2972 2973 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2974 return to_phy_device(&mdiodev->dev); 2975 2976 put_device(&mdiodev->dev); 2977 2978 return NULL; 2979 } 2980 EXPORT_SYMBOL(fwnode_phy_find_device); 2981 2982 /** 2983 * device_phy_find_device - For the given device, get the phy_device 2984 * @dev: Pointer to the given device 2985 * 2986 * Refer return conditions of fwnode_phy_find_device(). 2987 */ 2988 struct phy_device *device_phy_find_device(struct device *dev) 2989 { 2990 return fwnode_phy_find_device(dev_fwnode(dev)); 2991 } 2992 EXPORT_SYMBOL_GPL(device_phy_find_device); 2993 2994 /** 2995 * fwnode_get_phy_node - Get the phy_node using the named reference. 2996 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2997 * 2998 * Refer return conditions of fwnode_find_reference(). 2999 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3000 * and "phy-device" are not supported in ACPI. DT supports all the three 3001 * named references to the phy node. 3002 */ 3003 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 3004 { 3005 struct fwnode_handle *phy_node; 3006 3007 /* Only phy-handle is used for ACPI */ 3008 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3009 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3010 return phy_node; 3011 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3012 if (IS_ERR(phy_node)) 3013 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3014 return phy_node; 3015 } 3016 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3017 3018 /** 3019 * phy_probe - probe and init a PHY device 3020 * @dev: device to probe and init 3021 * 3022 * Description: Take care of setting up the phy_device structure, 3023 * set the state to READY (the driver's init function should 3024 * set it to STARTING if needed). 3025 */ 3026 static int phy_probe(struct device *dev) 3027 { 3028 struct phy_device *phydev = to_phy_device(dev); 3029 struct device_driver *drv = phydev->mdio.dev.driver; 3030 struct phy_driver *phydrv = to_phy_driver(drv); 3031 int err = 0; 3032 3033 phydev->drv = phydrv; 3034 3035 /* Disable the interrupt if the PHY doesn't support it 3036 * but the interrupt is still a valid one 3037 */ 3038 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3039 phydev->irq = PHY_POLL; 3040 3041 if (phydrv->flags & PHY_IS_INTERNAL) 3042 phydev->is_internal = true; 3043 3044 mutex_lock(&phydev->lock); 3045 3046 /* Deassert the reset signal */ 3047 phy_device_reset(phydev, 0); 3048 3049 if (phydev->drv->probe) { 3050 err = phydev->drv->probe(phydev); 3051 if (err) 3052 goto out; 3053 } 3054 3055 /* Start out supporting everything. Eventually, 3056 * a controller will attach, and may modify one 3057 * or both of these values 3058 */ 3059 if (phydrv->features) 3060 linkmode_copy(phydev->supported, phydrv->features); 3061 else if (phydrv->get_features) 3062 err = phydrv->get_features(phydev); 3063 else if (phydev->is_c45) 3064 err = genphy_c45_pma_read_abilities(phydev); 3065 else 3066 err = genphy_read_abilities(phydev); 3067 3068 if (err) 3069 goto out; 3070 3071 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3072 phydev->supported)) 3073 phydev->autoneg = 0; 3074 3075 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3076 phydev->supported)) 3077 phydev->is_gigabit_capable = 1; 3078 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3079 phydev->supported)) 3080 phydev->is_gigabit_capable = 1; 3081 3082 of_set_phy_supported(phydev); 3083 phy_advertise_supported(phydev); 3084 3085 /* Get the EEE modes we want to prohibit. We will ask 3086 * the PHY stop advertising these mode later on 3087 */ 3088 of_set_phy_eee_broken(phydev); 3089 3090 /* The Pause Frame bits indicate that the PHY can support passing 3091 * pause frames. During autonegotiation, the PHYs will determine if 3092 * they should allow pause frames to pass. The MAC driver should then 3093 * use that result to determine whether to enable flow control via 3094 * pause frames. 3095 * 3096 * Normally, PHY drivers should not set the Pause bits, and instead 3097 * allow phylib to do that. However, there may be some situations 3098 * (e.g. hardware erratum) where the driver wants to set only one 3099 * of these bits. 3100 */ 3101 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3102 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3103 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3104 phydev->supported); 3105 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3106 phydev->supported); 3107 } 3108 3109 /* Set the state to READY by default */ 3110 phydev->state = PHY_READY; 3111 3112 out: 3113 /* Assert the reset signal */ 3114 if (err) 3115 phy_device_reset(phydev, 1); 3116 3117 mutex_unlock(&phydev->lock); 3118 3119 return err; 3120 } 3121 3122 static int phy_remove(struct device *dev) 3123 { 3124 struct phy_device *phydev = to_phy_device(dev); 3125 3126 cancel_delayed_work_sync(&phydev->state_queue); 3127 3128 mutex_lock(&phydev->lock); 3129 phydev->state = PHY_DOWN; 3130 mutex_unlock(&phydev->lock); 3131 3132 sfp_bus_del_upstream(phydev->sfp_bus); 3133 phydev->sfp_bus = NULL; 3134 3135 if (phydev->drv && phydev->drv->remove) 3136 phydev->drv->remove(phydev); 3137 3138 /* Assert the reset signal */ 3139 phy_device_reset(phydev, 1); 3140 3141 phydev->drv = NULL; 3142 3143 return 0; 3144 } 3145 3146 static void phy_shutdown(struct device *dev) 3147 { 3148 struct phy_device *phydev = to_phy_device(dev); 3149 3150 if (phydev->state == PHY_READY || !phydev->attached_dev) 3151 return; 3152 3153 phy_disable_interrupts(phydev); 3154 } 3155 3156 /** 3157 * phy_driver_register - register a phy_driver with the PHY layer 3158 * @new_driver: new phy_driver to register 3159 * @owner: module owning this PHY 3160 */ 3161 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3162 { 3163 int retval; 3164 3165 /* Either the features are hard coded, or dynamically 3166 * determined. It cannot be both. 3167 */ 3168 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3169 pr_err("%s: features and get_features must not both be set\n", 3170 new_driver->name); 3171 return -EINVAL; 3172 } 3173 3174 /* PHYLIB device drivers must not match using a DT compatible table 3175 * as this bypasses our checks that the mdiodev that is being matched 3176 * is backed by a struct phy_device. If such a case happens, we will 3177 * make out-of-bounds accesses and lockup in phydev->lock. 3178 */ 3179 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3180 "%s: driver must not provide a DT match table\n", 3181 new_driver->name)) 3182 return -EINVAL; 3183 3184 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3185 new_driver->mdiodrv.driver.name = new_driver->name; 3186 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3187 new_driver->mdiodrv.driver.probe = phy_probe; 3188 new_driver->mdiodrv.driver.remove = phy_remove; 3189 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3190 new_driver->mdiodrv.driver.owner = owner; 3191 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3192 3193 retval = driver_register(&new_driver->mdiodrv.driver); 3194 if (retval) { 3195 pr_err("%s: Error %d in registering driver\n", 3196 new_driver->name, retval); 3197 3198 return retval; 3199 } 3200 3201 pr_debug("%s: Registered new driver\n", new_driver->name); 3202 3203 return 0; 3204 } 3205 EXPORT_SYMBOL(phy_driver_register); 3206 3207 int phy_drivers_register(struct phy_driver *new_driver, int n, 3208 struct module *owner) 3209 { 3210 int i, ret = 0; 3211 3212 for (i = 0; i < n; i++) { 3213 ret = phy_driver_register(new_driver + i, owner); 3214 if (ret) { 3215 while (i-- > 0) 3216 phy_driver_unregister(new_driver + i); 3217 break; 3218 } 3219 } 3220 return ret; 3221 } 3222 EXPORT_SYMBOL(phy_drivers_register); 3223 3224 void phy_driver_unregister(struct phy_driver *drv) 3225 { 3226 driver_unregister(&drv->mdiodrv.driver); 3227 } 3228 EXPORT_SYMBOL(phy_driver_unregister); 3229 3230 void phy_drivers_unregister(struct phy_driver *drv, int n) 3231 { 3232 int i; 3233 3234 for (i = 0; i < n; i++) 3235 phy_driver_unregister(drv + i); 3236 } 3237 EXPORT_SYMBOL(phy_drivers_unregister); 3238 3239 static struct phy_driver genphy_driver = { 3240 .phy_id = 0xffffffff, 3241 .phy_id_mask = 0xffffffff, 3242 .name = "Generic PHY", 3243 .get_features = genphy_read_abilities, 3244 .suspend = genphy_suspend, 3245 .resume = genphy_resume, 3246 .set_loopback = genphy_loopback, 3247 }; 3248 3249 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3250 .get_sset_count = phy_ethtool_get_sset_count, 3251 .get_strings = phy_ethtool_get_strings, 3252 .get_stats = phy_ethtool_get_stats, 3253 .start_cable_test = phy_start_cable_test, 3254 .start_cable_test_tdr = phy_start_cable_test_tdr, 3255 }; 3256 3257 static int __init phy_init(void) 3258 { 3259 int rc; 3260 3261 rc = mdio_bus_init(); 3262 if (rc) 3263 return rc; 3264 3265 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3266 features_init(); 3267 3268 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3269 if (rc) 3270 goto err_c45; 3271 3272 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3273 if (rc) { 3274 phy_driver_unregister(&genphy_c45_driver); 3275 err_c45: 3276 mdio_bus_exit(); 3277 } 3278 3279 return rc; 3280 } 3281 3282 static void __exit phy_exit(void) 3283 { 3284 phy_driver_unregister(&genphy_c45_driver); 3285 phy_driver_unregister(&genphy_driver); 3286 mdio_bus_exit(); 3287 ethtool_set_ethtool_phy_ops(NULL); 3288 } 3289 3290 subsys_initcall(phy_init); 3291 module_exit(phy_exit); 3292