1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[3] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 97 }; 98 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 99 100 const int phy_gbit_features_array[2] = { 101 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 102 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 103 }; 104 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 105 106 const int phy_10gbit_features_array[1] = { 107 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 108 }; 109 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 110 111 static const int phy_10gbit_fec_features_array[1] = { 112 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 113 }; 114 115 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 116 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 117 118 static const int phy_10gbit_full_features_array[] = { 119 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 122 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 123 }; 124 125 static void features_init(void) 126 { 127 /* 10/100 half/full*/ 128 linkmode_set_bit_array(phy_basic_ports_array, 129 ARRAY_SIZE(phy_basic_ports_array), 130 phy_basic_features); 131 linkmode_set_bit_array(phy_10_100_features_array, 132 ARRAY_SIZE(phy_10_100_features_array), 133 phy_basic_features); 134 135 /* 100 full, TP */ 136 linkmode_set_bit_array(phy_basic_t1_features_array, 137 ARRAY_SIZE(phy_basic_t1_features_array), 138 phy_basic_t1_features); 139 140 /* 10/100 half/full + 1000 half/full */ 141 linkmode_set_bit_array(phy_basic_ports_array, 142 ARRAY_SIZE(phy_basic_ports_array), 143 phy_gbit_features); 144 linkmode_set_bit_array(phy_10_100_features_array, 145 ARRAY_SIZE(phy_10_100_features_array), 146 phy_gbit_features); 147 linkmode_set_bit_array(phy_gbit_features_array, 148 ARRAY_SIZE(phy_gbit_features_array), 149 phy_gbit_features); 150 151 /* 10/100 half/full + 1000 half/full + fibre*/ 152 linkmode_set_bit_array(phy_basic_ports_array, 153 ARRAY_SIZE(phy_basic_ports_array), 154 phy_gbit_fibre_features); 155 linkmode_set_bit_array(phy_10_100_features_array, 156 ARRAY_SIZE(phy_10_100_features_array), 157 phy_gbit_fibre_features); 158 linkmode_set_bit_array(phy_gbit_features_array, 159 ARRAY_SIZE(phy_gbit_features_array), 160 phy_gbit_fibre_features); 161 linkmode_set_bit_array(phy_fibre_port_array, 162 ARRAY_SIZE(phy_fibre_port_array), 163 phy_gbit_fibre_features); 164 165 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 166 linkmode_set_bit_array(phy_all_ports_features_array, 167 ARRAY_SIZE(phy_all_ports_features_array), 168 phy_gbit_all_ports_features); 169 linkmode_set_bit_array(phy_10_100_features_array, 170 ARRAY_SIZE(phy_10_100_features_array), 171 phy_gbit_all_ports_features); 172 linkmode_set_bit_array(phy_gbit_features_array, 173 ARRAY_SIZE(phy_gbit_features_array), 174 phy_gbit_all_ports_features); 175 176 /* 10/100 half/full + 1000 half/full + 10G full*/ 177 linkmode_set_bit_array(phy_all_ports_features_array, 178 ARRAY_SIZE(phy_all_ports_features_array), 179 phy_10gbit_features); 180 linkmode_set_bit_array(phy_10_100_features_array, 181 ARRAY_SIZE(phy_10_100_features_array), 182 phy_10gbit_features); 183 linkmode_set_bit_array(phy_gbit_features_array, 184 ARRAY_SIZE(phy_gbit_features_array), 185 phy_10gbit_features); 186 linkmode_set_bit_array(phy_10gbit_features_array, 187 ARRAY_SIZE(phy_10gbit_features_array), 188 phy_10gbit_features); 189 190 /* 10/100/1000/10G full */ 191 linkmode_set_bit_array(phy_all_ports_features_array, 192 ARRAY_SIZE(phy_all_ports_features_array), 193 phy_10gbit_full_features); 194 linkmode_set_bit_array(phy_10gbit_full_features_array, 195 ARRAY_SIZE(phy_10gbit_full_features_array), 196 phy_10gbit_full_features); 197 /* 10G FEC only */ 198 linkmode_set_bit_array(phy_10gbit_fec_features_array, 199 ARRAY_SIZE(phy_10gbit_fec_features_array), 200 phy_10gbit_fec_features); 201 } 202 203 void phy_device_free(struct phy_device *phydev) 204 { 205 put_device(&phydev->mdio.dev); 206 } 207 EXPORT_SYMBOL(phy_device_free); 208 209 static void phy_mdio_device_free(struct mdio_device *mdiodev) 210 { 211 struct phy_device *phydev; 212 213 phydev = container_of(mdiodev, struct phy_device, mdio); 214 phy_device_free(phydev); 215 } 216 217 static void phy_device_release(struct device *dev) 218 { 219 kfree(to_phy_device(dev)); 220 } 221 222 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 223 { 224 struct phy_device *phydev; 225 226 phydev = container_of(mdiodev, struct phy_device, mdio); 227 phy_device_remove(phydev); 228 } 229 230 static struct phy_driver genphy_driver; 231 232 static LIST_HEAD(phy_fixup_list); 233 static DEFINE_MUTEX(phy_fixup_lock); 234 235 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 236 { 237 struct device_driver *drv = phydev->mdio.dev.driver; 238 struct phy_driver *phydrv = to_phy_driver(drv); 239 struct net_device *netdev = phydev->attached_dev; 240 241 if (!drv || !phydrv->suspend) 242 return false; 243 244 /* PHY not attached? May suspend if the PHY has not already been 245 * suspended as part of a prior call to phy_disconnect() -> 246 * phy_detach() -> phy_suspend() because the parent netdev might be the 247 * MDIO bus driver and clock gated at this point. 248 */ 249 if (!netdev) 250 goto out; 251 252 if (netdev->wol_enabled) 253 return false; 254 255 /* As long as not all affected network drivers support the 256 * wol_enabled flag, let's check for hints that WoL is enabled. 257 * Don't suspend PHY if the attached netdev parent may wake up. 258 * The parent may point to a PCI device, as in tg3 driver. 259 */ 260 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 261 return false; 262 263 /* Also don't suspend PHY if the netdev itself may wakeup. This 264 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 265 * e.g. SoC devices. 266 */ 267 if (device_may_wakeup(&netdev->dev)) 268 return false; 269 270 out: 271 return !phydev->suspended; 272 } 273 274 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 275 { 276 struct phy_device *phydev = to_phy_device(dev); 277 278 if (phydev->mac_managed_pm) 279 return 0; 280 281 /* Wakeup interrupts may occur during the system sleep transition when 282 * the PHY is inaccessible. Set flag to postpone handling until the PHY 283 * has resumed. Wait for concurrent interrupt handler to complete. 284 */ 285 if (phy_interrupt_is_valid(phydev)) { 286 phydev->irq_suspended = 1; 287 synchronize_irq(phydev->irq); 288 } 289 290 /* We must stop the state machine manually, otherwise it stops out of 291 * control, possibly with the phydev->lock held. Upon resume, netdev 292 * may call phy routines that try to grab the same lock, and that may 293 * lead to a deadlock. 294 */ 295 if (phydev->attached_dev && phydev->adjust_link) 296 phy_stop_machine(phydev); 297 298 if (!mdio_bus_phy_may_suspend(phydev)) 299 return 0; 300 301 phydev->suspended_by_mdio_bus = 1; 302 303 return phy_suspend(phydev); 304 } 305 306 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 307 { 308 struct phy_device *phydev = to_phy_device(dev); 309 int ret; 310 311 if (phydev->mac_managed_pm) 312 return 0; 313 314 if (!phydev->suspended_by_mdio_bus) 315 goto no_resume; 316 317 phydev->suspended_by_mdio_bus = 0; 318 319 /* If we managed to get here with the PHY state machine in a state 320 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 321 * that something went wrong and we should most likely be using 322 * MAC managed PM, but we are not. 323 */ 324 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 325 phydev->state != PHY_UP); 326 327 ret = phy_init_hw(phydev); 328 if (ret < 0) 329 return ret; 330 331 ret = phy_resume(phydev); 332 if (ret < 0) 333 return ret; 334 no_resume: 335 if (phy_interrupt_is_valid(phydev)) { 336 phydev->irq_suspended = 0; 337 synchronize_irq(phydev->irq); 338 339 /* Rerun interrupts which were postponed by phy_interrupt() 340 * because they occurred during the system sleep transition. 341 */ 342 if (phydev->irq_rerun) { 343 phydev->irq_rerun = 0; 344 enable_irq(phydev->irq); 345 irq_wake_thread(phydev->irq, phydev); 346 } 347 } 348 349 if (phydev->attached_dev && phydev->adjust_link) 350 phy_start_machine(phydev); 351 352 return 0; 353 } 354 355 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 356 mdio_bus_phy_resume); 357 358 /** 359 * phy_register_fixup - creates a new phy_fixup and adds it to the list 360 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 361 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 362 * It can also be PHY_ANY_UID 363 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 364 * comparison 365 * @run: The actual code to be run when a matching PHY is found 366 */ 367 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 368 int (*run)(struct phy_device *)) 369 { 370 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 371 372 if (!fixup) 373 return -ENOMEM; 374 375 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 376 fixup->phy_uid = phy_uid; 377 fixup->phy_uid_mask = phy_uid_mask; 378 fixup->run = run; 379 380 mutex_lock(&phy_fixup_lock); 381 list_add_tail(&fixup->list, &phy_fixup_list); 382 mutex_unlock(&phy_fixup_lock); 383 384 return 0; 385 } 386 EXPORT_SYMBOL(phy_register_fixup); 387 388 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 389 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 390 int (*run)(struct phy_device *)) 391 { 392 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 393 } 394 EXPORT_SYMBOL(phy_register_fixup_for_uid); 395 396 /* Registers a fixup to be run on the PHY with id string bus_id */ 397 int phy_register_fixup_for_id(const char *bus_id, 398 int (*run)(struct phy_device *)) 399 { 400 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 401 } 402 EXPORT_SYMBOL(phy_register_fixup_for_id); 403 404 /** 405 * phy_unregister_fixup - remove a phy_fixup from the list 406 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 407 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 408 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 409 */ 410 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 411 { 412 struct list_head *pos, *n; 413 struct phy_fixup *fixup; 414 int ret; 415 416 ret = -ENODEV; 417 418 mutex_lock(&phy_fixup_lock); 419 list_for_each_safe(pos, n, &phy_fixup_list) { 420 fixup = list_entry(pos, struct phy_fixup, list); 421 422 if ((!strcmp(fixup->bus_id, bus_id)) && 423 ((fixup->phy_uid & phy_uid_mask) == 424 (phy_uid & phy_uid_mask))) { 425 list_del(&fixup->list); 426 kfree(fixup); 427 ret = 0; 428 break; 429 } 430 } 431 mutex_unlock(&phy_fixup_lock); 432 433 return ret; 434 } 435 EXPORT_SYMBOL(phy_unregister_fixup); 436 437 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 438 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 439 { 440 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 441 } 442 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 443 444 /* Unregisters a fixup of the PHY with id string bus_id */ 445 int phy_unregister_fixup_for_id(const char *bus_id) 446 { 447 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 448 } 449 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 450 451 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 452 * Fixups can be set to match any in one or more fields. 453 */ 454 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 455 { 456 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 457 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 458 return 0; 459 460 if ((fixup->phy_uid & fixup->phy_uid_mask) != 461 (phydev->phy_id & fixup->phy_uid_mask)) 462 if (fixup->phy_uid != PHY_ANY_UID) 463 return 0; 464 465 return 1; 466 } 467 468 /* Runs any matching fixups for this phydev */ 469 static int phy_scan_fixups(struct phy_device *phydev) 470 { 471 struct phy_fixup *fixup; 472 473 mutex_lock(&phy_fixup_lock); 474 list_for_each_entry(fixup, &phy_fixup_list, list) { 475 if (phy_needs_fixup(phydev, fixup)) { 476 int err = fixup->run(phydev); 477 478 if (err < 0) { 479 mutex_unlock(&phy_fixup_lock); 480 return err; 481 } 482 phydev->has_fixups = true; 483 } 484 } 485 mutex_unlock(&phy_fixup_lock); 486 487 return 0; 488 } 489 490 static int phy_bus_match(struct device *dev, struct device_driver *drv) 491 { 492 struct phy_device *phydev = to_phy_device(dev); 493 struct phy_driver *phydrv = to_phy_driver(drv); 494 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 495 int i; 496 497 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 498 return 0; 499 500 if (phydrv->match_phy_device) 501 return phydrv->match_phy_device(phydev); 502 503 if (phydev->is_c45) { 504 for (i = 1; i < num_ids; i++) { 505 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 506 continue; 507 508 if ((phydrv->phy_id & phydrv->phy_id_mask) == 509 (phydev->c45_ids.device_ids[i] & 510 phydrv->phy_id_mask)) 511 return 1; 512 } 513 return 0; 514 } else { 515 return (phydrv->phy_id & phydrv->phy_id_mask) == 516 (phydev->phy_id & phydrv->phy_id_mask); 517 } 518 } 519 520 static ssize_t 521 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 522 { 523 struct phy_device *phydev = to_phy_device(dev); 524 525 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 526 } 527 static DEVICE_ATTR_RO(phy_id); 528 529 static ssize_t 530 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 531 { 532 struct phy_device *phydev = to_phy_device(dev); 533 const char *mode = NULL; 534 535 if (phy_is_internal(phydev)) 536 mode = "internal"; 537 else 538 mode = phy_modes(phydev->interface); 539 540 return sprintf(buf, "%s\n", mode); 541 } 542 static DEVICE_ATTR_RO(phy_interface); 543 544 static ssize_t 545 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 546 char *buf) 547 { 548 struct phy_device *phydev = to_phy_device(dev); 549 550 return sprintf(buf, "%d\n", phydev->has_fixups); 551 } 552 static DEVICE_ATTR_RO(phy_has_fixups); 553 554 static ssize_t phy_dev_flags_show(struct device *dev, 555 struct device_attribute *attr, 556 char *buf) 557 { 558 struct phy_device *phydev = to_phy_device(dev); 559 560 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 561 } 562 static DEVICE_ATTR_RO(phy_dev_flags); 563 564 static struct attribute *phy_dev_attrs[] = { 565 &dev_attr_phy_id.attr, 566 &dev_attr_phy_interface.attr, 567 &dev_attr_phy_has_fixups.attr, 568 &dev_attr_phy_dev_flags.attr, 569 NULL, 570 }; 571 ATTRIBUTE_GROUPS(phy_dev); 572 573 static const struct device_type mdio_bus_phy_type = { 574 .name = "PHY", 575 .groups = phy_dev_groups, 576 .release = phy_device_release, 577 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 578 }; 579 580 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 581 { 582 int ret; 583 584 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 585 MDIO_ID_ARGS(phy_id)); 586 /* We only check for failures in executing the usermode binary, 587 * not whether a PHY driver module exists for the PHY ID. 588 * Accept -ENOENT because this may occur in case no initramfs exists, 589 * then modprobe isn't available. 590 */ 591 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 592 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 593 ret, (unsigned long)phy_id); 594 return ret; 595 } 596 597 return 0; 598 } 599 600 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 601 bool is_c45, 602 struct phy_c45_device_ids *c45_ids) 603 { 604 struct phy_device *dev; 605 struct mdio_device *mdiodev; 606 int ret = 0; 607 608 /* We allocate the device, and initialize the default values */ 609 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 610 if (!dev) 611 return ERR_PTR(-ENOMEM); 612 613 mdiodev = &dev->mdio; 614 mdiodev->dev.parent = &bus->dev; 615 mdiodev->dev.bus = &mdio_bus_type; 616 mdiodev->dev.type = &mdio_bus_phy_type; 617 mdiodev->bus = bus; 618 mdiodev->bus_match = phy_bus_match; 619 mdiodev->addr = addr; 620 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 621 mdiodev->device_free = phy_mdio_device_free; 622 mdiodev->device_remove = phy_mdio_device_remove; 623 624 dev->speed = SPEED_UNKNOWN; 625 dev->duplex = DUPLEX_UNKNOWN; 626 dev->pause = 0; 627 dev->asym_pause = 0; 628 dev->link = 0; 629 dev->port = PORT_TP; 630 dev->interface = PHY_INTERFACE_MODE_GMII; 631 632 dev->autoneg = AUTONEG_ENABLE; 633 634 dev->pma_extable = -ENODATA; 635 dev->is_c45 = is_c45; 636 dev->phy_id = phy_id; 637 if (c45_ids) 638 dev->c45_ids = *c45_ids; 639 dev->irq = bus->irq[addr]; 640 641 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 642 device_initialize(&mdiodev->dev); 643 644 dev->state = PHY_DOWN; 645 646 mutex_init(&dev->lock); 647 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 648 649 /* Request the appropriate module unconditionally; don't 650 * bother trying to do so only if it isn't already loaded, 651 * because that gets complicated. A hotplug event would have 652 * done an unconditional modprobe anyway. 653 * We don't do normal hotplug because it won't work for MDIO 654 * -- because it relies on the device staying around for long 655 * enough for the driver to get loaded. With MDIO, the NIC 656 * driver will get bored and give up as soon as it finds that 657 * there's no driver _already_ loaded. 658 */ 659 if (is_c45 && c45_ids) { 660 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 661 int i; 662 663 for (i = 1; i < num_ids; i++) { 664 if (c45_ids->device_ids[i] == 0xffffffff) 665 continue; 666 667 ret = phy_request_driver_module(dev, 668 c45_ids->device_ids[i]); 669 if (ret) 670 break; 671 } 672 } else { 673 ret = phy_request_driver_module(dev, phy_id); 674 } 675 676 if (ret) { 677 put_device(&mdiodev->dev); 678 dev = ERR_PTR(ret); 679 } 680 681 return dev; 682 } 683 EXPORT_SYMBOL(phy_device_create); 684 685 /* phy_c45_probe_present - checks to see if a MMD is present in the package 686 * @bus: the target MII bus 687 * @prtad: PHY package address on the MII bus 688 * @devad: PHY device (MMD) address 689 * 690 * Read the MDIO_STAT2 register, and check whether a device is responding 691 * at this address. 692 * 693 * Returns: negative error number on bus access error, zero if no device 694 * is responding, or positive if a device is present. 695 */ 696 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 697 { 698 int stat2; 699 700 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 701 if (stat2 < 0) 702 return stat2; 703 704 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 705 } 706 707 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 708 * @bus: the target MII bus 709 * @addr: PHY address on the MII bus 710 * @dev_addr: MMD address in the PHY. 711 * @devices_in_package: where to store the devices in package information. 712 * 713 * Description: reads devices in package registers of a MMD at @dev_addr 714 * from PHY at @addr on @bus. 715 * 716 * Returns: 0 on success, -EIO on failure. 717 */ 718 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 719 u32 *devices_in_package) 720 { 721 int phy_reg; 722 723 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 724 if (phy_reg < 0) 725 return -EIO; 726 *devices_in_package = phy_reg << 16; 727 728 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 729 if (phy_reg < 0) 730 return -EIO; 731 *devices_in_package |= phy_reg; 732 733 return 0; 734 } 735 736 /** 737 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 738 * @bus: the target MII bus 739 * @addr: PHY address on the MII bus 740 * @c45_ids: where to store the c45 ID information. 741 * 742 * Read the PHY "devices in package". If this appears to be valid, read 743 * the PHY identifiers for each device. Return the "devices in package" 744 * and identifiers in @c45_ids. 745 * 746 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 747 * the "devices in package" is invalid. 748 */ 749 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 750 struct phy_c45_device_ids *c45_ids) 751 { 752 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 753 u32 devs_in_pkg = 0; 754 int i, ret, phy_reg; 755 756 /* Find first non-zero Devices In package. Device zero is reserved 757 * for 802.3 c45 complied PHYs, so don't probe it at first. 758 */ 759 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 760 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 761 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 762 /* Check that there is a device present at this 763 * address before reading the devices-in-package 764 * register to avoid reading garbage from the PHY. 765 * Some PHYs (88x3310) vendor space is not IEEE802.3 766 * compliant. 767 */ 768 ret = phy_c45_probe_present(bus, addr, i); 769 if (ret < 0) 770 return -EIO; 771 772 if (!ret) 773 continue; 774 } 775 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 776 if (phy_reg < 0) 777 return -EIO; 778 } 779 780 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 781 /* If mostly Fs, there is no device there, then let's probe 782 * MMD 0, as some 10G PHYs have zero Devices In package, 783 * e.g. Cortina CS4315/CS4340 PHY. 784 */ 785 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 786 if (phy_reg < 0) 787 return -EIO; 788 789 /* no device there, let's get out of here */ 790 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 791 return -ENODEV; 792 } 793 794 /* Now probe Device Identifiers for each device present. */ 795 for (i = 1; i < num_ids; i++) { 796 if (!(devs_in_pkg & (1 << i))) 797 continue; 798 799 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 800 /* Probe the "Device Present" bits for the vendor MMDs 801 * to ignore these if they do not contain IEEE 802.3 802 * registers. 803 */ 804 ret = phy_c45_probe_present(bus, addr, i); 805 if (ret < 0) 806 return ret; 807 808 if (!ret) 809 continue; 810 } 811 812 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 813 if (phy_reg < 0) 814 return -EIO; 815 c45_ids->device_ids[i] = phy_reg << 16; 816 817 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 818 if (phy_reg < 0) 819 return -EIO; 820 c45_ids->device_ids[i] |= phy_reg; 821 } 822 823 c45_ids->devices_in_package = devs_in_pkg; 824 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 825 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 826 827 return 0; 828 } 829 830 /** 831 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 832 * @bus: the target MII bus 833 * @addr: PHY address on the MII bus 834 * @phy_id: where to store the ID retrieved. 835 * 836 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 837 * placing it in @phy_id. Return zero on successful read and the ID is 838 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 839 * or invalid ID. 840 */ 841 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 842 { 843 int phy_reg; 844 845 /* Grab the bits from PHYIR1, and put them in the upper half */ 846 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 847 if (phy_reg < 0) { 848 /* returning -ENODEV doesn't stop bus scanning */ 849 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 850 } 851 852 *phy_id = phy_reg << 16; 853 854 /* Grab the bits from PHYIR2, and put them in the lower half */ 855 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 856 if (phy_reg < 0) { 857 /* returning -ENODEV doesn't stop bus scanning */ 858 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 859 } 860 861 *phy_id |= phy_reg; 862 863 /* If the phy_id is mostly Fs, there is no device there */ 864 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 865 return -ENODEV; 866 867 return 0; 868 } 869 870 /* Extract the phy ID from the compatible string of the form 871 * ethernet-phy-idAAAA.BBBB. 872 */ 873 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 874 { 875 unsigned int upper, lower; 876 const char *cp; 877 int ret; 878 879 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 880 if (ret) 881 return ret; 882 883 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 884 return -EINVAL; 885 886 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 887 return 0; 888 } 889 EXPORT_SYMBOL(fwnode_get_phy_id); 890 891 /** 892 * get_phy_device - reads the specified PHY device and returns its @phy_device 893 * struct 894 * @bus: the target MII bus 895 * @addr: PHY address on the MII bus 896 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 897 * 898 * Probe for a PHY at @addr on @bus. 899 * 900 * When probing for a clause 22 PHY, then read the ID registers. If we find 901 * a valid ID, allocate and return a &struct phy_device. 902 * 903 * When probing for a clause 45 PHY, read the "devices in package" registers. 904 * If the "devices in package" appears valid, read the ID registers for each 905 * MMD, allocate and return a &struct phy_device. 906 * 907 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 908 * no PHY present, or %-EIO on bus access error. 909 */ 910 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 911 { 912 struct phy_c45_device_ids c45_ids; 913 u32 phy_id = 0; 914 int r; 915 916 c45_ids.devices_in_package = 0; 917 c45_ids.mmds_present = 0; 918 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 919 920 if (is_c45) 921 r = get_phy_c45_ids(bus, addr, &c45_ids); 922 else 923 r = get_phy_c22_id(bus, addr, &phy_id); 924 925 if (r) 926 return ERR_PTR(r); 927 928 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 929 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 930 * probe with C45 to see if we're able to get a valid PHY ID in the C45 931 * space, if successful, create the C45 PHY device. 932 */ 933 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 934 r = get_phy_c45_ids(bus, addr, &c45_ids); 935 if (!r) 936 return phy_device_create(bus, addr, phy_id, 937 true, &c45_ids); 938 } 939 940 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 941 } 942 EXPORT_SYMBOL(get_phy_device); 943 944 /** 945 * phy_device_register - Register the phy device on the MDIO bus 946 * @phydev: phy_device structure to be added to the MDIO bus 947 */ 948 int phy_device_register(struct phy_device *phydev) 949 { 950 int err; 951 952 err = mdiobus_register_device(&phydev->mdio); 953 if (err) 954 return err; 955 956 /* Deassert the reset signal */ 957 phy_device_reset(phydev, 0); 958 959 /* Run all of the fixups for this PHY */ 960 err = phy_scan_fixups(phydev); 961 if (err) { 962 phydev_err(phydev, "failed to initialize\n"); 963 goto out; 964 } 965 966 err = device_add(&phydev->mdio.dev); 967 if (err) { 968 phydev_err(phydev, "failed to add\n"); 969 goto out; 970 } 971 972 return 0; 973 974 out: 975 /* Assert the reset signal */ 976 phy_device_reset(phydev, 1); 977 978 mdiobus_unregister_device(&phydev->mdio); 979 return err; 980 } 981 EXPORT_SYMBOL(phy_device_register); 982 983 /** 984 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 985 * @phydev: phy_device structure to remove 986 * 987 * This doesn't free the phy_device itself, it merely reverses the effects 988 * of phy_device_register(). Use phy_device_free() to free the device 989 * after calling this function. 990 */ 991 void phy_device_remove(struct phy_device *phydev) 992 { 993 unregister_mii_timestamper(phydev->mii_ts); 994 995 device_del(&phydev->mdio.dev); 996 997 /* Assert the reset signal */ 998 phy_device_reset(phydev, 1); 999 1000 mdiobus_unregister_device(&phydev->mdio); 1001 } 1002 EXPORT_SYMBOL(phy_device_remove); 1003 1004 /** 1005 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1006 * @phydev: phy_device structure to read 802.3-c45 IDs 1007 * 1008 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1009 * the "devices in package" is invalid. 1010 */ 1011 int phy_get_c45_ids(struct phy_device *phydev) 1012 { 1013 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1014 &phydev->c45_ids); 1015 } 1016 EXPORT_SYMBOL(phy_get_c45_ids); 1017 1018 /** 1019 * phy_find_first - finds the first PHY device on the bus 1020 * @bus: the target MII bus 1021 */ 1022 struct phy_device *phy_find_first(struct mii_bus *bus) 1023 { 1024 struct phy_device *phydev; 1025 int addr; 1026 1027 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1028 phydev = mdiobus_get_phy(bus, addr); 1029 if (phydev) 1030 return phydev; 1031 } 1032 return NULL; 1033 } 1034 EXPORT_SYMBOL(phy_find_first); 1035 1036 static void phy_link_change(struct phy_device *phydev, bool up) 1037 { 1038 struct net_device *netdev = phydev->attached_dev; 1039 1040 if (up) 1041 netif_carrier_on(netdev); 1042 else 1043 netif_carrier_off(netdev); 1044 phydev->adjust_link(netdev); 1045 if (phydev->mii_ts && phydev->mii_ts->link_state) 1046 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1047 } 1048 1049 /** 1050 * phy_prepare_link - prepares the PHY layer to monitor link status 1051 * @phydev: target phy_device struct 1052 * @handler: callback function for link status change notifications 1053 * 1054 * Description: Tells the PHY infrastructure to handle the 1055 * gory details on monitoring link status (whether through 1056 * polling or an interrupt), and to call back to the 1057 * connected device driver when the link status changes. 1058 * If you want to monitor your own link state, don't call 1059 * this function. 1060 */ 1061 static void phy_prepare_link(struct phy_device *phydev, 1062 void (*handler)(struct net_device *)) 1063 { 1064 phydev->adjust_link = handler; 1065 } 1066 1067 /** 1068 * phy_connect_direct - connect an ethernet device to a specific phy_device 1069 * @dev: the network device to connect 1070 * @phydev: the pointer to the phy device 1071 * @handler: callback function for state change notifications 1072 * @interface: PHY device's interface 1073 */ 1074 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1075 void (*handler)(struct net_device *), 1076 phy_interface_t interface) 1077 { 1078 int rc; 1079 1080 if (!dev) 1081 return -EINVAL; 1082 1083 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1084 if (rc) 1085 return rc; 1086 1087 phy_prepare_link(phydev, handler); 1088 if (phy_interrupt_is_valid(phydev)) 1089 phy_request_interrupt(phydev); 1090 1091 return 0; 1092 } 1093 EXPORT_SYMBOL(phy_connect_direct); 1094 1095 /** 1096 * phy_connect - connect an ethernet device to a PHY device 1097 * @dev: the network device to connect 1098 * @bus_id: the id string of the PHY device to connect 1099 * @handler: callback function for state change notifications 1100 * @interface: PHY device's interface 1101 * 1102 * Description: Convenience function for connecting ethernet 1103 * devices to PHY devices. The default behavior is for 1104 * the PHY infrastructure to handle everything, and only notify 1105 * the connected driver when the link status changes. If you 1106 * don't want, or can't use the provided functionality, you may 1107 * choose to call only the subset of functions which provide 1108 * the desired functionality. 1109 */ 1110 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1111 void (*handler)(struct net_device *), 1112 phy_interface_t interface) 1113 { 1114 struct phy_device *phydev; 1115 struct device *d; 1116 int rc; 1117 1118 /* Search the list of PHY devices on the mdio bus for the 1119 * PHY with the requested name 1120 */ 1121 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1122 if (!d) { 1123 pr_err("PHY %s not found\n", bus_id); 1124 return ERR_PTR(-ENODEV); 1125 } 1126 phydev = to_phy_device(d); 1127 1128 rc = phy_connect_direct(dev, phydev, handler, interface); 1129 put_device(d); 1130 if (rc) 1131 return ERR_PTR(rc); 1132 1133 return phydev; 1134 } 1135 EXPORT_SYMBOL(phy_connect); 1136 1137 /** 1138 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1139 * device 1140 * @phydev: target phy_device struct 1141 */ 1142 void phy_disconnect(struct phy_device *phydev) 1143 { 1144 if (phy_is_started(phydev)) 1145 phy_stop(phydev); 1146 1147 if (phy_interrupt_is_valid(phydev)) 1148 phy_free_interrupt(phydev); 1149 1150 phydev->adjust_link = NULL; 1151 1152 phy_detach(phydev); 1153 } 1154 EXPORT_SYMBOL(phy_disconnect); 1155 1156 /** 1157 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1158 * @phydev: The PHY device to poll 1159 * 1160 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1161 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1162 * register must be polled until the BMCR_RESET bit clears. 1163 * 1164 * Furthermore, any attempts to write to PHY registers may have no effect 1165 * or even generate MDIO bus errors until this is complete. 1166 * 1167 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1168 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1169 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1170 * effort to support such broken PHYs, this function is separate from the 1171 * standard phy_init_hw() which will zero all the other bits in the BMCR 1172 * and reapply all driver-specific and board-specific fixups. 1173 */ 1174 static int phy_poll_reset(struct phy_device *phydev) 1175 { 1176 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1177 int ret, val; 1178 1179 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1180 50000, 600000, true); 1181 if (ret) 1182 return ret; 1183 /* Some chips (smsc911x) may still need up to another 1ms after the 1184 * BMCR_RESET bit is cleared before they are usable. 1185 */ 1186 msleep(1); 1187 return 0; 1188 } 1189 1190 int phy_init_hw(struct phy_device *phydev) 1191 { 1192 int ret = 0; 1193 1194 /* Deassert the reset signal */ 1195 phy_device_reset(phydev, 0); 1196 1197 if (!phydev->drv) 1198 return 0; 1199 1200 if (phydev->drv->soft_reset) { 1201 ret = phydev->drv->soft_reset(phydev); 1202 /* see comment in genphy_soft_reset for an explanation */ 1203 if (!ret) 1204 phydev->suspended = 0; 1205 } 1206 1207 if (ret < 0) 1208 return ret; 1209 1210 ret = phy_scan_fixups(phydev); 1211 if (ret < 0) 1212 return ret; 1213 1214 if (phydev->drv->config_init) { 1215 ret = phydev->drv->config_init(phydev); 1216 if (ret < 0) 1217 return ret; 1218 } 1219 1220 if (phydev->drv->config_intr) { 1221 ret = phydev->drv->config_intr(phydev); 1222 if (ret < 0) 1223 return ret; 1224 } 1225 1226 return 0; 1227 } 1228 EXPORT_SYMBOL(phy_init_hw); 1229 1230 void phy_attached_info(struct phy_device *phydev) 1231 { 1232 phy_attached_print(phydev, NULL); 1233 } 1234 EXPORT_SYMBOL(phy_attached_info); 1235 1236 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1237 char *phy_attached_info_irq(struct phy_device *phydev) 1238 { 1239 char *irq_str; 1240 char irq_num[8]; 1241 1242 switch(phydev->irq) { 1243 case PHY_POLL: 1244 irq_str = "POLL"; 1245 break; 1246 case PHY_MAC_INTERRUPT: 1247 irq_str = "MAC"; 1248 break; 1249 default: 1250 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1251 irq_str = irq_num; 1252 break; 1253 } 1254 1255 return kasprintf(GFP_KERNEL, "%s", irq_str); 1256 } 1257 EXPORT_SYMBOL(phy_attached_info_irq); 1258 1259 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1260 { 1261 const char *unbound = phydev->drv ? "" : "[unbound] "; 1262 char *irq_str = phy_attached_info_irq(phydev); 1263 1264 if (!fmt) { 1265 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1266 phydev_name(phydev), irq_str); 1267 } else { 1268 va_list ap; 1269 1270 phydev_info(phydev, ATTACHED_FMT, unbound, 1271 phydev_name(phydev), irq_str); 1272 1273 va_start(ap, fmt); 1274 vprintk(fmt, ap); 1275 va_end(ap); 1276 } 1277 kfree(irq_str); 1278 } 1279 EXPORT_SYMBOL(phy_attached_print); 1280 1281 static void phy_sysfs_create_links(struct phy_device *phydev) 1282 { 1283 struct net_device *dev = phydev->attached_dev; 1284 int err; 1285 1286 if (!dev) 1287 return; 1288 1289 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1290 "attached_dev"); 1291 if (err) 1292 return; 1293 1294 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1295 &phydev->mdio.dev.kobj, 1296 "phydev"); 1297 if (err) { 1298 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1299 kobject_name(&phydev->mdio.dev.kobj), 1300 err); 1301 /* non-fatal - some net drivers can use one netdevice 1302 * with more then one phy 1303 */ 1304 } 1305 1306 phydev->sysfs_links = true; 1307 } 1308 1309 static ssize_t 1310 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1311 char *buf) 1312 { 1313 struct phy_device *phydev = to_phy_device(dev); 1314 1315 return sprintf(buf, "%d\n", !phydev->attached_dev); 1316 } 1317 static DEVICE_ATTR_RO(phy_standalone); 1318 1319 /** 1320 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1321 * @upstream: pointer to the phy device 1322 * @bus: sfp bus representing cage being attached 1323 * 1324 * This is used to fill in the sfp_upstream_ops .attach member. 1325 */ 1326 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1327 { 1328 struct phy_device *phydev = upstream; 1329 1330 if (phydev->attached_dev) 1331 phydev->attached_dev->sfp_bus = bus; 1332 phydev->sfp_bus_attached = true; 1333 } 1334 EXPORT_SYMBOL(phy_sfp_attach); 1335 1336 /** 1337 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1338 * @upstream: pointer to the phy device 1339 * @bus: sfp bus representing cage being attached 1340 * 1341 * This is used to fill in the sfp_upstream_ops .detach member. 1342 */ 1343 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1344 { 1345 struct phy_device *phydev = upstream; 1346 1347 if (phydev->attached_dev) 1348 phydev->attached_dev->sfp_bus = NULL; 1349 phydev->sfp_bus_attached = false; 1350 } 1351 EXPORT_SYMBOL(phy_sfp_detach); 1352 1353 /** 1354 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1355 * @phydev: Pointer to phy_device 1356 * @ops: SFP's upstream operations 1357 */ 1358 int phy_sfp_probe(struct phy_device *phydev, 1359 const struct sfp_upstream_ops *ops) 1360 { 1361 struct sfp_bus *bus; 1362 int ret = 0; 1363 1364 if (phydev->mdio.dev.fwnode) { 1365 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1366 if (IS_ERR(bus)) 1367 return PTR_ERR(bus); 1368 1369 phydev->sfp_bus = bus; 1370 1371 ret = sfp_bus_add_upstream(bus, phydev, ops); 1372 sfp_bus_put(bus); 1373 } 1374 return ret; 1375 } 1376 EXPORT_SYMBOL(phy_sfp_probe); 1377 1378 /** 1379 * phy_attach_direct - attach a network device to a given PHY device pointer 1380 * @dev: network device to attach 1381 * @phydev: Pointer to phy_device to attach 1382 * @flags: PHY device's dev_flags 1383 * @interface: PHY device's interface 1384 * 1385 * Description: Called by drivers to attach to a particular PHY 1386 * device. The phy_device is found, and properly hooked up 1387 * to the phy_driver. If no driver is attached, then a 1388 * generic driver is used. The phy_device is given a ptr to 1389 * the attaching device, and given a callback for link status 1390 * change. The phy_device is returned to the attaching driver. 1391 * This function takes a reference on the phy device. 1392 */ 1393 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1394 u32 flags, phy_interface_t interface) 1395 { 1396 struct mii_bus *bus = phydev->mdio.bus; 1397 struct device *d = &phydev->mdio.dev; 1398 struct module *ndev_owner = NULL; 1399 bool using_genphy = false; 1400 int err; 1401 1402 /* For Ethernet device drivers that register their own MDIO bus, we 1403 * will have bus->owner match ndev_mod, so we do not want to increment 1404 * our own module->refcnt here, otherwise we would not be able to 1405 * unload later on. 1406 */ 1407 if (dev) 1408 ndev_owner = dev->dev.parent->driver->owner; 1409 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1410 phydev_err(phydev, "failed to get the bus module\n"); 1411 return -EIO; 1412 } 1413 1414 get_device(d); 1415 1416 /* Assume that if there is no driver, that it doesn't 1417 * exist, and we should use the genphy driver. 1418 */ 1419 if (!d->driver) { 1420 if (phydev->is_c45) 1421 d->driver = &genphy_c45_driver.mdiodrv.driver; 1422 else 1423 d->driver = &genphy_driver.mdiodrv.driver; 1424 1425 using_genphy = true; 1426 } 1427 1428 if (!try_module_get(d->driver->owner)) { 1429 phydev_err(phydev, "failed to get the device driver module\n"); 1430 err = -EIO; 1431 goto error_put_device; 1432 } 1433 1434 if (using_genphy) { 1435 err = d->driver->probe(d); 1436 if (err >= 0) 1437 err = device_bind_driver(d); 1438 1439 if (err) 1440 goto error_module_put; 1441 } 1442 1443 if (phydev->attached_dev) { 1444 dev_err(&dev->dev, "PHY already attached\n"); 1445 err = -EBUSY; 1446 goto error; 1447 } 1448 1449 phydev->phy_link_change = phy_link_change; 1450 if (dev) { 1451 phydev->attached_dev = dev; 1452 dev->phydev = phydev; 1453 1454 if (phydev->sfp_bus_attached) 1455 dev->sfp_bus = phydev->sfp_bus; 1456 else if (dev->sfp_bus) 1457 phydev->is_on_sfp_module = true; 1458 } 1459 1460 /* Some Ethernet drivers try to connect to a PHY device before 1461 * calling register_netdevice() -> netdev_register_kobject() and 1462 * does the dev->dev.kobj initialization. Here we only check for 1463 * success which indicates that the network device kobject is 1464 * ready. Once we do that we still need to keep track of whether 1465 * links were successfully set up or not for phy_detach() to 1466 * remove them accordingly. 1467 */ 1468 phydev->sysfs_links = false; 1469 1470 phy_sysfs_create_links(phydev); 1471 1472 if (!phydev->attached_dev) { 1473 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1474 &dev_attr_phy_standalone.attr); 1475 if (err) 1476 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1477 } 1478 1479 phydev->dev_flags |= flags; 1480 1481 phydev->interface = interface; 1482 1483 phydev->state = PHY_READY; 1484 1485 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1486 1487 /* Port is set to PORT_TP by default and the actual PHY driver will set 1488 * it to different value depending on the PHY configuration. If we have 1489 * the generic PHY driver we can't figure it out, thus set the old 1490 * legacy PORT_MII value. 1491 */ 1492 if (using_genphy) 1493 phydev->port = PORT_MII; 1494 1495 /* Initial carrier state is off as the phy is about to be 1496 * (re)initialized. 1497 */ 1498 if (dev) 1499 netif_carrier_off(phydev->attached_dev); 1500 1501 /* Do initial configuration here, now that 1502 * we have certain key parameters 1503 * (dev_flags and interface) 1504 */ 1505 err = phy_init_hw(phydev); 1506 if (err) 1507 goto error; 1508 1509 phy_resume(phydev); 1510 phy_led_triggers_register(phydev); 1511 1512 return err; 1513 1514 error: 1515 /* phy_detach() does all of the cleanup below */ 1516 phy_detach(phydev); 1517 return err; 1518 1519 error_module_put: 1520 module_put(d->driver->owner); 1521 error_put_device: 1522 put_device(d); 1523 if (ndev_owner != bus->owner) 1524 module_put(bus->owner); 1525 return err; 1526 } 1527 EXPORT_SYMBOL(phy_attach_direct); 1528 1529 /** 1530 * phy_attach - attach a network device to a particular PHY device 1531 * @dev: network device to attach 1532 * @bus_id: Bus ID of PHY device to attach 1533 * @interface: PHY device's interface 1534 * 1535 * Description: Same as phy_attach_direct() except that a PHY bus_id 1536 * string is passed instead of a pointer to a struct phy_device. 1537 */ 1538 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1539 phy_interface_t interface) 1540 { 1541 struct bus_type *bus = &mdio_bus_type; 1542 struct phy_device *phydev; 1543 struct device *d; 1544 int rc; 1545 1546 if (!dev) 1547 return ERR_PTR(-EINVAL); 1548 1549 /* Search the list of PHY devices on the mdio bus for the 1550 * PHY with the requested name 1551 */ 1552 d = bus_find_device_by_name(bus, NULL, bus_id); 1553 if (!d) { 1554 pr_err("PHY %s not found\n", bus_id); 1555 return ERR_PTR(-ENODEV); 1556 } 1557 phydev = to_phy_device(d); 1558 1559 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1560 put_device(d); 1561 if (rc) 1562 return ERR_PTR(rc); 1563 1564 return phydev; 1565 } 1566 EXPORT_SYMBOL(phy_attach); 1567 1568 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1569 struct device_driver *driver) 1570 { 1571 struct device *d = &phydev->mdio.dev; 1572 bool ret = false; 1573 1574 if (!phydev->drv) 1575 return ret; 1576 1577 get_device(d); 1578 ret = d->driver == driver; 1579 put_device(d); 1580 1581 return ret; 1582 } 1583 1584 bool phy_driver_is_genphy(struct phy_device *phydev) 1585 { 1586 return phy_driver_is_genphy_kind(phydev, 1587 &genphy_driver.mdiodrv.driver); 1588 } 1589 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1590 1591 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1592 { 1593 return phy_driver_is_genphy_kind(phydev, 1594 &genphy_c45_driver.mdiodrv.driver); 1595 } 1596 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1597 1598 /** 1599 * phy_package_join - join a common PHY group 1600 * @phydev: target phy_device struct 1601 * @addr: cookie and PHY address for global register access 1602 * @priv_size: if non-zero allocate this amount of bytes for private data 1603 * 1604 * This joins a PHY group and provides a shared storage for all phydevs in 1605 * this group. This is intended to be used for packages which contain 1606 * more than one PHY, for example a quad PHY transceiver. 1607 * 1608 * The addr parameter serves as a cookie which has to have the same value 1609 * for all members of one group and as a PHY address to access generic 1610 * registers of a PHY package. Usually, one of the PHY addresses of the 1611 * different PHYs in the package provides access to these global registers. 1612 * The address which is given here, will be used in the phy_package_read() 1613 * and phy_package_write() convenience functions. If your PHY doesn't have 1614 * global registers you can just pick any of the PHY addresses. 1615 * 1616 * This will set the shared pointer of the phydev to the shared storage. 1617 * If this is the first call for a this cookie the shared storage will be 1618 * allocated. If priv_size is non-zero, the given amount of bytes are 1619 * allocated for the priv member. 1620 * 1621 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1622 * with the same cookie but a different priv_size is an error. 1623 */ 1624 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1625 { 1626 struct mii_bus *bus = phydev->mdio.bus; 1627 struct phy_package_shared *shared; 1628 int ret; 1629 1630 if (addr < 0 || addr >= PHY_MAX_ADDR) 1631 return -EINVAL; 1632 1633 mutex_lock(&bus->shared_lock); 1634 shared = bus->shared[addr]; 1635 if (!shared) { 1636 ret = -ENOMEM; 1637 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1638 if (!shared) 1639 goto err_unlock; 1640 if (priv_size) { 1641 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1642 if (!shared->priv) 1643 goto err_free; 1644 shared->priv_size = priv_size; 1645 } 1646 shared->addr = addr; 1647 refcount_set(&shared->refcnt, 1); 1648 bus->shared[addr] = shared; 1649 } else { 1650 ret = -EINVAL; 1651 if (priv_size && priv_size != shared->priv_size) 1652 goto err_unlock; 1653 refcount_inc(&shared->refcnt); 1654 } 1655 mutex_unlock(&bus->shared_lock); 1656 1657 phydev->shared = shared; 1658 1659 return 0; 1660 1661 err_free: 1662 kfree(shared); 1663 err_unlock: 1664 mutex_unlock(&bus->shared_lock); 1665 return ret; 1666 } 1667 EXPORT_SYMBOL_GPL(phy_package_join); 1668 1669 /** 1670 * phy_package_leave - leave a common PHY group 1671 * @phydev: target phy_device struct 1672 * 1673 * This leaves a PHY group created by phy_package_join(). If this phydev 1674 * was the last user of the shared data between the group, this data is 1675 * freed. Resets the phydev->shared pointer to NULL. 1676 */ 1677 void phy_package_leave(struct phy_device *phydev) 1678 { 1679 struct phy_package_shared *shared = phydev->shared; 1680 struct mii_bus *bus = phydev->mdio.bus; 1681 1682 if (!shared) 1683 return; 1684 1685 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1686 bus->shared[shared->addr] = NULL; 1687 mutex_unlock(&bus->shared_lock); 1688 kfree(shared->priv); 1689 kfree(shared); 1690 } 1691 1692 phydev->shared = NULL; 1693 } 1694 EXPORT_SYMBOL_GPL(phy_package_leave); 1695 1696 static void devm_phy_package_leave(struct device *dev, void *res) 1697 { 1698 phy_package_leave(*(struct phy_device **)res); 1699 } 1700 1701 /** 1702 * devm_phy_package_join - resource managed phy_package_join() 1703 * @dev: device that is registering this PHY package 1704 * @phydev: target phy_device struct 1705 * @addr: cookie and PHY address for global register access 1706 * @priv_size: if non-zero allocate this amount of bytes for private data 1707 * 1708 * Managed phy_package_join(). Shared storage fetched by this function, 1709 * phy_package_leave() is automatically called on driver detach. See 1710 * phy_package_join() for more information. 1711 */ 1712 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1713 int addr, size_t priv_size) 1714 { 1715 struct phy_device **ptr; 1716 int ret; 1717 1718 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1719 GFP_KERNEL); 1720 if (!ptr) 1721 return -ENOMEM; 1722 1723 ret = phy_package_join(phydev, addr, priv_size); 1724 1725 if (!ret) { 1726 *ptr = phydev; 1727 devres_add(dev, ptr); 1728 } else { 1729 devres_free(ptr); 1730 } 1731 1732 return ret; 1733 } 1734 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1735 1736 /** 1737 * phy_detach - detach a PHY device from its network device 1738 * @phydev: target phy_device struct 1739 * 1740 * This detaches the phy device from its network device and the phy 1741 * driver, and drops the reference count taken in phy_attach_direct(). 1742 */ 1743 void phy_detach(struct phy_device *phydev) 1744 { 1745 struct net_device *dev = phydev->attached_dev; 1746 struct module *ndev_owner = NULL; 1747 struct mii_bus *bus; 1748 1749 if (phydev->sysfs_links) { 1750 if (dev) 1751 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1752 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1753 } 1754 1755 if (!phydev->attached_dev) 1756 sysfs_remove_file(&phydev->mdio.dev.kobj, 1757 &dev_attr_phy_standalone.attr); 1758 1759 phy_suspend(phydev); 1760 if (dev) { 1761 phydev->attached_dev->phydev = NULL; 1762 phydev->attached_dev = NULL; 1763 } 1764 phydev->phylink = NULL; 1765 1766 phy_led_triggers_unregister(phydev); 1767 1768 if (phydev->mdio.dev.driver) 1769 module_put(phydev->mdio.dev.driver->owner); 1770 1771 /* If the device had no specific driver before (i.e. - it 1772 * was using the generic driver), we unbind the device 1773 * from the generic driver so that there's a chance a 1774 * real driver could be loaded 1775 */ 1776 if (phy_driver_is_genphy(phydev) || 1777 phy_driver_is_genphy_10g(phydev)) 1778 device_release_driver(&phydev->mdio.dev); 1779 1780 /* Assert the reset signal */ 1781 phy_device_reset(phydev, 1); 1782 1783 /* 1784 * The phydev might go away on the put_device() below, so avoid 1785 * a use-after-free bug by reading the underlying bus first. 1786 */ 1787 bus = phydev->mdio.bus; 1788 1789 put_device(&phydev->mdio.dev); 1790 if (dev) 1791 ndev_owner = dev->dev.parent->driver->owner; 1792 if (ndev_owner != bus->owner) 1793 module_put(bus->owner); 1794 } 1795 EXPORT_SYMBOL(phy_detach); 1796 1797 int phy_suspend(struct phy_device *phydev) 1798 { 1799 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1800 struct net_device *netdev = phydev->attached_dev; 1801 struct phy_driver *phydrv = phydev->drv; 1802 int ret; 1803 1804 if (phydev->suspended) 1805 return 0; 1806 1807 /* If the device has WOL enabled, we cannot suspend the PHY */ 1808 phy_ethtool_get_wol(phydev, &wol); 1809 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1810 return -EBUSY; 1811 1812 if (!phydrv || !phydrv->suspend) 1813 return 0; 1814 1815 ret = phydrv->suspend(phydev); 1816 if (!ret) 1817 phydev->suspended = true; 1818 1819 return ret; 1820 } 1821 EXPORT_SYMBOL(phy_suspend); 1822 1823 int __phy_resume(struct phy_device *phydev) 1824 { 1825 struct phy_driver *phydrv = phydev->drv; 1826 int ret; 1827 1828 lockdep_assert_held(&phydev->lock); 1829 1830 if (!phydrv || !phydrv->resume) 1831 return 0; 1832 1833 ret = phydrv->resume(phydev); 1834 if (!ret) 1835 phydev->suspended = false; 1836 1837 return ret; 1838 } 1839 EXPORT_SYMBOL(__phy_resume); 1840 1841 int phy_resume(struct phy_device *phydev) 1842 { 1843 int ret; 1844 1845 mutex_lock(&phydev->lock); 1846 ret = __phy_resume(phydev); 1847 mutex_unlock(&phydev->lock); 1848 1849 return ret; 1850 } 1851 EXPORT_SYMBOL(phy_resume); 1852 1853 int phy_loopback(struct phy_device *phydev, bool enable) 1854 { 1855 int ret = 0; 1856 1857 if (!phydev->drv) 1858 return -EIO; 1859 1860 mutex_lock(&phydev->lock); 1861 1862 if (enable && phydev->loopback_enabled) { 1863 ret = -EBUSY; 1864 goto out; 1865 } 1866 1867 if (!enable && !phydev->loopback_enabled) { 1868 ret = -EINVAL; 1869 goto out; 1870 } 1871 1872 if (phydev->drv->set_loopback) 1873 ret = phydev->drv->set_loopback(phydev, enable); 1874 else 1875 ret = genphy_loopback(phydev, enable); 1876 1877 if (ret) 1878 goto out; 1879 1880 phydev->loopback_enabled = enable; 1881 1882 out: 1883 mutex_unlock(&phydev->lock); 1884 return ret; 1885 } 1886 EXPORT_SYMBOL(phy_loopback); 1887 1888 /** 1889 * phy_reset_after_clk_enable - perform a PHY reset if needed 1890 * @phydev: target phy_device struct 1891 * 1892 * Description: Some PHYs are known to need a reset after their refclk was 1893 * enabled. This function evaluates the flags and perform the reset if it's 1894 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1895 * was reset. 1896 */ 1897 int phy_reset_after_clk_enable(struct phy_device *phydev) 1898 { 1899 if (!phydev || !phydev->drv) 1900 return -ENODEV; 1901 1902 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1903 phy_device_reset(phydev, 1); 1904 phy_device_reset(phydev, 0); 1905 return 1; 1906 } 1907 1908 return 0; 1909 } 1910 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1911 1912 /* Generic PHY support and helper functions */ 1913 1914 /** 1915 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1916 * @phydev: target phy_device struct 1917 * 1918 * Description: Writes MII_ADVERTISE with the appropriate values, 1919 * after sanitizing the values to make sure we only advertise 1920 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1921 * hasn't changed, and > 0 if it has changed. 1922 */ 1923 static int genphy_config_advert(struct phy_device *phydev) 1924 { 1925 int err, bmsr, changed = 0; 1926 u32 adv; 1927 1928 /* Only allow advertising what this PHY supports */ 1929 linkmode_and(phydev->advertising, phydev->advertising, 1930 phydev->supported); 1931 1932 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1933 1934 /* Setup standard advertisement */ 1935 err = phy_modify_changed(phydev, MII_ADVERTISE, 1936 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1937 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1938 adv); 1939 if (err < 0) 1940 return err; 1941 if (err > 0) 1942 changed = 1; 1943 1944 bmsr = phy_read(phydev, MII_BMSR); 1945 if (bmsr < 0) 1946 return bmsr; 1947 1948 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1949 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1950 * logical 1. 1951 */ 1952 if (!(bmsr & BMSR_ESTATEN)) 1953 return changed; 1954 1955 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1956 1957 err = phy_modify_changed(phydev, MII_CTRL1000, 1958 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1959 adv); 1960 if (err < 0) 1961 return err; 1962 if (err > 0) 1963 changed = 1; 1964 1965 return changed; 1966 } 1967 1968 /** 1969 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1970 * @phydev: target phy_device struct 1971 * 1972 * Description: Writes MII_ADVERTISE with the appropriate values, 1973 * after sanitizing the values to make sure we only advertise 1974 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1975 * hasn't changed, and > 0 if it has changed. This function is intended 1976 * for Clause 37 1000Base-X mode. 1977 */ 1978 static int genphy_c37_config_advert(struct phy_device *phydev) 1979 { 1980 u16 adv = 0; 1981 1982 /* Only allow advertising what this PHY supports */ 1983 linkmode_and(phydev->advertising, phydev->advertising, 1984 phydev->supported); 1985 1986 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1987 phydev->advertising)) 1988 adv |= ADVERTISE_1000XFULL; 1989 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1990 phydev->advertising)) 1991 adv |= ADVERTISE_1000XPAUSE; 1992 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1993 phydev->advertising)) 1994 adv |= ADVERTISE_1000XPSE_ASYM; 1995 1996 return phy_modify_changed(phydev, MII_ADVERTISE, 1997 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1998 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1999 adv); 2000 } 2001 2002 /** 2003 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2004 * @phydev: target phy_device struct 2005 * 2006 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2007 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2008 * changed, and 1 if it has changed. 2009 */ 2010 int genphy_config_eee_advert(struct phy_device *phydev) 2011 { 2012 int err; 2013 2014 /* Nothing to disable */ 2015 if (!phydev->eee_broken_modes) 2016 return 0; 2017 2018 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2019 phydev->eee_broken_modes, 0); 2020 /* If the call failed, we assume that EEE is not supported */ 2021 return err < 0 ? 0 : err; 2022 } 2023 EXPORT_SYMBOL(genphy_config_eee_advert); 2024 2025 /** 2026 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2027 * @phydev: target phy_device struct 2028 * 2029 * Description: Configures MII_BMCR to force speed/duplex 2030 * to the values in phydev. Assumes that the values are valid. 2031 * Please see phy_sanitize_settings(). 2032 */ 2033 int genphy_setup_forced(struct phy_device *phydev) 2034 { 2035 u16 ctl; 2036 2037 phydev->pause = 0; 2038 phydev->asym_pause = 0; 2039 2040 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2041 2042 return phy_modify(phydev, MII_BMCR, 2043 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2044 } 2045 EXPORT_SYMBOL(genphy_setup_forced); 2046 2047 static int genphy_setup_master_slave(struct phy_device *phydev) 2048 { 2049 u16 ctl = 0; 2050 2051 if (!phydev->is_gigabit_capable) 2052 return 0; 2053 2054 switch (phydev->master_slave_set) { 2055 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2056 ctl |= CTL1000_PREFER_MASTER; 2057 break; 2058 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2059 break; 2060 case MASTER_SLAVE_CFG_MASTER_FORCE: 2061 ctl |= CTL1000_AS_MASTER; 2062 fallthrough; 2063 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2064 ctl |= CTL1000_ENABLE_MASTER; 2065 break; 2066 case MASTER_SLAVE_CFG_UNKNOWN: 2067 case MASTER_SLAVE_CFG_UNSUPPORTED: 2068 return 0; 2069 default: 2070 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2071 return -EOPNOTSUPP; 2072 } 2073 2074 return phy_modify_changed(phydev, MII_CTRL1000, 2075 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2076 CTL1000_PREFER_MASTER), ctl); 2077 } 2078 2079 int genphy_read_master_slave(struct phy_device *phydev) 2080 { 2081 int cfg, state; 2082 int val; 2083 2084 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2085 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2086 2087 val = phy_read(phydev, MII_CTRL1000); 2088 if (val < 0) 2089 return val; 2090 2091 if (val & CTL1000_ENABLE_MASTER) { 2092 if (val & CTL1000_AS_MASTER) 2093 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2094 else 2095 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2096 } else { 2097 if (val & CTL1000_PREFER_MASTER) 2098 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2099 else 2100 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2101 } 2102 2103 val = phy_read(phydev, MII_STAT1000); 2104 if (val < 0) 2105 return val; 2106 2107 if (val & LPA_1000MSFAIL) { 2108 state = MASTER_SLAVE_STATE_ERR; 2109 } else if (phydev->link) { 2110 /* this bits are valid only for active link */ 2111 if (val & LPA_1000MSRES) 2112 state = MASTER_SLAVE_STATE_MASTER; 2113 else 2114 state = MASTER_SLAVE_STATE_SLAVE; 2115 } else { 2116 state = MASTER_SLAVE_STATE_UNKNOWN; 2117 } 2118 2119 phydev->master_slave_get = cfg; 2120 phydev->master_slave_state = state; 2121 2122 return 0; 2123 } 2124 EXPORT_SYMBOL(genphy_read_master_slave); 2125 2126 /** 2127 * genphy_restart_aneg - Enable and Restart Autonegotiation 2128 * @phydev: target phy_device struct 2129 */ 2130 int genphy_restart_aneg(struct phy_device *phydev) 2131 { 2132 /* Don't isolate the PHY if we're negotiating */ 2133 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2134 BMCR_ANENABLE | BMCR_ANRESTART); 2135 } 2136 EXPORT_SYMBOL(genphy_restart_aneg); 2137 2138 /** 2139 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2140 * @phydev: target phy_device struct 2141 * @restart: whether aneg restart is requested 2142 * 2143 * Check, and restart auto-negotiation if needed. 2144 */ 2145 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2146 { 2147 int ret; 2148 2149 if (!restart) { 2150 /* Advertisement hasn't changed, but maybe aneg was never on to 2151 * begin with? Or maybe phy was isolated? 2152 */ 2153 ret = phy_read(phydev, MII_BMCR); 2154 if (ret < 0) 2155 return ret; 2156 2157 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2158 restart = true; 2159 } 2160 2161 if (restart) 2162 return genphy_restart_aneg(phydev); 2163 2164 return 0; 2165 } 2166 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2167 2168 /** 2169 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2170 * @phydev: target phy_device struct 2171 * @changed: whether autoneg is requested 2172 * 2173 * Description: If auto-negotiation is enabled, we configure the 2174 * advertising, and then restart auto-negotiation. If it is not 2175 * enabled, then we write the BMCR. 2176 */ 2177 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2178 { 2179 int err; 2180 2181 if (genphy_config_eee_advert(phydev)) 2182 changed = true; 2183 2184 err = genphy_setup_master_slave(phydev); 2185 if (err < 0) 2186 return err; 2187 else if (err) 2188 changed = true; 2189 2190 if (AUTONEG_ENABLE != phydev->autoneg) 2191 return genphy_setup_forced(phydev); 2192 2193 err = genphy_config_advert(phydev); 2194 if (err < 0) /* error */ 2195 return err; 2196 else if (err) 2197 changed = true; 2198 2199 return genphy_check_and_restart_aneg(phydev, changed); 2200 } 2201 EXPORT_SYMBOL(__genphy_config_aneg); 2202 2203 /** 2204 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2205 * @phydev: target phy_device struct 2206 * 2207 * Description: If auto-negotiation is enabled, we configure the 2208 * advertising, and then restart auto-negotiation. If it is not 2209 * enabled, then we write the BMCR. This function is intended 2210 * for use with Clause 37 1000Base-X mode. 2211 */ 2212 int genphy_c37_config_aneg(struct phy_device *phydev) 2213 { 2214 int err, changed; 2215 2216 if (phydev->autoneg != AUTONEG_ENABLE) 2217 return genphy_setup_forced(phydev); 2218 2219 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2220 BMCR_SPEED1000); 2221 if (err) 2222 return err; 2223 2224 changed = genphy_c37_config_advert(phydev); 2225 if (changed < 0) /* error */ 2226 return changed; 2227 2228 if (!changed) { 2229 /* Advertisement hasn't changed, but maybe aneg was never on to 2230 * begin with? Or maybe phy was isolated? 2231 */ 2232 int ctl = phy_read(phydev, MII_BMCR); 2233 2234 if (ctl < 0) 2235 return ctl; 2236 2237 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2238 changed = 1; /* do restart aneg */ 2239 } 2240 2241 /* Only restart aneg if we are advertising something different 2242 * than we were before. 2243 */ 2244 if (changed > 0) 2245 return genphy_restart_aneg(phydev); 2246 2247 return 0; 2248 } 2249 EXPORT_SYMBOL(genphy_c37_config_aneg); 2250 2251 /** 2252 * genphy_aneg_done - return auto-negotiation status 2253 * @phydev: target phy_device struct 2254 * 2255 * Description: Reads the status register and returns 0 either if 2256 * auto-negotiation is incomplete, or if there was an error. 2257 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2258 */ 2259 int genphy_aneg_done(struct phy_device *phydev) 2260 { 2261 int retval = phy_read(phydev, MII_BMSR); 2262 2263 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2264 } 2265 EXPORT_SYMBOL(genphy_aneg_done); 2266 2267 /** 2268 * genphy_update_link - update link status in @phydev 2269 * @phydev: target phy_device struct 2270 * 2271 * Description: Update the value in phydev->link to reflect the 2272 * current link value. In order to do this, we need to read 2273 * the status register twice, keeping the second value. 2274 */ 2275 int genphy_update_link(struct phy_device *phydev) 2276 { 2277 int status = 0, bmcr; 2278 2279 bmcr = phy_read(phydev, MII_BMCR); 2280 if (bmcr < 0) 2281 return bmcr; 2282 2283 /* Autoneg is being started, therefore disregard BMSR value and 2284 * report link as down. 2285 */ 2286 if (bmcr & BMCR_ANRESTART) 2287 goto done; 2288 2289 /* The link state is latched low so that momentary link 2290 * drops can be detected. Do not double-read the status 2291 * in polling mode to detect such short link drops except 2292 * the link was already down. 2293 */ 2294 if (!phy_polling_mode(phydev) || !phydev->link) { 2295 status = phy_read(phydev, MII_BMSR); 2296 if (status < 0) 2297 return status; 2298 else if (status & BMSR_LSTATUS) 2299 goto done; 2300 } 2301 2302 /* Read link and autonegotiation status */ 2303 status = phy_read(phydev, MII_BMSR); 2304 if (status < 0) 2305 return status; 2306 done: 2307 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2308 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2309 2310 /* Consider the case that autoneg was started and "aneg complete" 2311 * bit has been reset, but "link up" bit not yet. 2312 */ 2313 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2314 phydev->link = 0; 2315 2316 return 0; 2317 } 2318 EXPORT_SYMBOL(genphy_update_link); 2319 2320 int genphy_read_lpa(struct phy_device *phydev) 2321 { 2322 int lpa, lpagb; 2323 2324 if (phydev->autoneg == AUTONEG_ENABLE) { 2325 if (!phydev->autoneg_complete) { 2326 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2327 0); 2328 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2329 return 0; 2330 } 2331 2332 if (phydev->is_gigabit_capable) { 2333 lpagb = phy_read(phydev, MII_STAT1000); 2334 if (lpagb < 0) 2335 return lpagb; 2336 2337 if (lpagb & LPA_1000MSFAIL) { 2338 int adv = phy_read(phydev, MII_CTRL1000); 2339 2340 if (adv < 0) 2341 return adv; 2342 2343 if (adv & CTL1000_ENABLE_MASTER) 2344 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2345 else 2346 phydev_err(phydev, "Master/Slave resolution failed\n"); 2347 return -ENOLINK; 2348 } 2349 2350 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2351 lpagb); 2352 } 2353 2354 lpa = phy_read(phydev, MII_LPA); 2355 if (lpa < 0) 2356 return lpa; 2357 2358 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2359 } else { 2360 linkmode_zero(phydev->lp_advertising); 2361 } 2362 2363 return 0; 2364 } 2365 EXPORT_SYMBOL(genphy_read_lpa); 2366 2367 /** 2368 * genphy_read_status_fixed - read the link parameters for !aneg mode 2369 * @phydev: target phy_device struct 2370 * 2371 * Read the current duplex and speed state for a PHY operating with 2372 * autonegotiation disabled. 2373 */ 2374 int genphy_read_status_fixed(struct phy_device *phydev) 2375 { 2376 int bmcr = phy_read(phydev, MII_BMCR); 2377 2378 if (bmcr < 0) 2379 return bmcr; 2380 2381 if (bmcr & BMCR_FULLDPLX) 2382 phydev->duplex = DUPLEX_FULL; 2383 else 2384 phydev->duplex = DUPLEX_HALF; 2385 2386 if (bmcr & BMCR_SPEED1000) 2387 phydev->speed = SPEED_1000; 2388 else if (bmcr & BMCR_SPEED100) 2389 phydev->speed = SPEED_100; 2390 else 2391 phydev->speed = SPEED_10; 2392 2393 return 0; 2394 } 2395 EXPORT_SYMBOL(genphy_read_status_fixed); 2396 2397 /** 2398 * genphy_read_status - check the link status and update current link state 2399 * @phydev: target phy_device struct 2400 * 2401 * Description: Check the link, then figure out the current state 2402 * by comparing what we advertise with what the link partner 2403 * advertises. Start by checking the gigabit possibilities, 2404 * then move on to 10/100. 2405 */ 2406 int genphy_read_status(struct phy_device *phydev) 2407 { 2408 int err, old_link = phydev->link; 2409 2410 /* Update the link, but return if there was an error */ 2411 err = genphy_update_link(phydev); 2412 if (err) 2413 return err; 2414 2415 /* why bother the PHY if nothing can have changed */ 2416 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2417 return 0; 2418 2419 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2420 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2421 phydev->speed = SPEED_UNKNOWN; 2422 phydev->duplex = DUPLEX_UNKNOWN; 2423 phydev->pause = 0; 2424 phydev->asym_pause = 0; 2425 2426 if (phydev->is_gigabit_capable) { 2427 err = genphy_read_master_slave(phydev); 2428 if (err < 0) 2429 return err; 2430 } 2431 2432 err = genphy_read_lpa(phydev); 2433 if (err < 0) 2434 return err; 2435 2436 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2437 phy_resolve_aneg_linkmode(phydev); 2438 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2439 err = genphy_read_status_fixed(phydev); 2440 if (err < 0) 2441 return err; 2442 } 2443 2444 return 0; 2445 } 2446 EXPORT_SYMBOL(genphy_read_status); 2447 2448 /** 2449 * genphy_c37_read_status - check the link status and update current link state 2450 * @phydev: target phy_device struct 2451 * 2452 * Description: Check the link, then figure out the current state 2453 * by comparing what we advertise with what the link partner 2454 * advertises. This function is for Clause 37 1000Base-X mode. 2455 */ 2456 int genphy_c37_read_status(struct phy_device *phydev) 2457 { 2458 int lpa, err, old_link = phydev->link; 2459 2460 /* Update the link, but return if there was an error */ 2461 err = genphy_update_link(phydev); 2462 if (err) 2463 return err; 2464 2465 /* why bother the PHY if nothing can have changed */ 2466 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2467 return 0; 2468 2469 phydev->duplex = DUPLEX_UNKNOWN; 2470 phydev->pause = 0; 2471 phydev->asym_pause = 0; 2472 2473 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2474 lpa = phy_read(phydev, MII_LPA); 2475 if (lpa < 0) 2476 return lpa; 2477 2478 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2479 phydev->lp_advertising, lpa & LPA_LPACK); 2480 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2481 phydev->lp_advertising, lpa & LPA_1000XFULL); 2482 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2483 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2484 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2485 phydev->lp_advertising, 2486 lpa & LPA_1000XPAUSE_ASYM); 2487 2488 phy_resolve_aneg_linkmode(phydev); 2489 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2490 int bmcr = phy_read(phydev, MII_BMCR); 2491 2492 if (bmcr < 0) 2493 return bmcr; 2494 2495 if (bmcr & BMCR_FULLDPLX) 2496 phydev->duplex = DUPLEX_FULL; 2497 else 2498 phydev->duplex = DUPLEX_HALF; 2499 } 2500 2501 return 0; 2502 } 2503 EXPORT_SYMBOL(genphy_c37_read_status); 2504 2505 /** 2506 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2507 * @phydev: target phy_device struct 2508 * 2509 * Description: Perform a software PHY reset using the standard 2510 * BMCR_RESET bit and poll for the reset bit to be cleared. 2511 * 2512 * Returns: 0 on success, < 0 on failure 2513 */ 2514 int genphy_soft_reset(struct phy_device *phydev) 2515 { 2516 u16 res = BMCR_RESET; 2517 int ret; 2518 2519 if (phydev->autoneg == AUTONEG_ENABLE) 2520 res |= BMCR_ANRESTART; 2521 2522 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2523 if (ret < 0) 2524 return ret; 2525 2526 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2527 * to their default value. Therefore the POWER DOWN bit is supposed to 2528 * be cleared after soft reset. 2529 */ 2530 phydev->suspended = 0; 2531 2532 ret = phy_poll_reset(phydev); 2533 if (ret) 2534 return ret; 2535 2536 /* BMCR may be reset to defaults */ 2537 if (phydev->autoneg == AUTONEG_DISABLE) 2538 ret = genphy_setup_forced(phydev); 2539 2540 return ret; 2541 } 2542 EXPORT_SYMBOL(genphy_soft_reset); 2543 2544 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2545 { 2546 /* It seems there are cases where the interrupts are handled by another 2547 * entity (ie an IRQ controller embedded inside the PHY) and do not 2548 * need any other interraction from phylib. In this case, just trigger 2549 * the state machine directly. 2550 */ 2551 phy_trigger_machine(phydev); 2552 2553 return 0; 2554 } 2555 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2556 2557 /** 2558 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2559 * @phydev: target phy_device struct 2560 * 2561 * Description: Reads the PHY's abilities and populates 2562 * phydev->supported accordingly. 2563 * 2564 * Returns: 0 on success, < 0 on failure 2565 */ 2566 int genphy_read_abilities(struct phy_device *phydev) 2567 { 2568 int val; 2569 2570 linkmode_set_bit_array(phy_basic_ports_array, 2571 ARRAY_SIZE(phy_basic_ports_array), 2572 phydev->supported); 2573 2574 val = phy_read(phydev, MII_BMSR); 2575 if (val < 0) 2576 return val; 2577 2578 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2579 val & BMSR_ANEGCAPABLE); 2580 2581 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2582 val & BMSR_100FULL); 2583 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2584 val & BMSR_100HALF); 2585 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2586 val & BMSR_10FULL); 2587 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2588 val & BMSR_10HALF); 2589 2590 if (val & BMSR_ESTATEN) { 2591 val = phy_read(phydev, MII_ESTATUS); 2592 if (val < 0) 2593 return val; 2594 2595 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2596 phydev->supported, val & ESTATUS_1000_TFULL); 2597 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2598 phydev->supported, val & ESTATUS_1000_THALF); 2599 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2600 phydev->supported, val & ESTATUS_1000_XFULL); 2601 } 2602 2603 return 0; 2604 } 2605 EXPORT_SYMBOL(genphy_read_abilities); 2606 2607 /* This is used for the phy device which doesn't support the MMD extended 2608 * register access, but it does have side effect when we are trying to access 2609 * the MMD register via indirect method. 2610 */ 2611 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2612 { 2613 return -EOPNOTSUPP; 2614 } 2615 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2616 2617 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2618 u16 regnum, u16 val) 2619 { 2620 return -EOPNOTSUPP; 2621 } 2622 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2623 2624 int genphy_suspend(struct phy_device *phydev) 2625 { 2626 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2627 } 2628 EXPORT_SYMBOL(genphy_suspend); 2629 2630 int genphy_resume(struct phy_device *phydev) 2631 { 2632 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2633 } 2634 EXPORT_SYMBOL(genphy_resume); 2635 2636 int genphy_loopback(struct phy_device *phydev, bool enable) 2637 { 2638 if (enable) { 2639 u16 val, ctl = BMCR_LOOPBACK; 2640 int ret; 2641 2642 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2643 2644 phy_modify(phydev, MII_BMCR, ~0, ctl); 2645 2646 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2647 val & BMSR_LSTATUS, 2648 5000, 500000, true); 2649 if (ret) 2650 return ret; 2651 } else { 2652 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2653 2654 phy_config_aneg(phydev); 2655 } 2656 2657 return 0; 2658 } 2659 EXPORT_SYMBOL(genphy_loopback); 2660 2661 /** 2662 * phy_remove_link_mode - Remove a supported link mode 2663 * @phydev: phy_device structure to remove link mode from 2664 * @link_mode: Link mode to be removed 2665 * 2666 * Description: Some MACs don't support all link modes which the PHY 2667 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2668 * to remove a link mode. 2669 */ 2670 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2671 { 2672 linkmode_clear_bit(link_mode, phydev->supported); 2673 phy_advertise_supported(phydev); 2674 } 2675 EXPORT_SYMBOL(phy_remove_link_mode); 2676 2677 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2678 { 2679 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2680 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2681 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2682 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2683 } 2684 2685 /** 2686 * phy_advertise_supported - Advertise all supported modes 2687 * @phydev: target phy_device struct 2688 * 2689 * Description: Called to advertise all supported modes, doesn't touch 2690 * pause mode advertising. 2691 */ 2692 void phy_advertise_supported(struct phy_device *phydev) 2693 { 2694 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2695 2696 linkmode_copy(new, phydev->supported); 2697 phy_copy_pause_bits(new, phydev->advertising); 2698 linkmode_copy(phydev->advertising, new); 2699 } 2700 EXPORT_SYMBOL(phy_advertise_supported); 2701 2702 /** 2703 * phy_support_sym_pause - Enable support of symmetrical pause 2704 * @phydev: target phy_device struct 2705 * 2706 * Description: Called by the MAC to indicate is supports symmetrical 2707 * Pause, but not asym pause. 2708 */ 2709 void phy_support_sym_pause(struct phy_device *phydev) 2710 { 2711 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2712 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2713 } 2714 EXPORT_SYMBOL(phy_support_sym_pause); 2715 2716 /** 2717 * phy_support_asym_pause - Enable support of asym pause 2718 * @phydev: target phy_device struct 2719 * 2720 * Description: Called by the MAC to indicate is supports Asym Pause. 2721 */ 2722 void phy_support_asym_pause(struct phy_device *phydev) 2723 { 2724 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2725 } 2726 EXPORT_SYMBOL(phy_support_asym_pause); 2727 2728 /** 2729 * phy_set_sym_pause - Configure symmetric Pause 2730 * @phydev: target phy_device struct 2731 * @rx: Receiver Pause is supported 2732 * @tx: Transmit Pause is supported 2733 * @autoneg: Auto neg should be used 2734 * 2735 * Description: Configure advertised Pause support depending on if 2736 * receiver pause and pause auto neg is supported. Generally called 2737 * from the set_pauseparam .ndo. 2738 */ 2739 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2740 bool autoneg) 2741 { 2742 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2743 2744 if (rx && tx && autoneg) 2745 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2746 phydev->supported); 2747 2748 linkmode_copy(phydev->advertising, phydev->supported); 2749 } 2750 EXPORT_SYMBOL(phy_set_sym_pause); 2751 2752 /** 2753 * phy_set_asym_pause - Configure Pause and Asym Pause 2754 * @phydev: target phy_device struct 2755 * @rx: Receiver Pause is supported 2756 * @tx: Transmit Pause is supported 2757 * 2758 * Description: Configure advertised Pause support depending on if 2759 * transmit and receiver pause is supported. If there has been a 2760 * change in adverting, trigger a new autoneg. Generally called from 2761 * the set_pauseparam .ndo. 2762 */ 2763 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2764 { 2765 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2766 2767 linkmode_copy(oldadv, phydev->advertising); 2768 linkmode_set_pause(phydev->advertising, tx, rx); 2769 2770 if (!linkmode_equal(oldadv, phydev->advertising) && 2771 phydev->autoneg) 2772 phy_start_aneg(phydev); 2773 } 2774 EXPORT_SYMBOL(phy_set_asym_pause); 2775 2776 /** 2777 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2778 * @phydev: phy_device struct 2779 * @pp: requested pause configuration 2780 * 2781 * Description: Test if the PHY/MAC combination supports the Pause 2782 * configuration the user is requesting. Returns True if it is 2783 * supported, false otherwise. 2784 */ 2785 bool phy_validate_pause(struct phy_device *phydev, 2786 struct ethtool_pauseparam *pp) 2787 { 2788 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2789 phydev->supported) && pp->rx_pause) 2790 return false; 2791 2792 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2793 phydev->supported) && 2794 pp->rx_pause != pp->tx_pause) 2795 return false; 2796 2797 return true; 2798 } 2799 EXPORT_SYMBOL(phy_validate_pause); 2800 2801 /** 2802 * phy_get_pause - resolve negotiated pause modes 2803 * @phydev: phy_device struct 2804 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2805 * enabled. 2806 * @rx_pause: pointer to bool to indicate whether receive pause should be 2807 * enabled. 2808 * 2809 * Resolve and return the flow control modes according to the negotiation 2810 * result. This includes checking that we are operating in full duplex mode. 2811 * See linkmode_resolve_pause() for further details. 2812 */ 2813 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2814 { 2815 if (phydev->duplex != DUPLEX_FULL) { 2816 *tx_pause = false; 2817 *rx_pause = false; 2818 return; 2819 } 2820 2821 return linkmode_resolve_pause(phydev->advertising, 2822 phydev->lp_advertising, 2823 tx_pause, rx_pause); 2824 } 2825 EXPORT_SYMBOL(phy_get_pause); 2826 2827 #if IS_ENABLED(CONFIG_OF_MDIO) 2828 static int phy_get_int_delay_property(struct device *dev, const char *name) 2829 { 2830 s32 int_delay; 2831 int ret; 2832 2833 ret = device_property_read_u32(dev, name, &int_delay); 2834 if (ret) 2835 return ret; 2836 2837 return int_delay; 2838 } 2839 #else 2840 static int phy_get_int_delay_property(struct device *dev, const char *name) 2841 { 2842 return -EINVAL; 2843 } 2844 #endif 2845 2846 /** 2847 * phy_get_internal_delay - returns the index of the internal delay 2848 * @phydev: phy_device struct 2849 * @dev: pointer to the devices device struct 2850 * @delay_values: array of delays the PHY supports 2851 * @size: the size of the delay array 2852 * @is_rx: boolean to indicate to get the rx internal delay 2853 * 2854 * Returns the index within the array of internal delay passed in. 2855 * If the device property is not present then the interface type is checked 2856 * if the interface defines use of internal delay then a 1 is returned otherwise 2857 * a 0 is returned. 2858 * The array must be in ascending order. If PHY does not have an ascending order 2859 * array then size = 0 and the value of the delay property is returned. 2860 * Return -EINVAL if the delay is invalid or cannot be found. 2861 */ 2862 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2863 const int *delay_values, int size, bool is_rx) 2864 { 2865 s32 delay; 2866 int i; 2867 2868 if (is_rx) { 2869 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2870 if (delay < 0 && size == 0) { 2871 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2872 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2873 return 1; 2874 else 2875 return 0; 2876 } 2877 2878 } else { 2879 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2880 if (delay < 0 && size == 0) { 2881 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2882 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2883 return 1; 2884 else 2885 return 0; 2886 } 2887 } 2888 2889 if (delay < 0) 2890 return delay; 2891 2892 if (delay && size == 0) 2893 return delay; 2894 2895 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2896 phydev_err(phydev, "Delay %d is out of range\n", delay); 2897 return -EINVAL; 2898 } 2899 2900 if (delay == delay_values[0]) 2901 return 0; 2902 2903 for (i = 1; i < size; i++) { 2904 if (delay == delay_values[i]) 2905 return i; 2906 2907 /* Find an approximate index by looking up the table */ 2908 if (delay > delay_values[i - 1] && 2909 delay < delay_values[i]) { 2910 if (delay - delay_values[i - 1] < 2911 delay_values[i] - delay) 2912 return i - 1; 2913 else 2914 return i; 2915 } 2916 } 2917 2918 phydev_err(phydev, "error finding internal delay index for %d\n", 2919 delay); 2920 2921 return -EINVAL; 2922 } 2923 EXPORT_SYMBOL(phy_get_internal_delay); 2924 2925 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2926 { 2927 return phydrv->config_intr && phydrv->handle_interrupt; 2928 } 2929 2930 /** 2931 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2932 * @fwnode: pointer to the mdio_device's fwnode 2933 * 2934 * If successful, returns a pointer to the mdio_device with the embedded 2935 * struct device refcount incremented by one, or NULL on failure. 2936 * The caller should call put_device() on the mdio_device after its use. 2937 */ 2938 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2939 { 2940 struct device *d; 2941 2942 if (!fwnode) 2943 return NULL; 2944 2945 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2946 if (!d) 2947 return NULL; 2948 2949 return to_mdio_device(d); 2950 } 2951 EXPORT_SYMBOL(fwnode_mdio_find_device); 2952 2953 /** 2954 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2955 * 2956 * @phy_fwnode: Pointer to the phy's fwnode. 2957 * 2958 * If successful, returns a pointer to the phy_device with the embedded 2959 * struct device refcount incremented by one, or NULL on failure. 2960 */ 2961 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2962 { 2963 struct mdio_device *mdiodev; 2964 2965 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2966 if (!mdiodev) 2967 return NULL; 2968 2969 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2970 return to_phy_device(&mdiodev->dev); 2971 2972 put_device(&mdiodev->dev); 2973 2974 return NULL; 2975 } 2976 EXPORT_SYMBOL(fwnode_phy_find_device); 2977 2978 /** 2979 * device_phy_find_device - For the given device, get the phy_device 2980 * @dev: Pointer to the given device 2981 * 2982 * Refer return conditions of fwnode_phy_find_device(). 2983 */ 2984 struct phy_device *device_phy_find_device(struct device *dev) 2985 { 2986 return fwnode_phy_find_device(dev_fwnode(dev)); 2987 } 2988 EXPORT_SYMBOL_GPL(device_phy_find_device); 2989 2990 /** 2991 * fwnode_get_phy_node - Get the phy_node using the named reference. 2992 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2993 * 2994 * Refer return conditions of fwnode_find_reference(). 2995 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 2996 * and "phy-device" are not supported in ACPI. DT supports all the three 2997 * named references to the phy node. 2998 */ 2999 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 3000 { 3001 struct fwnode_handle *phy_node; 3002 3003 /* Only phy-handle is used for ACPI */ 3004 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3005 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3006 return phy_node; 3007 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3008 if (IS_ERR(phy_node)) 3009 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3010 return phy_node; 3011 } 3012 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3013 3014 /** 3015 * phy_probe - probe and init a PHY device 3016 * @dev: device to probe and init 3017 * 3018 * Description: Take care of setting up the phy_device structure, 3019 * set the state to READY (the driver's init function should 3020 * set it to STARTING if needed). 3021 */ 3022 static int phy_probe(struct device *dev) 3023 { 3024 struct phy_device *phydev = to_phy_device(dev); 3025 struct device_driver *drv = phydev->mdio.dev.driver; 3026 struct phy_driver *phydrv = to_phy_driver(drv); 3027 int err = 0; 3028 3029 phydev->drv = phydrv; 3030 3031 /* Disable the interrupt if the PHY doesn't support it 3032 * but the interrupt is still a valid one 3033 */ 3034 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3035 phydev->irq = PHY_POLL; 3036 3037 if (phydrv->flags & PHY_IS_INTERNAL) 3038 phydev->is_internal = true; 3039 3040 mutex_lock(&phydev->lock); 3041 3042 /* Deassert the reset signal */ 3043 phy_device_reset(phydev, 0); 3044 3045 if (phydev->drv->probe) { 3046 err = phydev->drv->probe(phydev); 3047 if (err) 3048 goto out; 3049 } 3050 3051 /* Start out supporting everything. Eventually, 3052 * a controller will attach, and may modify one 3053 * or both of these values 3054 */ 3055 if (phydrv->features) 3056 linkmode_copy(phydev->supported, phydrv->features); 3057 else if (phydrv->get_features) 3058 err = phydrv->get_features(phydev); 3059 else if (phydev->is_c45) 3060 err = genphy_c45_pma_read_abilities(phydev); 3061 else 3062 err = genphy_read_abilities(phydev); 3063 3064 if (err) 3065 goto out; 3066 3067 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3068 phydev->supported)) 3069 phydev->autoneg = 0; 3070 3071 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3072 phydev->supported)) 3073 phydev->is_gigabit_capable = 1; 3074 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3075 phydev->supported)) 3076 phydev->is_gigabit_capable = 1; 3077 3078 of_set_phy_supported(phydev); 3079 phy_advertise_supported(phydev); 3080 3081 /* Get the EEE modes we want to prohibit. We will ask 3082 * the PHY stop advertising these mode later on 3083 */ 3084 of_set_phy_eee_broken(phydev); 3085 3086 /* The Pause Frame bits indicate that the PHY can support passing 3087 * pause frames. During autonegotiation, the PHYs will determine if 3088 * they should allow pause frames to pass. The MAC driver should then 3089 * use that result to determine whether to enable flow control via 3090 * pause frames. 3091 * 3092 * Normally, PHY drivers should not set the Pause bits, and instead 3093 * allow phylib to do that. However, there may be some situations 3094 * (e.g. hardware erratum) where the driver wants to set only one 3095 * of these bits. 3096 */ 3097 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3098 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3099 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3100 phydev->supported); 3101 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3102 phydev->supported); 3103 } 3104 3105 /* Set the state to READY by default */ 3106 phydev->state = PHY_READY; 3107 3108 out: 3109 /* Assert the reset signal */ 3110 if (err) 3111 phy_device_reset(phydev, 1); 3112 3113 mutex_unlock(&phydev->lock); 3114 3115 return err; 3116 } 3117 3118 static int phy_remove(struct device *dev) 3119 { 3120 struct phy_device *phydev = to_phy_device(dev); 3121 3122 cancel_delayed_work_sync(&phydev->state_queue); 3123 3124 mutex_lock(&phydev->lock); 3125 phydev->state = PHY_DOWN; 3126 mutex_unlock(&phydev->lock); 3127 3128 sfp_bus_del_upstream(phydev->sfp_bus); 3129 phydev->sfp_bus = NULL; 3130 3131 if (phydev->drv && phydev->drv->remove) 3132 phydev->drv->remove(phydev); 3133 3134 /* Assert the reset signal */ 3135 phy_device_reset(phydev, 1); 3136 3137 phydev->drv = NULL; 3138 3139 return 0; 3140 } 3141 3142 static void phy_shutdown(struct device *dev) 3143 { 3144 struct phy_device *phydev = to_phy_device(dev); 3145 3146 if (phydev->state == PHY_READY || !phydev->attached_dev) 3147 return; 3148 3149 phy_disable_interrupts(phydev); 3150 } 3151 3152 /** 3153 * phy_driver_register - register a phy_driver with the PHY layer 3154 * @new_driver: new phy_driver to register 3155 * @owner: module owning this PHY 3156 */ 3157 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3158 { 3159 int retval; 3160 3161 /* Either the features are hard coded, or dynamically 3162 * determined. It cannot be both. 3163 */ 3164 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3165 pr_err("%s: features and get_features must not both be set\n", 3166 new_driver->name); 3167 return -EINVAL; 3168 } 3169 3170 /* PHYLIB device drivers must not match using a DT compatible table 3171 * as this bypasses our checks that the mdiodev that is being matched 3172 * is backed by a struct phy_device. If such a case happens, we will 3173 * make out-of-bounds accesses and lockup in phydev->lock. 3174 */ 3175 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3176 "%s: driver must not provide a DT match table\n", 3177 new_driver->name)) 3178 return -EINVAL; 3179 3180 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3181 new_driver->mdiodrv.driver.name = new_driver->name; 3182 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3183 new_driver->mdiodrv.driver.probe = phy_probe; 3184 new_driver->mdiodrv.driver.remove = phy_remove; 3185 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3186 new_driver->mdiodrv.driver.owner = owner; 3187 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3188 3189 retval = driver_register(&new_driver->mdiodrv.driver); 3190 if (retval) { 3191 pr_err("%s: Error %d in registering driver\n", 3192 new_driver->name, retval); 3193 3194 return retval; 3195 } 3196 3197 pr_debug("%s: Registered new driver\n", new_driver->name); 3198 3199 return 0; 3200 } 3201 EXPORT_SYMBOL(phy_driver_register); 3202 3203 int phy_drivers_register(struct phy_driver *new_driver, int n, 3204 struct module *owner) 3205 { 3206 int i, ret = 0; 3207 3208 for (i = 0; i < n; i++) { 3209 ret = phy_driver_register(new_driver + i, owner); 3210 if (ret) { 3211 while (i-- > 0) 3212 phy_driver_unregister(new_driver + i); 3213 break; 3214 } 3215 } 3216 return ret; 3217 } 3218 EXPORT_SYMBOL(phy_drivers_register); 3219 3220 void phy_driver_unregister(struct phy_driver *drv) 3221 { 3222 driver_unregister(&drv->mdiodrv.driver); 3223 } 3224 EXPORT_SYMBOL(phy_driver_unregister); 3225 3226 void phy_drivers_unregister(struct phy_driver *drv, int n) 3227 { 3228 int i; 3229 3230 for (i = 0; i < n; i++) 3231 phy_driver_unregister(drv + i); 3232 } 3233 EXPORT_SYMBOL(phy_drivers_unregister); 3234 3235 static struct phy_driver genphy_driver = { 3236 .phy_id = 0xffffffff, 3237 .phy_id_mask = 0xffffffff, 3238 .name = "Generic PHY", 3239 .get_features = genphy_read_abilities, 3240 .suspend = genphy_suspend, 3241 .resume = genphy_resume, 3242 .set_loopback = genphy_loopback, 3243 }; 3244 3245 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3246 .get_sset_count = phy_ethtool_get_sset_count, 3247 .get_strings = phy_ethtool_get_strings, 3248 .get_stats = phy_ethtool_get_stats, 3249 .start_cable_test = phy_start_cable_test, 3250 .start_cable_test_tdr = phy_start_cable_test_tdr, 3251 }; 3252 3253 static int __init phy_init(void) 3254 { 3255 int rc; 3256 3257 rc = mdio_bus_init(); 3258 if (rc) 3259 return rc; 3260 3261 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3262 features_init(); 3263 3264 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3265 if (rc) 3266 goto err_c45; 3267 3268 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3269 if (rc) { 3270 phy_driver_unregister(&genphy_c45_driver); 3271 err_c45: 3272 mdio_bus_exit(); 3273 } 3274 3275 return rc; 3276 } 3277 3278 static void __exit phy_exit(void) 3279 { 3280 phy_driver_unregister(&genphy_c45_driver); 3281 phy_driver_unregister(&genphy_driver); 3282 mdio_bus_exit(); 3283 ethtool_set_ethtool_phy_ops(NULL); 3284 } 3285 3286 subsys_initcall(phy_init); 3287 module_exit(phy_exit); 3288