1 /* Framework for configuring and reading PHY devices 2 * Based on code in sungem_phy.c and gianfar_phy.c 3 * 4 * Author: Andy Fleming 5 * 6 * Copyright (c) 2004 Freescale Semiconductor, Inc. 7 * Copyright (c) 2006, 2007 Maciej W. Rozycki 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/unistd.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/mm.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/phy.h> 32 #include <linux/timer.h> 33 #include <linux/workqueue.h> 34 #include <linux/mdio.h> 35 #include <linux/io.h> 36 #include <linux/uaccess.h> 37 #include <linux/atomic.h> 38 39 #include <asm/irq.h> 40 41 static const char *phy_speed_to_str(int speed) 42 { 43 switch (speed) { 44 case SPEED_10: 45 return "10Mbps"; 46 case SPEED_100: 47 return "100Mbps"; 48 case SPEED_1000: 49 return "1Gbps"; 50 case SPEED_2500: 51 return "2.5Gbps"; 52 case SPEED_10000: 53 return "10Gbps"; 54 case SPEED_UNKNOWN: 55 return "Unknown"; 56 default: 57 return "Unsupported (update phy.c)"; 58 } 59 } 60 61 #define PHY_STATE_STR(_state) \ 62 case PHY_##_state: \ 63 return __stringify(_state); \ 64 65 static const char *phy_state_to_str(enum phy_state st) 66 { 67 switch (st) { 68 PHY_STATE_STR(DOWN) 69 PHY_STATE_STR(STARTING) 70 PHY_STATE_STR(READY) 71 PHY_STATE_STR(PENDING) 72 PHY_STATE_STR(UP) 73 PHY_STATE_STR(AN) 74 PHY_STATE_STR(RUNNING) 75 PHY_STATE_STR(NOLINK) 76 PHY_STATE_STR(FORCING) 77 PHY_STATE_STR(CHANGELINK) 78 PHY_STATE_STR(HALTED) 79 PHY_STATE_STR(RESUMING) 80 } 81 82 return NULL; 83 } 84 85 86 /** 87 * phy_print_status - Convenience function to print out the current phy status 88 * @phydev: the phy_device struct 89 */ 90 void phy_print_status(struct phy_device *phydev) 91 { 92 if (phydev->link) { 93 netdev_info(phydev->attached_dev, 94 "Link is Up - %s/%s - flow control %s\n", 95 phy_speed_to_str(phydev->speed), 96 DUPLEX_FULL == phydev->duplex ? "Full" : "Half", 97 phydev->pause ? "rx/tx" : "off"); 98 } else { 99 netdev_info(phydev->attached_dev, "Link is Down\n"); 100 } 101 } 102 EXPORT_SYMBOL(phy_print_status); 103 104 /** 105 * phy_clear_interrupt - Ack the phy device's interrupt 106 * @phydev: the phy_device struct 107 * 108 * If the @phydev driver has an ack_interrupt function, call it to 109 * ack and clear the phy device's interrupt. 110 * 111 * Returns 0 on success or < 0 on error. 112 */ 113 static int phy_clear_interrupt(struct phy_device *phydev) 114 { 115 if (phydev->drv->ack_interrupt) 116 return phydev->drv->ack_interrupt(phydev); 117 118 return 0; 119 } 120 121 /** 122 * phy_config_interrupt - configure the PHY device for the requested interrupts 123 * @phydev: the phy_device struct 124 * @interrupts: interrupt flags to configure for this @phydev 125 * 126 * Returns 0 on success or < 0 on error. 127 */ 128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 129 { 130 phydev->interrupts = interrupts; 131 if (phydev->drv->config_intr) 132 return phydev->drv->config_intr(phydev); 133 134 return 0; 135 } 136 137 138 /** 139 * phy_aneg_done - return auto-negotiation status 140 * @phydev: target phy_device struct 141 * 142 * Description: Return the auto-negotiation status from this @phydev 143 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation 144 * is still pending. 145 */ 146 static inline int phy_aneg_done(struct phy_device *phydev) 147 { 148 if (phydev->drv->aneg_done) 149 return phydev->drv->aneg_done(phydev); 150 151 return genphy_aneg_done(phydev); 152 } 153 154 /* A structure for mapping a particular speed and duplex 155 * combination to a particular SUPPORTED and ADVERTISED value 156 */ 157 struct phy_setting { 158 int speed; 159 int duplex; 160 u32 setting; 161 }; 162 163 /* A mapping of all SUPPORTED settings to speed/duplex */ 164 static const struct phy_setting settings[] = { 165 { 166 .speed = SPEED_10000, 167 .duplex = DUPLEX_FULL, 168 .setting = SUPPORTED_10000baseKR_Full, 169 }, 170 { 171 .speed = SPEED_10000, 172 .duplex = DUPLEX_FULL, 173 .setting = SUPPORTED_10000baseKX4_Full, 174 }, 175 { 176 .speed = SPEED_10000, 177 .duplex = DUPLEX_FULL, 178 .setting = SUPPORTED_10000baseT_Full, 179 }, 180 { 181 .speed = SPEED_2500, 182 .duplex = DUPLEX_FULL, 183 .setting = SUPPORTED_2500baseX_Full, 184 }, 185 { 186 .speed = SPEED_1000, 187 .duplex = DUPLEX_FULL, 188 .setting = SUPPORTED_1000baseKX_Full, 189 }, 190 { 191 .speed = SPEED_1000, 192 .duplex = DUPLEX_FULL, 193 .setting = SUPPORTED_1000baseT_Full, 194 }, 195 { 196 .speed = SPEED_1000, 197 .duplex = DUPLEX_HALF, 198 .setting = SUPPORTED_1000baseT_Half, 199 }, 200 { 201 .speed = SPEED_100, 202 .duplex = DUPLEX_FULL, 203 .setting = SUPPORTED_100baseT_Full, 204 }, 205 { 206 .speed = SPEED_100, 207 .duplex = DUPLEX_HALF, 208 .setting = SUPPORTED_100baseT_Half, 209 }, 210 { 211 .speed = SPEED_10, 212 .duplex = DUPLEX_FULL, 213 .setting = SUPPORTED_10baseT_Full, 214 }, 215 { 216 .speed = SPEED_10, 217 .duplex = DUPLEX_HALF, 218 .setting = SUPPORTED_10baseT_Half, 219 }, 220 }; 221 222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 223 224 /** 225 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 226 * @speed: speed to match 227 * @duplex: duplex to match 228 * 229 * Description: Searches the settings array for the setting which 230 * matches the desired speed and duplex, and returns the index 231 * of that setting. Returns the index of the last setting if 232 * none of the others match. 233 */ 234 static inline unsigned int phy_find_setting(int speed, int duplex) 235 { 236 unsigned int idx = 0; 237 238 while (idx < ARRAY_SIZE(settings) && 239 (settings[idx].speed != speed || settings[idx].duplex != duplex)) 240 idx++; 241 242 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 243 } 244 245 /** 246 * phy_find_valid - find a PHY setting that matches the requested features mask 247 * @idx: The first index in settings[] to search 248 * @features: A mask of the valid settings 249 * 250 * Description: Returns the index of the first valid setting less 251 * than or equal to the one pointed to by idx, as determined by 252 * the mask in features. Returns the index of the last setting 253 * if nothing else matches. 254 */ 255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features) 256 { 257 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 258 idx++; 259 260 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 261 } 262 263 /** 264 * phy_check_valid - check if there is a valid PHY setting which matches 265 * speed, duplex, and feature mask 266 * @speed: speed to match 267 * @duplex: duplex to match 268 * @features: A mask of the valid settings 269 * 270 * Description: Returns true if there is a valid setting, false otherwise. 271 */ 272 static inline bool phy_check_valid(int speed, int duplex, u32 features) 273 { 274 unsigned int idx; 275 276 idx = phy_find_valid(phy_find_setting(speed, duplex), features); 277 278 return settings[idx].speed == speed && settings[idx].duplex == duplex && 279 (settings[idx].setting & features); 280 } 281 282 /** 283 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 284 * @phydev: the target phy_device struct 285 * 286 * Description: Make sure the PHY is set to supported speeds and 287 * duplexes. Drop down by one in this order: 1000/FULL, 288 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 289 */ 290 static void phy_sanitize_settings(struct phy_device *phydev) 291 { 292 u32 features = phydev->supported; 293 unsigned int idx; 294 295 /* Sanitize settings based on PHY capabilities */ 296 if ((features & SUPPORTED_Autoneg) == 0) 297 phydev->autoneg = AUTONEG_DISABLE; 298 299 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 300 features); 301 302 phydev->speed = settings[idx].speed; 303 phydev->duplex = settings[idx].duplex; 304 } 305 306 /** 307 * phy_ethtool_sset - generic ethtool sset function, handles all the details 308 * @phydev: target phy_device struct 309 * @cmd: ethtool_cmd 310 * 311 * A few notes about parameter checking: 312 * - We don't set port or transceiver, so we don't care what they 313 * were set to. 314 * - phy_start_aneg() will make sure forced settings are sane, and 315 * choose the next best ones from the ones selected, so we don't 316 * care if ethtool tries to give us bad values. 317 */ 318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 319 { 320 u32 speed = ethtool_cmd_speed(cmd); 321 322 if (cmd->phy_address != phydev->mdio.addr) 323 return -EINVAL; 324 325 /* We make sure that we don't pass unsupported values in to the PHY */ 326 cmd->advertising &= phydev->supported; 327 328 /* Verify the settings we care about. */ 329 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 330 return -EINVAL; 331 332 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 333 return -EINVAL; 334 335 if (cmd->autoneg == AUTONEG_DISABLE && 336 ((speed != SPEED_1000 && 337 speed != SPEED_100 && 338 speed != SPEED_10) || 339 (cmd->duplex != DUPLEX_HALF && 340 cmd->duplex != DUPLEX_FULL))) 341 return -EINVAL; 342 343 phydev->autoneg = cmd->autoneg; 344 345 phydev->speed = speed; 346 347 phydev->advertising = cmd->advertising; 348 349 if (AUTONEG_ENABLE == cmd->autoneg) 350 phydev->advertising |= ADVERTISED_Autoneg; 351 else 352 phydev->advertising &= ~ADVERTISED_Autoneg; 353 354 phydev->duplex = cmd->duplex; 355 356 phydev->mdix = cmd->eth_tp_mdix_ctrl; 357 358 /* Restart the PHY */ 359 phy_start_aneg(phydev); 360 361 return 0; 362 } 363 EXPORT_SYMBOL(phy_ethtool_sset); 364 365 int phy_ethtool_ksettings_set(struct phy_device *phydev, 366 const struct ethtool_link_ksettings *cmd) 367 { 368 u8 autoneg = cmd->base.autoneg; 369 u8 duplex = cmd->base.duplex; 370 u32 speed = cmd->base.speed; 371 u32 advertising; 372 373 if (cmd->base.phy_address != phydev->mdio.addr) 374 return -EINVAL; 375 376 ethtool_convert_link_mode_to_legacy_u32(&advertising, 377 cmd->link_modes.advertising); 378 379 /* We make sure that we don't pass unsupported values in to the PHY */ 380 advertising &= phydev->supported; 381 382 /* Verify the settings we care about. */ 383 if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE) 384 return -EINVAL; 385 386 if (autoneg == AUTONEG_ENABLE && advertising == 0) 387 return -EINVAL; 388 389 if (autoneg == AUTONEG_DISABLE && 390 ((speed != SPEED_1000 && 391 speed != SPEED_100 && 392 speed != SPEED_10) || 393 (duplex != DUPLEX_HALF && 394 duplex != DUPLEX_FULL))) 395 return -EINVAL; 396 397 phydev->autoneg = autoneg; 398 399 phydev->speed = speed; 400 401 phydev->advertising = advertising; 402 403 if (autoneg == AUTONEG_ENABLE) 404 phydev->advertising |= ADVERTISED_Autoneg; 405 else 406 phydev->advertising &= ~ADVERTISED_Autoneg; 407 408 phydev->duplex = duplex; 409 410 phydev->mdix = cmd->base.eth_tp_mdix_ctrl; 411 412 /* Restart the PHY */ 413 phy_start_aneg(phydev); 414 415 return 0; 416 } 417 EXPORT_SYMBOL(phy_ethtool_ksettings_set); 418 419 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 420 { 421 cmd->supported = phydev->supported; 422 423 cmd->advertising = phydev->advertising; 424 cmd->lp_advertising = phydev->lp_advertising; 425 426 ethtool_cmd_speed_set(cmd, phydev->speed); 427 cmd->duplex = phydev->duplex; 428 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 429 cmd->port = PORT_BNC; 430 else 431 cmd->port = PORT_MII; 432 cmd->phy_address = phydev->mdio.addr; 433 cmd->transceiver = phy_is_internal(phydev) ? 434 XCVR_INTERNAL : XCVR_EXTERNAL; 435 cmd->autoneg = phydev->autoneg; 436 cmd->eth_tp_mdix_ctrl = phydev->mdix; 437 438 return 0; 439 } 440 EXPORT_SYMBOL(phy_ethtool_gset); 441 442 int phy_ethtool_ksettings_get(struct phy_device *phydev, 443 struct ethtool_link_ksettings *cmd) 444 { 445 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 446 phydev->supported); 447 448 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 449 phydev->advertising); 450 451 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 452 phydev->lp_advertising); 453 454 cmd->base.speed = phydev->speed; 455 cmd->base.duplex = phydev->duplex; 456 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 457 cmd->base.port = PORT_BNC; 458 else 459 cmd->base.port = PORT_MII; 460 461 cmd->base.phy_address = phydev->mdio.addr; 462 cmd->base.autoneg = phydev->autoneg; 463 cmd->base.eth_tp_mdix_ctrl = phydev->mdix; 464 465 return 0; 466 } 467 EXPORT_SYMBOL(phy_ethtool_ksettings_get); 468 469 /** 470 * phy_mii_ioctl - generic PHY MII ioctl interface 471 * @phydev: the phy_device struct 472 * @ifr: &struct ifreq for socket ioctl's 473 * @cmd: ioctl cmd to execute 474 * 475 * Note that this function is currently incompatible with the 476 * PHYCONTROL layer. It changes registers without regard to 477 * current state. Use at own risk. 478 */ 479 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) 480 { 481 struct mii_ioctl_data *mii_data = if_mii(ifr); 482 u16 val = mii_data->val_in; 483 bool change_autoneg = false; 484 485 switch (cmd) { 486 case SIOCGMIIPHY: 487 mii_data->phy_id = phydev->mdio.addr; 488 /* fall through */ 489 490 case SIOCGMIIREG: 491 mii_data->val_out = mdiobus_read(phydev->mdio.bus, 492 mii_data->phy_id, 493 mii_data->reg_num); 494 return 0; 495 496 case SIOCSMIIREG: 497 if (mii_data->phy_id == phydev->mdio.addr) { 498 switch (mii_data->reg_num) { 499 case MII_BMCR: 500 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { 501 if (phydev->autoneg == AUTONEG_ENABLE) 502 change_autoneg = true; 503 phydev->autoneg = AUTONEG_DISABLE; 504 if (val & BMCR_FULLDPLX) 505 phydev->duplex = DUPLEX_FULL; 506 else 507 phydev->duplex = DUPLEX_HALF; 508 if (val & BMCR_SPEED1000) 509 phydev->speed = SPEED_1000; 510 else if (val & BMCR_SPEED100) 511 phydev->speed = SPEED_100; 512 else phydev->speed = SPEED_10; 513 } 514 else { 515 if (phydev->autoneg == AUTONEG_DISABLE) 516 change_autoneg = true; 517 phydev->autoneg = AUTONEG_ENABLE; 518 } 519 break; 520 case MII_ADVERTISE: 521 phydev->advertising = mii_adv_to_ethtool_adv_t(val); 522 change_autoneg = true; 523 break; 524 default: 525 /* do nothing */ 526 break; 527 } 528 } 529 530 mdiobus_write(phydev->mdio.bus, mii_data->phy_id, 531 mii_data->reg_num, val); 532 533 if (mii_data->phy_id == phydev->mdio.addr && 534 mii_data->reg_num == MII_BMCR && 535 val & BMCR_RESET) 536 return phy_init_hw(phydev); 537 538 if (change_autoneg) 539 return phy_start_aneg(phydev); 540 541 return 0; 542 543 case SIOCSHWTSTAMP: 544 if (phydev->drv->hwtstamp) 545 return phydev->drv->hwtstamp(phydev, ifr); 546 /* fall through */ 547 548 default: 549 return -EOPNOTSUPP; 550 } 551 } 552 EXPORT_SYMBOL(phy_mii_ioctl); 553 554 /** 555 * phy_start_aneg - start auto-negotiation for this PHY device 556 * @phydev: the phy_device struct 557 * 558 * Description: Sanitizes the settings (if we're not autonegotiating 559 * them), and then calls the driver's config_aneg function. 560 * If the PHYCONTROL Layer is operating, we change the state to 561 * reflect the beginning of Auto-negotiation or forcing. 562 */ 563 int phy_start_aneg(struct phy_device *phydev) 564 { 565 int err; 566 567 mutex_lock(&phydev->lock); 568 569 if (AUTONEG_DISABLE == phydev->autoneg) 570 phy_sanitize_settings(phydev); 571 572 /* Invalidate LP advertising flags */ 573 phydev->lp_advertising = 0; 574 575 err = phydev->drv->config_aneg(phydev); 576 if (err < 0) 577 goto out_unlock; 578 579 if (phydev->state != PHY_HALTED) { 580 if (AUTONEG_ENABLE == phydev->autoneg) { 581 phydev->state = PHY_AN; 582 phydev->link_timeout = PHY_AN_TIMEOUT; 583 } else { 584 phydev->state = PHY_FORCING; 585 phydev->link_timeout = PHY_FORCE_TIMEOUT; 586 } 587 } 588 589 out_unlock: 590 mutex_unlock(&phydev->lock); 591 return err; 592 } 593 EXPORT_SYMBOL(phy_start_aneg); 594 595 /** 596 * phy_start_machine - start PHY state machine tracking 597 * @phydev: the phy_device struct 598 * 599 * Description: The PHY infrastructure can run a state machine 600 * which tracks whether the PHY is starting up, negotiating, 601 * etc. This function starts the timer which tracks the state 602 * of the PHY. If you want to maintain your own state machine, 603 * do not call this function. 604 */ 605 void phy_start_machine(struct phy_device *phydev) 606 { 607 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 608 } 609 610 /** 611 * phy_stop_machine - stop the PHY state machine tracking 612 * @phydev: target phy_device struct 613 * 614 * Description: Stops the state machine timer, sets the state to UP 615 * (unless it wasn't up yet). This function must be called BEFORE 616 * phy_detach. 617 */ 618 void phy_stop_machine(struct phy_device *phydev) 619 { 620 cancel_delayed_work_sync(&phydev->state_queue); 621 622 mutex_lock(&phydev->lock); 623 if (phydev->state > PHY_UP) 624 phydev->state = PHY_UP; 625 mutex_unlock(&phydev->lock); 626 } 627 628 /** 629 * phy_error - enter HALTED state for this PHY device 630 * @phydev: target phy_device struct 631 * 632 * Moves the PHY to the HALTED state in response to a read 633 * or write error, and tells the controller the link is down. 634 * Must not be called from interrupt context, or while the 635 * phydev->lock is held. 636 */ 637 static void phy_error(struct phy_device *phydev) 638 { 639 mutex_lock(&phydev->lock); 640 phydev->state = PHY_HALTED; 641 mutex_unlock(&phydev->lock); 642 } 643 644 /** 645 * phy_interrupt - PHY interrupt handler 646 * @irq: interrupt line 647 * @phy_dat: phy_device pointer 648 * 649 * Description: When a PHY interrupt occurs, the handler disables 650 * interrupts, and schedules a work task to clear the interrupt. 651 */ 652 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 653 { 654 struct phy_device *phydev = phy_dat; 655 656 if (PHY_HALTED == phydev->state) 657 return IRQ_NONE; /* It can't be ours. */ 658 659 /* The MDIO bus is not allowed to be written in interrupt 660 * context, so we need to disable the irq here. A work 661 * queue will write the PHY to disable and clear the 662 * interrupt, and then reenable the irq line. 663 */ 664 disable_irq_nosync(irq); 665 atomic_inc(&phydev->irq_disable); 666 667 queue_work(system_power_efficient_wq, &phydev->phy_queue); 668 669 return IRQ_HANDLED; 670 } 671 672 /** 673 * phy_enable_interrupts - Enable the interrupts from the PHY side 674 * @phydev: target phy_device struct 675 */ 676 static int phy_enable_interrupts(struct phy_device *phydev) 677 { 678 int err = phy_clear_interrupt(phydev); 679 680 if (err < 0) 681 return err; 682 683 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 684 } 685 686 /** 687 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 688 * @phydev: target phy_device struct 689 */ 690 static int phy_disable_interrupts(struct phy_device *phydev) 691 { 692 int err; 693 694 /* Disable PHY interrupts */ 695 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 696 if (err) 697 goto phy_err; 698 699 /* Clear the interrupt */ 700 err = phy_clear_interrupt(phydev); 701 if (err) 702 goto phy_err; 703 704 return 0; 705 706 phy_err: 707 phy_error(phydev); 708 709 return err; 710 } 711 712 /** 713 * phy_start_interrupts - request and enable interrupts for a PHY device 714 * @phydev: target phy_device struct 715 * 716 * Description: Request the interrupt for the given PHY. 717 * If this fails, then we set irq to PHY_POLL. 718 * Otherwise, we enable the interrupts in the PHY. 719 * This should only be called with a valid IRQ number. 720 * Returns 0 on success or < 0 on error. 721 */ 722 int phy_start_interrupts(struct phy_device *phydev) 723 { 724 atomic_set(&phydev->irq_disable, 0); 725 if (request_irq(phydev->irq, phy_interrupt, 726 IRQF_SHARED, 727 "phy_interrupt", 728 phydev) < 0) { 729 pr_warn("%s: Can't get IRQ %d (PHY)\n", 730 phydev->mdio.bus->name, phydev->irq); 731 phydev->irq = PHY_POLL; 732 return 0; 733 } 734 735 return phy_enable_interrupts(phydev); 736 } 737 EXPORT_SYMBOL(phy_start_interrupts); 738 739 /** 740 * phy_stop_interrupts - disable interrupts from a PHY device 741 * @phydev: target phy_device struct 742 */ 743 int phy_stop_interrupts(struct phy_device *phydev) 744 { 745 int err = phy_disable_interrupts(phydev); 746 747 if (err) 748 phy_error(phydev); 749 750 free_irq(phydev->irq, phydev); 751 752 /* Cannot call flush_scheduled_work() here as desired because 753 * of rtnl_lock(), but we do not really care about what would 754 * be done, except from enable_irq(), so cancel any work 755 * possibly pending and take care of the matter below. 756 */ 757 cancel_work_sync(&phydev->phy_queue); 758 /* If work indeed has been cancelled, disable_irq() will have 759 * been left unbalanced from phy_interrupt() and enable_irq() 760 * has to be called so that other devices on the line work. 761 */ 762 while (atomic_dec_return(&phydev->irq_disable) >= 0) 763 enable_irq(phydev->irq); 764 765 return err; 766 } 767 EXPORT_SYMBOL(phy_stop_interrupts); 768 769 /** 770 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 771 * @work: work_struct that describes the work to be done 772 */ 773 void phy_change(struct work_struct *work) 774 { 775 struct phy_device *phydev = 776 container_of(work, struct phy_device, phy_queue); 777 778 if (phy_interrupt_is_valid(phydev)) { 779 if (phydev->drv->did_interrupt && 780 !phydev->drv->did_interrupt(phydev)) 781 goto ignore; 782 783 if (phy_disable_interrupts(phydev)) 784 goto phy_err; 785 } 786 787 mutex_lock(&phydev->lock); 788 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 789 phydev->state = PHY_CHANGELINK; 790 mutex_unlock(&phydev->lock); 791 792 if (phy_interrupt_is_valid(phydev)) { 793 atomic_dec(&phydev->irq_disable); 794 enable_irq(phydev->irq); 795 796 /* Reenable interrupts */ 797 if (PHY_HALTED != phydev->state && 798 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) 799 goto irq_enable_err; 800 } 801 802 /* reschedule state queue work to run as soon as possible */ 803 cancel_delayed_work_sync(&phydev->state_queue); 804 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 805 return; 806 807 ignore: 808 atomic_dec(&phydev->irq_disable); 809 enable_irq(phydev->irq); 810 return; 811 812 irq_enable_err: 813 disable_irq(phydev->irq); 814 atomic_inc(&phydev->irq_disable); 815 phy_err: 816 phy_error(phydev); 817 } 818 819 /** 820 * phy_stop - Bring down the PHY link, and stop checking the status 821 * @phydev: target phy_device struct 822 */ 823 void phy_stop(struct phy_device *phydev) 824 { 825 mutex_lock(&phydev->lock); 826 827 if (PHY_HALTED == phydev->state) 828 goto out_unlock; 829 830 if (phy_interrupt_is_valid(phydev)) { 831 /* Disable PHY Interrupts */ 832 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 833 834 /* Clear any pending interrupts */ 835 phy_clear_interrupt(phydev); 836 } 837 838 phydev->state = PHY_HALTED; 839 840 out_unlock: 841 mutex_unlock(&phydev->lock); 842 843 /* Cannot call flush_scheduled_work() here as desired because 844 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 845 * will not reenable interrupts. 846 */ 847 } 848 EXPORT_SYMBOL(phy_stop); 849 850 /** 851 * phy_start - start or restart a PHY device 852 * @phydev: target phy_device struct 853 * 854 * Description: Indicates the attached device's readiness to 855 * handle PHY-related work. Used during startup to start the 856 * PHY, and after a call to phy_stop() to resume operation. 857 * Also used to indicate the MDIO bus has cleared an error 858 * condition. 859 */ 860 void phy_start(struct phy_device *phydev) 861 { 862 bool do_resume = false; 863 int err = 0; 864 865 mutex_lock(&phydev->lock); 866 867 switch (phydev->state) { 868 case PHY_STARTING: 869 phydev->state = PHY_PENDING; 870 break; 871 case PHY_READY: 872 phydev->state = PHY_UP; 873 break; 874 case PHY_HALTED: 875 /* make sure interrupts are re-enabled for the PHY */ 876 if (phydev->irq != PHY_POLL) { 877 err = phy_enable_interrupts(phydev); 878 if (err < 0) 879 break; 880 } 881 882 phydev->state = PHY_RESUMING; 883 do_resume = true; 884 break; 885 default: 886 break; 887 } 888 mutex_unlock(&phydev->lock); 889 890 /* if phy was suspended, bring the physical link up again */ 891 if (do_resume) 892 phy_resume(phydev); 893 } 894 EXPORT_SYMBOL(phy_start); 895 896 /** 897 * phy_state_machine - Handle the state machine 898 * @work: work_struct that describes the work to be done 899 */ 900 void phy_state_machine(struct work_struct *work) 901 { 902 struct delayed_work *dwork = to_delayed_work(work); 903 struct phy_device *phydev = 904 container_of(dwork, struct phy_device, state_queue); 905 bool needs_aneg = false, do_suspend = false; 906 enum phy_state old_state; 907 int err = 0; 908 int old_link; 909 910 mutex_lock(&phydev->lock); 911 912 old_state = phydev->state; 913 914 if (phydev->drv->link_change_notify) 915 phydev->drv->link_change_notify(phydev); 916 917 switch (phydev->state) { 918 case PHY_DOWN: 919 case PHY_STARTING: 920 case PHY_READY: 921 case PHY_PENDING: 922 break; 923 case PHY_UP: 924 needs_aneg = true; 925 926 phydev->link_timeout = PHY_AN_TIMEOUT; 927 928 break; 929 case PHY_AN: 930 err = phy_read_status(phydev); 931 if (err < 0) 932 break; 933 934 /* If the link is down, give up on negotiation for now */ 935 if (!phydev->link) { 936 phydev->state = PHY_NOLINK; 937 netif_carrier_off(phydev->attached_dev); 938 phydev->adjust_link(phydev->attached_dev); 939 break; 940 } 941 942 /* Check if negotiation is done. Break if there's an error */ 943 err = phy_aneg_done(phydev); 944 if (err < 0) 945 break; 946 947 /* If AN is done, we're running */ 948 if (err > 0) { 949 phydev->state = PHY_RUNNING; 950 netif_carrier_on(phydev->attached_dev); 951 phydev->adjust_link(phydev->attached_dev); 952 953 } else if (0 == phydev->link_timeout--) 954 needs_aneg = true; 955 break; 956 case PHY_NOLINK: 957 if (phy_interrupt_is_valid(phydev)) 958 break; 959 960 err = phy_read_status(phydev); 961 if (err) 962 break; 963 964 if (phydev->link) { 965 if (AUTONEG_ENABLE == phydev->autoneg) { 966 err = phy_aneg_done(phydev); 967 if (err < 0) 968 break; 969 970 if (!err) { 971 phydev->state = PHY_AN; 972 phydev->link_timeout = PHY_AN_TIMEOUT; 973 break; 974 } 975 } 976 phydev->state = PHY_RUNNING; 977 netif_carrier_on(phydev->attached_dev); 978 phydev->adjust_link(phydev->attached_dev); 979 } 980 break; 981 case PHY_FORCING: 982 err = genphy_update_link(phydev); 983 if (err) 984 break; 985 986 if (phydev->link) { 987 phydev->state = PHY_RUNNING; 988 netif_carrier_on(phydev->attached_dev); 989 } else { 990 if (0 == phydev->link_timeout--) 991 needs_aneg = true; 992 } 993 994 phydev->adjust_link(phydev->attached_dev); 995 break; 996 case PHY_RUNNING: 997 /* Only register a CHANGE if we are polling and link changed 998 * since latest checking. 999 */ 1000 if (phydev->irq == PHY_POLL) { 1001 old_link = phydev->link; 1002 err = phy_read_status(phydev); 1003 if (err) 1004 break; 1005 1006 if (old_link != phydev->link) 1007 phydev->state = PHY_CHANGELINK; 1008 } 1009 break; 1010 case PHY_CHANGELINK: 1011 err = phy_read_status(phydev); 1012 if (err) 1013 break; 1014 1015 if (phydev->link) { 1016 phydev->state = PHY_RUNNING; 1017 netif_carrier_on(phydev->attached_dev); 1018 } else { 1019 phydev->state = PHY_NOLINK; 1020 netif_carrier_off(phydev->attached_dev); 1021 } 1022 1023 phydev->adjust_link(phydev->attached_dev); 1024 1025 if (phy_interrupt_is_valid(phydev)) 1026 err = phy_config_interrupt(phydev, 1027 PHY_INTERRUPT_ENABLED); 1028 break; 1029 case PHY_HALTED: 1030 if (phydev->link) { 1031 phydev->link = 0; 1032 netif_carrier_off(phydev->attached_dev); 1033 phydev->adjust_link(phydev->attached_dev); 1034 do_suspend = true; 1035 } 1036 break; 1037 case PHY_RESUMING: 1038 if (AUTONEG_ENABLE == phydev->autoneg) { 1039 err = phy_aneg_done(phydev); 1040 if (err < 0) 1041 break; 1042 1043 /* err > 0 if AN is done. 1044 * Otherwise, it's 0, and we're still waiting for AN 1045 */ 1046 if (err > 0) { 1047 err = phy_read_status(phydev); 1048 if (err) 1049 break; 1050 1051 if (phydev->link) { 1052 phydev->state = PHY_RUNNING; 1053 netif_carrier_on(phydev->attached_dev); 1054 } else { 1055 phydev->state = PHY_NOLINK; 1056 } 1057 phydev->adjust_link(phydev->attached_dev); 1058 } else { 1059 phydev->state = PHY_AN; 1060 phydev->link_timeout = PHY_AN_TIMEOUT; 1061 } 1062 } else { 1063 err = phy_read_status(phydev); 1064 if (err) 1065 break; 1066 1067 if (phydev->link) { 1068 phydev->state = PHY_RUNNING; 1069 netif_carrier_on(phydev->attached_dev); 1070 } else { 1071 phydev->state = PHY_NOLINK; 1072 } 1073 phydev->adjust_link(phydev->attached_dev); 1074 } 1075 break; 1076 } 1077 1078 mutex_unlock(&phydev->lock); 1079 1080 if (needs_aneg) 1081 err = phy_start_aneg(phydev); 1082 else if (do_suspend) 1083 phy_suspend(phydev); 1084 1085 if (err < 0) 1086 phy_error(phydev); 1087 1088 phydev_dbg(phydev, "PHY state change %s -> %s\n", 1089 phy_state_to_str(old_state), 1090 phy_state_to_str(phydev->state)); 1091 1092 /* Only re-schedule a PHY state machine change if we are polling the 1093 * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving 1094 * between states from phy_mac_interrupt() 1095 */ 1096 if (phydev->irq == PHY_POLL) 1097 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 1098 PHY_STATE_TIME * HZ); 1099 } 1100 1101 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 1102 { 1103 phydev->link = new_link; 1104 1105 /* Trigger a state machine change */ 1106 queue_work(system_power_efficient_wq, &phydev->phy_queue); 1107 } 1108 EXPORT_SYMBOL(phy_mac_interrupt); 1109 1110 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 1111 int addr) 1112 { 1113 /* Write the desired MMD Devad */ 1114 bus->write(bus, addr, MII_MMD_CTRL, devad); 1115 1116 /* Write the desired MMD register address */ 1117 bus->write(bus, addr, MII_MMD_DATA, prtad); 1118 1119 /* Select the Function : DATA with no post increment */ 1120 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 1121 } 1122 1123 /** 1124 * phy_read_mmd_indirect - reads data from the MMD registers 1125 * @phydev: The PHY device bus 1126 * @prtad: MMD Address 1127 * @devad: MMD DEVAD 1128 * 1129 * Description: it reads data from the MMD registers (clause 22 to access to 1130 * clause 45) of the specified phy address. 1131 * To read these register we have: 1132 * 1) Write reg 13 // DEVAD 1133 * 2) Write reg 14 // MMD Address 1134 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1135 * 3) Read reg 14 // Read MMD data 1136 */ 1137 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad) 1138 { 1139 struct phy_driver *phydrv = phydev->drv; 1140 int addr = phydev->mdio.addr; 1141 int value = -1; 1142 1143 if (!phydrv->read_mmd_indirect) { 1144 struct mii_bus *bus = phydev->mdio.bus; 1145 1146 mutex_lock(&bus->mdio_lock); 1147 mmd_phy_indirect(bus, prtad, devad, addr); 1148 1149 /* Read the content of the MMD's selected register */ 1150 value = bus->read(bus, addr, MII_MMD_DATA); 1151 mutex_unlock(&bus->mdio_lock); 1152 } else { 1153 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); 1154 } 1155 return value; 1156 } 1157 EXPORT_SYMBOL(phy_read_mmd_indirect); 1158 1159 /** 1160 * phy_write_mmd_indirect - writes data to the MMD registers 1161 * @phydev: The PHY device 1162 * @prtad: MMD Address 1163 * @devad: MMD DEVAD 1164 * @data: data to write in the MMD register 1165 * 1166 * Description: Write data from the MMD registers of the specified 1167 * phy address. 1168 * To write these register we have: 1169 * 1) Write reg 13 // DEVAD 1170 * 2) Write reg 14 // MMD Address 1171 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1172 * 3) Write reg 14 // Write MMD data 1173 */ 1174 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, 1175 int devad, u32 data) 1176 { 1177 struct phy_driver *phydrv = phydev->drv; 1178 int addr = phydev->mdio.addr; 1179 1180 if (!phydrv->write_mmd_indirect) { 1181 struct mii_bus *bus = phydev->mdio.bus; 1182 1183 mutex_lock(&bus->mdio_lock); 1184 mmd_phy_indirect(bus, prtad, devad, addr); 1185 1186 /* Write the data into MMD's selected register */ 1187 bus->write(bus, addr, MII_MMD_DATA, data); 1188 mutex_unlock(&bus->mdio_lock); 1189 } else { 1190 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); 1191 } 1192 } 1193 EXPORT_SYMBOL(phy_write_mmd_indirect); 1194 1195 /** 1196 * phy_init_eee - init and check the EEE feature 1197 * @phydev: target phy_device struct 1198 * @clk_stop_enable: PHY may stop the clock during LPI 1199 * 1200 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1201 * is supported by looking at the MMD registers 3.20 and 7.60/61 1202 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1203 * bit if required. 1204 */ 1205 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1206 { 1207 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1208 * Also EEE feature is active when core is operating with MII, GMII 1209 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and 1210 * should return an error if they do not support EEE. 1211 */ 1212 if ((phydev->duplex == DUPLEX_FULL) && 1213 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1214 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1215 phy_interface_is_rgmii(phydev) || 1216 phy_is_internal(phydev))) { 1217 int eee_lp, eee_cap, eee_adv; 1218 u32 lp, cap, adv; 1219 int status; 1220 1221 /* Read phy status to properly get the right settings */ 1222 status = phy_read_status(phydev); 1223 if (status) 1224 return status; 1225 1226 /* First check if the EEE ability is supported */ 1227 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1228 MDIO_MMD_PCS); 1229 if (eee_cap <= 0) 1230 goto eee_exit_err; 1231 1232 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1233 if (!cap) 1234 goto eee_exit_err; 1235 1236 /* Check which link settings negotiated and verify it in 1237 * the EEE advertising registers. 1238 */ 1239 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1240 MDIO_MMD_AN); 1241 if (eee_lp <= 0) 1242 goto eee_exit_err; 1243 1244 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1245 MDIO_MMD_AN); 1246 if (eee_adv <= 0) 1247 goto eee_exit_err; 1248 1249 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1250 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1251 if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv)) 1252 goto eee_exit_err; 1253 1254 if (clk_stop_enable) { 1255 /* Configure the PHY to stop receiving xMII 1256 * clock while it is signaling LPI. 1257 */ 1258 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, 1259 MDIO_MMD_PCS); 1260 if (val < 0) 1261 return val; 1262 1263 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1264 phy_write_mmd_indirect(phydev, MDIO_CTRL1, 1265 MDIO_MMD_PCS, val); 1266 } 1267 1268 return 0; /* EEE supported */ 1269 } 1270 eee_exit_err: 1271 return -EPROTONOSUPPORT; 1272 } 1273 EXPORT_SYMBOL(phy_init_eee); 1274 1275 /** 1276 * phy_get_eee_err - report the EEE wake error count 1277 * @phydev: target phy_device struct 1278 * 1279 * Description: it is to report the number of time where the PHY 1280 * failed to complete its normal wake sequence. 1281 */ 1282 int phy_get_eee_err(struct phy_device *phydev) 1283 { 1284 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS); 1285 } 1286 EXPORT_SYMBOL(phy_get_eee_err); 1287 1288 /** 1289 * phy_ethtool_get_eee - get EEE supported and status 1290 * @phydev: target phy_device struct 1291 * @data: ethtool_eee data 1292 * 1293 * Description: it reportes the Supported/Advertisement/LP Advertisement 1294 * capabilities. 1295 */ 1296 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1297 { 1298 int val; 1299 1300 /* Get Supported EEE */ 1301 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS); 1302 if (val < 0) 1303 return val; 1304 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1305 1306 /* Get advertisement EEE */ 1307 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN); 1308 if (val < 0) 1309 return val; 1310 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1311 1312 /* Get LP advertisement EEE */ 1313 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN); 1314 if (val < 0) 1315 return val; 1316 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1317 1318 return 0; 1319 } 1320 EXPORT_SYMBOL(phy_ethtool_get_eee); 1321 1322 /** 1323 * phy_ethtool_set_eee - set EEE supported and status 1324 * @phydev: target phy_device struct 1325 * @data: ethtool_eee data 1326 * 1327 * Description: it is to program the Advertisement EEE register. 1328 */ 1329 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1330 { 1331 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1332 1333 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val); 1334 1335 return 0; 1336 } 1337 EXPORT_SYMBOL(phy_ethtool_set_eee); 1338 1339 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1340 { 1341 if (phydev->drv->set_wol) 1342 return phydev->drv->set_wol(phydev, wol); 1343 1344 return -EOPNOTSUPP; 1345 } 1346 EXPORT_SYMBOL(phy_ethtool_set_wol); 1347 1348 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1349 { 1350 if (phydev->drv->get_wol) 1351 phydev->drv->get_wol(phydev, wol); 1352 } 1353 EXPORT_SYMBOL(phy_ethtool_get_wol); 1354 1355 int phy_ethtool_get_link_ksettings(struct net_device *ndev, 1356 struct ethtool_link_ksettings *cmd) 1357 { 1358 struct phy_device *phydev = ndev->phydev; 1359 1360 if (!phydev) 1361 return -ENODEV; 1362 1363 return phy_ethtool_ksettings_get(phydev, cmd); 1364 } 1365 EXPORT_SYMBOL(phy_ethtool_get_link_ksettings); 1366 1367 int phy_ethtool_set_link_ksettings(struct net_device *ndev, 1368 const struct ethtool_link_ksettings *cmd) 1369 { 1370 struct phy_device *phydev = ndev->phydev; 1371 1372 if (!phydev) 1373 return -ENODEV; 1374 1375 return phy_ethtool_ksettings_set(phydev, cmd); 1376 } 1377 EXPORT_SYMBOL(phy_ethtool_set_link_ksettings); 1378