1 /* Framework for configuring and reading PHY devices 2 * Based on code in sungem_phy.c and gianfar_phy.c 3 * 4 * Author: Andy Fleming 5 * 6 * Copyright (c) 2004 Freescale Semiconductor, Inc. 7 * Copyright (c) 2006, 2007 Maciej W. Rozycki 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/unistd.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/mm.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/phy.h> 32 #include <linux/timer.h> 33 #include <linux/workqueue.h> 34 #include <linux/mdio.h> 35 #include <linux/io.h> 36 #include <linux/uaccess.h> 37 #include <linux/atomic.h> 38 39 #include <asm/irq.h> 40 41 static const char *phy_speed_to_str(int speed) 42 { 43 switch (speed) { 44 case SPEED_10: 45 return "10Mbps"; 46 case SPEED_100: 47 return "100Mbps"; 48 case SPEED_1000: 49 return "1Gbps"; 50 case SPEED_2500: 51 return "2.5Gbps"; 52 case SPEED_10000: 53 return "10Gbps"; 54 case SPEED_UNKNOWN: 55 return "Unknown"; 56 default: 57 return "Unsupported (update phy.c)"; 58 } 59 } 60 61 #define PHY_STATE_STR(_state) \ 62 case PHY_##_state: \ 63 return __stringify(_state); \ 64 65 static const char *phy_state_to_str(enum phy_state st) 66 { 67 switch (st) { 68 PHY_STATE_STR(DOWN) 69 PHY_STATE_STR(STARTING) 70 PHY_STATE_STR(READY) 71 PHY_STATE_STR(PENDING) 72 PHY_STATE_STR(UP) 73 PHY_STATE_STR(AN) 74 PHY_STATE_STR(RUNNING) 75 PHY_STATE_STR(NOLINK) 76 PHY_STATE_STR(FORCING) 77 PHY_STATE_STR(CHANGELINK) 78 PHY_STATE_STR(HALTED) 79 PHY_STATE_STR(RESUMING) 80 } 81 82 return NULL; 83 } 84 85 86 /** 87 * phy_print_status - Convenience function to print out the current phy status 88 * @phydev: the phy_device struct 89 */ 90 void phy_print_status(struct phy_device *phydev) 91 { 92 if (phydev->link) { 93 netdev_info(phydev->attached_dev, 94 "Link is Up - %s/%s - flow control %s\n", 95 phy_speed_to_str(phydev->speed), 96 DUPLEX_FULL == phydev->duplex ? "Full" : "Half", 97 phydev->pause ? "rx/tx" : "off"); 98 } else { 99 netdev_info(phydev->attached_dev, "Link is Down\n"); 100 } 101 } 102 EXPORT_SYMBOL(phy_print_status); 103 104 /** 105 * phy_clear_interrupt - Ack the phy device's interrupt 106 * @phydev: the phy_device struct 107 * 108 * If the @phydev driver has an ack_interrupt function, call it to 109 * ack and clear the phy device's interrupt. 110 * 111 * Returns 0 on success or < 0 on error. 112 */ 113 static int phy_clear_interrupt(struct phy_device *phydev) 114 { 115 if (phydev->drv->ack_interrupt) 116 return phydev->drv->ack_interrupt(phydev); 117 118 return 0; 119 } 120 121 /** 122 * phy_config_interrupt - configure the PHY device for the requested interrupts 123 * @phydev: the phy_device struct 124 * @interrupts: interrupt flags to configure for this @phydev 125 * 126 * Returns 0 on success or < 0 on error. 127 */ 128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 129 { 130 phydev->interrupts = interrupts; 131 if (phydev->drv->config_intr) 132 return phydev->drv->config_intr(phydev); 133 134 return 0; 135 } 136 137 138 /** 139 * phy_aneg_done - return auto-negotiation status 140 * @phydev: target phy_device struct 141 * 142 * Description: Return the auto-negotiation status from this @phydev 143 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation 144 * is still pending. 145 */ 146 static inline int phy_aneg_done(struct phy_device *phydev) 147 { 148 if (phydev->drv->aneg_done) 149 return phydev->drv->aneg_done(phydev); 150 151 return genphy_aneg_done(phydev); 152 } 153 154 /* A structure for mapping a particular speed and duplex 155 * combination to a particular SUPPORTED and ADVERTISED value 156 */ 157 struct phy_setting { 158 int speed; 159 int duplex; 160 u32 setting; 161 }; 162 163 /* A mapping of all SUPPORTED settings to speed/duplex */ 164 static const struct phy_setting settings[] = { 165 { 166 .speed = SPEED_10000, 167 .duplex = DUPLEX_FULL, 168 .setting = SUPPORTED_10000baseKR_Full, 169 }, 170 { 171 .speed = SPEED_10000, 172 .duplex = DUPLEX_FULL, 173 .setting = SUPPORTED_10000baseKX4_Full, 174 }, 175 { 176 .speed = SPEED_10000, 177 .duplex = DUPLEX_FULL, 178 .setting = SUPPORTED_10000baseT_Full, 179 }, 180 { 181 .speed = SPEED_2500, 182 .duplex = DUPLEX_FULL, 183 .setting = SUPPORTED_2500baseX_Full, 184 }, 185 { 186 .speed = SPEED_1000, 187 .duplex = DUPLEX_FULL, 188 .setting = SUPPORTED_1000baseKX_Full, 189 }, 190 { 191 .speed = SPEED_1000, 192 .duplex = DUPLEX_FULL, 193 .setting = SUPPORTED_1000baseT_Full, 194 }, 195 { 196 .speed = SPEED_1000, 197 .duplex = DUPLEX_HALF, 198 .setting = SUPPORTED_1000baseT_Half, 199 }, 200 { 201 .speed = SPEED_100, 202 .duplex = DUPLEX_FULL, 203 .setting = SUPPORTED_100baseT_Full, 204 }, 205 { 206 .speed = SPEED_100, 207 .duplex = DUPLEX_HALF, 208 .setting = SUPPORTED_100baseT_Half, 209 }, 210 { 211 .speed = SPEED_10, 212 .duplex = DUPLEX_FULL, 213 .setting = SUPPORTED_10baseT_Full, 214 }, 215 { 216 .speed = SPEED_10, 217 .duplex = DUPLEX_HALF, 218 .setting = SUPPORTED_10baseT_Half, 219 }, 220 }; 221 222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 223 224 /** 225 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 226 * @speed: speed to match 227 * @duplex: duplex to match 228 * 229 * Description: Searches the settings array for the setting which 230 * matches the desired speed and duplex, and returns the index 231 * of that setting. Returns the index of the last setting if 232 * none of the others match. 233 */ 234 static inline unsigned int phy_find_setting(int speed, int duplex) 235 { 236 unsigned int idx = 0; 237 238 while (idx < ARRAY_SIZE(settings) && 239 (settings[idx].speed != speed || settings[idx].duplex != duplex)) 240 idx++; 241 242 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 243 } 244 245 /** 246 * phy_find_valid - find a PHY setting that matches the requested features mask 247 * @idx: The first index in settings[] to search 248 * @features: A mask of the valid settings 249 * 250 * Description: Returns the index of the first valid setting less 251 * than or equal to the one pointed to by idx, as determined by 252 * the mask in features. Returns the index of the last setting 253 * if nothing else matches. 254 */ 255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features) 256 { 257 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 258 idx++; 259 260 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 261 } 262 263 /** 264 * phy_check_valid - check if there is a valid PHY setting which matches 265 * speed, duplex, and feature mask 266 * @speed: speed to match 267 * @duplex: duplex to match 268 * @features: A mask of the valid settings 269 * 270 * Description: Returns true if there is a valid setting, false otherwise. 271 */ 272 static inline bool phy_check_valid(int speed, int duplex, u32 features) 273 { 274 unsigned int idx; 275 276 idx = phy_find_valid(phy_find_setting(speed, duplex), features); 277 278 return settings[idx].speed == speed && settings[idx].duplex == duplex && 279 (settings[idx].setting & features); 280 } 281 282 /** 283 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 284 * @phydev: the target phy_device struct 285 * 286 * Description: Make sure the PHY is set to supported speeds and 287 * duplexes. Drop down by one in this order: 1000/FULL, 288 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 289 */ 290 static void phy_sanitize_settings(struct phy_device *phydev) 291 { 292 u32 features = phydev->supported; 293 unsigned int idx; 294 295 /* Sanitize settings based on PHY capabilities */ 296 if ((features & SUPPORTED_Autoneg) == 0) 297 phydev->autoneg = AUTONEG_DISABLE; 298 299 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 300 features); 301 302 phydev->speed = settings[idx].speed; 303 phydev->duplex = settings[idx].duplex; 304 } 305 306 /** 307 * phy_ethtool_sset - generic ethtool sset function, handles all the details 308 * @phydev: target phy_device struct 309 * @cmd: ethtool_cmd 310 * 311 * A few notes about parameter checking: 312 * - We don't set port or transceiver, so we don't care what they 313 * were set to. 314 * - phy_start_aneg() will make sure forced settings are sane, and 315 * choose the next best ones from the ones selected, so we don't 316 * care if ethtool tries to give us bad values. 317 */ 318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 319 { 320 u32 speed = ethtool_cmd_speed(cmd); 321 322 if (cmd->phy_address != phydev->addr) 323 return -EINVAL; 324 325 /* We make sure that we don't pass unsupported values in to the PHY */ 326 cmd->advertising &= phydev->supported; 327 328 /* Verify the settings we care about. */ 329 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 330 return -EINVAL; 331 332 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 333 return -EINVAL; 334 335 if (cmd->autoneg == AUTONEG_DISABLE && 336 ((speed != SPEED_1000 && 337 speed != SPEED_100 && 338 speed != SPEED_10) || 339 (cmd->duplex != DUPLEX_HALF && 340 cmd->duplex != DUPLEX_FULL))) 341 return -EINVAL; 342 343 phydev->autoneg = cmd->autoneg; 344 345 phydev->speed = speed; 346 347 phydev->advertising = cmd->advertising; 348 349 if (AUTONEG_ENABLE == cmd->autoneg) 350 phydev->advertising |= ADVERTISED_Autoneg; 351 else 352 phydev->advertising &= ~ADVERTISED_Autoneg; 353 354 phydev->duplex = cmd->duplex; 355 356 /* Restart the PHY */ 357 phy_start_aneg(phydev); 358 359 return 0; 360 } 361 EXPORT_SYMBOL(phy_ethtool_sset); 362 363 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 364 { 365 cmd->supported = phydev->supported; 366 367 cmd->advertising = phydev->advertising; 368 cmd->lp_advertising = phydev->lp_advertising; 369 370 ethtool_cmd_speed_set(cmd, phydev->speed); 371 cmd->duplex = phydev->duplex; 372 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 373 cmd->port = PORT_BNC; 374 else 375 cmd->port = PORT_MII; 376 cmd->phy_address = phydev->addr; 377 cmd->transceiver = phy_is_internal(phydev) ? 378 XCVR_INTERNAL : XCVR_EXTERNAL; 379 cmd->autoneg = phydev->autoneg; 380 381 return 0; 382 } 383 EXPORT_SYMBOL(phy_ethtool_gset); 384 385 /** 386 * phy_mii_ioctl - generic PHY MII ioctl interface 387 * @phydev: the phy_device struct 388 * @ifr: &struct ifreq for socket ioctl's 389 * @cmd: ioctl cmd to execute 390 * 391 * Note that this function is currently incompatible with the 392 * PHYCONTROL layer. It changes registers without regard to 393 * current state. Use at own risk. 394 */ 395 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) 396 { 397 struct mii_ioctl_data *mii_data = if_mii(ifr); 398 u16 val = mii_data->val_in; 399 bool change_autoneg = false; 400 401 switch (cmd) { 402 case SIOCGMIIPHY: 403 mii_data->phy_id = phydev->addr; 404 /* fall through */ 405 406 case SIOCGMIIREG: 407 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id, 408 mii_data->reg_num); 409 return 0; 410 411 case SIOCSMIIREG: 412 if (mii_data->phy_id == phydev->addr) { 413 switch (mii_data->reg_num) { 414 case MII_BMCR: 415 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { 416 if (phydev->autoneg == AUTONEG_ENABLE) 417 change_autoneg = true; 418 phydev->autoneg = AUTONEG_DISABLE; 419 if (val & BMCR_FULLDPLX) 420 phydev->duplex = DUPLEX_FULL; 421 else 422 phydev->duplex = DUPLEX_HALF; 423 if (val & BMCR_SPEED1000) 424 phydev->speed = SPEED_1000; 425 else if (val & BMCR_SPEED100) 426 phydev->speed = SPEED_100; 427 else phydev->speed = SPEED_10; 428 } 429 else { 430 if (phydev->autoneg == AUTONEG_DISABLE) 431 change_autoneg = true; 432 phydev->autoneg = AUTONEG_ENABLE; 433 } 434 break; 435 case MII_ADVERTISE: 436 phydev->advertising = mii_adv_to_ethtool_adv_t(val); 437 change_autoneg = true; 438 break; 439 default: 440 /* do nothing */ 441 break; 442 } 443 } 444 445 mdiobus_write(phydev->bus, mii_data->phy_id, 446 mii_data->reg_num, val); 447 448 if (mii_data->reg_num == MII_BMCR && 449 val & BMCR_RESET) 450 return phy_init_hw(phydev); 451 452 if (change_autoneg) 453 return phy_start_aneg(phydev); 454 455 return 0; 456 457 case SIOCSHWTSTAMP: 458 if (phydev->drv->hwtstamp) 459 return phydev->drv->hwtstamp(phydev, ifr); 460 /* fall through */ 461 462 default: 463 return -EOPNOTSUPP; 464 } 465 } 466 EXPORT_SYMBOL(phy_mii_ioctl); 467 468 /** 469 * phy_start_aneg - start auto-negotiation for this PHY device 470 * @phydev: the phy_device struct 471 * 472 * Description: Sanitizes the settings (if we're not autonegotiating 473 * them), and then calls the driver's config_aneg function. 474 * If the PHYCONTROL Layer is operating, we change the state to 475 * reflect the beginning of Auto-negotiation or forcing. 476 */ 477 int phy_start_aneg(struct phy_device *phydev) 478 { 479 int err; 480 481 mutex_lock(&phydev->lock); 482 483 if (AUTONEG_DISABLE == phydev->autoneg) 484 phy_sanitize_settings(phydev); 485 486 /* Invalidate LP advertising flags */ 487 phydev->lp_advertising = 0; 488 489 err = phydev->drv->config_aneg(phydev); 490 if (err < 0) 491 goto out_unlock; 492 493 if (phydev->state != PHY_HALTED) { 494 if (AUTONEG_ENABLE == phydev->autoneg) { 495 phydev->state = PHY_AN; 496 phydev->link_timeout = PHY_AN_TIMEOUT; 497 } else { 498 phydev->state = PHY_FORCING; 499 phydev->link_timeout = PHY_FORCE_TIMEOUT; 500 } 501 } 502 503 out_unlock: 504 mutex_unlock(&phydev->lock); 505 return err; 506 } 507 EXPORT_SYMBOL(phy_start_aneg); 508 509 /** 510 * phy_start_machine - start PHY state machine tracking 511 * @phydev: the phy_device struct 512 * 513 * Description: The PHY infrastructure can run a state machine 514 * which tracks whether the PHY is starting up, negotiating, 515 * etc. This function starts the timer which tracks the state 516 * of the PHY. If you want to maintain your own state machine, 517 * do not call this function. 518 */ 519 void phy_start_machine(struct phy_device *phydev) 520 { 521 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 522 } 523 524 /** 525 * phy_stop_machine - stop the PHY state machine tracking 526 * @phydev: target phy_device struct 527 * 528 * Description: Stops the state machine timer, sets the state to UP 529 * (unless it wasn't up yet). This function must be called BEFORE 530 * phy_detach. 531 */ 532 void phy_stop_machine(struct phy_device *phydev) 533 { 534 cancel_delayed_work_sync(&phydev->state_queue); 535 536 mutex_lock(&phydev->lock); 537 if (phydev->state > PHY_UP) 538 phydev->state = PHY_UP; 539 mutex_unlock(&phydev->lock); 540 } 541 542 /** 543 * phy_error - enter HALTED state for this PHY device 544 * @phydev: target phy_device struct 545 * 546 * Moves the PHY to the HALTED state in response to a read 547 * or write error, and tells the controller the link is down. 548 * Must not be called from interrupt context, or while the 549 * phydev->lock is held. 550 */ 551 static void phy_error(struct phy_device *phydev) 552 { 553 mutex_lock(&phydev->lock); 554 phydev->state = PHY_HALTED; 555 mutex_unlock(&phydev->lock); 556 } 557 558 /** 559 * phy_interrupt - PHY interrupt handler 560 * @irq: interrupt line 561 * @phy_dat: phy_device pointer 562 * 563 * Description: When a PHY interrupt occurs, the handler disables 564 * interrupts, and schedules a work task to clear the interrupt. 565 */ 566 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 567 { 568 struct phy_device *phydev = phy_dat; 569 570 if (PHY_HALTED == phydev->state) 571 return IRQ_NONE; /* It can't be ours. */ 572 573 /* The MDIO bus is not allowed to be written in interrupt 574 * context, so we need to disable the irq here. A work 575 * queue will write the PHY to disable and clear the 576 * interrupt, and then reenable the irq line. 577 */ 578 disable_irq_nosync(irq); 579 atomic_inc(&phydev->irq_disable); 580 581 queue_work(system_power_efficient_wq, &phydev->phy_queue); 582 583 return IRQ_HANDLED; 584 } 585 586 /** 587 * phy_enable_interrupts - Enable the interrupts from the PHY side 588 * @phydev: target phy_device struct 589 */ 590 static int phy_enable_interrupts(struct phy_device *phydev) 591 { 592 int err = phy_clear_interrupt(phydev); 593 594 if (err < 0) 595 return err; 596 597 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 598 } 599 600 /** 601 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 602 * @phydev: target phy_device struct 603 */ 604 static int phy_disable_interrupts(struct phy_device *phydev) 605 { 606 int err; 607 608 /* Disable PHY interrupts */ 609 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 610 if (err) 611 goto phy_err; 612 613 /* Clear the interrupt */ 614 err = phy_clear_interrupt(phydev); 615 if (err) 616 goto phy_err; 617 618 return 0; 619 620 phy_err: 621 phy_error(phydev); 622 623 return err; 624 } 625 626 /** 627 * phy_start_interrupts - request and enable interrupts for a PHY device 628 * @phydev: target phy_device struct 629 * 630 * Description: Request the interrupt for the given PHY. 631 * If this fails, then we set irq to PHY_POLL. 632 * Otherwise, we enable the interrupts in the PHY. 633 * This should only be called with a valid IRQ number. 634 * Returns 0 on success or < 0 on error. 635 */ 636 int phy_start_interrupts(struct phy_device *phydev) 637 { 638 atomic_set(&phydev->irq_disable, 0); 639 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt", 640 phydev) < 0) { 641 pr_warn("%s: Can't get IRQ %d (PHY)\n", 642 phydev->bus->name, phydev->irq); 643 phydev->irq = PHY_POLL; 644 return 0; 645 } 646 647 return phy_enable_interrupts(phydev); 648 } 649 EXPORT_SYMBOL(phy_start_interrupts); 650 651 /** 652 * phy_stop_interrupts - disable interrupts from a PHY device 653 * @phydev: target phy_device struct 654 */ 655 int phy_stop_interrupts(struct phy_device *phydev) 656 { 657 int err = phy_disable_interrupts(phydev); 658 659 if (err) 660 phy_error(phydev); 661 662 free_irq(phydev->irq, phydev); 663 664 /* Cannot call flush_scheduled_work() here as desired because 665 * of rtnl_lock(), but we do not really care about what would 666 * be done, except from enable_irq(), so cancel any work 667 * possibly pending and take care of the matter below. 668 */ 669 cancel_work_sync(&phydev->phy_queue); 670 /* If work indeed has been cancelled, disable_irq() will have 671 * been left unbalanced from phy_interrupt() and enable_irq() 672 * has to be called so that other devices on the line work. 673 */ 674 while (atomic_dec_return(&phydev->irq_disable) >= 0) 675 enable_irq(phydev->irq); 676 677 return err; 678 } 679 EXPORT_SYMBOL(phy_stop_interrupts); 680 681 /** 682 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 683 * @work: work_struct that describes the work to be done 684 */ 685 void phy_change(struct work_struct *work) 686 { 687 struct phy_device *phydev = 688 container_of(work, struct phy_device, phy_queue); 689 690 if (phydev->drv->did_interrupt && 691 !phydev->drv->did_interrupt(phydev)) 692 goto ignore; 693 694 if (phy_disable_interrupts(phydev)) 695 goto phy_err; 696 697 mutex_lock(&phydev->lock); 698 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 699 phydev->state = PHY_CHANGELINK; 700 mutex_unlock(&phydev->lock); 701 702 atomic_dec(&phydev->irq_disable); 703 enable_irq(phydev->irq); 704 705 /* Reenable interrupts */ 706 if (PHY_HALTED != phydev->state && 707 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) 708 goto irq_enable_err; 709 710 /* reschedule state queue work to run as soon as possible */ 711 cancel_delayed_work_sync(&phydev->state_queue); 712 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 713 return; 714 715 ignore: 716 atomic_dec(&phydev->irq_disable); 717 enable_irq(phydev->irq); 718 return; 719 720 irq_enable_err: 721 disable_irq(phydev->irq); 722 atomic_inc(&phydev->irq_disable); 723 phy_err: 724 phy_error(phydev); 725 } 726 727 /** 728 * phy_stop - Bring down the PHY link, and stop checking the status 729 * @phydev: target phy_device struct 730 */ 731 void phy_stop(struct phy_device *phydev) 732 { 733 mutex_lock(&phydev->lock); 734 735 if (PHY_HALTED == phydev->state) 736 goto out_unlock; 737 738 if (phy_interrupt_is_valid(phydev)) { 739 /* Disable PHY Interrupts */ 740 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 741 742 /* Clear any pending interrupts */ 743 phy_clear_interrupt(phydev); 744 } 745 746 phydev->state = PHY_HALTED; 747 748 out_unlock: 749 mutex_unlock(&phydev->lock); 750 751 /* Cannot call flush_scheduled_work() here as desired because 752 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 753 * will not reenable interrupts. 754 */ 755 } 756 EXPORT_SYMBOL(phy_stop); 757 758 /** 759 * phy_start - start or restart a PHY device 760 * @phydev: target phy_device struct 761 * 762 * Description: Indicates the attached device's readiness to 763 * handle PHY-related work. Used during startup to start the 764 * PHY, and after a call to phy_stop() to resume operation. 765 * Also used to indicate the MDIO bus has cleared an error 766 * condition. 767 */ 768 void phy_start(struct phy_device *phydev) 769 { 770 bool do_resume = false; 771 int err = 0; 772 773 mutex_lock(&phydev->lock); 774 775 switch (phydev->state) { 776 case PHY_STARTING: 777 phydev->state = PHY_PENDING; 778 break; 779 case PHY_READY: 780 phydev->state = PHY_UP; 781 break; 782 case PHY_HALTED: 783 /* make sure interrupts are re-enabled for the PHY */ 784 err = phy_enable_interrupts(phydev); 785 if (err < 0) 786 break; 787 788 phydev->state = PHY_RESUMING; 789 do_resume = true; 790 break; 791 default: 792 break; 793 } 794 mutex_unlock(&phydev->lock); 795 796 /* if phy was suspended, bring the physical link up again */ 797 if (do_resume) 798 phy_resume(phydev); 799 } 800 EXPORT_SYMBOL(phy_start); 801 802 /** 803 * phy_state_machine - Handle the state machine 804 * @work: work_struct that describes the work to be done 805 */ 806 void phy_state_machine(struct work_struct *work) 807 { 808 struct delayed_work *dwork = to_delayed_work(work); 809 struct phy_device *phydev = 810 container_of(dwork, struct phy_device, state_queue); 811 bool needs_aneg = false, do_suspend = false; 812 enum phy_state old_state; 813 int err = 0; 814 int old_link; 815 816 mutex_lock(&phydev->lock); 817 818 old_state = phydev->state; 819 820 if (phydev->drv->link_change_notify) 821 phydev->drv->link_change_notify(phydev); 822 823 switch (phydev->state) { 824 case PHY_DOWN: 825 case PHY_STARTING: 826 case PHY_READY: 827 case PHY_PENDING: 828 break; 829 case PHY_UP: 830 needs_aneg = true; 831 832 phydev->link_timeout = PHY_AN_TIMEOUT; 833 834 break; 835 case PHY_AN: 836 err = phy_read_status(phydev); 837 if (err < 0) 838 break; 839 840 /* If the link is down, give up on negotiation for now */ 841 if (!phydev->link) { 842 phydev->state = PHY_NOLINK; 843 netif_carrier_off(phydev->attached_dev); 844 phydev->adjust_link(phydev->attached_dev); 845 break; 846 } 847 848 /* Check if negotiation is done. Break if there's an error */ 849 err = phy_aneg_done(phydev); 850 if (err < 0) 851 break; 852 853 /* If AN is done, we're running */ 854 if (err > 0) { 855 phydev->state = PHY_RUNNING; 856 netif_carrier_on(phydev->attached_dev); 857 phydev->adjust_link(phydev->attached_dev); 858 859 } else if (0 == phydev->link_timeout--) 860 needs_aneg = true; 861 break; 862 case PHY_NOLINK: 863 err = phy_read_status(phydev); 864 if (err) 865 break; 866 867 if (phydev->link) { 868 if (AUTONEG_ENABLE == phydev->autoneg) { 869 err = phy_aneg_done(phydev); 870 if (err < 0) 871 break; 872 873 if (!err) { 874 phydev->state = PHY_AN; 875 phydev->link_timeout = PHY_AN_TIMEOUT; 876 break; 877 } 878 } 879 phydev->state = PHY_RUNNING; 880 netif_carrier_on(phydev->attached_dev); 881 phydev->adjust_link(phydev->attached_dev); 882 } 883 break; 884 case PHY_FORCING: 885 err = genphy_update_link(phydev); 886 if (err) 887 break; 888 889 if (phydev->link) { 890 phydev->state = PHY_RUNNING; 891 netif_carrier_on(phydev->attached_dev); 892 } else { 893 if (0 == phydev->link_timeout--) 894 needs_aneg = true; 895 } 896 897 phydev->adjust_link(phydev->attached_dev); 898 break; 899 case PHY_RUNNING: 900 /* Only register a CHANGE if we are polling or ignoring 901 * interrupts and link changed since latest checking. 902 */ 903 if (!phy_interrupt_is_valid(phydev)) { 904 old_link = phydev->link; 905 err = phy_read_status(phydev); 906 if (err) 907 break; 908 909 if (old_link != phydev->link) 910 phydev->state = PHY_CHANGELINK; 911 } 912 break; 913 case PHY_CHANGELINK: 914 err = phy_read_status(phydev); 915 if (err) 916 break; 917 918 if (phydev->link) { 919 phydev->state = PHY_RUNNING; 920 netif_carrier_on(phydev->attached_dev); 921 } else { 922 phydev->state = PHY_NOLINK; 923 netif_carrier_off(phydev->attached_dev); 924 } 925 926 phydev->adjust_link(phydev->attached_dev); 927 928 if (phy_interrupt_is_valid(phydev)) 929 err = phy_config_interrupt(phydev, 930 PHY_INTERRUPT_ENABLED); 931 break; 932 case PHY_HALTED: 933 if (phydev->link) { 934 phydev->link = 0; 935 netif_carrier_off(phydev->attached_dev); 936 phydev->adjust_link(phydev->attached_dev); 937 do_suspend = true; 938 } 939 break; 940 case PHY_RESUMING: 941 if (AUTONEG_ENABLE == phydev->autoneg) { 942 err = phy_aneg_done(phydev); 943 if (err < 0) 944 break; 945 946 /* err > 0 if AN is done. 947 * Otherwise, it's 0, and we're still waiting for AN 948 */ 949 if (err > 0) { 950 err = phy_read_status(phydev); 951 if (err) 952 break; 953 954 if (phydev->link) { 955 phydev->state = PHY_RUNNING; 956 netif_carrier_on(phydev->attached_dev); 957 } else { 958 phydev->state = PHY_NOLINK; 959 } 960 phydev->adjust_link(phydev->attached_dev); 961 } else { 962 phydev->state = PHY_AN; 963 phydev->link_timeout = PHY_AN_TIMEOUT; 964 } 965 } else { 966 err = phy_read_status(phydev); 967 if (err) 968 break; 969 970 if (phydev->link) { 971 phydev->state = PHY_RUNNING; 972 netif_carrier_on(phydev->attached_dev); 973 } else { 974 phydev->state = PHY_NOLINK; 975 } 976 phydev->adjust_link(phydev->attached_dev); 977 } 978 break; 979 } 980 981 mutex_unlock(&phydev->lock); 982 983 if (needs_aneg) 984 err = phy_start_aneg(phydev); 985 else if (do_suspend) 986 phy_suspend(phydev); 987 988 if (err < 0) 989 phy_error(phydev); 990 991 dev_dbg(&phydev->dev, "PHY state change %s -> %s\n", 992 phy_state_to_str(old_state), phy_state_to_str(phydev->state)); 993 994 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 995 PHY_STATE_TIME * HZ); 996 } 997 998 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 999 { 1000 cancel_work_sync(&phydev->phy_queue); 1001 phydev->link = new_link; 1002 schedule_work(&phydev->phy_queue); 1003 } 1004 EXPORT_SYMBOL(phy_mac_interrupt); 1005 1006 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 1007 int addr) 1008 { 1009 /* Write the desired MMD Devad */ 1010 bus->write(bus, addr, MII_MMD_CTRL, devad); 1011 1012 /* Write the desired MMD register address */ 1013 bus->write(bus, addr, MII_MMD_DATA, prtad); 1014 1015 /* Select the Function : DATA with no post increment */ 1016 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 1017 } 1018 1019 /** 1020 * phy_read_mmd_indirect - reads data from the MMD registers 1021 * @phydev: The PHY device bus 1022 * @prtad: MMD Address 1023 * @devad: MMD DEVAD 1024 * @addr: PHY address on the MII bus 1025 * 1026 * Description: it reads data from the MMD registers (clause 22 to access to 1027 * clause 45) of the specified phy address. 1028 * To read these register we have: 1029 * 1) Write reg 13 // DEVAD 1030 * 2) Write reg 14 // MMD Address 1031 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1032 * 3) Read reg 14 // Read MMD data 1033 */ 1034 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, 1035 int devad, int addr) 1036 { 1037 struct phy_driver *phydrv = phydev->drv; 1038 int value = -1; 1039 1040 if (phydrv->read_mmd_indirect == NULL) { 1041 mmd_phy_indirect(phydev->bus, prtad, devad, addr); 1042 1043 /* Read the content of the MMD's selected register */ 1044 value = phydev->bus->read(phydev->bus, addr, MII_MMD_DATA); 1045 } else { 1046 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); 1047 } 1048 return value; 1049 } 1050 EXPORT_SYMBOL(phy_read_mmd_indirect); 1051 1052 /** 1053 * phy_write_mmd_indirect - writes data to the MMD registers 1054 * @phydev: The PHY device 1055 * @prtad: MMD Address 1056 * @devad: MMD DEVAD 1057 * @addr: PHY address on the MII bus 1058 * @data: data to write in the MMD register 1059 * 1060 * Description: Write data from the MMD registers of the specified 1061 * phy address. 1062 * To write these register we have: 1063 * 1) Write reg 13 // DEVAD 1064 * 2) Write reg 14 // MMD Address 1065 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1066 * 3) Write reg 14 // Write MMD data 1067 */ 1068 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, 1069 int devad, int addr, u32 data) 1070 { 1071 struct phy_driver *phydrv = phydev->drv; 1072 1073 if (phydrv->write_mmd_indirect == NULL) { 1074 mmd_phy_indirect(phydev->bus, prtad, devad, addr); 1075 1076 /* Write the data into MMD's selected register */ 1077 phydev->bus->write(phydev->bus, addr, MII_MMD_DATA, data); 1078 } else { 1079 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); 1080 } 1081 } 1082 EXPORT_SYMBOL(phy_write_mmd_indirect); 1083 1084 /** 1085 * phy_init_eee - init and check the EEE feature 1086 * @phydev: target phy_device struct 1087 * @clk_stop_enable: PHY may stop the clock during LPI 1088 * 1089 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1090 * is supported by looking at the MMD registers 3.20 and 7.60/61 1091 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1092 * bit if required. 1093 */ 1094 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1095 { 1096 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1097 * Also EEE feature is active when core is operating with MII, GMII 1098 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and 1099 * should return an error if they do not support EEE. 1100 */ 1101 if ((phydev->duplex == DUPLEX_FULL) && 1102 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1103 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1104 phy_interface_is_rgmii(phydev) || 1105 phy_is_internal(phydev))) { 1106 int eee_lp, eee_cap, eee_adv; 1107 u32 lp, cap, adv; 1108 int status; 1109 1110 /* Read phy status to properly get the right settings */ 1111 status = phy_read_status(phydev); 1112 if (status) 1113 return status; 1114 1115 /* First check if the EEE ability is supported */ 1116 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1117 MDIO_MMD_PCS, phydev->addr); 1118 if (eee_cap <= 0) 1119 goto eee_exit_err; 1120 1121 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1122 if (!cap) 1123 goto eee_exit_err; 1124 1125 /* Check which link settings negotiated and verify it in 1126 * the EEE advertising registers. 1127 */ 1128 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1129 MDIO_MMD_AN, phydev->addr); 1130 if (eee_lp <= 0) 1131 goto eee_exit_err; 1132 1133 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1134 MDIO_MMD_AN, phydev->addr); 1135 if (eee_adv <= 0) 1136 goto eee_exit_err; 1137 1138 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1139 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1140 if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv)) 1141 goto eee_exit_err; 1142 1143 if (clk_stop_enable) { 1144 /* Configure the PHY to stop receiving xMII 1145 * clock while it is signaling LPI. 1146 */ 1147 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, 1148 MDIO_MMD_PCS, 1149 phydev->addr); 1150 if (val < 0) 1151 return val; 1152 1153 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1154 phy_write_mmd_indirect(phydev, MDIO_CTRL1, 1155 MDIO_MMD_PCS, phydev->addr, 1156 val); 1157 } 1158 1159 return 0; /* EEE supported */ 1160 } 1161 eee_exit_err: 1162 return -EPROTONOSUPPORT; 1163 } 1164 EXPORT_SYMBOL(phy_init_eee); 1165 1166 /** 1167 * phy_get_eee_err - report the EEE wake error count 1168 * @phydev: target phy_device struct 1169 * 1170 * Description: it is to report the number of time where the PHY 1171 * failed to complete its normal wake sequence. 1172 */ 1173 int phy_get_eee_err(struct phy_device *phydev) 1174 { 1175 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, 1176 MDIO_MMD_PCS, phydev->addr); 1177 } 1178 EXPORT_SYMBOL(phy_get_eee_err); 1179 1180 /** 1181 * phy_ethtool_get_eee - get EEE supported and status 1182 * @phydev: target phy_device struct 1183 * @data: ethtool_eee data 1184 * 1185 * Description: it reportes the Supported/Advertisement/LP Advertisement 1186 * capabilities. 1187 */ 1188 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1189 { 1190 int val; 1191 1192 /* Get Supported EEE */ 1193 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1194 MDIO_MMD_PCS, phydev->addr); 1195 if (val < 0) 1196 return val; 1197 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1198 1199 /* Get advertisement EEE */ 1200 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1201 MDIO_MMD_AN, phydev->addr); 1202 if (val < 0) 1203 return val; 1204 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1205 1206 /* Get LP advertisement EEE */ 1207 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1208 MDIO_MMD_AN, phydev->addr); 1209 if (val < 0) 1210 return val; 1211 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1212 1213 return 0; 1214 } 1215 EXPORT_SYMBOL(phy_ethtool_get_eee); 1216 1217 /** 1218 * phy_ethtool_set_eee - set EEE supported and status 1219 * @phydev: target phy_device struct 1220 * @data: ethtool_eee data 1221 * 1222 * Description: it is to program the Advertisement EEE register. 1223 */ 1224 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1225 { 1226 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1227 1228 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, 1229 phydev->addr, val); 1230 1231 return 0; 1232 } 1233 EXPORT_SYMBOL(phy_ethtool_set_eee); 1234 1235 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1236 { 1237 if (phydev->drv->set_wol) 1238 return phydev->drv->set_wol(phydev, wol); 1239 1240 return -EOPNOTSUPP; 1241 } 1242 EXPORT_SYMBOL(phy_ethtool_set_wol); 1243 1244 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1245 { 1246 if (phydev->drv->get_wol) 1247 phydev->drv->get_wol(phydev, wol); 1248 } 1249 EXPORT_SYMBOL(phy_ethtool_get_wol); 1250