1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 658 dev->speed = SPEED_UNKNOWN; 659 dev->duplex = DUPLEX_UNKNOWN; 660 dev->pause = 0; 661 dev->asym_pause = 0; 662 dev->link = 0; 663 dev->port = PORT_TP; 664 dev->interface = PHY_INTERFACE_MODE_GMII; 665 666 dev->autoneg = AUTONEG_ENABLE; 667 668 dev->pma_extable = -ENODATA; 669 dev->is_c45 = is_c45; 670 dev->phy_id = phy_id; 671 if (c45_ids) 672 dev->c45_ids = *c45_ids; 673 dev->irq = bus->irq[addr]; 674 675 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 676 device_initialize(&mdiodev->dev); 677 678 dev->state = PHY_DOWN; 679 INIT_LIST_HEAD(&dev->leds); 680 681 mutex_init(&dev->lock); 682 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 683 684 /* Request the appropriate module unconditionally; don't 685 * bother trying to do so only if it isn't already loaded, 686 * because that gets complicated. A hotplug event would have 687 * done an unconditional modprobe anyway. 688 * We don't do normal hotplug because it won't work for MDIO 689 * -- because it relies on the device staying around for long 690 * enough for the driver to get loaded. With MDIO, the NIC 691 * driver will get bored and give up as soon as it finds that 692 * there's no driver _already_ loaded. 693 */ 694 if (is_c45 && c45_ids) { 695 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 696 int i; 697 698 for (i = 1; i < num_ids; i++) { 699 if (c45_ids->device_ids[i] == 0xffffffff) 700 continue; 701 702 ret = phy_request_driver_module(dev, 703 c45_ids->device_ids[i]); 704 if (ret) 705 break; 706 } 707 } else { 708 ret = phy_request_driver_module(dev, phy_id); 709 } 710 711 if (ret) { 712 put_device(&mdiodev->dev); 713 dev = ERR_PTR(ret); 714 } 715 716 return dev; 717 } 718 EXPORT_SYMBOL(phy_device_create); 719 720 /* phy_c45_probe_present - checks to see if a MMD is present in the package 721 * @bus: the target MII bus 722 * @prtad: PHY package address on the MII bus 723 * @devad: PHY device (MMD) address 724 * 725 * Read the MDIO_STAT2 register, and check whether a device is responding 726 * at this address. 727 * 728 * Returns: negative error number on bus access error, zero if no device 729 * is responding, or positive if a device is present. 730 */ 731 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 732 { 733 int stat2; 734 735 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 736 if (stat2 < 0) 737 return stat2; 738 739 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 740 } 741 742 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 743 * @bus: the target MII bus 744 * @addr: PHY address on the MII bus 745 * @dev_addr: MMD address in the PHY. 746 * @devices_in_package: where to store the devices in package information. 747 * 748 * Description: reads devices in package registers of a MMD at @dev_addr 749 * from PHY at @addr on @bus. 750 * 751 * Returns: 0 on success, -EIO on failure. 752 */ 753 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 754 u32 *devices_in_package) 755 { 756 int phy_reg; 757 758 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 759 if (phy_reg < 0) 760 return -EIO; 761 *devices_in_package = phy_reg << 16; 762 763 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 764 if (phy_reg < 0) 765 return -EIO; 766 *devices_in_package |= phy_reg; 767 768 return 0; 769 } 770 771 /** 772 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 773 * @bus: the target MII bus 774 * @addr: PHY address on the MII bus 775 * @c45_ids: where to store the c45 ID information. 776 * 777 * Read the PHY "devices in package". If this appears to be valid, read 778 * the PHY identifiers for each device. Return the "devices in package" 779 * and identifiers in @c45_ids. 780 * 781 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 782 * the "devices in package" is invalid. 783 */ 784 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 785 struct phy_c45_device_ids *c45_ids) 786 { 787 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 788 u32 devs_in_pkg = 0; 789 int i, ret, phy_reg; 790 791 /* Find first non-zero Devices In package. Device zero is reserved 792 * for 802.3 c45 complied PHYs, so don't probe it at first. 793 */ 794 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 795 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 796 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 797 /* Check that there is a device present at this 798 * address before reading the devices-in-package 799 * register to avoid reading garbage from the PHY. 800 * Some PHYs (88x3310) vendor space is not IEEE802.3 801 * compliant. 802 */ 803 ret = phy_c45_probe_present(bus, addr, i); 804 if (ret < 0) 805 return -EIO; 806 807 if (!ret) 808 continue; 809 } 810 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 811 if (phy_reg < 0) 812 return -EIO; 813 } 814 815 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 816 /* If mostly Fs, there is no device there, then let's probe 817 * MMD 0, as some 10G PHYs have zero Devices In package, 818 * e.g. Cortina CS4315/CS4340 PHY. 819 */ 820 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 821 if (phy_reg < 0) 822 return -EIO; 823 824 /* no device there, let's get out of here */ 825 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 826 return -ENODEV; 827 } 828 829 /* Now probe Device Identifiers for each device present. */ 830 for (i = 1; i < num_ids; i++) { 831 if (!(devs_in_pkg & (1 << i))) 832 continue; 833 834 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 835 /* Probe the "Device Present" bits for the vendor MMDs 836 * to ignore these if they do not contain IEEE 802.3 837 * registers. 838 */ 839 ret = phy_c45_probe_present(bus, addr, i); 840 if (ret < 0) 841 return ret; 842 843 if (!ret) 844 continue; 845 } 846 847 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 848 if (phy_reg < 0) 849 return -EIO; 850 c45_ids->device_ids[i] = phy_reg << 16; 851 852 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 853 if (phy_reg < 0) 854 return -EIO; 855 c45_ids->device_ids[i] |= phy_reg; 856 } 857 858 c45_ids->devices_in_package = devs_in_pkg; 859 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 860 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 861 862 return 0; 863 } 864 865 /** 866 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 867 * @bus: the target MII bus 868 * @addr: PHY address on the MII bus 869 * @phy_id: where to store the ID retrieved. 870 * 871 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 872 * placing it in @phy_id. Return zero on successful read and the ID is 873 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 874 * or invalid ID. 875 */ 876 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 877 { 878 int phy_reg; 879 880 /* Grab the bits from PHYIR1, and put them in the upper half */ 881 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 882 if (phy_reg < 0) { 883 /* returning -ENODEV doesn't stop bus scanning */ 884 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 885 } 886 887 *phy_id = phy_reg << 16; 888 889 /* Grab the bits from PHYIR2, and put them in the lower half */ 890 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 891 if (phy_reg < 0) { 892 /* returning -ENODEV doesn't stop bus scanning */ 893 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 894 } 895 896 *phy_id |= phy_reg; 897 898 /* If the phy_id is mostly Fs, there is no device there */ 899 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 900 return -ENODEV; 901 902 return 0; 903 } 904 905 /* Extract the phy ID from the compatible string of the form 906 * ethernet-phy-idAAAA.BBBB. 907 */ 908 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 909 { 910 unsigned int upper, lower; 911 const char *cp; 912 int ret; 913 914 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 915 if (ret) 916 return ret; 917 918 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 919 return -EINVAL; 920 921 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 922 return 0; 923 } 924 EXPORT_SYMBOL(fwnode_get_phy_id); 925 926 /** 927 * get_phy_device - reads the specified PHY device and returns its @phy_device 928 * struct 929 * @bus: the target MII bus 930 * @addr: PHY address on the MII bus 931 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 932 * 933 * Probe for a PHY at @addr on @bus. 934 * 935 * When probing for a clause 22 PHY, then read the ID registers. If we find 936 * a valid ID, allocate and return a &struct phy_device. 937 * 938 * When probing for a clause 45 PHY, read the "devices in package" registers. 939 * If the "devices in package" appears valid, read the ID registers for each 940 * MMD, allocate and return a &struct phy_device. 941 * 942 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 943 * no PHY present, or %-EIO on bus access error. 944 */ 945 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 946 { 947 struct phy_c45_device_ids c45_ids; 948 u32 phy_id = 0; 949 int r; 950 951 c45_ids.devices_in_package = 0; 952 c45_ids.mmds_present = 0; 953 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 954 955 if (is_c45) 956 r = get_phy_c45_ids(bus, addr, &c45_ids); 957 else 958 r = get_phy_c22_id(bus, addr, &phy_id); 959 960 if (r) 961 return ERR_PTR(r); 962 963 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 964 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 965 * probe with C45 to see if we're able to get a valid PHY ID in the C45 966 * space, if successful, create the C45 PHY device. 967 */ 968 if (!is_c45 && phy_id == 0 && bus->read_c45) { 969 r = get_phy_c45_ids(bus, addr, &c45_ids); 970 if (!r) 971 return phy_device_create(bus, addr, phy_id, 972 true, &c45_ids); 973 } 974 975 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 976 } 977 EXPORT_SYMBOL(get_phy_device); 978 979 /** 980 * phy_device_register - Register the phy device on the MDIO bus 981 * @phydev: phy_device structure to be added to the MDIO bus 982 */ 983 int phy_device_register(struct phy_device *phydev) 984 { 985 int err; 986 987 err = mdiobus_register_device(&phydev->mdio); 988 if (err) 989 return err; 990 991 /* Deassert the reset signal */ 992 phy_device_reset(phydev, 0); 993 994 /* Run all of the fixups for this PHY */ 995 err = phy_scan_fixups(phydev); 996 if (err) { 997 phydev_err(phydev, "failed to initialize\n"); 998 goto out; 999 } 1000 1001 err = device_add(&phydev->mdio.dev); 1002 if (err) { 1003 phydev_err(phydev, "failed to add\n"); 1004 goto out; 1005 } 1006 1007 return 0; 1008 1009 out: 1010 /* Assert the reset signal */ 1011 phy_device_reset(phydev, 1); 1012 1013 mdiobus_unregister_device(&phydev->mdio); 1014 return err; 1015 } 1016 EXPORT_SYMBOL(phy_device_register); 1017 1018 /** 1019 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1020 * @phydev: phy_device structure to remove 1021 * 1022 * This doesn't free the phy_device itself, it merely reverses the effects 1023 * of phy_device_register(). Use phy_device_free() to free the device 1024 * after calling this function. 1025 */ 1026 void phy_device_remove(struct phy_device *phydev) 1027 { 1028 unregister_mii_timestamper(phydev->mii_ts); 1029 pse_control_put(phydev->psec); 1030 1031 device_del(&phydev->mdio.dev); 1032 1033 /* Assert the reset signal */ 1034 phy_device_reset(phydev, 1); 1035 1036 mdiobus_unregister_device(&phydev->mdio); 1037 } 1038 EXPORT_SYMBOL(phy_device_remove); 1039 1040 /** 1041 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1042 * @phydev: phy_device structure to read 802.3-c45 IDs 1043 * 1044 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1045 * the "devices in package" is invalid. 1046 */ 1047 int phy_get_c45_ids(struct phy_device *phydev) 1048 { 1049 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1050 &phydev->c45_ids); 1051 } 1052 EXPORT_SYMBOL(phy_get_c45_ids); 1053 1054 /** 1055 * phy_find_first - finds the first PHY device on the bus 1056 * @bus: the target MII bus 1057 */ 1058 struct phy_device *phy_find_first(struct mii_bus *bus) 1059 { 1060 struct phy_device *phydev; 1061 int addr; 1062 1063 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1064 phydev = mdiobus_get_phy(bus, addr); 1065 if (phydev) 1066 return phydev; 1067 } 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(phy_find_first); 1071 1072 static void phy_link_change(struct phy_device *phydev, bool up) 1073 { 1074 struct net_device *netdev = phydev->attached_dev; 1075 1076 if (up) 1077 netif_carrier_on(netdev); 1078 else 1079 netif_carrier_off(netdev); 1080 phydev->adjust_link(netdev); 1081 if (phydev->mii_ts && phydev->mii_ts->link_state) 1082 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1083 } 1084 1085 /** 1086 * phy_prepare_link - prepares the PHY layer to monitor link status 1087 * @phydev: target phy_device struct 1088 * @handler: callback function for link status change notifications 1089 * 1090 * Description: Tells the PHY infrastructure to handle the 1091 * gory details on monitoring link status (whether through 1092 * polling or an interrupt), and to call back to the 1093 * connected device driver when the link status changes. 1094 * If you want to monitor your own link state, don't call 1095 * this function. 1096 */ 1097 static void phy_prepare_link(struct phy_device *phydev, 1098 void (*handler)(struct net_device *)) 1099 { 1100 phydev->adjust_link = handler; 1101 } 1102 1103 /** 1104 * phy_connect_direct - connect an ethernet device to a specific phy_device 1105 * @dev: the network device to connect 1106 * @phydev: the pointer to the phy device 1107 * @handler: callback function for state change notifications 1108 * @interface: PHY device's interface 1109 */ 1110 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1111 void (*handler)(struct net_device *), 1112 phy_interface_t interface) 1113 { 1114 int rc; 1115 1116 if (!dev) 1117 return -EINVAL; 1118 1119 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1120 if (rc) 1121 return rc; 1122 1123 phy_prepare_link(phydev, handler); 1124 if (phy_interrupt_is_valid(phydev)) 1125 phy_request_interrupt(phydev); 1126 1127 return 0; 1128 } 1129 EXPORT_SYMBOL(phy_connect_direct); 1130 1131 /** 1132 * phy_connect - connect an ethernet device to a PHY device 1133 * @dev: the network device to connect 1134 * @bus_id: the id string of the PHY device to connect 1135 * @handler: callback function for state change notifications 1136 * @interface: PHY device's interface 1137 * 1138 * Description: Convenience function for connecting ethernet 1139 * devices to PHY devices. The default behavior is for 1140 * the PHY infrastructure to handle everything, and only notify 1141 * the connected driver when the link status changes. If you 1142 * don't want, or can't use the provided functionality, you may 1143 * choose to call only the subset of functions which provide 1144 * the desired functionality. 1145 */ 1146 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1147 void (*handler)(struct net_device *), 1148 phy_interface_t interface) 1149 { 1150 struct phy_device *phydev; 1151 struct device *d; 1152 int rc; 1153 1154 /* Search the list of PHY devices on the mdio bus for the 1155 * PHY with the requested name 1156 */ 1157 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1158 if (!d) { 1159 pr_err("PHY %s not found\n", bus_id); 1160 return ERR_PTR(-ENODEV); 1161 } 1162 phydev = to_phy_device(d); 1163 1164 rc = phy_connect_direct(dev, phydev, handler, interface); 1165 put_device(d); 1166 if (rc) 1167 return ERR_PTR(rc); 1168 1169 return phydev; 1170 } 1171 EXPORT_SYMBOL(phy_connect); 1172 1173 /** 1174 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1175 * device 1176 * @phydev: target phy_device struct 1177 */ 1178 void phy_disconnect(struct phy_device *phydev) 1179 { 1180 if (phy_is_started(phydev)) 1181 phy_stop(phydev); 1182 1183 if (phy_interrupt_is_valid(phydev)) 1184 phy_free_interrupt(phydev); 1185 1186 phydev->adjust_link = NULL; 1187 1188 phy_detach(phydev); 1189 } 1190 EXPORT_SYMBOL(phy_disconnect); 1191 1192 /** 1193 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1194 * @phydev: The PHY device to poll 1195 * 1196 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1197 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1198 * register must be polled until the BMCR_RESET bit clears. 1199 * 1200 * Furthermore, any attempts to write to PHY registers may have no effect 1201 * or even generate MDIO bus errors until this is complete. 1202 * 1203 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1204 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1205 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1206 * effort to support such broken PHYs, this function is separate from the 1207 * standard phy_init_hw() which will zero all the other bits in the BMCR 1208 * and reapply all driver-specific and board-specific fixups. 1209 */ 1210 static int phy_poll_reset(struct phy_device *phydev) 1211 { 1212 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1213 int ret, val; 1214 1215 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1216 50000, 600000, true); 1217 if (ret) 1218 return ret; 1219 /* Some chips (smsc911x) may still need up to another 1ms after the 1220 * BMCR_RESET bit is cleared before they are usable. 1221 */ 1222 msleep(1); 1223 return 0; 1224 } 1225 1226 int phy_init_hw(struct phy_device *phydev) 1227 { 1228 int ret = 0; 1229 1230 /* Deassert the reset signal */ 1231 phy_device_reset(phydev, 0); 1232 1233 if (!phydev->drv) 1234 return 0; 1235 1236 if (phydev->drv->soft_reset) { 1237 ret = phydev->drv->soft_reset(phydev); 1238 /* see comment in genphy_soft_reset for an explanation */ 1239 if (!ret) 1240 phydev->suspended = 0; 1241 } 1242 1243 if (ret < 0) 1244 return ret; 1245 1246 ret = phy_scan_fixups(phydev); 1247 if (ret < 0) 1248 return ret; 1249 1250 if (phydev->drv->config_init) { 1251 ret = phydev->drv->config_init(phydev); 1252 if (ret < 0) 1253 return ret; 1254 } 1255 1256 if (phydev->drv->config_intr) { 1257 ret = phydev->drv->config_intr(phydev); 1258 if (ret < 0) 1259 return ret; 1260 } 1261 1262 return 0; 1263 } 1264 EXPORT_SYMBOL(phy_init_hw); 1265 1266 void phy_attached_info(struct phy_device *phydev) 1267 { 1268 phy_attached_print(phydev, NULL); 1269 } 1270 EXPORT_SYMBOL(phy_attached_info); 1271 1272 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1273 char *phy_attached_info_irq(struct phy_device *phydev) 1274 { 1275 char *irq_str; 1276 char irq_num[8]; 1277 1278 switch(phydev->irq) { 1279 case PHY_POLL: 1280 irq_str = "POLL"; 1281 break; 1282 case PHY_MAC_INTERRUPT: 1283 irq_str = "MAC"; 1284 break; 1285 default: 1286 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1287 irq_str = irq_num; 1288 break; 1289 } 1290 1291 return kasprintf(GFP_KERNEL, "%s", irq_str); 1292 } 1293 EXPORT_SYMBOL(phy_attached_info_irq); 1294 1295 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1296 { 1297 const char *unbound = phydev->drv ? "" : "[unbound] "; 1298 char *irq_str = phy_attached_info_irq(phydev); 1299 1300 if (!fmt) { 1301 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1302 phydev_name(phydev), irq_str); 1303 } else { 1304 va_list ap; 1305 1306 phydev_info(phydev, ATTACHED_FMT, unbound, 1307 phydev_name(phydev), irq_str); 1308 1309 va_start(ap, fmt); 1310 vprintk(fmt, ap); 1311 va_end(ap); 1312 } 1313 kfree(irq_str); 1314 } 1315 EXPORT_SYMBOL(phy_attached_print); 1316 1317 static void phy_sysfs_create_links(struct phy_device *phydev) 1318 { 1319 struct net_device *dev = phydev->attached_dev; 1320 int err; 1321 1322 if (!dev) 1323 return; 1324 1325 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1326 "attached_dev"); 1327 if (err) 1328 return; 1329 1330 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1331 &phydev->mdio.dev.kobj, 1332 "phydev"); 1333 if (err) { 1334 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1335 kobject_name(&phydev->mdio.dev.kobj), 1336 err); 1337 /* non-fatal - some net drivers can use one netdevice 1338 * with more then one phy 1339 */ 1340 } 1341 1342 phydev->sysfs_links = true; 1343 } 1344 1345 static ssize_t 1346 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1347 char *buf) 1348 { 1349 struct phy_device *phydev = to_phy_device(dev); 1350 1351 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1352 } 1353 static DEVICE_ATTR_RO(phy_standalone); 1354 1355 /** 1356 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1357 * @upstream: pointer to the phy device 1358 * @bus: sfp bus representing cage being attached 1359 * 1360 * This is used to fill in the sfp_upstream_ops .attach member. 1361 */ 1362 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1363 { 1364 struct phy_device *phydev = upstream; 1365 1366 if (phydev->attached_dev) 1367 phydev->attached_dev->sfp_bus = bus; 1368 phydev->sfp_bus_attached = true; 1369 } 1370 EXPORT_SYMBOL(phy_sfp_attach); 1371 1372 /** 1373 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1374 * @upstream: pointer to the phy device 1375 * @bus: sfp bus representing cage being attached 1376 * 1377 * This is used to fill in the sfp_upstream_ops .detach member. 1378 */ 1379 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1380 { 1381 struct phy_device *phydev = upstream; 1382 1383 if (phydev->attached_dev) 1384 phydev->attached_dev->sfp_bus = NULL; 1385 phydev->sfp_bus_attached = false; 1386 } 1387 EXPORT_SYMBOL(phy_sfp_detach); 1388 1389 /** 1390 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1391 * @phydev: Pointer to phy_device 1392 * @ops: SFP's upstream operations 1393 */ 1394 int phy_sfp_probe(struct phy_device *phydev, 1395 const struct sfp_upstream_ops *ops) 1396 { 1397 struct sfp_bus *bus; 1398 int ret = 0; 1399 1400 if (phydev->mdio.dev.fwnode) { 1401 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1402 if (IS_ERR(bus)) 1403 return PTR_ERR(bus); 1404 1405 phydev->sfp_bus = bus; 1406 1407 ret = sfp_bus_add_upstream(bus, phydev, ops); 1408 sfp_bus_put(bus); 1409 } 1410 return ret; 1411 } 1412 EXPORT_SYMBOL(phy_sfp_probe); 1413 1414 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 1415 { 1416 return phydrv->config_intr && phydrv->handle_interrupt; 1417 } 1418 1419 /** 1420 * phy_attach_direct - attach a network device to a given PHY device pointer 1421 * @dev: network device to attach 1422 * @phydev: Pointer to phy_device to attach 1423 * @flags: PHY device's dev_flags 1424 * @interface: PHY device's interface 1425 * 1426 * Description: Called by drivers to attach to a particular PHY 1427 * device. The phy_device is found, and properly hooked up 1428 * to the phy_driver. If no driver is attached, then a 1429 * generic driver is used. The phy_device is given a ptr to 1430 * the attaching device, and given a callback for link status 1431 * change. The phy_device is returned to the attaching driver. 1432 * This function takes a reference on the phy device. 1433 */ 1434 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1435 u32 flags, phy_interface_t interface) 1436 { 1437 struct mii_bus *bus = phydev->mdio.bus; 1438 struct device *d = &phydev->mdio.dev; 1439 struct module *ndev_owner = NULL; 1440 bool using_genphy = false; 1441 int err; 1442 1443 /* For Ethernet device drivers that register their own MDIO bus, we 1444 * will have bus->owner match ndev_mod, so we do not want to increment 1445 * our own module->refcnt here, otherwise we would not be able to 1446 * unload later on. 1447 */ 1448 if (dev) 1449 ndev_owner = dev->dev.parent->driver->owner; 1450 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1451 phydev_err(phydev, "failed to get the bus module\n"); 1452 return -EIO; 1453 } 1454 1455 get_device(d); 1456 1457 /* Assume that if there is no driver, that it doesn't 1458 * exist, and we should use the genphy driver. 1459 */ 1460 if (!d->driver) { 1461 if (phydev->is_c45) 1462 d->driver = &genphy_c45_driver.mdiodrv.driver; 1463 else 1464 d->driver = &genphy_driver.mdiodrv.driver; 1465 1466 using_genphy = true; 1467 } 1468 1469 if (!try_module_get(d->driver->owner)) { 1470 phydev_err(phydev, "failed to get the device driver module\n"); 1471 err = -EIO; 1472 goto error_put_device; 1473 } 1474 1475 if (using_genphy) { 1476 err = d->driver->probe(d); 1477 if (err >= 0) 1478 err = device_bind_driver(d); 1479 1480 if (err) 1481 goto error_module_put; 1482 } 1483 1484 if (phydev->attached_dev) { 1485 dev_err(&dev->dev, "PHY already attached\n"); 1486 err = -EBUSY; 1487 goto error; 1488 } 1489 1490 phydev->phy_link_change = phy_link_change; 1491 if (dev) { 1492 phydev->attached_dev = dev; 1493 dev->phydev = phydev; 1494 1495 if (phydev->sfp_bus_attached) 1496 dev->sfp_bus = phydev->sfp_bus; 1497 } 1498 1499 /* Some Ethernet drivers try to connect to a PHY device before 1500 * calling register_netdevice() -> netdev_register_kobject() and 1501 * does the dev->dev.kobj initialization. Here we only check for 1502 * success which indicates that the network device kobject is 1503 * ready. Once we do that we still need to keep track of whether 1504 * links were successfully set up or not for phy_detach() to 1505 * remove them accordingly. 1506 */ 1507 phydev->sysfs_links = false; 1508 1509 phy_sysfs_create_links(phydev); 1510 1511 if (!phydev->attached_dev) { 1512 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1513 &dev_attr_phy_standalone.attr); 1514 if (err) 1515 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1516 } 1517 1518 phydev->dev_flags |= flags; 1519 1520 phydev->interface = interface; 1521 1522 phydev->state = PHY_READY; 1523 1524 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1525 1526 /* PHYs can request to use poll mode even though they have an 1527 * associated interrupt line. This could be the case if they 1528 * detect a broken interrupt handling. 1529 */ 1530 if (phydev->dev_flags & PHY_F_NO_IRQ) 1531 phydev->irq = PHY_POLL; 1532 1533 if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev)) 1534 phydev->irq = PHY_POLL; 1535 1536 /* Port is set to PORT_TP by default and the actual PHY driver will set 1537 * it to different value depending on the PHY configuration. If we have 1538 * the generic PHY driver we can't figure it out, thus set the old 1539 * legacy PORT_MII value. 1540 */ 1541 if (using_genphy) 1542 phydev->port = PORT_MII; 1543 1544 /* Initial carrier state is off as the phy is about to be 1545 * (re)initialized. 1546 */ 1547 if (dev) 1548 netif_carrier_off(phydev->attached_dev); 1549 1550 /* Do initial configuration here, now that 1551 * we have certain key parameters 1552 * (dev_flags and interface) 1553 */ 1554 err = phy_init_hw(phydev); 1555 if (err) 1556 goto error; 1557 1558 phy_resume(phydev); 1559 if (!phydev->is_on_sfp_module) 1560 phy_led_triggers_register(phydev); 1561 1562 /** 1563 * If the external phy used by current mac interface is managed by 1564 * another mac interface, so we should create a device link between 1565 * phy dev and mac dev. 1566 */ 1567 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1568 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1569 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1570 1571 return err; 1572 1573 error: 1574 /* phy_detach() does all of the cleanup below */ 1575 phy_detach(phydev); 1576 return err; 1577 1578 error_module_put: 1579 module_put(d->driver->owner); 1580 d->driver = NULL; 1581 error_put_device: 1582 put_device(d); 1583 if (ndev_owner != bus->owner) 1584 module_put(bus->owner); 1585 return err; 1586 } 1587 EXPORT_SYMBOL(phy_attach_direct); 1588 1589 /** 1590 * phy_attach - attach a network device to a particular PHY device 1591 * @dev: network device to attach 1592 * @bus_id: Bus ID of PHY device to attach 1593 * @interface: PHY device's interface 1594 * 1595 * Description: Same as phy_attach_direct() except that a PHY bus_id 1596 * string is passed instead of a pointer to a struct phy_device. 1597 */ 1598 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1599 phy_interface_t interface) 1600 { 1601 struct bus_type *bus = &mdio_bus_type; 1602 struct phy_device *phydev; 1603 struct device *d; 1604 int rc; 1605 1606 if (!dev) 1607 return ERR_PTR(-EINVAL); 1608 1609 /* Search the list of PHY devices on the mdio bus for the 1610 * PHY with the requested name 1611 */ 1612 d = bus_find_device_by_name(bus, NULL, bus_id); 1613 if (!d) { 1614 pr_err("PHY %s not found\n", bus_id); 1615 return ERR_PTR(-ENODEV); 1616 } 1617 phydev = to_phy_device(d); 1618 1619 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1620 put_device(d); 1621 if (rc) 1622 return ERR_PTR(rc); 1623 1624 return phydev; 1625 } 1626 EXPORT_SYMBOL(phy_attach); 1627 1628 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1629 struct device_driver *driver) 1630 { 1631 struct device *d = &phydev->mdio.dev; 1632 bool ret = false; 1633 1634 if (!phydev->drv) 1635 return ret; 1636 1637 get_device(d); 1638 ret = d->driver == driver; 1639 put_device(d); 1640 1641 return ret; 1642 } 1643 1644 bool phy_driver_is_genphy(struct phy_device *phydev) 1645 { 1646 return phy_driver_is_genphy_kind(phydev, 1647 &genphy_driver.mdiodrv.driver); 1648 } 1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1650 1651 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1652 { 1653 return phy_driver_is_genphy_kind(phydev, 1654 &genphy_c45_driver.mdiodrv.driver); 1655 } 1656 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1657 1658 /** 1659 * phy_package_join - join a common PHY group 1660 * @phydev: target phy_device struct 1661 * @addr: cookie and PHY address for global register access 1662 * @priv_size: if non-zero allocate this amount of bytes for private data 1663 * 1664 * This joins a PHY group and provides a shared storage for all phydevs in 1665 * this group. This is intended to be used for packages which contain 1666 * more than one PHY, for example a quad PHY transceiver. 1667 * 1668 * The addr parameter serves as a cookie which has to have the same value 1669 * for all members of one group and as a PHY address to access generic 1670 * registers of a PHY package. Usually, one of the PHY addresses of the 1671 * different PHYs in the package provides access to these global registers. 1672 * The address which is given here, will be used in the phy_package_read() 1673 * and phy_package_write() convenience functions. If your PHY doesn't have 1674 * global registers you can just pick any of the PHY addresses. 1675 * 1676 * This will set the shared pointer of the phydev to the shared storage. 1677 * If this is the first call for a this cookie the shared storage will be 1678 * allocated. If priv_size is non-zero, the given amount of bytes are 1679 * allocated for the priv member. 1680 * 1681 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1682 * with the same cookie but a different priv_size is an error. 1683 */ 1684 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1685 { 1686 struct mii_bus *bus = phydev->mdio.bus; 1687 struct phy_package_shared *shared; 1688 int ret; 1689 1690 if (addr < 0 || addr >= PHY_MAX_ADDR) 1691 return -EINVAL; 1692 1693 mutex_lock(&bus->shared_lock); 1694 shared = bus->shared[addr]; 1695 if (!shared) { 1696 ret = -ENOMEM; 1697 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1698 if (!shared) 1699 goto err_unlock; 1700 if (priv_size) { 1701 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1702 if (!shared->priv) 1703 goto err_free; 1704 shared->priv_size = priv_size; 1705 } 1706 shared->addr = addr; 1707 refcount_set(&shared->refcnt, 1); 1708 bus->shared[addr] = shared; 1709 } else { 1710 ret = -EINVAL; 1711 if (priv_size && priv_size != shared->priv_size) 1712 goto err_unlock; 1713 refcount_inc(&shared->refcnt); 1714 } 1715 mutex_unlock(&bus->shared_lock); 1716 1717 phydev->shared = shared; 1718 1719 return 0; 1720 1721 err_free: 1722 kfree(shared); 1723 err_unlock: 1724 mutex_unlock(&bus->shared_lock); 1725 return ret; 1726 } 1727 EXPORT_SYMBOL_GPL(phy_package_join); 1728 1729 /** 1730 * phy_package_leave - leave a common PHY group 1731 * @phydev: target phy_device struct 1732 * 1733 * This leaves a PHY group created by phy_package_join(). If this phydev 1734 * was the last user of the shared data between the group, this data is 1735 * freed. Resets the phydev->shared pointer to NULL. 1736 */ 1737 void phy_package_leave(struct phy_device *phydev) 1738 { 1739 struct phy_package_shared *shared = phydev->shared; 1740 struct mii_bus *bus = phydev->mdio.bus; 1741 1742 if (!shared) 1743 return; 1744 1745 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1746 bus->shared[shared->addr] = NULL; 1747 mutex_unlock(&bus->shared_lock); 1748 kfree(shared->priv); 1749 kfree(shared); 1750 } 1751 1752 phydev->shared = NULL; 1753 } 1754 EXPORT_SYMBOL_GPL(phy_package_leave); 1755 1756 static void devm_phy_package_leave(struct device *dev, void *res) 1757 { 1758 phy_package_leave(*(struct phy_device **)res); 1759 } 1760 1761 /** 1762 * devm_phy_package_join - resource managed phy_package_join() 1763 * @dev: device that is registering this PHY package 1764 * @phydev: target phy_device struct 1765 * @addr: cookie and PHY address for global register access 1766 * @priv_size: if non-zero allocate this amount of bytes for private data 1767 * 1768 * Managed phy_package_join(). Shared storage fetched by this function, 1769 * phy_package_leave() is automatically called on driver detach. See 1770 * phy_package_join() for more information. 1771 */ 1772 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1773 int addr, size_t priv_size) 1774 { 1775 struct phy_device **ptr; 1776 int ret; 1777 1778 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1779 GFP_KERNEL); 1780 if (!ptr) 1781 return -ENOMEM; 1782 1783 ret = phy_package_join(phydev, addr, priv_size); 1784 1785 if (!ret) { 1786 *ptr = phydev; 1787 devres_add(dev, ptr); 1788 } else { 1789 devres_free(ptr); 1790 } 1791 1792 return ret; 1793 } 1794 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1795 1796 /** 1797 * phy_detach - detach a PHY device from its network device 1798 * @phydev: target phy_device struct 1799 * 1800 * This detaches the phy device from its network device and the phy 1801 * driver, and drops the reference count taken in phy_attach_direct(). 1802 */ 1803 void phy_detach(struct phy_device *phydev) 1804 { 1805 struct net_device *dev = phydev->attached_dev; 1806 struct module *ndev_owner = NULL; 1807 struct mii_bus *bus; 1808 1809 if (phydev->devlink) 1810 device_link_del(phydev->devlink); 1811 1812 if (phydev->sysfs_links) { 1813 if (dev) 1814 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1815 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1816 } 1817 1818 if (!phydev->attached_dev) 1819 sysfs_remove_file(&phydev->mdio.dev.kobj, 1820 &dev_attr_phy_standalone.attr); 1821 1822 phy_suspend(phydev); 1823 if (dev) { 1824 phydev->attached_dev->phydev = NULL; 1825 phydev->attached_dev = NULL; 1826 } 1827 phydev->phylink = NULL; 1828 1829 if (!phydev->is_on_sfp_module) 1830 phy_led_triggers_unregister(phydev); 1831 1832 if (phydev->mdio.dev.driver) 1833 module_put(phydev->mdio.dev.driver->owner); 1834 1835 /* If the device had no specific driver before (i.e. - it 1836 * was using the generic driver), we unbind the device 1837 * from the generic driver so that there's a chance a 1838 * real driver could be loaded 1839 */ 1840 if (phy_driver_is_genphy(phydev) || 1841 phy_driver_is_genphy_10g(phydev)) 1842 device_release_driver(&phydev->mdio.dev); 1843 1844 /* Assert the reset signal */ 1845 phy_device_reset(phydev, 1); 1846 1847 /* 1848 * The phydev might go away on the put_device() below, so avoid 1849 * a use-after-free bug by reading the underlying bus first. 1850 */ 1851 bus = phydev->mdio.bus; 1852 1853 put_device(&phydev->mdio.dev); 1854 if (dev) 1855 ndev_owner = dev->dev.parent->driver->owner; 1856 if (ndev_owner != bus->owner) 1857 module_put(bus->owner); 1858 } 1859 EXPORT_SYMBOL(phy_detach); 1860 1861 int phy_suspend(struct phy_device *phydev) 1862 { 1863 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1864 struct net_device *netdev = phydev->attached_dev; 1865 struct phy_driver *phydrv = phydev->drv; 1866 int ret; 1867 1868 if (phydev->suspended) 1869 return 0; 1870 1871 phy_ethtool_get_wol(phydev, &wol); 1872 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1873 /* If the device has WOL enabled, we cannot suspend the PHY */ 1874 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1875 return -EBUSY; 1876 1877 if (!phydrv || !phydrv->suspend) 1878 return 0; 1879 1880 ret = phydrv->suspend(phydev); 1881 if (!ret) 1882 phydev->suspended = true; 1883 1884 return ret; 1885 } 1886 EXPORT_SYMBOL(phy_suspend); 1887 1888 int __phy_resume(struct phy_device *phydev) 1889 { 1890 struct phy_driver *phydrv = phydev->drv; 1891 int ret; 1892 1893 lockdep_assert_held(&phydev->lock); 1894 1895 if (!phydrv || !phydrv->resume) 1896 return 0; 1897 1898 ret = phydrv->resume(phydev); 1899 if (!ret) 1900 phydev->suspended = false; 1901 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(__phy_resume); 1905 1906 int phy_resume(struct phy_device *phydev) 1907 { 1908 int ret; 1909 1910 mutex_lock(&phydev->lock); 1911 ret = __phy_resume(phydev); 1912 mutex_unlock(&phydev->lock); 1913 1914 return ret; 1915 } 1916 EXPORT_SYMBOL(phy_resume); 1917 1918 int phy_loopback(struct phy_device *phydev, bool enable) 1919 { 1920 int ret = 0; 1921 1922 if (!phydev->drv) 1923 return -EIO; 1924 1925 mutex_lock(&phydev->lock); 1926 1927 if (enable && phydev->loopback_enabled) { 1928 ret = -EBUSY; 1929 goto out; 1930 } 1931 1932 if (!enable && !phydev->loopback_enabled) { 1933 ret = -EINVAL; 1934 goto out; 1935 } 1936 1937 if (phydev->drv->set_loopback) 1938 ret = phydev->drv->set_loopback(phydev, enable); 1939 else 1940 ret = genphy_loopback(phydev, enable); 1941 1942 if (ret) 1943 goto out; 1944 1945 phydev->loopback_enabled = enable; 1946 1947 out: 1948 mutex_unlock(&phydev->lock); 1949 return ret; 1950 } 1951 EXPORT_SYMBOL(phy_loopback); 1952 1953 /** 1954 * phy_reset_after_clk_enable - perform a PHY reset if needed 1955 * @phydev: target phy_device struct 1956 * 1957 * Description: Some PHYs are known to need a reset after their refclk was 1958 * enabled. This function evaluates the flags and perform the reset if it's 1959 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1960 * was reset. 1961 */ 1962 int phy_reset_after_clk_enable(struct phy_device *phydev) 1963 { 1964 if (!phydev || !phydev->drv) 1965 return -ENODEV; 1966 1967 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1968 phy_device_reset(phydev, 1); 1969 phy_device_reset(phydev, 0); 1970 return 1; 1971 } 1972 1973 return 0; 1974 } 1975 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1976 1977 /* Generic PHY support and helper functions */ 1978 1979 /** 1980 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1981 * @phydev: target phy_device struct 1982 * 1983 * Description: Writes MII_ADVERTISE with the appropriate values, 1984 * after sanitizing the values to make sure we only advertise 1985 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1986 * hasn't changed, and > 0 if it has changed. 1987 */ 1988 static int genphy_config_advert(struct phy_device *phydev) 1989 { 1990 int err, bmsr, changed = 0; 1991 u32 adv; 1992 1993 /* Only allow advertising what this PHY supports */ 1994 linkmode_and(phydev->advertising, phydev->advertising, 1995 phydev->supported); 1996 1997 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1998 1999 /* Setup standard advertisement */ 2000 err = phy_modify_changed(phydev, MII_ADVERTISE, 2001 ADVERTISE_ALL | ADVERTISE_100BASE4 | 2002 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 2003 adv); 2004 if (err < 0) 2005 return err; 2006 if (err > 0) 2007 changed = 1; 2008 2009 bmsr = phy_read(phydev, MII_BMSR); 2010 if (bmsr < 0) 2011 return bmsr; 2012 2013 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2014 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2015 * logical 1. 2016 */ 2017 if (!(bmsr & BMSR_ESTATEN)) 2018 return changed; 2019 2020 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2021 2022 err = phy_modify_changed(phydev, MII_CTRL1000, 2023 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2024 adv); 2025 if (err < 0) 2026 return err; 2027 if (err > 0) 2028 changed = 1; 2029 2030 return changed; 2031 } 2032 2033 /** 2034 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2035 * @phydev: target phy_device struct 2036 * 2037 * Description: Writes MII_ADVERTISE with the appropriate values, 2038 * after sanitizing the values to make sure we only advertise 2039 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2040 * hasn't changed, and > 0 if it has changed. This function is intended 2041 * for Clause 37 1000Base-X mode. 2042 */ 2043 static int genphy_c37_config_advert(struct phy_device *phydev) 2044 { 2045 u16 adv = 0; 2046 2047 /* Only allow advertising what this PHY supports */ 2048 linkmode_and(phydev->advertising, phydev->advertising, 2049 phydev->supported); 2050 2051 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2052 phydev->advertising)) 2053 adv |= ADVERTISE_1000XFULL; 2054 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2055 phydev->advertising)) 2056 adv |= ADVERTISE_1000XPAUSE; 2057 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2058 phydev->advertising)) 2059 adv |= ADVERTISE_1000XPSE_ASYM; 2060 2061 return phy_modify_changed(phydev, MII_ADVERTISE, 2062 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2063 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2064 adv); 2065 } 2066 2067 /** 2068 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2069 * @phydev: target phy_device struct 2070 * 2071 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2072 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2073 * changed, and 1 if it has changed. 2074 */ 2075 int genphy_config_eee_advert(struct phy_device *phydev) 2076 { 2077 int err; 2078 2079 /* Nothing to disable */ 2080 if (!phydev->eee_broken_modes) 2081 return 0; 2082 2083 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2084 phydev->eee_broken_modes, 0); 2085 /* If the call failed, we assume that EEE is not supported */ 2086 return err < 0 ? 0 : err; 2087 } 2088 EXPORT_SYMBOL(genphy_config_eee_advert); 2089 2090 /** 2091 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2092 * @phydev: target phy_device struct 2093 * 2094 * Description: Configures MII_BMCR to force speed/duplex 2095 * to the values in phydev. Assumes that the values are valid. 2096 * Please see phy_sanitize_settings(). 2097 */ 2098 int genphy_setup_forced(struct phy_device *phydev) 2099 { 2100 u16 ctl; 2101 2102 phydev->pause = 0; 2103 phydev->asym_pause = 0; 2104 2105 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2106 2107 return phy_modify(phydev, MII_BMCR, 2108 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2109 } 2110 EXPORT_SYMBOL(genphy_setup_forced); 2111 2112 static int genphy_setup_master_slave(struct phy_device *phydev) 2113 { 2114 u16 ctl = 0; 2115 2116 if (!phydev->is_gigabit_capable) 2117 return 0; 2118 2119 switch (phydev->master_slave_set) { 2120 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2121 ctl |= CTL1000_PREFER_MASTER; 2122 break; 2123 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2124 break; 2125 case MASTER_SLAVE_CFG_MASTER_FORCE: 2126 ctl |= CTL1000_AS_MASTER; 2127 fallthrough; 2128 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2129 ctl |= CTL1000_ENABLE_MASTER; 2130 break; 2131 case MASTER_SLAVE_CFG_UNKNOWN: 2132 case MASTER_SLAVE_CFG_UNSUPPORTED: 2133 return 0; 2134 default: 2135 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2136 return -EOPNOTSUPP; 2137 } 2138 2139 return phy_modify_changed(phydev, MII_CTRL1000, 2140 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2141 CTL1000_PREFER_MASTER), ctl); 2142 } 2143 2144 int genphy_read_master_slave(struct phy_device *phydev) 2145 { 2146 int cfg, state; 2147 int val; 2148 2149 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2150 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2151 2152 val = phy_read(phydev, MII_CTRL1000); 2153 if (val < 0) 2154 return val; 2155 2156 if (val & CTL1000_ENABLE_MASTER) { 2157 if (val & CTL1000_AS_MASTER) 2158 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2159 else 2160 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2161 } else { 2162 if (val & CTL1000_PREFER_MASTER) 2163 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2164 else 2165 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2166 } 2167 2168 val = phy_read(phydev, MII_STAT1000); 2169 if (val < 0) 2170 return val; 2171 2172 if (val & LPA_1000MSFAIL) { 2173 state = MASTER_SLAVE_STATE_ERR; 2174 } else if (phydev->link) { 2175 /* this bits are valid only for active link */ 2176 if (val & LPA_1000MSRES) 2177 state = MASTER_SLAVE_STATE_MASTER; 2178 else 2179 state = MASTER_SLAVE_STATE_SLAVE; 2180 } else { 2181 state = MASTER_SLAVE_STATE_UNKNOWN; 2182 } 2183 2184 phydev->master_slave_get = cfg; 2185 phydev->master_slave_state = state; 2186 2187 return 0; 2188 } 2189 EXPORT_SYMBOL(genphy_read_master_slave); 2190 2191 /** 2192 * genphy_restart_aneg - Enable and Restart Autonegotiation 2193 * @phydev: target phy_device struct 2194 */ 2195 int genphy_restart_aneg(struct phy_device *phydev) 2196 { 2197 /* Don't isolate the PHY if we're negotiating */ 2198 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2199 BMCR_ANENABLE | BMCR_ANRESTART); 2200 } 2201 EXPORT_SYMBOL(genphy_restart_aneg); 2202 2203 /** 2204 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2205 * @phydev: target phy_device struct 2206 * @restart: whether aneg restart is requested 2207 * 2208 * Check, and restart auto-negotiation if needed. 2209 */ 2210 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2211 { 2212 int ret; 2213 2214 if (!restart) { 2215 /* Advertisement hasn't changed, but maybe aneg was never on to 2216 * begin with? Or maybe phy was isolated? 2217 */ 2218 ret = phy_read(phydev, MII_BMCR); 2219 if (ret < 0) 2220 return ret; 2221 2222 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2223 restart = true; 2224 } 2225 2226 if (restart) 2227 return genphy_restart_aneg(phydev); 2228 2229 return 0; 2230 } 2231 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2232 2233 /** 2234 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2235 * @phydev: target phy_device struct 2236 * @changed: whether autoneg is requested 2237 * 2238 * Description: If auto-negotiation is enabled, we configure the 2239 * advertising, and then restart auto-negotiation. If it is not 2240 * enabled, then we write the BMCR. 2241 */ 2242 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2243 { 2244 int err; 2245 2246 err = genphy_c45_an_config_eee_aneg(phydev); 2247 if (err < 0) 2248 return err; 2249 else if (err) 2250 changed = true; 2251 2252 err = genphy_setup_master_slave(phydev); 2253 if (err < 0) 2254 return err; 2255 else if (err) 2256 changed = true; 2257 2258 if (AUTONEG_ENABLE != phydev->autoneg) 2259 return genphy_setup_forced(phydev); 2260 2261 err = genphy_config_advert(phydev); 2262 if (err < 0) /* error */ 2263 return err; 2264 else if (err) 2265 changed = true; 2266 2267 return genphy_check_and_restart_aneg(phydev, changed); 2268 } 2269 EXPORT_SYMBOL(__genphy_config_aneg); 2270 2271 /** 2272 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2273 * @phydev: target phy_device struct 2274 * 2275 * Description: If auto-negotiation is enabled, we configure the 2276 * advertising, and then restart auto-negotiation. If it is not 2277 * enabled, then we write the BMCR. This function is intended 2278 * for use with Clause 37 1000Base-X mode. 2279 */ 2280 int genphy_c37_config_aneg(struct phy_device *phydev) 2281 { 2282 int err, changed; 2283 2284 if (phydev->autoneg != AUTONEG_ENABLE) 2285 return genphy_setup_forced(phydev); 2286 2287 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2288 BMCR_SPEED1000); 2289 if (err) 2290 return err; 2291 2292 changed = genphy_c37_config_advert(phydev); 2293 if (changed < 0) /* error */ 2294 return changed; 2295 2296 if (!changed) { 2297 /* Advertisement hasn't changed, but maybe aneg was never on to 2298 * begin with? Or maybe phy was isolated? 2299 */ 2300 int ctl = phy_read(phydev, MII_BMCR); 2301 2302 if (ctl < 0) 2303 return ctl; 2304 2305 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2306 changed = 1; /* do restart aneg */ 2307 } 2308 2309 /* Only restart aneg if we are advertising something different 2310 * than we were before. 2311 */ 2312 if (changed > 0) 2313 return genphy_restart_aneg(phydev); 2314 2315 return 0; 2316 } 2317 EXPORT_SYMBOL(genphy_c37_config_aneg); 2318 2319 /** 2320 * genphy_aneg_done - return auto-negotiation status 2321 * @phydev: target phy_device struct 2322 * 2323 * Description: Reads the status register and returns 0 either if 2324 * auto-negotiation is incomplete, or if there was an error. 2325 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2326 */ 2327 int genphy_aneg_done(struct phy_device *phydev) 2328 { 2329 int retval = phy_read(phydev, MII_BMSR); 2330 2331 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2332 } 2333 EXPORT_SYMBOL(genphy_aneg_done); 2334 2335 /** 2336 * genphy_update_link - update link status in @phydev 2337 * @phydev: target phy_device struct 2338 * 2339 * Description: Update the value in phydev->link to reflect the 2340 * current link value. In order to do this, we need to read 2341 * the status register twice, keeping the second value. 2342 */ 2343 int genphy_update_link(struct phy_device *phydev) 2344 { 2345 int status = 0, bmcr; 2346 2347 bmcr = phy_read(phydev, MII_BMCR); 2348 if (bmcr < 0) 2349 return bmcr; 2350 2351 /* Autoneg is being started, therefore disregard BMSR value and 2352 * report link as down. 2353 */ 2354 if (bmcr & BMCR_ANRESTART) 2355 goto done; 2356 2357 /* The link state is latched low so that momentary link 2358 * drops can be detected. Do not double-read the status 2359 * in polling mode to detect such short link drops except 2360 * the link was already down. 2361 */ 2362 if (!phy_polling_mode(phydev) || !phydev->link) { 2363 status = phy_read(phydev, MII_BMSR); 2364 if (status < 0) 2365 return status; 2366 else if (status & BMSR_LSTATUS) 2367 goto done; 2368 } 2369 2370 /* Read link and autonegotiation status */ 2371 status = phy_read(phydev, MII_BMSR); 2372 if (status < 0) 2373 return status; 2374 done: 2375 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2376 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2377 2378 /* Consider the case that autoneg was started and "aneg complete" 2379 * bit has been reset, but "link up" bit not yet. 2380 */ 2381 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2382 phydev->link = 0; 2383 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(genphy_update_link); 2387 2388 int genphy_read_lpa(struct phy_device *phydev) 2389 { 2390 int lpa, lpagb; 2391 2392 if (phydev->autoneg == AUTONEG_ENABLE) { 2393 if (!phydev->autoneg_complete) { 2394 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2395 0); 2396 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2397 return 0; 2398 } 2399 2400 if (phydev->is_gigabit_capable) { 2401 lpagb = phy_read(phydev, MII_STAT1000); 2402 if (lpagb < 0) 2403 return lpagb; 2404 2405 if (lpagb & LPA_1000MSFAIL) { 2406 int adv = phy_read(phydev, MII_CTRL1000); 2407 2408 if (adv < 0) 2409 return adv; 2410 2411 if (adv & CTL1000_ENABLE_MASTER) 2412 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2413 else 2414 phydev_err(phydev, "Master/Slave resolution failed\n"); 2415 return -ENOLINK; 2416 } 2417 2418 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2419 lpagb); 2420 } 2421 2422 lpa = phy_read(phydev, MII_LPA); 2423 if (lpa < 0) 2424 return lpa; 2425 2426 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2427 } else { 2428 linkmode_zero(phydev->lp_advertising); 2429 } 2430 2431 return 0; 2432 } 2433 EXPORT_SYMBOL(genphy_read_lpa); 2434 2435 /** 2436 * genphy_read_status_fixed - read the link parameters for !aneg mode 2437 * @phydev: target phy_device struct 2438 * 2439 * Read the current duplex and speed state for a PHY operating with 2440 * autonegotiation disabled. 2441 */ 2442 int genphy_read_status_fixed(struct phy_device *phydev) 2443 { 2444 int bmcr = phy_read(phydev, MII_BMCR); 2445 2446 if (bmcr < 0) 2447 return bmcr; 2448 2449 if (bmcr & BMCR_FULLDPLX) 2450 phydev->duplex = DUPLEX_FULL; 2451 else 2452 phydev->duplex = DUPLEX_HALF; 2453 2454 if (bmcr & BMCR_SPEED1000) 2455 phydev->speed = SPEED_1000; 2456 else if (bmcr & BMCR_SPEED100) 2457 phydev->speed = SPEED_100; 2458 else 2459 phydev->speed = SPEED_10; 2460 2461 return 0; 2462 } 2463 EXPORT_SYMBOL(genphy_read_status_fixed); 2464 2465 /** 2466 * genphy_read_status - check the link status and update current link state 2467 * @phydev: target phy_device struct 2468 * 2469 * Description: Check the link, then figure out the current state 2470 * by comparing what we advertise with what the link partner 2471 * advertises. Start by checking the gigabit possibilities, 2472 * then move on to 10/100. 2473 */ 2474 int genphy_read_status(struct phy_device *phydev) 2475 { 2476 int err, old_link = phydev->link; 2477 2478 /* Update the link, but return if there was an error */ 2479 err = genphy_update_link(phydev); 2480 if (err) 2481 return err; 2482 2483 /* why bother the PHY if nothing can have changed */ 2484 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2485 return 0; 2486 2487 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2488 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2489 phydev->speed = SPEED_UNKNOWN; 2490 phydev->duplex = DUPLEX_UNKNOWN; 2491 phydev->pause = 0; 2492 phydev->asym_pause = 0; 2493 2494 if (phydev->is_gigabit_capable) { 2495 err = genphy_read_master_slave(phydev); 2496 if (err < 0) 2497 return err; 2498 } 2499 2500 err = genphy_read_lpa(phydev); 2501 if (err < 0) 2502 return err; 2503 2504 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2505 phy_resolve_aneg_linkmode(phydev); 2506 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2507 err = genphy_read_status_fixed(phydev); 2508 if (err < 0) 2509 return err; 2510 } 2511 2512 return 0; 2513 } 2514 EXPORT_SYMBOL(genphy_read_status); 2515 2516 /** 2517 * genphy_c37_read_status - check the link status and update current link state 2518 * @phydev: target phy_device struct 2519 * 2520 * Description: Check the link, then figure out the current state 2521 * by comparing what we advertise with what the link partner 2522 * advertises. This function is for Clause 37 1000Base-X mode. 2523 */ 2524 int genphy_c37_read_status(struct phy_device *phydev) 2525 { 2526 int lpa, err, old_link = phydev->link; 2527 2528 /* Update the link, but return if there was an error */ 2529 err = genphy_update_link(phydev); 2530 if (err) 2531 return err; 2532 2533 /* why bother the PHY if nothing can have changed */ 2534 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2535 return 0; 2536 2537 phydev->duplex = DUPLEX_UNKNOWN; 2538 phydev->pause = 0; 2539 phydev->asym_pause = 0; 2540 2541 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2542 lpa = phy_read(phydev, MII_LPA); 2543 if (lpa < 0) 2544 return lpa; 2545 2546 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2547 phydev->lp_advertising, lpa & LPA_LPACK); 2548 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2549 phydev->lp_advertising, lpa & LPA_1000XFULL); 2550 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2551 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2552 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2553 phydev->lp_advertising, 2554 lpa & LPA_1000XPAUSE_ASYM); 2555 2556 phy_resolve_aneg_linkmode(phydev); 2557 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2558 int bmcr = phy_read(phydev, MII_BMCR); 2559 2560 if (bmcr < 0) 2561 return bmcr; 2562 2563 if (bmcr & BMCR_FULLDPLX) 2564 phydev->duplex = DUPLEX_FULL; 2565 else 2566 phydev->duplex = DUPLEX_HALF; 2567 } 2568 2569 return 0; 2570 } 2571 EXPORT_SYMBOL(genphy_c37_read_status); 2572 2573 /** 2574 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2575 * @phydev: target phy_device struct 2576 * 2577 * Description: Perform a software PHY reset using the standard 2578 * BMCR_RESET bit and poll for the reset bit to be cleared. 2579 * 2580 * Returns: 0 on success, < 0 on failure 2581 */ 2582 int genphy_soft_reset(struct phy_device *phydev) 2583 { 2584 u16 res = BMCR_RESET; 2585 int ret; 2586 2587 if (phydev->autoneg == AUTONEG_ENABLE) 2588 res |= BMCR_ANRESTART; 2589 2590 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2591 if (ret < 0) 2592 return ret; 2593 2594 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2595 * to their default value. Therefore the POWER DOWN bit is supposed to 2596 * be cleared after soft reset. 2597 */ 2598 phydev->suspended = 0; 2599 2600 ret = phy_poll_reset(phydev); 2601 if (ret) 2602 return ret; 2603 2604 /* BMCR may be reset to defaults */ 2605 if (phydev->autoneg == AUTONEG_DISABLE) 2606 ret = genphy_setup_forced(phydev); 2607 2608 return ret; 2609 } 2610 EXPORT_SYMBOL(genphy_soft_reset); 2611 2612 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2613 { 2614 /* It seems there are cases where the interrupts are handled by another 2615 * entity (ie an IRQ controller embedded inside the PHY) and do not 2616 * need any other interraction from phylib. In this case, just trigger 2617 * the state machine directly. 2618 */ 2619 phy_trigger_machine(phydev); 2620 2621 return 0; 2622 } 2623 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2624 2625 /** 2626 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2627 * @phydev: target phy_device struct 2628 * 2629 * Description: Reads the PHY's abilities and populates 2630 * phydev->supported accordingly. 2631 * 2632 * Returns: 0 on success, < 0 on failure 2633 */ 2634 int genphy_read_abilities(struct phy_device *phydev) 2635 { 2636 int val; 2637 2638 linkmode_set_bit_array(phy_basic_ports_array, 2639 ARRAY_SIZE(phy_basic_ports_array), 2640 phydev->supported); 2641 2642 val = phy_read(phydev, MII_BMSR); 2643 if (val < 0) 2644 return val; 2645 2646 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2647 val & BMSR_ANEGCAPABLE); 2648 2649 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2650 val & BMSR_100FULL); 2651 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2652 val & BMSR_100HALF); 2653 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2654 val & BMSR_10FULL); 2655 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2656 val & BMSR_10HALF); 2657 2658 if (val & BMSR_ESTATEN) { 2659 val = phy_read(phydev, MII_ESTATUS); 2660 if (val < 0) 2661 return val; 2662 2663 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2664 phydev->supported, val & ESTATUS_1000_TFULL); 2665 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2666 phydev->supported, val & ESTATUS_1000_THALF); 2667 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2668 phydev->supported, val & ESTATUS_1000_XFULL); 2669 } 2670 2671 /* This is optional functionality. If not supported, we may get an error 2672 * which should be ignored. 2673 */ 2674 genphy_c45_read_eee_abilities(phydev); 2675 2676 return 0; 2677 } 2678 EXPORT_SYMBOL(genphy_read_abilities); 2679 2680 /* This is used for the phy device which doesn't support the MMD extended 2681 * register access, but it does have side effect when we are trying to access 2682 * the MMD register via indirect method. 2683 */ 2684 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2685 { 2686 return -EOPNOTSUPP; 2687 } 2688 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2689 2690 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2691 u16 regnum, u16 val) 2692 { 2693 return -EOPNOTSUPP; 2694 } 2695 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2696 2697 int genphy_suspend(struct phy_device *phydev) 2698 { 2699 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2700 } 2701 EXPORT_SYMBOL(genphy_suspend); 2702 2703 int genphy_resume(struct phy_device *phydev) 2704 { 2705 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2706 } 2707 EXPORT_SYMBOL(genphy_resume); 2708 2709 int genphy_loopback(struct phy_device *phydev, bool enable) 2710 { 2711 if (enable) { 2712 u16 ctl = BMCR_LOOPBACK; 2713 int ret, val; 2714 2715 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2716 2717 phy_modify(phydev, MII_BMCR, ~0, ctl); 2718 2719 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2720 val & BMSR_LSTATUS, 2721 5000, 500000, true); 2722 if (ret) 2723 return ret; 2724 } else { 2725 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2726 2727 phy_config_aneg(phydev); 2728 } 2729 2730 return 0; 2731 } 2732 EXPORT_SYMBOL(genphy_loopback); 2733 2734 /** 2735 * phy_remove_link_mode - Remove a supported link mode 2736 * @phydev: phy_device structure to remove link mode from 2737 * @link_mode: Link mode to be removed 2738 * 2739 * Description: Some MACs don't support all link modes which the PHY 2740 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2741 * to remove a link mode. 2742 */ 2743 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2744 { 2745 linkmode_clear_bit(link_mode, phydev->supported); 2746 phy_advertise_supported(phydev); 2747 } 2748 EXPORT_SYMBOL(phy_remove_link_mode); 2749 2750 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2751 { 2752 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2753 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2754 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2755 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2756 } 2757 2758 /** 2759 * phy_advertise_supported - Advertise all supported modes 2760 * @phydev: target phy_device struct 2761 * 2762 * Description: Called to advertise all supported modes, doesn't touch 2763 * pause mode advertising. 2764 */ 2765 void phy_advertise_supported(struct phy_device *phydev) 2766 { 2767 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2768 2769 linkmode_copy(new, phydev->supported); 2770 phy_copy_pause_bits(new, phydev->advertising); 2771 linkmode_copy(phydev->advertising, new); 2772 } 2773 EXPORT_SYMBOL(phy_advertise_supported); 2774 2775 /** 2776 * phy_support_sym_pause - Enable support of symmetrical pause 2777 * @phydev: target phy_device struct 2778 * 2779 * Description: Called by the MAC to indicate is supports symmetrical 2780 * Pause, but not asym pause. 2781 */ 2782 void phy_support_sym_pause(struct phy_device *phydev) 2783 { 2784 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2785 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2786 } 2787 EXPORT_SYMBOL(phy_support_sym_pause); 2788 2789 /** 2790 * phy_support_asym_pause - Enable support of asym pause 2791 * @phydev: target phy_device struct 2792 * 2793 * Description: Called by the MAC to indicate is supports Asym Pause. 2794 */ 2795 void phy_support_asym_pause(struct phy_device *phydev) 2796 { 2797 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2798 } 2799 EXPORT_SYMBOL(phy_support_asym_pause); 2800 2801 /** 2802 * phy_set_sym_pause - Configure symmetric Pause 2803 * @phydev: target phy_device struct 2804 * @rx: Receiver Pause is supported 2805 * @tx: Transmit Pause is supported 2806 * @autoneg: Auto neg should be used 2807 * 2808 * Description: Configure advertised Pause support depending on if 2809 * receiver pause and pause auto neg is supported. Generally called 2810 * from the set_pauseparam .ndo. 2811 */ 2812 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2813 bool autoneg) 2814 { 2815 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2816 2817 if (rx && tx && autoneg) 2818 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2819 phydev->supported); 2820 2821 linkmode_copy(phydev->advertising, phydev->supported); 2822 } 2823 EXPORT_SYMBOL(phy_set_sym_pause); 2824 2825 /** 2826 * phy_set_asym_pause - Configure Pause and Asym Pause 2827 * @phydev: target phy_device struct 2828 * @rx: Receiver Pause is supported 2829 * @tx: Transmit Pause is supported 2830 * 2831 * Description: Configure advertised Pause support depending on if 2832 * transmit and receiver pause is supported. If there has been a 2833 * change in adverting, trigger a new autoneg. Generally called from 2834 * the set_pauseparam .ndo. 2835 */ 2836 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2837 { 2838 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2839 2840 linkmode_copy(oldadv, phydev->advertising); 2841 linkmode_set_pause(phydev->advertising, tx, rx); 2842 2843 if (!linkmode_equal(oldadv, phydev->advertising) && 2844 phydev->autoneg) 2845 phy_start_aneg(phydev); 2846 } 2847 EXPORT_SYMBOL(phy_set_asym_pause); 2848 2849 /** 2850 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2851 * @phydev: phy_device struct 2852 * @pp: requested pause configuration 2853 * 2854 * Description: Test if the PHY/MAC combination supports the Pause 2855 * configuration the user is requesting. Returns True if it is 2856 * supported, false otherwise. 2857 */ 2858 bool phy_validate_pause(struct phy_device *phydev, 2859 struct ethtool_pauseparam *pp) 2860 { 2861 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2862 phydev->supported) && pp->rx_pause) 2863 return false; 2864 2865 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2866 phydev->supported) && 2867 pp->rx_pause != pp->tx_pause) 2868 return false; 2869 2870 return true; 2871 } 2872 EXPORT_SYMBOL(phy_validate_pause); 2873 2874 /** 2875 * phy_get_pause - resolve negotiated pause modes 2876 * @phydev: phy_device struct 2877 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2878 * enabled. 2879 * @rx_pause: pointer to bool to indicate whether receive pause should be 2880 * enabled. 2881 * 2882 * Resolve and return the flow control modes according to the negotiation 2883 * result. This includes checking that we are operating in full duplex mode. 2884 * See linkmode_resolve_pause() for further details. 2885 */ 2886 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2887 { 2888 if (phydev->duplex != DUPLEX_FULL) { 2889 *tx_pause = false; 2890 *rx_pause = false; 2891 return; 2892 } 2893 2894 return linkmode_resolve_pause(phydev->advertising, 2895 phydev->lp_advertising, 2896 tx_pause, rx_pause); 2897 } 2898 EXPORT_SYMBOL(phy_get_pause); 2899 2900 #if IS_ENABLED(CONFIG_OF_MDIO) 2901 static int phy_get_int_delay_property(struct device *dev, const char *name) 2902 { 2903 s32 int_delay; 2904 int ret; 2905 2906 ret = device_property_read_u32(dev, name, &int_delay); 2907 if (ret) 2908 return ret; 2909 2910 return int_delay; 2911 } 2912 #else 2913 static int phy_get_int_delay_property(struct device *dev, const char *name) 2914 { 2915 return -EINVAL; 2916 } 2917 #endif 2918 2919 /** 2920 * phy_get_internal_delay - returns the index of the internal delay 2921 * @phydev: phy_device struct 2922 * @dev: pointer to the devices device struct 2923 * @delay_values: array of delays the PHY supports 2924 * @size: the size of the delay array 2925 * @is_rx: boolean to indicate to get the rx internal delay 2926 * 2927 * Returns the index within the array of internal delay passed in. 2928 * If the device property is not present then the interface type is checked 2929 * if the interface defines use of internal delay then a 1 is returned otherwise 2930 * a 0 is returned. 2931 * The array must be in ascending order. If PHY does not have an ascending order 2932 * array then size = 0 and the value of the delay property is returned. 2933 * Return -EINVAL if the delay is invalid or cannot be found. 2934 */ 2935 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2936 const int *delay_values, int size, bool is_rx) 2937 { 2938 s32 delay; 2939 int i; 2940 2941 if (is_rx) { 2942 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2943 if (delay < 0 && size == 0) { 2944 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2945 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2946 return 1; 2947 else 2948 return 0; 2949 } 2950 2951 } else { 2952 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2953 if (delay < 0 && size == 0) { 2954 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2955 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2956 return 1; 2957 else 2958 return 0; 2959 } 2960 } 2961 2962 if (delay < 0) 2963 return delay; 2964 2965 if (size == 0) 2966 return delay; 2967 2968 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2969 phydev_err(phydev, "Delay %d is out of range\n", delay); 2970 return -EINVAL; 2971 } 2972 2973 if (delay == delay_values[0]) 2974 return 0; 2975 2976 for (i = 1; i < size; i++) { 2977 if (delay == delay_values[i]) 2978 return i; 2979 2980 /* Find an approximate index by looking up the table */ 2981 if (delay > delay_values[i - 1] && 2982 delay < delay_values[i]) { 2983 if (delay - delay_values[i - 1] < 2984 delay_values[i] - delay) 2985 return i - 1; 2986 else 2987 return i; 2988 } 2989 } 2990 2991 phydev_err(phydev, "error finding internal delay index for %d\n", 2992 delay); 2993 2994 return -EINVAL; 2995 } 2996 EXPORT_SYMBOL(phy_get_internal_delay); 2997 2998 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2999 enum led_brightness value) 3000 { 3001 struct phy_led *phyled = to_phy_led(led_cdev); 3002 struct phy_device *phydev = phyled->phydev; 3003 int err; 3004 3005 mutex_lock(&phydev->lock); 3006 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3007 mutex_unlock(&phydev->lock); 3008 3009 return err; 3010 } 3011 3012 static int phy_led_blink_set(struct led_classdev *led_cdev, 3013 unsigned long *delay_on, 3014 unsigned long *delay_off) 3015 { 3016 struct phy_led *phyled = to_phy_led(led_cdev); 3017 struct phy_device *phydev = phyled->phydev; 3018 int err; 3019 3020 mutex_lock(&phydev->lock); 3021 err = phydev->drv->led_blink_set(phydev, phyled->index, 3022 delay_on, delay_off); 3023 mutex_unlock(&phydev->lock); 3024 3025 return err; 3026 } 3027 3028 static __maybe_unused struct device * 3029 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3030 { 3031 struct phy_led *phyled = to_phy_led(led_cdev); 3032 struct phy_device *phydev = phyled->phydev; 3033 3034 if (phydev->attached_dev) 3035 return &phydev->attached_dev->dev; 3036 return NULL; 3037 } 3038 3039 static int __maybe_unused 3040 phy_led_hw_control_get(struct led_classdev *led_cdev, 3041 unsigned long *rules) 3042 { 3043 struct phy_led *phyled = to_phy_led(led_cdev); 3044 struct phy_device *phydev = phyled->phydev; 3045 int err; 3046 3047 mutex_lock(&phydev->lock); 3048 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3049 mutex_unlock(&phydev->lock); 3050 3051 return err; 3052 } 3053 3054 static int __maybe_unused 3055 phy_led_hw_control_set(struct led_classdev *led_cdev, 3056 unsigned long rules) 3057 { 3058 struct phy_led *phyled = to_phy_led(led_cdev); 3059 struct phy_device *phydev = phyled->phydev; 3060 int err; 3061 3062 mutex_lock(&phydev->lock); 3063 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3064 mutex_unlock(&phydev->lock); 3065 3066 return err; 3067 } 3068 3069 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3070 unsigned long rules) 3071 { 3072 struct phy_led *phyled = to_phy_led(led_cdev); 3073 struct phy_device *phydev = phyled->phydev; 3074 int err; 3075 3076 mutex_lock(&phydev->lock); 3077 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3078 mutex_unlock(&phydev->lock); 3079 3080 return err; 3081 } 3082 3083 static void phy_leds_unregister(struct phy_device *phydev) 3084 { 3085 struct phy_led *phyled; 3086 3087 list_for_each_entry(phyled, &phydev->leds, list) { 3088 led_classdev_unregister(&phyled->led_cdev); 3089 } 3090 } 3091 3092 static int of_phy_led(struct phy_device *phydev, 3093 struct device_node *led) 3094 { 3095 struct device *dev = &phydev->mdio.dev; 3096 struct led_init_data init_data = {}; 3097 struct led_classdev *cdev; 3098 struct phy_led *phyled; 3099 u32 index; 3100 int err; 3101 3102 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3103 if (!phyled) 3104 return -ENOMEM; 3105 3106 cdev = &phyled->led_cdev; 3107 phyled->phydev = phydev; 3108 3109 err = of_property_read_u32(led, "reg", &index); 3110 if (err) 3111 return err; 3112 if (index > U8_MAX) 3113 return -EINVAL; 3114 3115 phyled->index = index; 3116 if (phydev->drv->led_brightness_set) 3117 cdev->brightness_set_blocking = phy_led_set_brightness; 3118 if (phydev->drv->led_blink_set) 3119 cdev->blink_set = phy_led_blink_set; 3120 3121 #ifdef CONFIG_LEDS_TRIGGERS 3122 if (phydev->drv->led_hw_is_supported && 3123 phydev->drv->led_hw_control_set && 3124 phydev->drv->led_hw_control_get) { 3125 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3126 cdev->hw_control_set = phy_led_hw_control_set; 3127 cdev->hw_control_get = phy_led_hw_control_get; 3128 cdev->hw_control_trigger = "netdev"; 3129 } 3130 3131 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3132 #endif 3133 cdev->max_brightness = 1; 3134 init_data.devicename = dev_name(&phydev->mdio.dev); 3135 init_data.fwnode = of_fwnode_handle(led); 3136 init_data.devname_mandatory = true; 3137 3138 err = led_classdev_register_ext(dev, cdev, &init_data); 3139 if (err) 3140 return err; 3141 3142 list_add(&phyled->list, &phydev->leds); 3143 3144 return 0; 3145 } 3146 3147 static int of_phy_leds(struct phy_device *phydev) 3148 { 3149 struct device_node *node = phydev->mdio.dev.of_node; 3150 struct device_node *leds, *led; 3151 int err; 3152 3153 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3154 return 0; 3155 3156 if (!node) 3157 return 0; 3158 3159 leds = of_get_child_by_name(node, "leds"); 3160 if (!leds) 3161 return 0; 3162 3163 for_each_available_child_of_node(leds, led) { 3164 err = of_phy_led(phydev, led); 3165 if (err) { 3166 of_node_put(led); 3167 phy_leds_unregister(phydev); 3168 return err; 3169 } 3170 } 3171 3172 return 0; 3173 } 3174 3175 /** 3176 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3177 * @fwnode: pointer to the mdio_device's fwnode 3178 * 3179 * If successful, returns a pointer to the mdio_device with the embedded 3180 * struct device refcount incremented by one, or NULL on failure. 3181 * The caller should call put_device() on the mdio_device after its use. 3182 */ 3183 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3184 { 3185 struct device *d; 3186 3187 if (!fwnode) 3188 return NULL; 3189 3190 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3191 if (!d) 3192 return NULL; 3193 3194 return to_mdio_device(d); 3195 } 3196 EXPORT_SYMBOL(fwnode_mdio_find_device); 3197 3198 /** 3199 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3200 * 3201 * @phy_fwnode: Pointer to the phy's fwnode. 3202 * 3203 * If successful, returns a pointer to the phy_device with the embedded 3204 * struct device refcount incremented by one, or NULL on failure. 3205 */ 3206 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3207 { 3208 struct mdio_device *mdiodev; 3209 3210 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3211 if (!mdiodev) 3212 return NULL; 3213 3214 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3215 return to_phy_device(&mdiodev->dev); 3216 3217 put_device(&mdiodev->dev); 3218 3219 return NULL; 3220 } 3221 EXPORT_SYMBOL(fwnode_phy_find_device); 3222 3223 /** 3224 * device_phy_find_device - For the given device, get the phy_device 3225 * @dev: Pointer to the given device 3226 * 3227 * Refer return conditions of fwnode_phy_find_device(). 3228 */ 3229 struct phy_device *device_phy_find_device(struct device *dev) 3230 { 3231 return fwnode_phy_find_device(dev_fwnode(dev)); 3232 } 3233 EXPORT_SYMBOL_GPL(device_phy_find_device); 3234 3235 /** 3236 * fwnode_get_phy_node - Get the phy_node using the named reference. 3237 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3238 * 3239 * Refer return conditions of fwnode_find_reference(). 3240 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3241 * and "phy-device" are not supported in ACPI. DT supports all the three 3242 * named references to the phy node. 3243 */ 3244 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3245 { 3246 struct fwnode_handle *phy_node; 3247 3248 /* Only phy-handle is used for ACPI */ 3249 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3250 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3251 return phy_node; 3252 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3253 if (IS_ERR(phy_node)) 3254 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3255 return phy_node; 3256 } 3257 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3258 3259 /** 3260 * phy_probe - probe and init a PHY device 3261 * @dev: device to probe and init 3262 * 3263 * Take care of setting up the phy_device structure, set the state to READY. 3264 */ 3265 static int phy_probe(struct device *dev) 3266 { 3267 struct phy_device *phydev = to_phy_device(dev); 3268 struct device_driver *drv = phydev->mdio.dev.driver; 3269 struct phy_driver *phydrv = to_phy_driver(drv); 3270 int err = 0; 3271 3272 phydev->drv = phydrv; 3273 3274 /* Disable the interrupt if the PHY doesn't support it 3275 * but the interrupt is still a valid one 3276 */ 3277 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3278 phydev->irq = PHY_POLL; 3279 3280 if (phydrv->flags & PHY_IS_INTERNAL) 3281 phydev->is_internal = true; 3282 3283 /* Deassert the reset signal */ 3284 phy_device_reset(phydev, 0); 3285 3286 if (phydev->drv->probe) { 3287 err = phydev->drv->probe(phydev); 3288 if (err) 3289 goto out; 3290 } 3291 3292 phy_disable_interrupts(phydev); 3293 3294 /* Start out supporting everything. Eventually, 3295 * a controller will attach, and may modify one 3296 * or both of these values 3297 */ 3298 if (phydrv->features) { 3299 linkmode_copy(phydev->supported, phydrv->features); 3300 genphy_c45_read_eee_abilities(phydev); 3301 } 3302 else if (phydrv->get_features) 3303 err = phydrv->get_features(phydev); 3304 else if (phydev->is_c45) 3305 err = genphy_c45_pma_read_abilities(phydev); 3306 else 3307 err = genphy_read_abilities(phydev); 3308 3309 if (err) 3310 goto out; 3311 3312 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3313 phydev->supported)) 3314 phydev->autoneg = 0; 3315 3316 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3317 phydev->supported)) 3318 phydev->is_gigabit_capable = 1; 3319 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3320 phydev->supported)) 3321 phydev->is_gigabit_capable = 1; 3322 3323 of_set_phy_supported(phydev); 3324 phy_advertise_supported(phydev); 3325 3326 /* Get PHY default EEE advertising modes and handle them as potentially 3327 * safe initial configuration. 3328 */ 3329 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3330 if (err) 3331 goto out; 3332 3333 /* There is no "enabled" flag. If PHY is advertising, assume it is 3334 * kind of enabled. 3335 */ 3336 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3337 3338 /* Some PHYs may advertise, by default, not support EEE modes. So, 3339 * we need to clean them. 3340 */ 3341 if (phydev->eee_enabled) 3342 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3343 phydev->advertising_eee); 3344 3345 /* Get the EEE modes we want to prohibit. We will ask 3346 * the PHY stop advertising these mode later on 3347 */ 3348 of_set_phy_eee_broken(phydev); 3349 3350 /* The Pause Frame bits indicate that the PHY can support passing 3351 * pause frames. During autonegotiation, the PHYs will determine if 3352 * they should allow pause frames to pass. The MAC driver should then 3353 * use that result to determine whether to enable flow control via 3354 * pause frames. 3355 * 3356 * Normally, PHY drivers should not set the Pause bits, and instead 3357 * allow phylib to do that. However, there may be some situations 3358 * (e.g. hardware erratum) where the driver wants to set only one 3359 * of these bits. 3360 */ 3361 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3362 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3363 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3364 phydev->supported); 3365 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3366 phydev->supported); 3367 } 3368 3369 /* Set the state to READY by default */ 3370 phydev->state = PHY_READY; 3371 3372 /* Get the LEDs from the device tree, and instantiate standard 3373 * LEDs for them. 3374 */ 3375 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3376 err = of_phy_leds(phydev); 3377 3378 out: 3379 /* Re-assert the reset signal on error */ 3380 if (err) 3381 phy_device_reset(phydev, 1); 3382 3383 return err; 3384 } 3385 3386 static int phy_remove(struct device *dev) 3387 { 3388 struct phy_device *phydev = to_phy_device(dev); 3389 3390 cancel_delayed_work_sync(&phydev->state_queue); 3391 3392 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3393 phy_leds_unregister(phydev); 3394 3395 phydev->state = PHY_DOWN; 3396 3397 sfp_bus_del_upstream(phydev->sfp_bus); 3398 phydev->sfp_bus = NULL; 3399 3400 if (phydev->drv && phydev->drv->remove) 3401 phydev->drv->remove(phydev); 3402 3403 /* Assert the reset signal */ 3404 phy_device_reset(phydev, 1); 3405 3406 phydev->drv = NULL; 3407 3408 return 0; 3409 } 3410 3411 /** 3412 * phy_driver_register - register a phy_driver with the PHY layer 3413 * @new_driver: new phy_driver to register 3414 * @owner: module owning this PHY 3415 */ 3416 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3417 { 3418 int retval; 3419 3420 /* Either the features are hard coded, or dynamically 3421 * determined. It cannot be both. 3422 */ 3423 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3424 pr_err("%s: features and get_features must not both be set\n", 3425 new_driver->name); 3426 return -EINVAL; 3427 } 3428 3429 /* PHYLIB device drivers must not match using a DT compatible table 3430 * as this bypasses our checks that the mdiodev that is being matched 3431 * is backed by a struct phy_device. If such a case happens, we will 3432 * make out-of-bounds accesses and lockup in phydev->lock. 3433 */ 3434 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3435 "%s: driver must not provide a DT match table\n", 3436 new_driver->name)) 3437 return -EINVAL; 3438 3439 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3440 new_driver->mdiodrv.driver.name = new_driver->name; 3441 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3442 new_driver->mdiodrv.driver.probe = phy_probe; 3443 new_driver->mdiodrv.driver.remove = phy_remove; 3444 new_driver->mdiodrv.driver.owner = owner; 3445 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3446 3447 retval = driver_register(&new_driver->mdiodrv.driver); 3448 if (retval) { 3449 pr_err("%s: Error %d in registering driver\n", 3450 new_driver->name, retval); 3451 3452 return retval; 3453 } 3454 3455 pr_debug("%s: Registered new driver\n", new_driver->name); 3456 3457 return 0; 3458 } 3459 EXPORT_SYMBOL(phy_driver_register); 3460 3461 int phy_drivers_register(struct phy_driver *new_driver, int n, 3462 struct module *owner) 3463 { 3464 int i, ret = 0; 3465 3466 for (i = 0; i < n; i++) { 3467 ret = phy_driver_register(new_driver + i, owner); 3468 if (ret) { 3469 while (i-- > 0) 3470 phy_driver_unregister(new_driver + i); 3471 break; 3472 } 3473 } 3474 return ret; 3475 } 3476 EXPORT_SYMBOL(phy_drivers_register); 3477 3478 void phy_driver_unregister(struct phy_driver *drv) 3479 { 3480 driver_unregister(&drv->mdiodrv.driver); 3481 } 3482 EXPORT_SYMBOL(phy_driver_unregister); 3483 3484 void phy_drivers_unregister(struct phy_driver *drv, int n) 3485 { 3486 int i; 3487 3488 for (i = 0; i < n; i++) 3489 phy_driver_unregister(drv + i); 3490 } 3491 EXPORT_SYMBOL(phy_drivers_unregister); 3492 3493 static struct phy_driver genphy_driver = { 3494 .phy_id = 0xffffffff, 3495 .phy_id_mask = 0xffffffff, 3496 .name = "Generic PHY", 3497 .get_features = genphy_read_abilities, 3498 .suspend = genphy_suspend, 3499 .resume = genphy_resume, 3500 .set_loopback = genphy_loopback, 3501 }; 3502 3503 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3504 .get_sset_count = phy_ethtool_get_sset_count, 3505 .get_strings = phy_ethtool_get_strings, 3506 .get_stats = phy_ethtool_get_stats, 3507 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3508 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3509 .get_plca_status = phy_ethtool_get_plca_status, 3510 .start_cable_test = phy_start_cable_test, 3511 .start_cable_test_tdr = phy_start_cable_test_tdr, 3512 }; 3513 3514 static const struct phylib_stubs __phylib_stubs = { 3515 .hwtstamp_get = __phy_hwtstamp_get, 3516 .hwtstamp_set = __phy_hwtstamp_set, 3517 }; 3518 3519 static void phylib_register_stubs(void) 3520 { 3521 phylib_stubs = &__phylib_stubs; 3522 } 3523 3524 static void phylib_unregister_stubs(void) 3525 { 3526 phylib_stubs = NULL; 3527 } 3528 3529 static int __init phy_init(void) 3530 { 3531 int rc; 3532 3533 rtnl_lock(); 3534 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3535 phylib_register_stubs(); 3536 rtnl_unlock(); 3537 3538 rc = mdio_bus_init(); 3539 if (rc) 3540 goto err_ethtool_phy_ops; 3541 3542 features_init(); 3543 3544 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3545 if (rc) 3546 goto err_mdio_bus; 3547 3548 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3549 if (rc) 3550 goto err_c45; 3551 3552 return 0; 3553 3554 err_c45: 3555 phy_driver_unregister(&genphy_c45_driver); 3556 err_mdio_bus: 3557 mdio_bus_exit(); 3558 err_ethtool_phy_ops: 3559 rtnl_lock(); 3560 phylib_unregister_stubs(); 3561 ethtool_set_ethtool_phy_ops(NULL); 3562 rtnl_unlock(); 3563 3564 return rc; 3565 } 3566 3567 static void __exit phy_exit(void) 3568 { 3569 phy_driver_unregister(&genphy_c45_driver); 3570 phy_driver_unregister(&genphy_driver); 3571 mdio_bus_exit(); 3572 rtnl_lock(); 3573 phylib_unregister_stubs(); 3574 ethtool_set_ethtool_phy_ops(NULL); 3575 rtnl_unlock(); 3576 } 3577 3578 subsys_initcall(phy_init); 3579 module_exit(phy_exit); 3580