1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 658 dev->speed = SPEED_UNKNOWN; 659 dev->duplex = DUPLEX_UNKNOWN; 660 dev->pause = 0; 661 dev->asym_pause = 0; 662 dev->link = 0; 663 dev->port = PORT_TP; 664 dev->interface = PHY_INTERFACE_MODE_GMII; 665 666 dev->autoneg = AUTONEG_ENABLE; 667 668 dev->pma_extable = -ENODATA; 669 dev->is_c45 = is_c45; 670 dev->phy_id = phy_id; 671 if (c45_ids) 672 dev->c45_ids = *c45_ids; 673 dev->irq = bus->irq[addr]; 674 675 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 676 device_initialize(&mdiodev->dev); 677 678 dev->state = PHY_DOWN; 679 INIT_LIST_HEAD(&dev->leds); 680 681 mutex_init(&dev->lock); 682 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 683 684 /* Request the appropriate module unconditionally; don't 685 * bother trying to do so only if it isn't already loaded, 686 * because that gets complicated. A hotplug event would have 687 * done an unconditional modprobe anyway. 688 * We don't do normal hotplug because it won't work for MDIO 689 * -- because it relies on the device staying around for long 690 * enough for the driver to get loaded. With MDIO, the NIC 691 * driver will get bored and give up as soon as it finds that 692 * there's no driver _already_ loaded. 693 */ 694 if (is_c45 && c45_ids) { 695 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 696 int i; 697 698 for (i = 1; i < num_ids; i++) { 699 if (c45_ids->device_ids[i] == 0xffffffff) 700 continue; 701 702 ret = phy_request_driver_module(dev, 703 c45_ids->device_ids[i]); 704 if (ret) 705 break; 706 } 707 } else { 708 ret = phy_request_driver_module(dev, phy_id); 709 } 710 711 if (ret) { 712 put_device(&mdiodev->dev); 713 dev = ERR_PTR(ret); 714 } 715 716 return dev; 717 } 718 EXPORT_SYMBOL(phy_device_create); 719 720 /* phy_c45_probe_present - checks to see if a MMD is present in the package 721 * @bus: the target MII bus 722 * @prtad: PHY package address on the MII bus 723 * @devad: PHY device (MMD) address 724 * 725 * Read the MDIO_STAT2 register, and check whether a device is responding 726 * at this address. 727 * 728 * Returns: negative error number on bus access error, zero if no device 729 * is responding, or positive if a device is present. 730 */ 731 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 732 { 733 int stat2; 734 735 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 736 if (stat2 < 0) 737 return stat2; 738 739 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 740 } 741 742 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 743 * @bus: the target MII bus 744 * @addr: PHY address on the MII bus 745 * @dev_addr: MMD address in the PHY. 746 * @devices_in_package: where to store the devices in package information. 747 * 748 * Description: reads devices in package registers of a MMD at @dev_addr 749 * from PHY at @addr on @bus. 750 * 751 * Returns: 0 on success, -EIO on failure. 752 */ 753 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 754 u32 *devices_in_package) 755 { 756 int phy_reg; 757 758 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 759 if (phy_reg < 0) 760 return -EIO; 761 *devices_in_package = phy_reg << 16; 762 763 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 764 if (phy_reg < 0) 765 return -EIO; 766 *devices_in_package |= phy_reg; 767 768 return 0; 769 } 770 771 /** 772 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 773 * @bus: the target MII bus 774 * @addr: PHY address on the MII bus 775 * @c45_ids: where to store the c45 ID information. 776 * 777 * Read the PHY "devices in package". If this appears to be valid, read 778 * the PHY identifiers for each device. Return the "devices in package" 779 * and identifiers in @c45_ids. 780 * 781 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 782 * the "devices in package" is invalid. 783 */ 784 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 785 struct phy_c45_device_ids *c45_ids) 786 { 787 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 788 u32 devs_in_pkg = 0; 789 int i, ret, phy_reg; 790 791 /* Find first non-zero Devices In package. Device zero is reserved 792 * for 802.3 c45 complied PHYs, so don't probe it at first. 793 */ 794 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 795 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 796 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 797 /* Check that there is a device present at this 798 * address before reading the devices-in-package 799 * register to avoid reading garbage from the PHY. 800 * Some PHYs (88x3310) vendor space is not IEEE802.3 801 * compliant. 802 */ 803 ret = phy_c45_probe_present(bus, addr, i); 804 if (ret < 0) 805 return -EIO; 806 807 if (!ret) 808 continue; 809 } 810 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 811 if (phy_reg < 0) 812 return -EIO; 813 } 814 815 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 816 /* If mostly Fs, there is no device there, then let's probe 817 * MMD 0, as some 10G PHYs have zero Devices In package, 818 * e.g. Cortina CS4315/CS4340 PHY. 819 */ 820 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 821 if (phy_reg < 0) 822 return -EIO; 823 824 /* no device there, let's get out of here */ 825 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 826 return -ENODEV; 827 } 828 829 /* Now probe Device Identifiers for each device present. */ 830 for (i = 1; i < num_ids; i++) { 831 if (!(devs_in_pkg & (1 << i))) 832 continue; 833 834 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 835 /* Probe the "Device Present" bits for the vendor MMDs 836 * to ignore these if they do not contain IEEE 802.3 837 * registers. 838 */ 839 ret = phy_c45_probe_present(bus, addr, i); 840 if (ret < 0) 841 return ret; 842 843 if (!ret) 844 continue; 845 } 846 847 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 848 if (phy_reg < 0) 849 return -EIO; 850 c45_ids->device_ids[i] = phy_reg << 16; 851 852 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 853 if (phy_reg < 0) 854 return -EIO; 855 c45_ids->device_ids[i] |= phy_reg; 856 } 857 858 c45_ids->devices_in_package = devs_in_pkg; 859 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 860 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 861 862 return 0; 863 } 864 865 /** 866 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 867 * @bus: the target MII bus 868 * @addr: PHY address on the MII bus 869 * @phy_id: where to store the ID retrieved. 870 * 871 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 872 * placing it in @phy_id. Return zero on successful read and the ID is 873 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 874 * or invalid ID. 875 */ 876 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 877 { 878 int phy_reg; 879 880 /* Grab the bits from PHYIR1, and put them in the upper half */ 881 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 882 if (phy_reg < 0) { 883 /* returning -ENODEV doesn't stop bus scanning */ 884 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 885 } 886 887 *phy_id = phy_reg << 16; 888 889 /* Grab the bits from PHYIR2, and put them in the lower half */ 890 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 891 if (phy_reg < 0) { 892 /* returning -ENODEV doesn't stop bus scanning */ 893 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 894 } 895 896 *phy_id |= phy_reg; 897 898 /* If the phy_id is mostly Fs, there is no device there */ 899 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 900 return -ENODEV; 901 902 return 0; 903 } 904 905 /* Extract the phy ID from the compatible string of the form 906 * ethernet-phy-idAAAA.BBBB. 907 */ 908 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 909 { 910 unsigned int upper, lower; 911 const char *cp; 912 int ret; 913 914 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 915 if (ret) 916 return ret; 917 918 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 919 return -EINVAL; 920 921 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 922 return 0; 923 } 924 EXPORT_SYMBOL(fwnode_get_phy_id); 925 926 /** 927 * get_phy_device - reads the specified PHY device and returns its @phy_device 928 * struct 929 * @bus: the target MII bus 930 * @addr: PHY address on the MII bus 931 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 932 * 933 * Probe for a PHY at @addr on @bus. 934 * 935 * When probing for a clause 22 PHY, then read the ID registers. If we find 936 * a valid ID, allocate and return a &struct phy_device. 937 * 938 * When probing for a clause 45 PHY, read the "devices in package" registers. 939 * If the "devices in package" appears valid, read the ID registers for each 940 * MMD, allocate and return a &struct phy_device. 941 * 942 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 943 * no PHY present, or %-EIO on bus access error. 944 */ 945 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 946 { 947 struct phy_c45_device_ids c45_ids; 948 u32 phy_id = 0; 949 int r; 950 951 c45_ids.devices_in_package = 0; 952 c45_ids.mmds_present = 0; 953 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 954 955 if (is_c45) 956 r = get_phy_c45_ids(bus, addr, &c45_ids); 957 else 958 r = get_phy_c22_id(bus, addr, &phy_id); 959 960 if (r) 961 return ERR_PTR(r); 962 963 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 964 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 965 * probe with C45 to see if we're able to get a valid PHY ID in the C45 966 * space, if successful, create the C45 PHY device. 967 */ 968 if (!is_c45 && phy_id == 0 && bus->read_c45) { 969 r = get_phy_c45_ids(bus, addr, &c45_ids); 970 if (!r) 971 return phy_device_create(bus, addr, phy_id, 972 true, &c45_ids); 973 } 974 975 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 976 } 977 EXPORT_SYMBOL(get_phy_device); 978 979 /** 980 * phy_device_register - Register the phy device on the MDIO bus 981 * @phydev: phy_device structure to be added to the MDIO bus 982 */ 983 int phy_device_register(struct phy_device *phydev) 984 { 985 int err; 986 987 err = mdiobus_register_device(&phydev->mdio); 988 if (err) 989 return err; 990 991 /* Deassert the reset signal */ 992 phy_device_reset(phydev, 0); 993 994 /* Run all of the fixups for this PHY */ 995 err = phy_scan_fixups(phydev); 996 if (err) { 997 phydev_err(phydev, "failed to initialize\n"); 998 goto out; 999 } 1000 1001 err = device_add(&phydev->mdio.dev); 1002 if (err) { 1003 phydev_err(phydev, "failed to add\n"); 1004 goto out; 1005 } 1006 1007 return 0; 1008 1009 out: 1010 /* Assert the reset signal */ 1011 phy_device_reset(phydev, 1); 1012 1013 mdiobus_unregister_device(&phydev->mdio); 1014 return err; 1015 } 1016 EXPORT_SYMBOL(phy_device_register); 1017 1018 /** 1019 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1020 * @phydev: phy_device structure to remove 1021 * 1022 * This doesn't free the phy_device itself, it merely reverses the effects 1023 * of phy_device_register(). Use phy_device_free() to free the device 1024 * after calling this function. 1025 */ 1026 void phy_device_remove(struct phy_device *phydev) 1027 { 1028 unregister_mii_timestamper(phydev->mii_ts); 1029 pse_control_put(phydev->psec); 1030 1031 device_del(&phydev->mdio.dev); 1032 1033 /* Assert the reset signal */ 1034 phy_device_reset(phydev, 1); 1035 1036 mdiobus_unregister_device(&phydev->mdio); 1037 } 1038 EXPORT_SYMBOL(phy_device_remove); 1039 1040 /** 1041 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1042 * @phydev: phy_device structure to read 802.3-c45 IDs 1043 * 1044 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1045 * the "devices in package" is invalid. 1046 */ 1047 int phy_get_c45_ids(struct phy_device *phydev) 1048 { 1049 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1050 &phydev->c45_ids); 1051 } 1052 EXPORT_SYMBOL(phy_get_c45_ids); 1053 1054 /** 1055 * phy_find_first - finds the first PHY device on the bus 1056 * @bus: the target MII bus 1057 */ 1058 struct phy_device *phy_find_first(struct mii_bus *bus) 1059 { 1060 struct phy_device *phydev; 1061 int addr; 1062 1063 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1064 phydev = mdiobus_get_phy(bus, addr); 1065 if (phydev) 1066 return phydev; 1067 } 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(phy_find_first); 1071 1072 static void phy_link_change(struct phy_device *phydev, bool up) 1073 { 1074 struct net_device *netdev = phydev->attached_dev; 1075 1076 if (up) 1077 netif_carrier_on(netdev); 1078 else 1079 netif_carrier_off(netdev); 1080 phydev->adjust_link(netdev); 1081 if (phydev->mii_ts && phydev->mii_ts->link_state) 1082 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1083 } 1084 1085 /** 1086 * phy_prepare_link - prepares the PHY layer to monitor link status 1087 * @phydev: target phy_device struct 1088 * @handler: callback function for link status change notifications 1089 * 1090 * Description: Tells the PHY infrastructure to handle the 1091 * gory details on monitoring link status (whether through 1092 * polling or an interrupt), and to call back to the 1093 * connected device driver when the link status changes. 1094 * If you want to monitor your own link state, don't call 1095 * this function. 1096 */ 1097 static void phy_prepare_link(struct phy_device *phydev, 1098 void (*handler)(struct net_device *)) 1099 { 1100 phydev->adjust_link = handler; 1101 } 1102 1103 /** 1104 * phy_connect_direct - connect an ethernet device to a specific phy_device 1105 * @dev: the network device to connect 1106 * @phydev: the pointer to the phy device 1107 * @handler: callback function for state change notifications 1108 * @interface: PHY device's interface 1109 */ 1110 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1111 void (*handler)(struct net_device *), 1112 phy_interface_t interface) 1113 { 1114 int rc; 1115 1116 if (!dev) 1117 return -EINVAL; 1118 1119 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1120 if (rc) 1121 return rc; 1122 1123 phy_prepare_link(phydev, handler); 1124 if (phy_interrupt_is_valid(phydev)) 1125 phy_request_interrupt(phydev); 1126 1127 return 0; 1128 } 1129 EXPORT_SYMBOL(phy_connect_direct); 1130 1131 /** 1132 * phy_connect - connect an ethernet device to a PHY device 1133 * @dev: the network device to connect 1134 * @bus_id: the id string of the PHY device to connect 1135 * @handler: callback function for state change notifications 1136 * @interface: PHY device's interface 1137 * 1138 * Description: Convenience function for connecting ethernet 1139 * devices to PHY devices. The default behavior is for 1140 * the PHY infrastructure to handle everything, and only notify 1141 * the connected driver when the link status changes. If you 1142 * don't want, or can't use the provided functionality, you may 1143 * choose to call only the subset of functions which provide 1144 * the desired functionality. 1145 */ 1146 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1147 void (*handler)(struct net_device *), 1148 phy_interface_t interface) 1149 { 1150 struct phy_device *phydev; 1151 struct device *d; 1152 int rc; 1153 1154 /* Search the list of PHY devices on the mdio bus for the 1155 * PHY with the requested name 1156 */ 1157 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1158 if (!d) { 1159 pr_err("PHY %s not found\n", bus_id); 1160 return ERR_PTR(-ENODEV); 1161 } 1162 phydev = to_phy_device(d); 1163 1164 rc = phy_connect_direct(dev, phydev, handler, interface); 1165 put_device(d); 1166 if (rc) 1167 return ERR_PTR(rc); 1168 1169 return phydev; 1170 } 1171 EXPORT_SYMBOL(phy_connect); 1172 1173 /** 1174 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1175 * device 1176 * @phydev: target phy_device struct 1177 */ 1178 void phy_disconnect(struct phy_device *phydev) 1179 { 1180 if (phy_is_started(phydev)) 1181 phy_stop(phydev); 1182 1183 if (phy_interrupt_is_valid(phydev)) 1184 phy_free_interrupt(phydev); 1185 1186 phydev->adjust_link = NULL; 1187 1188 phy_detach(phydev); 1189 } 1190 EXPORT_SYMBOL(phy_disconnect); 1191 1192 /** 1193 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1194 * @phydev: The PHY device to poll 1195 * 1196 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1197 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1198 * register must be polled until the BMCR_RESET bit clears. 1199 * 1200 * Furthermore, any attempts to write to PHY registers may have no effect 1201 * or even generate MDIO bus errors until this is complete. 1202 * 1203 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1204 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1205 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1206 * effort to support such broken PHYs, this function is separate from the 1207 * standard phy_init_hw() which will zero all the other bits in the BMCR 1208 * and reapply all driver-specific and board-specific fixups. 1209 */ 1210 static int phy_poll_reset(struct phy_device *phydev) 1211 { 1212 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1213 int ret, val; 1214 1215 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1216 50000, 600000, true); 1217 if (ret) 1218 return ret; 1219 /* Some chips (smsc911x) may still need up to another 1ms after the 1220 * BMCR_RESET bit is cleared before they are usable. 1221 */ 1222 msleep(1); 1223 return 0; 1224 } 1225 1226 int phy_init_hw(struct phy_device *phydev) 1227 { 1228 int ret = 0; 1229 1230 /* Deassert the reset signal */ 1231 phy_device_reset(phydev, 0); 1232 1233 if (!phydev->drv) 1234 return 0; 1235 1236 if (phydev->drv->soft_reset) { 1237 ret = phydev->drv->soft_reset(phydev); 1238 /* see comment in genphy_soft_reset for an explanation */ 1239 if (!ret) 1240 phydev->suspended = 0; 1241 } 1242 1243 if (ret < 0) 1244 return ret; 1245 1246 ret = phy_scan_fixups(phydev); 1247 if (ret < 0) 1248 return ret; 1249 1250 if (phydev->drv->config_init) { 1251 ret = phydev->drv->config_init(phydev); 1252 if (ret < 0) 1253 return ret; 1254 } 1255 1256 if (phydev->drv->config_intr) { 1257 ret = phydev->drv->config_intr(phydev); 1258 if (ret < 0) 1259 return ret; 1260 } 1261 1262 return 0; 1263 } 1264 EXPORT_SYMBOL(phy_init_hw); 1265 1266 void phy_attached_info(struct phy_device *phydev) 1267 { 1268 phy_attached_print(phydev, NULL); 1269 } 1270 EXPORT_SYMBOL(phy_attached_info); 1271 1272 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1273 char *phy_attached_info_irq(struct phy_device *phydev) 1274 { 1275 char *irq_str; 1276 char irq_num[8]; 1277 1278 switch(phydev->irq) { 1279 case PHY_POLL: 1280 irq_str = "POLL"; 1281 break; 1282 case PHY_MAC_INTERRUPT: 1283 irq_str = "MAC"; 1284 break; 1285 default: 1286 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1287 irq_str = irq_num; 1288 break; 1289 } 1290 1291 return kasprintf(GFP_KERNEL, "%s", irq_str); 1292 } 1293 EXPORT_SYMBOL(phy_attached_info_irq); 1294 1295 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1296 { 1297 const char *unbound = phydev->drv ? "" : "[unbound] "; 1298 char *irq_str = phy_attached_info_irq(phydev); 1299 1300 if (!fmt) { 1301 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1302 phydev_name(phydev), irq_str); 1303 } else { 1304 va_list ap; 1305 1306 phydev_info(phydev, ATTACHED_FMT, unbound, 1307 phydev_name(phydev), irq_str); 1308 1309 va_start(ap, fmt); 1310 vprintk(fmt, ap); 1311 va_end(ap); 1312 } 1313 kfree(irq_str); 1314 } 1315 EXPORT_SYMBOL(phy_attached_print); 1316 1317 static void phy_sysfs_create_links(struct phy_device *phydev) 1318 { 1319 struct net_device *dev = phydev->attached_dev; 1320 int err; 1321 1322 if (!dev) 1323 return; 1324 1325 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1326 "attached_dev"); 1327 if (err) 1328 return; 1329 1330 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1331 &phydev->mdio.dev.kobj, 1332 "phydev"); 1333 if (err) { 1334 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1335 kobject_name(&phydev->mdio.dev.kobj), 1336 err); 1337 /* non-fatal - some net drivers can use one netdevice 1338 * with more then one phy 1339 */ 1340 } 1341 1342 phydev->sysfs_links = true; 1343 } 1344 1345 static ssize_t 1346 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1347 char *buf) 1348 { 1349 struct phy_device *phydev = to_phy_device(dev); 1350 1351 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1352 } 1353 static DEVICE_ATTR_RO(phy_standalone); 1354 1355 /** 1356 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1357 * @upstream: pointer to the phy device 1358 * @bus: sfp bus representing cage being attached 1359 * 1360 * This is used to fill in the sfp_upstream_ops .attach member. 1361 */ 1362 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1363 { 1364 struct phy_device *phydev = upstream; 1365 1366 if (phydev->attached_dev) 1367 phydev->attached_dev->sfp_bus = bus; 1368 phydev->sfp_bus_attached = true; 1369 } 1370 EXPORT_SYMBOL(phy_sfp_attach); 1371 1372 /** 1373 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1374 * @upstream: pointer to the phy device 1375 * @bus: sfp bus representing cage being attached 1376 * 1377 * This is used to fill in the sfp_upstream_ops .detach member. 1378 */ 1379 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1380 { 1381 struct phy_device *phydev = upstream; 1382 1383 if (phydev->attached_dev) 1384 phydev->attached_dev->sfp_bus = NULL; 1385 phydev->sfp_bus_attached = false; 1386 } 1387 EXPORT_SYMBOL(phy_sfp_detach); 1388 1389 /** 1390 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1391 * @phydev: Pointer to phy_device 1392 * @ops: SFP's upstream operations 1393 */ 1394 int phy_sfp_probe(struct phy_device *phydev, 1395 const struct sfp_upstream_ops *ops) 1396 { 1397 struct sfp_bus *bus; 1398 int ret = 0; 1399 1400 if (phydev->mdio.dev.fwnode) { 1401 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1402 if (IS_ERR(bus)) 1403 return PTR_ERR(bus); 1404 1405 phydev->sfp_bus = bus; 1406 1407 ret = sfp_bus_add_upstream(bus, phydev, ops); 1408 sfp_bus_put(bus); 1409 } 1410 return ret; 1411 } 1412 EXPORT_SYMBOL(phy_sfp_probe); 1413 1414 /** 1415 * phy_attach_direct - attach a network device to a given PHY device pointer 1416 * @dev: network device to attach 1417 * @phydev: Pointer to phy_device to attach 1418 * @flags: PHY device's dev_flags 1419 * @interface: PHY device's interface 1420 * 1421 * Description: Called by drivers to attach to a particular PHY 1422 * device. The phy_device is found, and properly hooked up 1423 * to the phy_driver. If no driver is attached, then a 1424 * generic driver is used. The phy_device is given a ptr to 1425 * the attaching device, and given a callback for link status 1426 * change. The phy_device is returned to the attaching driver. 1427 * This function takes a reference on the phy device. 1428 */ 1429 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1430 u32 flags, phy_interface_t interface) 1431 { 1432 struct mii_bus *bus = phydev->mdio.bus; 1433 struct device *d = &phydev->mdio.dev; 1434 struct module *ndev_owner = NULL; 1435 bool using_genphy = false; 1436 int err; 1437 1438 /* For Ethernet device drivers that register their own MDIO bus, we 1439 * will have bus->owner match ndev_mod, so we do not want to increment 1440 * our own module->refcnt here, otherwise we would not be able to 1441 * unload later on. 1442 */ 1443 if (dev) 1444 ndev_owner = dev->dev.parent->driver->owner; 1445 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1446 phydev_err(phydev, "failed to get the bus module\n"); 1447 return -EIO; 1448 } 1449 1450 get_device(d); 1451 1452 /* Assume that if there is no driver, that it doesn't 1453 * exist, and we should use the genphy driver. 1454 */ 1455 if (!d->driver) { 1456 if (phydev->is_c45) 1457 d->driver = &genphy_c45_driver.mdiodrv.driver; 1458 else 1459 d->driver = &genphy_driver.mdiodrv.driver; 1460 1461 using_genphy = true; 1462 } 1463 1464 if (!try_module_get(d->driver->owner)) { 1465 phydev_err(phydev, "failed to get the device driver module\n"); 1466 err = -EIO; 1467 goto error_put_device; 1468 } 1469 1470 if (using_genphy) { 1471 err = d->driver->probe(d); 1472 if (err >= 0) 1473 err = device_bind_driver(d); 1474 1475 if (err) 1476 goto error_module_put; 1477 } 1478 1479 if (phydev->attached_dev) { 1480 dev_err(&dev->dev, "PHY already attached\n"); 1481 err = -EBUSY; 1482 goto error; 1483 } 1484 1485 phydev->phy_link_change = phy_link_change; 1486 if (dev) { 1487 phydev->attached_dev = dev; 1488 dev->phydev = phydev; 1489 1490 if (phydev->sfp_bus_attached) 1491 dev->sfp_bus = phydev->sfp_bus; 1492 } 1493 1494 /* Some Ethernet drivers try to connect to a PHY device before 1495 * calling register_netdevice() -> netdev_register_kobject() and 1496 * does the dev->dev.kobj initialization. Here we only check for 1497 * success which indicates that the network device kobject is 1498 * ready. Once we do that we still need to keep track of whether 1499 * links were successfully set up or not for phy_detach() to 1500 * remove them accordingly. 1501 */ 1502 phydev->sysfs_links = false; 1503 1504 phy_sysfs_create_links(phydev); 1505 1506 if (!phydev->attached_dev) { 1507 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1508 &dev_attr_phy_standalone.attr); 1509 if (err) 1510 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1511 } 1512 1513 phydev->dev_flags |= flags; 1514 1515 phydev->interface = interface; 1516 1517 phydev->state = PHY_READY; 1518 1519 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1520 1521 /* PHYs can request to use poll mode even though they have an 1522 * associated interrupt line. This could be the case if they 1523 * detect a broken interrupt handling. 1524 */ 1525 if (phydev->dev_flags & PHY_F_NO_IRQ) 1526 phydev->irq = PHY_POLL; 1527 1528 /* Port is set to PORT_TP by default and the actual PHY driver will set 1529 * it to different value depending on the PHY configuration. If we have 1530 * the generic PHY driver we can't figure it out, thus set the old 1531 * legacy PORT_MII value. 1532 */ 1533 if (using_genphy) 1534 phydev->port = PORT_MII; 1535 1536 /* Initial carrier state is off as the phy is about to be 1537 * (re)initialized. 1538 */ 1539 if (dev) 1540 netif_carrier_off(phydev->attached_dev); 1541 1542 /* Do initial configuration here, now that 1543 * we have certain key parameters 1544 * (dev_flags and interface) 1545 */ 1546 err = phy_init_hw(phydev); 1547 if (err) 1548 goto error; 1549 1550 phy_resume(phydev); 1551 phy_led_triggers_register(phydev); 1552 1553 /** 1554 * If the external phy used by current mac interface is managed by 1555 * another mac interface, so we should create a device link between 1556 * phy dev and mac dev. 1557 */ 1558 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1559 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1560 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1561 1562 return err; 1563 1564 error: 1565 /* phy_detach() does all of the cleanup below */ 1566 phy_detach(phydev); 1567 return err; 1568 1569 error_module_put: 1570 module_put(d->driver->owner); 1571 d->driver = NULL; 1572 error_put_device: 1573 put_device(d); 1574 if (ndev_owner != bus->owner) 1575 module_put(bus->owner); 1576 return err; 1577 } 1578 EXPORT_SYMBOL(phy_attach_direct); 1579 1580 /** 1581 * phy_attach - attach a network device to a particular PHY device 1582 * @dev: network device to attach 1583 * @bus_id: Bus ID of PHY device to attach 1584 * @interface: PHY device's interface 1585 * 1586 * Description: Same as phy_attach_direct() except that a PHY bus_id 1587 * string is passed instead of a pointer to a struct phy_device. 1588 */ 1589 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1590 phy_interface_t interface) 1591 { 1592 struct bus_type *bus = &mdio_bus_type; 1593 struct phy_device *phydev; 1594 struct device *d; 1595 int rc; 1596 1597 if (!dev) 1598 return ERR_PTR(-EINVAL); 1599 1600 /* Search the list of PHY devices on the mdio bus for the 1601 * PHY with the requested name 1602 */ 1603 d = bus_find_device_by_name(bus, NULL, bus_id); 1604 if (!d) { 1605 pr_err("PHY %s not found\n", bus_id); 1606 return ERR_PTR(-ENODEV); 1607 } 1608 phydev = to_phy_device(d); 1609 1610 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1611 put_device(d); 1612 if (rc) 1613 return ERR_PTR(rc); 1614 1615 return phydev; 1616 } 1617 EXPORT_SYMBOL(phy_attach); 1618 1619 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1620 struct device_driver *driver) 1621 { 1622 struct device *d = &phydev->mdio.dev; 1623 bool ret = false; 1624 1625 if (!phydev->drv) 1626 return ret; 1627 1628 get_device(d); 1629 ret = d->driver == driver; 1630 put_device(d); 1631 1632 return ret; 1633 } 1634 1635 bool phy_driver_is_genphy(struct phy_device *phydev) 1636 { 1637 return phy_driver_is_genphy_kind(phydev, 1638 &genphy_driver.mdiodrv.driver); 1639 } 1640 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1641 1642 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1643 { 1644 return phy_driver_is_genphy_kind(phydev, 1645 &genphy_c45_driver.mdiodrv.driver); 1646 } 1647 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1648 1649 /** 1650 * phy_package_join - join a common PHY group 1651 * @phydev: target phy_device struct 1652 * @addr: cookie and PHY address for global register access 1653 * @priv_size: if non-zero allocate this amount of bytes for private data 1654 * 1655 * This joins a PHY group and provides a shared storage for all phydevs in 1656 * this group. This is intended to be used for packages which contain 1657 * more than one PHY, for example a quad PHY transceiver. 1658 * 1659 * The addr parameter serves as a cookie which has to have the same value 1660 * for all members of one group and as a PHY address to access generic 1661 * registers of a PHY package. Usually, one of the PHY addresses of the 1662 * different PHYs in the package provides access to these global registers. 1663 * The address which is given here, will be used in the phy_package_read() 1664 * and phy_package_write() convenience functions. If your PHY doesn't have 1665 * global registers you can just pick any of the PHY addresses. 1666 * 1667 * This will set the shared pointer of the phydev to the shared storage. 1668 * If this is the first call for a this cookie the shared storage will be 1669 * allocated. If priv_size is non-zero, the given amount of bytes are 1670 * allocated for the priv member. 1671 * 1672 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1673 * with the same cookie but a different priv_size is an error. 1674 */ 1675 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1676 { 1677 struct mii_bus *bus = phydev->mdio.bus; 1678 struct phy_package_shared *shared; 1679 int ret; 1680 1681 if (addr < 0 || addr >= PHY_MAX_ADDR) 1682 return -EINVAL; 1683 1684 mutex_lock(&bus->shared_lock); 1685 shared = bus->shared[addr]; 1686 if (!shared) { 1687 ret = -ENOMEM; 1688 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1689 if (!shared) 1690 goto err_unlock; 1691 if (priv_size) { 1692 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1693 if (!shared->priv) 1694 goto err_free; 1695 shared->priv_size = priv_size; 1696 } 1697 shared->addr = addr; 1698 refcount_set(&shared->refcnt, 1); 1699 bus->shared[addr] = shared; 1700 } else { 1701 ret = -EINVAL; 1702 if (priv_size && priv_size != shared->priv_size) 1703 goto err_unlock; 1704 refcount_inc(&shared->refcnt); 1705 } 1706 mutex_unlock(&bus->shared_lock); 1707 1708 phydev->shared = shared; 1709 1710 return 0; 1711 1712 err_free: 1713 kfree(shared); 1714 err_unlock: 1715 mutex_unlock(&bus->shared_lock); 1716 return ret; 1717 } 1718 EXPORT_SYMBOL_GPL(phy_package_join); 1719 1720 /** 1721 * phy_package_leave - leave a common PHY group 1722 * @phydev: target phy_device struct 1723 * 1724 * This leaves a PHY group created by phy_package_join(). If this phydev 1725 * was the last user of the shared data between the group, this data is 1726 * freed. Resets the phydev->shared pointer to NULL. 1727 */ 1728 void phy_package_leave(struct phy_device *phydev) 1729 { 1730 struct phy_package_shared *shared = phydev->shared; 1731 struct mii_bus *bus = phydev->mdio.bus; 1732 1733 if (!shared) 1734 return; 1735 1736 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1737 bus->shared[shared->addr] = NULL; 1738 mutex_unlock(&bus->shared_lock); 1739 kfree(shared->priv); 1740 kfree(shared); 1741 } 1742 1743 phydev->shared = NULL; 1744 } 1745 EXPORT_SYMBOL_GPL(phy_package_leave); 1746 1747 static void devm_phy_package_leave(struct device *dev, void *res) 1748 { 1749 phy_package_leave(*(struct phy_device **)res); 1750 } 1751 1752 /** 1753 * devm_phy_package_join - resource managed phy_package_join() 1754 * @dev: device that is registering this PHY package 1755 * @phydev: target phy_device struct 1756 * @addr: cookie and PHY address for global register access 1757 * @priv_size: if non-zero allocate this amount of bytes for private data 1758 * 1759 * Managed phy_package_join(). Shared storage fetched by this function, 1760 * phy_package_leave() is automatically called on driver detach. See 1761 * phy_package_join() for more information. 1762 */ 1763 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1764 int addr, size_t priv_size) 1765 { 1766 struct phy_device **ptr; 1767 int ret; 1768 1769 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1770 GFP_KERNEL); 1771 if (!ptr) 1772 return -ENOMEM; 1773 1774 ret = phy_package_join(phydev, addr, priv_size); 1775 1776 if (!ret) { 1777 *ptr = phydev; 1778 devres_add(dev, ptr); 1779 } else { 1780 devres_free(ptr); 1781 } 1782 1783 return ret; 1784 } 1785 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1786 1787 /** 1788 * phy_detach - detach a PHY device from its network device 1789 * @phydev: target phy_device struct 1790 * 1791 * This detaches the phy device from its network device and the phy 1792 * driver, and drops the reference count taken in phy_attach_direct(). 1793 */ 1794 void phy_detach(struct phy_device *phydev) 1795 { 1796 struct net_device *dev = phydev->attached_dev; 1797 struct module *ndev_owner = NULL; 1798 struct mii_bus *bus; 1799 1800 if (phydev->devlink) 1801 device_link_del(phydev->devlink); 1802 1803 if (phydev->sysfs_links) { 1804 if (dev) 1805 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1806 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1807 } 1808 1809 if (!phydev->attached_dev) 1810 sysfs_remove_file(&phydev->mdio.dev.kobj, 1811 &dev_attr_phy_standalone.attr); 1812 1813 phy_suspend(phydev); 1814 if (dev) { 1815 phydev->attached_dev->phydev = NULL; 1816 phydev->attached_dev = NULL; 1817 } 1818 phydev->phylink = NULL; 1819 1820 phy_led_triggers_unregister(phydev); 1821 1822 if (phydev->mdio.dev.driver) 1823 module_put(phydev->mdio.dev.driver->owner); 1824 1825 /* If the device had no specific driver before (i.e. - it 1826 * was using the generic driver), we unbind the device 1827 * from the generic driver so that there's a chance a 1828 * real driver could be loaded 1829 */ 1830 if (phy_driver_is_genphy(phydev) || 1831 phy_driver_is_genphy_10g(phydev)) 1832 device_release_driver(&phydev->mdio.dev); 1833 1834 /* Assert the reset signal */ 1835 phy_device_reset(phydev, 1); 1836 1837 /* 1838 * The phydev might go away on the put_device() below, so avoid 1839 * a use-after-free bug by reading the underlying bus first. 1840 */ 1841 bus = phydev->mdio.bus; 1842 1843 put_device(&phydev->mdio.dev); 1844 if (dev) 1845 ndev_owner = dev->dev.parent->driver->owner; 1846 if (ndev_owner != bus->owner) 1847 module_put(bus->owner); 1848 } 1849 EXPORT_SYMBOL(phy_detach); 1850 1851 int phy_suspend(struct phy_device *phydev) 1852 { 1853 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1854 struct net_device *netdev = phydev->attached_dev; 1855 struct phy_driver *phydrv = phydev->drv; 1856 int ret; 1857 1858 if (phydev->suspended) 1859 return 0; 1860 1861 phy_ethtool_get_wol(phydev, &wol); 1862 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1863 /* If the device has WOL enabled, we cannot suspend the PHY */ 1864 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1865 return -EBUSY; 1866 1867 if (!phydrv || !phydrv->suspend) 1868 return 0; 1869 1870 ret = phydrv->suspend(phydev); 1871 if (!ret) 1872 phydev->suspended = true; 1873 1874 return ret; 1875 } 1876 EXPORT_SYMBOL(phy_suspend); 1877 1878 int __phy_resume(struct phy_device *phydev) 1879 { 1880 struct phy_driver *phydrv = phydev->drv; 1881 int ret; 1882 1883 lockdep_assert_held(&phydev->lock); 1884 1885 if (!phydrv || !phydrv->resume) 1886 return 0; 1887 1888 ret = phydrv->resume(phydev); 1889 if (!ret) 1890 phydev->suspended = false; 1891 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(__phy_resume); 1895 1896 int phy_resume(struct phy_device *phydev) 1897 { 1898 int ret; 1899 1900 mutex_lock(&phydev->lock); 1901 ret = __phy_resume(phydev); 1902 mutex_unlock(&phydev->lock); 1903 1904 return ret; 1905 } 1906 EXPORT_SYMBOL(phy_resume); 1907 1908 int phy_loopback(struct phy_device *phydev, bool enable) 1909 { 1910 int ret = 0; 1911 1912 if (!phydev->drv) 1913 return -EIO; 1914 1915 mutex_lock(&phydev->lock); 1916 1917 if (enable && phydev->loopback_enabled) { 1918 ret = -EBUSY; 1919 goto out; 1920 } 1921 1922 if (!enable && !phydev->loopback_enabled) { 1923 ret = -EINVAL; 1924 goto out; 1925 } 1926 1927 if (phydev->drv->set_loopback) 1928 ret = phydev->drv->set_loopback(phydev, enable); 1929 else 1930 ret = genphy_loopback(phydev, enable); 1931 1932 if (ret) 1933 goto out; 1934 1935 phydev->loopback_enabled = enable; 1936 1937 out: 1938 mutex_unlock(&phydev->lock); 1939 return ret; 1940 } 1941 EXPORT_SYMBOL(phy_loopback); 1942 1943 /** 1944 * phy_reset_after_clk_enable - perform a PHY reset if needed 1945 * @phydev: target phy_device struct 1946 * 1947 * Description: Some PHYs are known to need a reset after their refclk was 1948 * enabled. This function evaluates the flags and perform the reset if it's 1949 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1950 * was reset. 1951 */ 1952 int phy_reset_after_clk_enable(struct phy_device *phydev) 1953 { 1954 if (!phydev || !phydev->drv) 1955 return -ENODEV; 1956 1957 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1958 phy_device_reset(phydev, 1); 1959 phy_device_reset(phydev, 0); 1960 return 1; 1961 } 1962 1963 return 0; 1964 } 1965 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1966 1967 /* Generic PHY support and helper functions */ 1968 1969 /** 1970 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1971 * @phydev: target phy_device struct 1972 * 1973 * Description: Writes MII_ADVERTISE with the appropriate values, 1974 * after sanitizing the values to make sure we only advertise 1975 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1976 * hasn't changed, and > 0 if it has changed. 1977 */ 1978 static int genphy_config_advert(struct phy_device *phydev) 1979 { 1980 int err, bmsr, changed = 0; 1981 u32 adv; 1982 1983 /* Only allow advertising what this PHY supports */ 1984 linkmode_and(phydev->advertising, phydev->advertising, 1985 phydev->supported); 1986 1987 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1988 1989 /* Setup standard advertisement */ 1990 err = phy_modify_changed(phydev, MII_ADVERTISE, 1991 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1992 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1993 adv); 1994 if (err < 0) 1995 return err; 1996 if (err > 0) 1997 changed = 1; 1998 1999 bmsr = phy_read(phydev, MII_BMSR); 2000 if (bmsr < 0) 2001 return bmsr; 2002 2003 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2004 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2005 * logical 1. 2006 */ 2007 if (!(bmsr & BMSR_ESTATEN)) 2008 return changed; 2009 2010 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2011 2012 err = phy_modify_changed(phydev, MII_CTRL1000, 2013 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2014 adv); 2015 if (err < 0) 2016 return err; 2017 if (err > 0) 2018 changed = 1; 2019 2020 return changed; 2021 } 2022 2023 /** 2024 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2025 * @phydev: target phy_device struct 2026 * 2027 * Description: Writes MII_ADVERTISE with the appropriate values, 2028 * after sanitizing the values to make sure we only advertise 2029 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2030 * hasn't changed, and > 0 if it has changed. This function is intended 2031 * for Clause 37 1000Base-X mode. 2032 */ 2033 static int genphy_c37_config_advert(struct phy_device *phydev) 2034 { 2035 u16 adv = 0; 2036 2037 /* Only allow advertising what this PHY supports */ 2038 linkmode_and(phydev->advertising, phydev->advertising, 2039 phydev->supported); 2040 2041 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2042 phydev->advertising)) 2043 adv |= ADVERTISE_1000XFULL; 2044 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2045 phydev->advertising)) 2046 adv |= ADVERTISE_1000XPAUSE; 2047 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2048 phydev->advertising)) 2049 adv |= ADVERTISE_1000XPSE_ASYM; 2050 2051 return phy_modify_changed(phydev, MII_ADVERTISE, 2052 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2053 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2054 adv); 2055 } 2056 2057 /** 2058 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2059 * @phydev: target phy_device struct 2060 * 2061 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2062 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2063 * changed, and 1 if it has changed. 2064 */ 2065 int genphy_config_eee_advert(struct phy_device *phydev) 2066 { 2067 int err; 2068 2069 /* Nothing to disable */ 2070 if (!phydev->eee_broken_modes) 2071 return 0; 2072 2073 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2074 phydev->eee_broken_modes, 0); 2075 /* If the call failed, we assume that EEE is not supported */ 2076 return err < 0 ? 0 : err; 2077 } 2078 EXPORT_SYMBOL(genphy_config_eee_advert); 2079 2080 /** 2081 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2082 * @phydev: target phy_device struct 2083 * 2084 * Description: Configures MII_BMCR to force speed/duplex 2085 * to the values in phydev. Assumes that the values are valid. 2086 * Please see phy_sanitize_settings(). 2087 */ 2088 int genphy_setup_forced(struct phy_device *phydev) 2089 { 2090 u16 ctl; 2091 2092 phydev->pause = 0; 2093 phydev->asym_pause = 0; 2094 2095 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2096 2097 return phy_modify(phydev, MII_BMCR, 2098 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2099 } 2100 EXPORT_SYMBOL(genphy_setup_forced); 2101 2102 static int genphy_setup_master_slave(struct phy_device *phydev) 2103 { 2104 u16 ctl = 0; 2105 2106 if (!phydev->is_gigabit_capable) 2107 return 0; 2108 2109 switch (phydev->master_slave_set) { 2110 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2111 ctl |= CTL1000_PREFER_MASTER; 2112 break; 2113 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2114 break; 2115 case MASTER_SLAVE_CFG_MASTER_FORCE: 2116 ctl |= CTL1000_AS_MASTER; 2117 fallthrough; 2118 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2119 ctl |= CTL1000_ENABLE_MASTER; 2120 break; 2121 case MASTER_SLAVE_CFG_UNKNOWN: 2122 case MASTER_SLAVE_CFG_UNSUPPORTED: 2123 return 0; 2124 default: 2125 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2126 return -EOPNOTSUPP; 2127 } 2128 2129 return phy_modify_changed(phydev, MII_CTRL1000, 2130 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2131 CTL1000_PREFER_MASTER), ctl); 2132 } 2133 2134 int genphy_read_master_slave(struct phy_device *phydev) 2135 { 2136 int cfg, state; 2137 int val; 2138 2139 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2140 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2141 2142 val = phy_read(phydev, MII_CTRL1000); 2143 if (val < 0) 2144 return val; 2145 2146 if (val & CTL1000_ENABLE_MASTER) { 2147 if (val & CTL1000_AS_MASTER) 2148 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2149 else 2150 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2151 } else { 2152 if (val & CTL1000_PREFER_MASTER) 2153 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2154 else 2155 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2156 } 2157 2158 val = phy_read(phydev, MII_STAT1000); 2159 if (val < 0) 2160 return val; 2161 2162 if (val & LPA_1000MSFAIL) { 2163 state = MASTER_SLAVE_STATE_ERR; 2164 } else if (phydev->link) { 2165 /* this bits are valid only for active link */ 2166 if (val & LPA_1000MSRES) 2167 state = MASTER_SLAVE_STATE_MASTER; 2168 else 2169 state = MASTER_SLAVE_STATE_SLAVE; 2170 } else { 2171 state = MASTER_SLAVE_STATE_UNKNOWN; 2172 } 2173 2174 phydev->master_slave_get = cfg; 2175 phydev->master_slave_state = state; 2176 2177 return 0; 2178 } 2179 EXPORT_SYMBOL(genphy_read_master_slave); 2180 2181 /** 2182 * genphy_restart_aneg - Enable and Restart Autonegotiation 2183 * @phydev: target phy_device struct 2184 */ 2185 int genphy_restart_aneg(struct phy_device *phydev) 2186 { 2187 /* Don't isolate the PHY if we're negotiating */ 2188 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2189 BMCR_ANENABLE | BMCR_ANRESTART); 2190 } 2191 EXPORT_SYMBOL(genphy_restart_aneg); 2192 2193 /** 2194 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2195 * @phydev: target phy_device struct 2196 * @restart: whether aneg restart is requested 2197 * 2198 * Check, and restart auto-negotiation if needed. 2199 */ 2200 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2201 { 2202 int ret; 2203 2204 if (!restart) { 2205 /* Advertisement hasn't changed, but maybe aneg was never on to 2206 * begin with? Or maybe phy was isolated? 2207 */ 2208 ret = phy_read(phydev, MII_BMCR); 2209 if (ret < 0) 2210 return ret; 2211 2212 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2213 restart = true; 2214 } 2215 2216 if (restart) 2217 return genphy_restart_aneg(phydev); 2218 2219 return 0; 2220 } 2221 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2222 2223 /** 2224 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2225 * @phydev: target phy_device struct 2226 * @changed: whether autoneg is requested 2227 * 2228 * Description: If auto-negotiation is enabled, we configure the 2229 * advertising, and then restart auto-negotiation. If it is not 2230 * enabled, then we write the BMCR. 2231 */ 2232 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2233 { 2234 int err; 2235 2236 err = genphy_c45_an_config_eee_aneg(phydev); 2237 if (err < 0) 2238 return err; 2239 else if (err) 2240 changed = true; 2241 2242 err = genphy_setup_master_slave(phydev); 2243 if (err < 0) 2244 return err; 2245 else if (err) 2246 changed = true; 2247 2248 if (AUTONEG_ENABLE != phydev->autoneg) 2249 return genphy_setup_forced(phydev); 2250 2251 err = genphy_config_advert(phydev); 2252 if (err < 0) /* error */ 2253 return err; 2254 else if (err) 2255 changed = true; 2256 2257 return genphy_check_and_restart_aneg(phydev, changed); 2258 } 2259 EXPORT_SYMBOL(__genphy_config_aneg); 2260 2261 /** 2262 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2263 * @phydev: target phy_device struct 2264 * 2265 * Description: If auto-negotiation is enabled, we configure the 2266 * advertising, and then restart auto-negotiation. If it is not 2267 * enabled, then we write the BMCR. This function is intended 2268 * for use with Clause 37 1000Base-X mode. 2269 */ 2270 int genphy_c37_config_aneg(struct phy_device *phydev) 2271 { 2272 int err, changed; 2273 2274 if (phydev->autoneg != AUTONEG_ENABLE) 2275 return genphy_setup_forced(phydev); 2276 2277 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2278 BMCR_SPEED1000); 2279 if (err) 2280 return err; 2281 2282 changed = genphy_c37_config_advert(phydev); 2283 if (changed < 0) /* error */ 2284 return changed; 2285 2286 if (!changed) { 2287 /* Advertisement hasn't changed, but maybe aneg was never on to 2288 * begin with? Or maybe phy was isolated? 2289 */ 2290 int ctl = phy_read(phydev, MII_BMCR); 2291 2292 if (ctl < 0) 2293 return ctl; 2294 2295 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2296 changed = 1; /* do restart aneg */ 2297 } 2298 2299 /* Only restart aneg if we are advertising something different 2300 * than we were before. 2301 */ 2302 if (changed > 0) 2303 return genphy_restart_aneg(phydev); 2304 2305 return 0; 2306 } 2307 EXPORT_SYMBOL(genphy_c37_config_aneg); 2308 2309 /** 2310 * genphy_aneg_done - return auto-negotiation status 2311 * @phydev: target phy_device struct 2312 * 2313 * Description: Reads the status register and returns 0 either if 2314 * auto-negotiation is incomplete, or if there was an error. 2315 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2316 */ 2317 int genphy_aneg_done(struct phy_device *phydev) 2318 { 2319 int retval = phy_read(phydev, MII_BMSR); 2320 2321 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2322 } 2323 EXPORT_SYMBOL(genphy_aneg_done); 2324 2325 /** 2326 * genphy_update_link - update link status in @phydev 2327 * @phydev: target phy_device struct 2328 * 2329 * Description: Update the value in phydev->link to reflect the 2330 * current link value. In order to do this, we need to read 2331 * the status register twice, keeping the second value. 2332 */ 2333 int genphy_update_link(struct phy_device *phydev) 2334 { 2335 int status = 0, bmcr; 2336 2337 bmcr = phy_read(phydev, MII_BMCR); 2338 if (bmcr < 0) 2339 return bmcr; 2340 2341 /* Autoneg is being started, therefore disregard BMSR value and 2342 * report link as down. 2343 */ 2344 if (bmcr & BMCR_ANRESTART) 2345 goto done; 2346 2347 /* The link state is latched low so that momentary link 2348 * drops can be detected. Do not double-read the status 2349 * in polling mode to detect such short link drops except 2350 * the link was already down. 2351 */ 2352 if (!phy_polling_mode(phydev) || !phydev->link) { 2353 status = phy_read(phydev, MII_BMSR); 2354 if (status < 0) 2355 return status; 2356 else if (status & BMSR_LSTATUS) 2357 goto done; 2358 } 2359 2360 /* Read link and autonegotiation status */ 2361 status = phy_read(phydev, MII_BMSR); 2362 if (status < 0) 2363 return status; 2364 done: 2365 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2366 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2367 2368 /* Consider the case that autoneg was started and "aneg complete" 2369 * bit has been reset, but "link up" bit not yet. 2370 */ 2371 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2372 phydev->link = 0; 2373 2374 return 0; 2375 } 2376 EXPORT_SYMBOL(genphy_update_link); 2377 2378 int genphy_read_lpa(struct phy_device *phydev) 2379 { 2380 int lpa, lpagb; 2381 2382 if (phydev->autoneg == AUTONEG_ENABLE) { 2383 if (!phydev->autoneg_complete) { 2384 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2385 0); 2386 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2387 return 0; 2388 } 2389 2390 if (phydev->is_gigabit_capable) { 2391 lpagb = phy_read(phydev, MII_STAT1000); 2392 if (lpagb < 0) 2393 return lpagb; 2394 2395 if (lpagb & LPA_1000MSFAIL) { 2396 int adv = phy_read(phydev, MII_CTRL1000); 2397 2398 if (adv < 0) 2399 return adv; 2400 2401 if (adv & CTL1000_ENABLE_MASTER) 2402 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2403 else 2404 phydev_err(phydev, "Master/Slave resolution failed\n"); 2405 return -ENOLINK; 2406 } 2407 2408 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2409 lpagb); 2410 } 2411 2412 lpa = phy_read(phydev, MII_LPA); 2413 if (lpa < 0) 2414 return lpa; 2415 2416 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2417 } else { 2418 linkmode_zero(phydev->lp_advertising); 2419 } 2420 2421 return 0; 2422 } 2423 EXPORT_SYMBOL(genphy_read_lpa); 2424 2425 /** 2426 * genphy_read_status_fixed - read the link parameters for !aneg mode 2427 * @phydev: target phy_device struct 2428 * 2429 * Read the current duplex and speed state for a PHY operating with 2430 * autonegotiation disabled. 2431 */ 2432 int genphy_read_status_fixed(struct phy_device *phydev) 2433 { 2434 int bmcr = phy_read(phydev, MII_BMCR); 2435 2436 if (bmcr < 0) 2437 return bmcr; 2438 2439 if (bmcr & BMCR_FULLDPLX) 2440 phydev->duplex = DUPLEX_FULL; 2441 else 2442 phydev->duplex = DUPLEX_HALF; 2443 2444 if (bmcr & BMCR_SPEED1000) 2445 phydev->speed = SPEED_1000; 2446 else if (bmcr & BMCR_SPEED100) 2447 phydev->speed = SPEED_100; 2448 else 2449 phydev->speed = SPEED_10; 2450 2451 return 0; 2452 } 2453 EXPORT_SYMBOL(genphy_read_status_fixed); 2454 2455 /** 2456 * genphy_read_status - check the link status and update current link state 2457 * @phydev: target phy_device struct 2458 * 2459 * Description: Check the link, then figure out the current state 2460 * by comparing what we advertise with what the link partner 2461 * advertises. Start by checking the gigabit possibilities, 2462 * then move on to 10/100. 2463 */ 2464 int genphy_read_status(struct phy_device *phydev) 2465 { 2466 int err, old_link = phydev->link; 2467 2468 /* Update the link, but return if there was an error */ 2469 err = genphy_update_link(phydev); 2470 if (err) 2471 return err; 2472 2473 /* why bother the PHY if nothing can have changed */ 2474 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2475 return 0; 2476 2477 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2478 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2479 phydev->speed = SPEED_UNKNOWN; 2480 phydev->duplex = DUPLEX_UNKNOWN; 2481 phydev->pause = 0; 2482 phydev->asym_pause = 0; 2483 2484 if (phydev->is_gigabit_capable) { 2485 err = genphy_read_master_slave(phydev); 2486 if (err < 0) 2487 return err; 2488 } 2489 2490 err = genphy_read_lpa(phydev); 2491 if (err < 0) 2492 return err; 2493 2494 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2495 phy_resolve_aneg_linkmode(phydev); 2496 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2497 err = genphy_read_status_fixed(phydev); 2498 if (err < 0) 2499 return err; 2500 } 2501 2502 return 0; 2503 } 2504 EXPORT_SYMBOL(genphy_read_status); 2505 2506 /** 2507 * genphy_c37_read_status - check the link status and update current link state 2508 * @phydev: target phy_device struct 2509 * 2510 * Description: Check the link, then figure out the current state 2511 * by comparing what we advertise with what the link partner 2512 * advertises. This function is for Clause 37 1000Base-X mode. 2513 */ 2514 int genphy_c37_read_status(struct phy_device *phydev) 2515 { 2516 int lpa, err, old_link = phydev->link; 2517 2518 /* Update the link, but return if there was an error */ 2519 err = genphy_update_link(phydev); 2520 if (err) 2521 return err; 2522 2523 /* why bother the PHY if nothing can have changed */ 2524 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2525 return 0; 2526 2527 phydev->duplex = DUPLEX_UNKNOWN; 2528 phydev->pause = 0; 2529 phydev->asym_pause = 0; 2530 2531 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2532 lpa = phy_read(phydev, MII_LPA); 2533 if (lpa < 0) 2534 return lpa; 2535 2536 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2537 phydev->lp_advertising, lpa & LPA_LPACK); 2538 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2539 phydev->lp_advertising, lpa & LPA_1000XFULL); 2540 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2541 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2542 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2543 phydev->lp_advertising, 2544 lpa & LPA_1000XPAUSE_ASYM); 2545 2546 phy_resolve_aneg_linkmode(phydev); 2547 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2548 int bmcr = phy_read(phydev, MII_BMCR); 2549 2550 if (bmcr < 0) 2551 return bmcr; 2552 2553 if (bmcr & BMCR_FULLDPLX) 2554 phydev->duplex = DUPLEX_FULL; 2555 else 2556 phydev->duplex = DUPLEX_HALF; 2557 } 2558 2559 return 0; 2560 } 2561 EXPORT_SYMBOL(genphy_c37_read_status); 2562 2563 /** 2564 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2565 * @phydev: target phy_device struct 2566 * 2567 * Description: Perform a software PHY reset using the standard 2568 * BMCR_RESET bit and poll for the reset bit to be cleared. 2569 * 2570 * Returns: 0 on success, < 0 on failure 2571 */ 2572 int genphy_soft_reset(struct phy_device *phydev) 2573 { 2574 u16 res = BMCR_RESET; 2575 int ret; 2576 2577 if (phydev->autoneg == AUTONEG_ENABLE) 2578 res |= BMCR_ANRESTART; 2579 2580 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2581 if (ret < 0) 2582 return ret; 2583 2584 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2585 * to their default value. Therefore the POWER DOWN bit is supposed to 2586 * be cleared after soft reset. 2587 */ 2588 phydev->suspended = 0; 2589 2590 ret = phy_poll_reset(phydev); 2591 if (ret) 2592 return ret; 2593 2594 /* BMCR may be reset to defaults */ 2595 if (phydev->autoneg == AUTONEG_DISABLE) 2596 ret = genphy_setup_forced(phydev); 2597 2598 return ret; 2599 } 2600 EXPORT_SYMBOL(genphy_soft_reset); 2601 2602 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2603 { 2604 /* It seems there are cases where the interrupts are handled by another 2605 * entity (ie an IRQ controller embedded inside the PHY) and do not 2606 * need any other interraction from phylib. In this case, just trigger 2607 * the state machine directly. 2608 */ 2609 phy_trigger_machine(phydev); 2610 2611 return 0; 2612 } 2613 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2614 2615 /** 2616 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2617 * @phydev: target phy_device struct 2618 * 2619 * Description: Reads the PHY's abilities and populates 2620 * phydev->supported accordingly. 2621 * 2622 * Returns: 0 on success, < 0 on failure 2623 */ 2624 int genphy_read_abilities(struct phy_device *phydev) 2625 { 2626 int val; 2627 2628 linkmode_set_bit_array(phy_basic_ports_array, 2629 ARRAY_SIZE(phy_basic_ports_array), 2630 phydev->supported); 2631 2632 val = phy_read(phydev, MII_BMSR); 2633 if (val < 0) 2634 return val; 2635 2636 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2637 val & BMSR_ANEGCAPABLE); 2638 2639 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2640 val & BMSR_100FULL); 2641 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2642 val & BMSR_100HALF); 2643 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2644 val & BMSR_10FULL); 2645 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2646 val & BMSR_10HALF); 2647 2648 if (val & BMSR_ESTATEN) { 2649 val = phy_read(phydev, MII_ESTATUS); 2650 if (val < 0) 2651 return val; 2652 2653 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2654 phydev->supported, val & ESTATUS_1000_TFULL); 2655 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2656 phydev->supported, val & ESTATUS_1000_THALF); 2657 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2658 phydev->supported, val & ESTATUS_1000_XFULL); 2659 } 2660 2661 /* This is optional functionality. If not supported, we may get an error 2662 * which should be ignored. 2663 */ 2664 genphy_c45_read_eee_abilities(phydev); 2665 2666 return 0; 2667 } 2668 EXPORT_SYMBOL(genphy_read_abilities); 2669 2670 /* This is used for the phy device which doesn't support the MMD extended 2671 * register access, but it does have side effect when we are trying to access 2672 * the MMD register via indirect method. 2673 */ 2674 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2675 { 2676 return -EOPNOTSUPP; 2677 } 2678 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2679 2680 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2681 u16 regnum, u16 val) 2682 { 2683 return -EOPNOTSUPP; 2684 } 2685 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2686 2687 int genphy_suspend(struct phy_device *phydev) 2688 { 2689 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2690 } 2691 EXPORT_SYMBOL(genphy_suspend); 2692 2693 int genphy_resume(struct phy_device *phydev) 2694 { 2695 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2696 } 2697 EXPORT_SYMBOL(genphy_resume); 2698 2699 int genphy_loopback(struct phy_device *phydev, bool enable) 2700 { 2701 if (enable) { 2702 u16 val, ctl = BMCR_LOOPBACK; 2703 int ret; 2704 2705 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2706 2707 phy_modify(phydev, MII_BMCR, ~0, ctl); 2708 2709 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2710 val & BMSR_LSTATUS, 2711 5000, 500000, true); 2712 if (ret) 2713 return ret; 2714 } else { 2715 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2716 2717 phy_config_aneg(phydev); 2718 } 2719 2720 return 0; 2721 } 2722 EXPORT_SYMBOL(genphy_loopback); 2723 2724 /** 2725 * phy_remove_link_mode - Remove a supported link mode 2726 * @phydev: phy_device structure to remove link mode from 2727 * @link_mode: Link mode to be removed 2728 * 2729 * Description: Some MACs don't support all link modes which the PHY 2730 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2731 * to remove a link mode. 2732 */ 2733 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2734 { 2735 linkmode_clear_bit(link_mode, phydev->supported); 2736 phy_advertise_supported(phydev); 2737 } 2738 EXPORT_SYMBOL(phy_remove_link_mode); 2739 2740 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2741 { 2742 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2743 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2744 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2745 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2746 } 2747 2748 /** 2749 * phy_advertise_supported - Advertise all supported modes 2750 * @phydev: target phy_device struct 2751 * 2752 * Description: Called to advertise all supported modes, doesn't touch 2753 * pause mode advertising. 2754 */ 2755 void phy_advertise_supported(struct phy_device *phydev) 2756 { 2757 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2758 2759 linkmode_copy(new, phydev->supported); 2760 phy_copy_pause_bits(new, phydev->advertising); 2761 linkmode_copy(phydev->advertising, new); 2762 } 2763 EXPORT_SYMBOL(phy_advertise_supported); 2764 2765 /** 2766 * phy_support_sym_pause - Enable support of symmetrical pause 2767 * @phydev: target phy_device struct 2768 * 2769 * Description: Called by the MAC to indicate is supports symmetrical 2770 * Pause, but not asym pause. 2771 */ 2772 void phy_support_sym_pause(struct phy_device *phydev) 2773 { 2774 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2775 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2776 } 2777 EXPORT_SYMBOL(phy_support_sym_pause); 2778 2779 /** 2780 * phy_support_asym_pause - Enable support of asym pause 2781 * @phydev: target phy_device struct 2782 * 2783 * Description: Called by the MAC to indicate is supports Asym Pause. 2784 */ 2785 void phy_support_asym_pause(struct phy_device *phydev) 2786 { 2787 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2788 } 2789 EXPORT_SYMBOL(phy_support_asym_pause); 2790 2791 /** 2792 * phy_set_sym_pause - Configure symmetric Pause 2793 * @phydev: target phy_device struct 2794 * @rx: Receiver Pause is supported 2795 * @tx: Transmit Pause is supported 2796 * @autoneg: Auto neg should be used 2797 * 2798 * Description: Configure advertised Pause support depending on if 2799 * receiver pause and pause auto neg is supported. Generally called 2800 * from the set_pauseparam .ndo. 2801 */ 2802 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2803 bool autoneg) 2804 { 2805 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2806 2807 if (rx && tx && autoneg) 2808 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2809 phydev->supported); 2810 2811 linkmode_copy(phydev->advertising, phydev->supported); 2812 } 2813 EXPORT_SYMBOL(phy_set_sym_pause); 2814 2815 /** 2816 * phy_set_asym_pause - Configure Pause and Asym Pause 2817 * @phydev: target phy_device struct 2818 * @rx: Receiver Pause is supported 2819 * @tx: Transmit Pause is supported 2820 * 2821 * Description: Configure advertised Pause support depending on if 2822 * transmit and receiver pause is supported. If there has been a 2823 * change in adverting, trigger a new autoneg. Generally called from 2824 * the set_pauseparam .ndo. 2825 */ 2826 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2827 { 2828 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2829 2830 linkmode_copy(oldadv, phydev->advertising); 2831 linkmode_set_pause(phydev->advertising, tx, rx); 2832 2833 if (!linkmode_equal(oldadv, phydev->advertising) && 2834 phydev->autoneg) 2835 phy_start_aneg(phydev); 2836 } 2837 EXPORT_SYMBOL(phy_set_asym_pause); 2838 2839 /** 2840 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2841 * @phydev: phy_device struct 2842 * @pp: requested pause configuration 2843 * 2844 * Description: Test if the PHY/MAC combination supports the Pause 2845 * configuration the user is requesting. Returns True if it is 2846 * supported, false otherwise. 2847 */ 2848 bool phy_validate_pause(struct phy_device *phydev, 2849 struct ethtool_pauseparam *pp) 2850 { 2851 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2852 phydev->supported) && pp->rx_pause) 2853 return false; 2854 2855 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2856 phydev->supported) && 2857 pp->rx_pause != pp->tx_pause) 2858 return false; 2859 2860 return true; 2861 } 2862 EXPORT_SYMBOL(phy_validate_pause); 2863 2864 /** 2865 * phy_get_pause - resolve negotiated pause modes 2866 * @phydev: phy_device struct 2867 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2868 * enabled. 2869 * @rx_pause: pointer to bool to indicate whether receive pause should be 2870 * enabled. 2871 * 2872 * Resolve and return the flow control modes according to the negotiation 2873 * result. This includes checking that we are operating in full duplex mode. 2874 * See linkmode_resolve_pause() for further details. 2875 */ 2876 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2877 { 2878 if (phydev->duplex != DUPLEX_FULL) { 2879 *tx_pause = false; 2880 *rx_pause = false; 2881 return; 2882 } 2883 2884 return linkmode_resolve_pause(phydev->advertising, 2885 phydev->lp_advertising, 2886 tx_pause, rx_pause); 2887 } 2888 EXPORT_SYMBOL(phy_get_pause); 2889 2890 #if IS_ENABLED(CONFIG_OF_MDIO) 2891 static int phy_get_int_delay_property(struct device *dev, const char *name) 2892 { 2893 s32 int_delay; 2894 int ret; 2895 2896 ret = device_property_read_u32(dev, name, &int_delay); 2897 if (ret) 2898 return ret; 2899 2900 return int_delay; 2901 } 2902 #else 2903 static int phy_get_int_delay_property(struct device *dev, const char *name) 2904 { 2905 return -EINVAL; 2906 } 2907 #endif 2908 2909 /** 2910 * phy_get_internal_delay - returns the index of the internal delay 2911 * @phydev: phy_device struct 2912 * @dev: pointer to the devices device struct 2913 * @delay_values: array of delays the PHY supports 2914 * @size: the size of the delay array 2915 * @is_rx: boolean to indicate to get the rx internal delay 2916 * 2917 * Returns the index within the array of internal delay passed in. 2918 * If the device property is not present then the interface type is checked 2919 * if the interface defines use of internal delay then a 1 is returned otherwise 2920 * a 0 is returned. 2921 * The array must be in ascending order. If PHY does not have an ascending order 2922 * array then size = 0 and the value of the delay property is returned. 2923 * Return -EINVAL if the delay is invalid or cannot be found. 2924 */ 2925 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2926 const int *delay_values, int size, bool is_rx) 2927 { 2928 s32 delay; 2929 int i; 2930 2931 if (is_rx) { 2932 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2933 if (delay < 0 && size == 0) { 2934 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2935 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2936 return 1; 2937 else 2938 return 0; 2939 } 2940 2941 } else { 2942 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2943 if (delay < 0 && size == 0) { 2944 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2945 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2946 return 1; 2947 else 2948 return 0; 2949 } 2950 } 2951 2952 if (delay < 0) 2953 return delay; 2954 2955 if (delay && size == 0) 2956 return delay; 2957 2958 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2959 phydev_err(phydev, "Delay %d is out of range\n", delay); 2960 return -EINVAL; 2961 } 2962 2963 if (delay == delay_values[0]) 2964 return 0; 2965 2966 for (i = 1; i < size; i++) { 2967 if (delay == delay_values[i]) 2968 return i; 2969 2970 /* Find an approximate index by looking up the table */ 2971 if (delay > delay_values[i - 1] && 2972 delay < delay_values[i]) { 2973 if (delay - delay_values[i - 1] < 2974 delay_values[i] - delay) 2975 return i - 1; 2976 else 2977 return i; 2978 } 2979 } 2980 2981 phydev_err(phydev, "error finding internal delay index for %d\n", 2982 delay); 2983 2984 return -EINVAL; 2985 } 2986 EXPORT_SYMBOL(phy_get_internal_delay); 2987 2988 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2989 { 2990 return phydrv->config_intr && phydrv->handle_interrupt; 2991 } 2992 2993 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2994 enum led_brightness value) 2995 { 2996 struct phy_led *phyled = to_phy_led(led_cdev); 2997 struct phy_device *phydev = phyled->phydev; 2998 int err; 2999 3000 mutex_lock(&phydev->lock); 3001 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3002 mutex_unlock(&phydev->lock); 3003 3004 return err; 3005 } 3006 3007 static int phy_led_blink_set(struct led_classdev *led_cdev, 3008 unsigned long *delay_on, 3009 unsigned long *delay_off) 3010 { 3011 struct phy_led *phyled = to_phy_led(led_cdev); 3012 struct phy_device *phydev = phyled->phydev; 3013 int err; 3014 3015 mutex_lock(&phydev->lock); 3016 err = phydev->drv->led_blink_set(phydev, phyled->index, 3017 delay_on, delay_off); 3018 mutex_unlock(&phydev->lock); 3019 3020 return err; 3021 } 3022 3023 static __maybe_unused struct device * 3024 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3025 { 3026 struct phy_led *phyled = to_phy_led(led_cdev); 3027 struct phy_device *phydev = phyled->phydev; 3028 3029 if (phydev->attached_dev) 3030 return &phydev->attached_dev->dev; 3031 return NULL; 3032 } 3033 3034 static int __maybe_unused 3035 phy_led_hw_control_get(struct led_classdev *led_cdev, 3036 unsigned long *rules) 3037 { 3038 struct phy_led *phyled = to_phy_led(led_cdev); 3039 struct phy_device *phydev = phyled->phydev; 3040 int err; 3041 3042 mutex_lock(&phydev->lock); 3043 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3044 mutex_unlock(&phydev->lock); 3045 3046 return err; 3047 } 3048 3049 static int __maybe_unused 3050 phy_led_hw_control_set(struct led_classdev *led_cdev, 3051 unsigned long rules) 3052 { 3053 struct phy_led *phyled = to_phy_led(led_cdev); 3054 struct phy_device *phydev = phyled->phydev; 3055 int err; 3056 3057 mutex_lock(&phydev->lock); 3058 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3059 mutex_unlock(&phydev->lock); 3060 3061 return err; 3062 } 3063 3064 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3065 unsigned long rules) 3066 { 3067 struct phy_led *phyled = to_phy_led(led_cdev); 3068 struct phy_device *phydev = phyled->phydev; 3069 int err; 3070 3071 mutex_lock(&phydev->lock); 3072 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3073 mutex_unlock(&phydev->lock); 3074 3075 return err; 3076 } 3077 3078 static void phy_leds_unregister(struct phy_device *phydev) 3079 { 3080 struct phy_led *phyled; 3081 3082 list_for_each_entry(phyled, &phydev->leds, list) { 3083 led_classdev_unregister(&phyled->led_cdev); 3084 } 3085 } 3086 3087 static int of_phy_led(struct phy_device *phydev, 3088 struct device_node *led) 3089 { 3090 struct device *dev = &phydev->mdio.dev; 3091 struct led_init_data init_data = {}; 3092 struct led_classdev *cdev; 3093 struct phy_led *phyled; 3094 u32 index; 3095 int err; 3096 3097 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3098 if (!phyled) 3099 return -ENOMEM; 3100 3101 cdev = &phyled->led_cdev; 3102 phyled->phydev = phydev; 3103 3104 err = of_property_read_u32(led, "reg", &index); 3105 if (err) 3106 return err; 3107 if (index > U8_MAX) 3108 return -EINVAL; 3109 3110 phyled->index = index; 3111 if (phydev->drv->led_brightness_set) 3112 cdev->brightness_set_blocking = phy_led_set_brightness; 3113 if (phydev->drv->led_blink_set) 3114 cdev->blink_set = phy_led_blink_set; 3115 3116 #ifdef CONFIG_LEDS_TRIGGERS 3117 if (phydev->drv->led_hw_is_supported && 3118 phydev->drv->led_hw_control_set && 3119 phydev->drv->led_hw_control_get) { 3120 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3121 cdev->hw_control_set = phy_led_hw_control_set; 3122 cdev->hw_control_get = phy_led_hw_control_get; 3123 cdev->hw_control_trigger = "netdev"; 3124 } 3125 3126 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3127 #endif 3128 cdev->max_brightness = 1; 3129 init_data.devicename = dev_name(&phydev->mdio.dev); 3130 init_data.fwnode = of_fwnode_handle(led); 3131 init_data.devname_mandatory = true; 3132 3133 err = led_classdev_register_ext(dev, cdev, &init_data); 3134 if (err) 3135 return err; 3136 3137 list_add(&phyled->list, &phydev->leds); 3138 3139 return 0; 3140 } 3141 3142 static int of_phy_leds(struct phy_device *phydev) 3143 { 3144 struct device_node *node = phydev->mdio.dev.of_node; 3145 struct device_node *leds, *led; 3146 int err; 3147 3148 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3149 return 0; 3150 3151 if (!node) 3152 return 0; 3153 3154 leds = of_get_child_by_name(node, "leds"); 3155 if (!leds) 3156 return 0; 3157 3158 for_each_available_child_of_node(leds, led) { 3159 err = of_phy_led(phydev, led); 3160 if (err) { 3161 of_node_put(led); 3162 phy_leds_unregister(phydev); 3163 return err; 3164 } 3165 } 3166 3167 return 0; 3168 } 3169 3170 /** 3171 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3172 * @fwnode: pointer to the mdio_device's fwnode 3173 * 3174 * If successful, returns a pointer to the mdio_device with the embedded 3175 * struct device refcount incremented by one, or NULL on failure. 3176 * The caller should call put_device() on the mdio_device after its use. 3177 */ 3178 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3179 { 3180 struct device *d; 3181 3182 if (!fwnode) 3183 return NULL; 3184 3185 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3186 if (!d) 3187 return NULL; 3188 3189 return to_mdio_device(d); 3190 } 3191 EXPORT_SYMBOL(fwnode_mdio_find_device); 3192 3193 /** 3194 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3195 * 3196 * @phy_fwnode: Pointer to the phy's fwnode. 3197 * 3198 * If successful, returns a pointer to the phy_device with the embedded 3199 * struct device refcount incremented by one, or NULL on failure. 3200 */ 3201 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3202 { 3203 struct mdio_device *mdiodev; 3204 3205 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3206 if (!mdiodev) 3207 return NULL; 3208 3209 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3210 return to_phy_device(&mdiodev->dev); 3211 3212 put_device(&mdiodev->dev); 3213 3214 return NULL; 3215 } 3216 EXPORT_SYMBOL(fwnode_phy_find_device); 3217 3218 /** 3219 * device_phy_find_device - For the given device, get the phy_device 3220 * @dev: Pointer to the given device 3221 * 3222 * Refer return conditions of fwnode_phy_find_device(). 3223 */ 3224 struct phy_device *device_phy_find_device(struct device *dev) 3225 { 3226 return fwnode_phy_find_device(dev_fwnode(dev)); 3227 } 3228 EXPORT_SYMBOL_GPL(device_phy_find_device); 3229 3230 /** 3231 * fwnode_get_phy_node - Get the phy_node using the named reference. 3232 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3233 * 3234 * Refer return conditions of fwnode_find_reference(). 3235 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3236 * and "phy-device" are not supported in ACPI. DT supports all the three 3237 * named references to the phy node. 3238 */ 3239 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3240 { 3241 struct fwnode_handle *phy_node; 3242 3243 /* Only phy-handle is used for ACPI */ 3244 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3245 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3246 return phy_node; 3247 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3248 if (IS_ERR(phy_node)) 3249 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3250 return phy_node; 3251 } 3252 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3253 3254 /** 3255 * phy_probe - probe and init a PHY device 3256 * @dev: device to probe and init 3257 * 3258 * Take care of setting up the phy_device structure, set the state to READY. 3259 */ 3260 static int phy_probe(struct device *dev) 3261 { 3262 struct phy_device *phydev = to_phy_device(dev); 3263 struct device_driver *drv = phydev->mdio.dev.driver; 3264 struct phy_driver *phydrv = to_phy_driver(drv); 3265 int err = 0; 3266 3267 phydev->drv = phydrv; 3268 3269 /* Disable the interrupt if the PHY doesn't support it 3270 * but the interrupt is still a valid one 3271 */ 3272 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3273 phydev->irq = PHY_POLL; 3274 3275 if (phydrv->flags & PHY_IS_INTERNAL) 3276 phydev->is_internal = true; 3277 3278 /* Deassert the reset signal */ 3279 phy_device_reset(phydev, 0); 3280 3281 if (phydev->drv->probe) { 3282 err = phydev->drv->probe(phydev); 3283 if (err) 3284 goto out; 3285 } 3286 3287 phy_disable_interrupts(phydev); 3288 3289 /* Start out supporting everything. Eventually, 3290 * a controller will attach, and may modify one 3291 * or both of these values 3292 */ 3293 if (phydrv->features) { 3294 linkmode_copy(phydev->supported, phydrv->features); 3295 genphy_c45_read_eee_abilities(phydev); 3296 } 3297 else if (phydrv->get_features) 3298 err = phydrv->get_features(phydev); 3299 else if (phydev->is_c45) 3300 err = genphy_c45_pma_read_abilities(phydev); 3301 else 3302 err = genphy_read_abilities(phydev); 3303 3304 if (err) 3305 goto out; 3306 3307 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3308 phydev->supported)) 3309 phydev->autoneg = 0; 3310 3311 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3312 phydev->supported)) 3313 phydev->is_gigabit_capable = 1; 3314 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3315 phydev->supported)) 3316 phydev->is_gigabit_capable = 1; 3317 3318 of_set_phy_supported(phydev); 3319 phy_advertise_supported(phydev); 3320 3321 /* Get PHY default EEE advertising modes and handle them as potentially 3322 * safe initial configuration. 3323 */ 3324 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3325 if (err) 3326 goto out; 3327 3328 /* There is no "enabled" flag. If PHY is advertising, assume it is 3329 * kind of enabled. 3330 */ 3331 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3332 3333 /* Some PHYs may advertise, by default, not support EEE modes. So, 3334 * we need to clean them. 3335 */ 3336 if (phydev->eee_enabled) 3337 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3338 phydev->advertising_eee); 3339 3340 /* Get the EEE modes we want to prohibit. We will ask 3341 * the PHY stop advertising these mode later on 3342 */ 3343 of_set_phy_eee_broken(phydev); 3344 3345 /* The Pause Frame bits indicate that the PHY can support passing 3346 * pause frames. During autonegotiation, the PHYs will determine if 3347 * they should allow pause frames to pass. The MAC driver should then 3348 * use that result to determine whether to enable flow control via 3349 * pause frames. 3350 * 3351 * Normally, PHY drivers should not set the Pause bits, and instead 3352 * allow phylib to do that. However, there may be some situations 3353 * (e.g. hardware erratum) where the driver wants to set only one 3354 * of these bits. 3355 */ 3356 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3357 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3358 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3359 phydev->supported); 3360 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3361 phydev->supported); 3362 } 3363 3364 /* Set the state to READY by default */ 3365 phydev->state = PHY_READY; 3366 3367 /* Get the LEDs from the device tree, and instantiate standard 3368 * LEDs for them. 3369 */ 3370 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3371 err = of_phy_leds(phydev); 3372 3373 out: 3374 /* Re-assert the reset signal on error */ 3375 if (err) 3376 phy_device_reset(phydev, 1); 3377 3378 return err; 3379 } 3380 3381 static int phy_remove(struct device *dev) 3382 { 3383 struct phy_device *phydev = to_phy_device(dev); 3384 3385 cancel_delayed_work_sync(&phydev->state_queue); 3386 3387 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3388 phy_leds_unregister(phydev); 3389 3390 phydev->state = PHY_DOWN; 3391 3392 sfp_bus_del_upstream(phydev->sfp_bus); 3393 phydev->sfp_bus = NULL; 3394 3395 if (phydev->drv && phydev->drv->remove) 3396 phydev->drv->remove(phydev); 3397 3398 /* Assert the reset signal */ 3399 phy_device_reset(phydev, 1); 3400 3401 phydev->drv = NULL; 3402 3403 return 0; 3404 } 3405 3406 /** 3407 * phy_driver_register - register a phy_driver with the PHY layer 3408 * @new_driver: new phy_driver to register 3409 * @owner: module owning this PHY 3410 */ 3411 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3412 { 3413 int retval; 3414 3415 /* Either the features are hard coded, or dynamically 3416 * determined. It cannot be both. 3417 */ 3418 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3419 pr_err("%s: features and get_features must not both be set\n", 3420 new_driver->name); 3421 return -EINVAL; 3422 } 3423 3424 /* PHYLIB device drivers must not match using a DT compatible table 3425 * as this bypasses our checks that the mdiodev that is being matched 3426 * is backed by a struct phy_device. If such a case happens, we will 3427 * make out-of-bounds accesses and lockup in phydev->lock. 3428 */ 3429 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3430 "%s: driver must not provide a DT match table\n", 3431 new_driver->name)) 3432 return -EINVAL; 3433 3434 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3435 new_driver->mdiodrv.driver.name = new_driver->name; 3436 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3437 new_driver->mdiodrv.driver.probe = phy_probe; 3438 new_driver->mdiodrv.driver.remove = phy_remove; 3439 new_driver->mdiodrv.driver.owner = owner; 3440 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3441 3442 retval = driver_register(&new_driver->mdiodrv.driver); 3443 if (retval) { 3444 pr_err("%s: Error %d in registering driver\n", 3445 new_driver->name, retval); 3446 3447 return retval; 3448 } 3449 3450 pr_debug("%s: Registered new driver\n", new_driver->name); 3451 3452 return 0; 3453 } 3454 EXPORT_SYMBOL(phy_driver_register); 3455 3456 int phy_drivers_register(struct phy_driver *new_driver, int n, 3457 struct module *owner) 3458 { 3459 int i, ret = 0; 3460 3461 for (i = 0; i < n; i++) { 3462 ret = phy_driver_register(new_driver + i, owner); 3463 if (ret) { 3464 while (i-- > 0) 3465 phy_driver_unregister(new_driver + i); 3466 break; 3467 } 3468 } 3469 return ret; 3470 } 3471 EXPORT_SYMBOL(phy_drivers_register); 3472 3473 void phy_driver_unregister(struct phy_driver *drv) 3474 { 3475 driver_unregister(&drv->mdiodrv.driver); 3476 } 3477 EXPORT_SYMBOL(phy_driver_unregister); 3478 3479 void phy_drivers_unregister(struct phy_driver *drv, int n) 3480 { 3481 int i; 3482 3483 for (i = 0; i < n; i++) 3484 phy_driver_unregister(drv + i); 3485 } 3486 EXPORT_SYMBOL(phy_drivers_unregister); 3487 3488 static struct phy_driver genphy_driver = { 3489 .phy_id = 0xffffffff, 3490 .phy_id_mask = 0xffffffff, 3491 .name = "Generic PHY", 3492 .get_features = genphy_read_abilities, 3493 .suspend = genphy_suspend, 3494 .resume = genphy_resume, 3495 .set_loopback = genphy_loopback, 3496 }; 3497 3498 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3499 .get_sset_count = phy_ethtool_get_sset_count, 3500 .get_strings = phy_ethtool_get_strings, 3501 .get_stats = phy_ethtool_get_stats, 3502 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3503 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3504 .get_plca_status = phy_ethtool_get_plca_status, 3505 .start_cable_test = phy_start_cable_test, 3506 .start_cable_test_tdr = phy_start_cable_test_tdr, 3507 }; 3508 3509 static const struct phylib_stubs __phylib_stubs = { 3510 .hwtstamp_get = __phy_hwtstamp_get, 3511 .hwtstamp_set = __phy_hwtstamp_set, 3512 }; 3513 3514 static void phylib_register_stubs(void) 3515 { 3516 phylib_stubs = &__phylib_stubs; 3517 } 3518 3519 static void phylib_unregister_stubs(void) 3520 { 3521 phylib_stubs = NULL; 3522 } 3523 3524 static int __init phy_init(void) 3525 { 3526 int rc; 3527 3528 rtnl_lock(); 3529 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3530 phylib_register_stubs(); 3531 rtnl_unlock(); 3532 3533 rc = mdio_bus_init(); 3534 if (rc) 3535 goto err_ethtool_phy_ops; 3536 3537 features_init(); 3538 3539 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3540 if (rc) 3541 goto err_mdio_bus; 3542 3543 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3544 if (rc) 3545 goto err_c45; 3546 3547 return 0; 3548 3549 err_c45: 3550 phy_driver_unregister(&genphy_c45_driver); 3551 err_mdio_bus: 3552 mdio_bus_exit(); 3553 err_ethtool_phy_ops: 3554 rtnl_lock(); 3555 phylib_unregister_stubs(); 3556 ethtool_set_ethtool_phy_ops(NULL); 3557 rtnl_unlock(); 3558 3559 return rc; 3560 } 3561 3562 static void __exit phy_exit(void) 3563 { 3564 phy_driver_unregister(&genphy_c45_driver); 3565 phy_driver_unregister(&genphy_driver); 3566 mdio_bus_exit(); 3567 rtnl_lock(); 3568 phylib_unregister_stubs(); 3569 ethtool_set_ethtool_phy_ops(NULL); 3570 rtnl_unlock(); 3571 } 3572 3573 subsys_initcall(phy_init); 3574 module_exit(phy_exit); 3575