1 /* Framework for configuring and reading PHY devices 2 * Based on code in sungem_phy.c and gianfar_phy.c 3 * 4 * Author: Andy Fleming 5 * 6 * Copyright (c) 2004 Freescale Semiconductor, Inc. 7 * Copyright (c) 2006, 2007 Maciej W. Rozycki 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/unistd.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/mm.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/phy.h> 32 #include <linux/timer.h> 33 #include <linux/workqueue.h> 34 #include <linux/mdio.h> 35 #include <linux/io.h> 36 #include <linux/uaccess.h> 37 #include <linux/atomic.h> 38 39 #include <asm/irq.h> 40 41 static const char *phy_speed_to_str(int speed) 42 { 43 switch (speed) { 44 case SPEED_10: 45 return "10Mbps"; 46 case SPEED_100: 47 return "100Mbps"; 48 case SPEED_1000: 49 return "1Gbps"; 50 case SPEED_2500: 51 return "2.5Gbps"; 52 case SPEED_10000: 53 return "10Gbps"; 54 case SPEED_UNKNOWN: 55 return "Unknown"; 56 default: 57 return "Unsupported (update phy.c)"; 58 } 59 } 60 61 /** 62 * phy_print_status - Convenience function to print out the current phy status 63 * @phydev: the phy_device struct 64 */ 65 void phy_print_status(struct phy_device *phydev) 66 { 67 if (phydev->link) { 68 netdev_info(phydev->attached_dev, 69 "Link is Up - %s/%s - flow control %s\n", 70 phy_speed_to_str(phydev->speed), 71 DUPLEX_FULL == phydev->duplex ? "Full" : "Half", 72 phydev->pause ? "rx/tx" : "off"); 73 } else { 74 netdev_info(phydev->attached_dev, "Link is Down\n"); 75 } 76 } 77 EXPORT_SYMBOL(phy_print_status); 78 79 /** 80 * phy_clear_interrupt - Ack the phy device's interrupt 81 * @phydev: the phy_device struct 82 * 83 * If the @phydev driver has an ack_interrupt function, call it to 84 * ack and clear the phy device's interrupt. 85 * 86 * Returns 0 on success or < 0 on error. 87 */ 88 static int phy_clear_interrupt(struct phy_device *phydev) 89 { 90 if (phydev->drv->ack_interrupt) 91 return phydev->drv->ack_interrupt(phydev); 92 93 return 0; 94 } 95 96 /** 97 * phy_config_interrupt - configure the PHY device for the requested interrupts 98 * @phydev: the phy_device struct 99 * @interrupts: interrupt flags to configure for this @phydev 100 * 101 * Returns 0 on success or < 0 on error. 102 */ 103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 104 { 105 phydev->interrupts = interrupts; 106 if (phydev->drv->config_intr) 107 return phydev->drv->config_intr(phydev); 108 109 return 0; 110 } 111 112 113 /** 114 * phy_aneg_done - return auto-negotiation status 115 * @phydev: target phy_device struct 116 * 117 * Description: Return the auto-negotiation status from this @phydev 118 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation 119 * is still pending. 120 */ 121 static inline int phy_aneg_done(struct phy_device *phydev) 122 { 123 if (phydev->drv->aneg_done) 124 return phydev->drv->aneg_done(phydev); 125 126 return genphy_aneg_done(phydev); 127 } 128 129 /* A structure for mapping a particular speed and duplex 130 * combination to a particular SUPPORTED and ADVERTISED value 131 */ 132 struct phy_setting { 133 int speed; 134 int duplex; 135 u32 setting; 136 }; 137 138 /* A mapping of all SUPPORTED settings to speed/duplex */ 139 static const struct phy_setting settings[] = { 140 { 141 .speed = SPEED_10000, 142 .duplex = DUPLEX_FULL, 143 .setting = SUPPORTED_10000baseKR_Full, 144 }, 145 { 146 .speed = SPEED_10000, 147 .duplex = DUPLEX_FULL, 148 .setting = SUPPORTED_10000baseKX4_Full, 149 }, 150 { 151 .speed = SPEED_10000, 152 .duplex = DUPLEX_FULL, 153 .setting = SUPPORTED_10000baseT_Full, 154 }, 155 { 156 .speed = SPEED_2500, 157 .duplex = DUPLEX_FULL, 158 .setting = SUPPORTED_2500baseX_Full, 159 }, 160 { 161 .speed = SPEED_1000, 162 .duplex = DUPLEX_FULL, 163 .setting = SUPPORTED_1000baseKX_Full, 164 }, 165 { 166 .speed = SPEED_1000, 167 .duplex = DUPLEX_FULL, 168 .setting = SUPPORTED_1000baseT_Full, 169 }, 170 { 171 .speed = SPEED_1000, 172 .duplex = DUPLEX_HALF, 173 .setting = SUPPORTED_1000baseT_Half, 174 }, 175 { 176 .speed = SPEED_100, 177 .duplex = DUPLEX_FULL, 178 .setting = SUPPORTED_100baseT_Full, 179 }, 180 { 181 .speed = SPEED_100, 182 .duplex = DUPLEX_HALF, 183 .setting = SUPPORTED_100baseT_Half, 184 }, 185 { 186 .speed = SPEED_10, 187 .duplex = DUPLEX_FULL, 188 .setting = SUPPORTED_10baseT_Full, 189 }, 190 { 191 .speed = SPEED_10, 192 .duplex = DUPLEX_HALF, 193 .setting = SUPPORTED_10baseT_Half, 194 }, 195 }; 196 197 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 198 199 /** 200 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 201 * @speed: speed to match 202 * @duplex: duplex to match 203 * 204 * Description: Searches the settings array for the setting which 205 * matches the desired speed and duplex, and returns the index 206 * of that setting. Returns the index of the last setting if 207 * none of the others match. 208 */ 209 static inline unsigned int phy_find_setting(int speed, int duplex) 210 { 211 unsigned int idx = 0; 212 213 while (idx < ARRAY_SIZE(settings) && 214 (settings[idx].speed != speed || settings[idx].duplex != duplex)) 215 idx++; 216 217 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 218 } 219 220 /** 221 * phy_find_valid - find a PHY setting that matches the requested features mask 222 * @idx: The first index in settings[] to search 223 * @features: A mask of the valid settings 224 * 225 * Description: Returns the index of the first valid setting less 226 * than or equal to the one pointed to by idx, as determined by 227 * the mask in features. Returns the index of the last setting 228 * if nothing else matches. 229 */ 230 static inline unsigned int phy_find_valid(unsigned int idx, u32 features) 231 { 232 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 233 idx++; 234 235 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 236 } 237 238 /** 239 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 240 * @phydev: the target phy_device struct 241 * 242 * Description: Make sure the PHY is set to supported speeds and 243 * duplexes. Drop down by one in this order: 1000/FULL, 244 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 245 */ 246 static void phy_sanitize_settings(struct phy_device *phydev) 247 { 248 u32 features = phydev->supported; 249 unsigned int idx; 250 251 /* Sanitize settings based on PHY capabilities */ 252 if ((features & SUPPORTED_Autoneg) == 0) 253 phydev->autoneg = AUTONEG_DISABLE; 254 255 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 256 features); 257 258 phydev->speed = settings[idx].speed; 259 phydev->duplex = settings[idx].duplex; 260 } 261 262 /** 263 * phy_ethtool_sset - generic ethtool sset function, handles all the details 264 * @phydev: target phy_device struct 265 * @cmd: ethtool_cmd 266 * 267 * A few notes about parameter checking: 268 * - We don't set port or transceiver, so we don't care what they 269 * were set to. 270 * - phy_start_aneg() will make sure forced settings are sane, and 271 * choose the next best ones from the ones selected, so we don't 272 * care if ethtool tries to give us bad values. 273 */ 274 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 275 { 276 u32 speed = ethtool_cmd_speed(cmd); 277 278 if (cmd->phy_address != phydev->addr) 279 return -EINVAL; 280 281 /* We make sure that we don't pass unsupported values in to the PHY */ 282 cmd->advertising &= phydev->supported; 283 284 /* Verify the settings we care about. */ 285 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 286 return -EINVAL; 287 288 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 289 return -EINVAL; 290 291 if (cmd->autoneg == AUTONEG_DISABLE && 292 ((speed != SPEED_1000 && 293 speed != SPEED_100 && 294 speed != SPEED_10) || 295 (cmd->duplex != DUPLEX_HALF && 296 cmd->duplex != DUPLEX_FULL))) 297 return -EINVAL; 298 299 phydev->autoneg = cmd->autoneg; 300 301 phydev->speed = speed; 302 303 phydev->advertising = cmd->advertising; 304 305 if (AUTONEG_ENABLE == cmd->autoneg) 306 phydev->advertising |= ADVERTISED_Autoneg; 307 else 308 phydev->advertising &= ~ADVERTISED_Autoneg; 309 310 phydev->duplex = cmd->duplex; 311 312 /* Restart the PHY */ 313 phy_start_aneg(phydev); 314 315 return 0; 316 } 317 EXPORT_SYMBOL(phy_ethtool_sset); 318 319 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 320 { 321 cmd->supported = phydev->supported; 322 323 cmd->advertising = phydev->advertising; 324 cmd->lp_advertising = phydev->lp_advertising; 325 326 ethtool_cmd_speed_set(cmd, phydev->speed); 327 cmd->duplex = phydev->duplex; 328 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 329 cmd->port = PORT_BNC; 330 else 331 cmd->port = PORT_MII; 332 cmd->phy_address = phydev->addr; 333 cmd->transceiver = phy_is_internal(phydev) ? 334 XCVR_INTERNAL : XCVR_EXTERNAL; 335 cmd->autoneg = phydev->autoneg; 336 337 return 0; 338 } 339 EXPORT_SYMBOL(phy_ethtool_gset); 340 341 /** 342 * phy_mii_ioctl - generic PHY MII ioctl interface 343 * @phydev: the phy_device struct 344 * @ifr: &struct ifreq for socket ioctl's 345 * @cmd: ioctl cmd to execute 346 * 347 * Note that this function is currently incompatible with the 348 * PHYCONTROL layer. It changes registers without regard to 349 * current state. Use at own risk. 350 */ 351 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) 352 { 353 struct mii_ioctl_data *mii_data = if_mii(ifr); 354 u16 val = mii_data->val_in; 355 bool change_autoneg = false; 356 357 switch (cmd) { 358 case SIOCGMIIPHY: 359 mii_data->phy_id = phydev->addr; 360 /* fall through */ 361 362 case SIOCGMIIREG: 363 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id, 364 mii_data->reg_num); 365 return 0; 366 367 case SIOCSMIIREG: 368 if (mii_data->phy_id == phydev->addr) { 369 switch (mii_data->reg_num) { 370 case MII_BMCR: 371 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { 372 if (phydev->autoneg == AUTONEG_ENABLE) 373 change_autoneg = true; 374 phydev->autoneg = AUTONEG_DISABLE; 375 if (val & BMCR_FULLDPLX) 376 phydev->duplex = DUPLEX_FULL; 377 else 378 phydev->duplex = DUPLEX_HALF; 379 if (val & BMCR_SPEED1000) 380 phydev->speed = SPEED_1000; 381 else if (val & BMCR_SPEED100) 382 phydev->speed = SPEED_100; 383 else phydev->speed = SPEED_10; 384 } 385 else { 386 if (phydev->autoneg == AUTONEG_DISABLE) 387 change_autoneg = true; 388 phydev->autoneg = AUTONEG_ENABLE; 389 } 390 break; 391 case MII_ADVERTISE: 392 phydev->advertising = mii_adv_to_ethtool_adv_t(val); 393 change_autoneg = true; 394 break; 395 default: 396 /* do nothing */ 397 break; 398 } 399 } 400 401 mdiobus_write(phydev->bus, mii_data->phy_id, 402 mii_data->reg_num, val); 403 404 if (mii_data->reg_num == MII_BMCR && 405 val & BMCR_RESET) 406 return phy_init_hw(phydev); 407 408 if (change_autoneg) 409 return phy_start_aneg(phydev); 410 411 return 0; 412 413 case SIOCSHWTSTAMP: 414 if (phydev->drv->hwtstamp) 415 return phydev->drv->hwtstamp(phydev, ifr); 416 /* fall through */ 417 418 default: 419 return -EOPNOTSUPP; 420 } 421 } 422 EXPORT_SYMBOL(phy_mii_ioctl); 423 424 /** 425 * phy_start_aneg - start auto-negotiation for this PHY device 426 * @phydev: the phy_device struct 427 * 428 * Description: Sanitizes the settings (if we're not autonegotiating 429 * them), and then calls the driver's config_aneg function. 430 * If the PHYCONTROL Layer is operating, we change the state to 431 * reflect the beginning of Auto-negotiation or forcing. 432 */ 433 int phy_start_aneg(struct phy_device *phydev) 434 { 435 int err; 436 437 mutex_lock(&phydev->lock); 438 439 if (AUTONEG_DISABLE == phydev->autoneg) 440 phy_sanitize_settings(phydev); 441 442 /* Invalidate LP advertising flags */ 443 phydev->lp_advertising = 0; 444 445 err = phydev->drv->config_aneg(phydev); 446 if (err < 0) 447 goto out_unlock; 448 449 if (phydev->state != PHY_HALTED) { 450 if (AUTONEG_ENABLE == phydev->autoneg) { 451 phydev->state = PHY_AN; 452 phydev->link_timeout = PHY_AN_TIMEOUT; 453 } else { 454 phydev->state = PHY_FORCING; 455 phydev->link_timeout = PHY_FORCE_TIMEOUT; 456 } 457 } 458 459 out_unlock: 460 mutex_unlock(&phydev->lock); 461 return err; 462 } 463 EXPORT_SYMBOL(phy_start_aneg); 464 465 /** 466 * phy_start_machine - start PHY state machine tracking 467 * @phydev: the phy_device struct 468 * 469 * Description: The PHY infrastructure can run a state machine 470 * which tracks whether the PHY is starting up, negotiating, 471 * etc. This function starts the timer which tracks the state 472 * of the PHY. If you want to maintain your own state machine, 473 * do not call this function. 474 */ 475 void phy_start_machine(struct phy_device *phydev) 476 { 477 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 478 } 479 480 /** 481 * phy_stop_machine - stop the PHY state machine tracking 482 * @phydev: target phy_device struct 483 * 484 * Description: Stops the state machine timer, sets the state to UP 485 * (unless it wasn't up yet). This function must be called BEFORE 486 * phy_detach. 487 */ 488 void phy_stop_machine(struct phy_device *phydev) 489 { 490 cancel_delayed_work_sync(&phydev->state_queue); 491 492 mutex_lock(&phydev->lock); 493 if (phydev->state > PHY_UP) 494 phydev->state = PHY_UP; 495 mutex_unlock(&phydev->lock); 496 } 497 498 /** 499 * phy_error - enter HALTED state for this PHY device 500 * @phydev: target phy_device struct 501 * 502 * Moves the PHY to the HALTED state in response to a read 503 * or write error, and tells the controller the link is down. 504 * Must not be called from interrupt context, or while the 505 * phydev->lock is held. 506 */ 507 static void phy_error(struct phy_device *phydev) 508 { 509 mutex_lock(&phydev->lock); 510 phydev->state = PHY_HALTED; 511 mutex_unlock(&phydev->lock); 512 } 513 514 /** 515 * phy_interrupt - PHY interrupt handler 516 * @irq: interrupt line 517 * @phy_dat: phy_device pointer 518 * 519 * Description: When a PHY interrupt occurs, the handler disables 520 * interrupts, and schedules a work task to clear the interrupt. 521 */ 522 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 523 { 524 struct phy_device *phydev = phy_dat; 525 526 if (PHY_HALTED == phydev->state) 527 return IRQ_NONE; /* It can't be ours. */ 528 529 /* The MDIO bus is not allowed to be written in interrupt 530 * context, so we need to disable the irq here. A work 531 * queue will write the PHY to disable and clear the 532 * interrupt, and then reenable the irq line. 533 */ 534 disable_irq_nosync(irq); 535 atomic_inc(&phydev->irq_disable); 536 537 queue_work(system_power_efficient_wq, &phydev->phy_queue); 538 539 return IRQ_HANDLED; 540 } 541 542 /** 543 * phy_enable_interrupts - Enable the interrupts from the PHY side 544 * @phydev: target phy_device struct 545 */ 546 static int phy_enable_interrupts(struct phy_device *phydev) 547 { 548 int err = phy_clear_interrupt(phydev); 549 550 if (err < 0) 551 return err; 552 553 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 554 } 555 556 /** 557 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 558 * @phydev: target phy_device struct 559 */ 560 static int phy_disable_interrupts(struct phy_device *phydev) 561 { 562 int err; 563 564 /* Disable PHY interrupts */ 565 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 566 if (err) 567 goto phy_err; 568 569 /* Clear the interrupt */ 570 err = phy_clear_interrupt(phydev); 571 if (err) 572 goto phy_err; 573 574 return 0; 575 576 phy_err: 577 phy_error(phydev); 578 579 return err; 580 } 581 582 /** 583 * phy_start_interrupts - request and enable interrupts for a PHY device 584 * @phydev: target phy_device struct 585 * 586 * Description: Request the interrupt for the given PHY. 587 * If this fails, then we set irq to PHY_POLL. 588 * Otherwise, we enable the interrupts in the PHY. 589 * This should only be called with a valid IRQ number. 590 * Returns 0 on success or < 0 on error. 591 */ 592 int phy_start_interrupts(struct phy_device *phydev) 593 { 594 atomic_set(&phydev->irq_disable, 0); 595 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt", 596 phydev) < 0) { 597 pr_warn("%s: Can't get IRQ %d (PHY)\n", 598 phydev->bus->name, phydev->irq); 599 phydev->irq = PHY_POLL; 600 return 0; 601 } 602 603 return phy_enable_interrupts(phydev); 604 } 605 EXPORT_SYMBOL(phy_start_interrupts); 606 607 /** 608 * phy_stop_interrupts - disable interrupts from a PHY device 609 * @phydev: target phy_device struct 610 */ 611 int phy_stop_interrupts(struct phy_device *phydev) 612 { 613 int err = phy_disable_interrupts(phydev); 614 615 if (err) 616 phy_error(phydev); 617 618 free_irq(phydev->irq, phydev); 619 620 /* Cannot call flush_scheduled_work() here as desired because 621 * of rtnl_lock(), but we do not really care about what would 622 * be done, except from enable_irq(), so cancel any work 623 * possibly pending and take care of the matter below. 624 */ 625 cancel_work_sync(&phydev->phy_queue); 626 /* If work indeed has been cancelled, disable_irq() will have 627 * been left unbalanced from phy_interrupt() and enable_irq() 628 * has to be called so that other devices on the line work. 629 */ 630 while (atomic_dec_return(&phydev->irq_disable) >= 0) 631 enable_irq(phydev->irq); 632 633 return err; 634 } 635 EXPORT_SYMBOL(phy_stop_interrupts); 636 637 /** 638 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 639 * @work: work_struct that describes the work to be done 640 */ 641 void phy_change(struct work_struct *work) 642 { 643 struct phy_device *phydev = 644 container_of(work, struct phy_device, phy_queue); 645 646 if (phydev->drv->did_interrupt && 647 !phydev->drv->did_interrupt(phydev)) 648 goto ignore; 649 650 if (phy_disable_interrupts(phydev)) 651 goto phy_err; 652 653 mutex_lock(&phydev->lock); 654 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 655 phydev->state = PHY_CHANGELINK; 656 mutex_unlock(&phydev->lock); 657 658 atomic_dec(&phydev->irq_disable); 659 enable_irq(phydev->irq); 660 661 /* Reenable interrupts */ 662 if (PHY_HALTED != phydev->state && 663 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) 664 goto irq_enable_err; 665 666 /* reschedule state queue work to run as soon as possible */ 667 cancel_delayed_work_sync(&phydev->state_queue); 668 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 669 return; 670 671 ignore: 672 atomic_dec(&phydev->irq_disable); 673 enable_irq(phydev->irq); 674 return; 675 676 irq_enable_err: 677 disable_irq(phydev->irq); 678 atomic_inc(&phydev->irq_disable); 679 phy_err: 680 phy_error(phydev); 681 } 682 683 /** 684 * phy_stop - Bring down the PHY link, and stop checking the status 685 * @phydev: target phy_device struct 686 */ 687 void phy_stop(struct phy_device *phydev) 688 { 689 mutex_lock(&phydev->lock); 690 691 if (PHY_HALTED == phydev->state) 692 goto out_unlock; 693 694 if (phy_interrupt_is_valid(phydev)) { 695 /* Disable PHY Interrupts */ 696 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 697 698 /* Clear any pending interrupts */ 699 phy_clear_interrupt(phydev); 700 } 701 702 phydev->state = PHY_HALTED; 703 704 out_unlock: 705 mutex_unlock(&phydev->lock); 706 707 /* Cannot call flush_scheduled_work() here as desired because 708 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 709 * will not reenable interrupts. 710 */ 711 } 712 EXPORT_SYMBOL(phy_stop); 713 714 /** 715 * phy_start - start or restart a PHY device 716 * @phydev: target phy_device struct 717 * 718 * Description: Indicates the attached device's readiness to 719 * handle PHY-related work. Used during startup to start the 720 * PHY, and after a call to phy_stop() to resume operation. 721 * Also used to indicate the MDIO bus has cleared an error 722 * condition. 723 */ 724 void phy_start(struct phy_device *phydev) 725 { 726 mutex_lock(&phydev->lock); 727 728 switch (phydev->state) { 729 case PHY_STARTING: 730 phydev->state = PHY_PENDING; 731 break; 732 case PHY_READY: 733 phydev->state = PHY_UP; 734 break; 735 case PHY_HALTED: 736 phydev->state = PHY_RESUMING; 737 default: 738 break; 739 } 740 mutex_unlock(&phydev->lock); 741 } 742 EXPORT_SYMBOL(phy_start); 743 744 /** 745 * phy_state_machine - Handle the state machine 746 * @work: work_struct that describes the work to be done 747 */ 748 void phy_state_machine(struct work_struct *work) 749 { 750 struct delayed_work *dwork = to_delayed_work(work); 751 struct phy_device *phydev = 752 container_of(dwork, struct phy_device, state_queue); 753 bool needs_aneg = false, do_suspend = false, do_resume = false; 754 int err = 0; 755 756 mutex_lock(&phydev->lock); 757 758 if (phydev->drv->link_change_notify) 759 phydev->drv->link_change_notify(phydev); 760 761 switch (phydev->state) { 762 case PHY_DOWN: 763 case PHY_STARTING: 764 case PHY_READY: 765 case PHY_PENDING: 766 break; 767 case PHY_UP: 768 needs_aneg = true; 769 770 phydev->link_timeout = PHY_AN_TIMEOUT; 771 772 break; 773 case PHY_AN: 774 err = phy_read_status(phydev); 775 if (err < 0) 776 break; 777 778 /* If the link is down, give up on negotiation for now */ 779 if (!phydev->link) { 780 phydev->state = PHY_NOLINK; 781 netif_carrier_off(phydev->attached_dev); 782 phydev->adjust_link(phydev->attached_dev); 783 break; 784 } 785 786 /* Check if negotiation is done. Break if there's an error */ 787 err = phy_aneg_done(phydev); 788 if (err < 0) 789 break; 790 791 /* If AN is done, we're running */ 792 if (err > 0) { 793 phydev->state = PHY_RUNNING; 794 netif_carrier_on(phydev->attached_dev); 795 phydev->adjust_link(phydev->attached_dev); 796 797 } else if (0 == phydev->link_timeout--) 798 needs_aneg = true; 799 break; 800 case PHY_NOLINK: 801 err = phy_read_status(phydev); 802 if (err) 803 break; 804 805 if (phydev->link) { 806 if (AUTONEG_ENABLE == phydev->autoneg) { 807 err = phy_aneg_done(phydev); 808 if (err < 0) 809 break; 810 811 if (!err) { 812 phydev->state = PHY_AN; 813 phydev->link_timeout = PHY_AN_TIMEOUT; 814 break; 815 } 816 } 817 phydev->state = PHY_RUNNING; 818 netif_carrier_on(phydev->attached_dev); 819 phydev->adjust_link(phydev->attached_dev); 820 } 821 break; 822 case PHY_FORCING: 823 err = genphy_update_link(phydev); 824 if (err) 825 break; 826 827 if (phydev->link) { 828 phydev->state = PHY_RUNNING; 829 netif_carrier_on(phydev->attached_dev); 830 } else { 831 if (0 == phydev->link_timeout--) 832 needs_aneg = true; 833 } 834 835 phydev->adjust_link(phydev->attached_dev); 836 break; 837 case PHY_RUNNING: 838 /* Only register a CHANGE if we are 839 * polling or ignoring interrupts 840 */ 841 if (!phy_interrupt_is_valid(phydev)) 842 phydev->state = PHY_CHANGELINK; 843 break; 844 case PHY_CHANGELINK: 845 err = phy_read_status(phydev); 846 if (err) 847 break; 848 849 if (phydev->link) { 850 phydev->state = PHY_RUNNING; 851 netif_carrier_on(phydev->attached_dev); 852 } else { 853 phydev->state = PHY_NOLINK; 854 netif_carrier_off(phydev->attached_dev); 855 } 856 857 phydev->adjust_link(phydev->attached_dev); 858 859 if (phy_interrupt_is_valid(phydev)) 860 err = phy_config_interrupt(phydev, 861 PHY_INTERRUPT_ENABLED); 862 break; 863 case PHY_HALTED: 864 if (phydev->link) { 865 phydev->link = 0; 866 netif_carrier_off(phydev->attached_dev); 867 phydev->adjust_link(phydev->attached_dev); 868 do_suspend = true; 869 } 870 break; 871 case PHY_RESUMING: 872 err = phy_clear_interrupt(phydev); 873 if (err) 874 break; 875 876 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 877 if (err) 878 break; 879 880 if (AUTONEG_ENABLE == phydev->autoneg) { 881 err = phy_aneg_done(phydev); 882 if (err < 0) 883 break; 884 885 /* err > 0 if AN is done. 886 * Otherwise, it's 0, and we're still waiting for AN 887 */ 888 if (err > 0) { 889 err = phy_read_status(phydev); 890 if (err) 891 break; 892 893 if (phydev->link) { 894 phydev->state = PHY_RUNNING; 895 netif_carrier_on(phydev->attached_dev); 896 } else { 897 phydev->state = PHY_NOLINK; 898 } 899 phydev->adjust_link(phydev->attached_dev); 900 } else { 901 phydev->state = PHY_AN; 902 phydev->link_timeout = PHY_AN_TIMEOUT; 903 } 904 } else { 905 err = phy_read_status(phydev); 906 if (err) 907 break; 908 909 if (phydev->link) { 910 phydev->state = PHY_RUNNING; 911 netif_carrier_on(phydev->attached_dev); 912 } else { 913 phydev->state = PHY_NOLINK; 914 } 915 phydev->adjust_link(phydev->attached_dev); 916 } 917 do_resume = true; 918 break; 919 } 920 921 mutex_unlock(&phydev->lock); 922 923 if (needs_aneg) 924 err = phy_start_aneg(phydev); 925 else if (do_suspend) 926 phy_suspend(phydev); 927 else if (do_resume) 928 phy_resume(phydev); 929 930 if (err < 0) 931 phy_error(phydev); 932 933 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 934 PHY_STATE_TIME * HZ); 935 } 936 937 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 938 { 939 cancel_work_sync(&phydev->phy_queue); 940 phydev->link = new_link; 941 schedule_work(&phydev->phy_queue); 942 } 943 EXPORT_SYMBOL(phy_mac_interrupt); 944 945 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 946 int addr) 947 { 948 /* Write the desired MMD Devad */ 949 bus->write(bus, addr, MII_MMD_CTRL, devad); 950 951 /* Write the desired MMD register address */ 952 bus->write(bus, addr, MII_MMD_DATA, prtad); 953 954 /* Select the Function : DATA with no post increment */ 955 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 956 } 957 958 /** 959 * phy_read_mmd_indirect - reads data from the MMD registers 960 * @phydev: The PHY device bus 961 * @prtad: MMD Address 962 * @devad: MMD DEVAD 963 * @addr: PHY address on the MII bus 964 * 965 * Description: it reads data from the MMD registers (clause 22 to access to 966 * clause 45) of the specified phy address. 967 * To read these register we have: 968 * 1) Write reg 13 // DEVAD 969 * 2) Write reg 14 // MMD Address 970 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 971 * 3) Read reg 14 // Read MMD data 972 */ 973 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, 974 int devad, int addr) 975 { 976 struct phy_driver *phydrv = phydev->drv; 977 int value = -1; 978 979 if (phydrv->read_mmd_indirect == NULL) { 980 mmd_phy_indirect(phydev->bus, prtad, devad, addr); 981 982 /* Read the content of the MMD's selected register */ 983 value = phydev->bus->read(phydev->bus, addr, MII_MMD_DATA); 984 } else { 985 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); 986 } 987 return value; 988 } 989 EXPORT_SYMBOL(phy_read_mmd_indirect); 990 991 /** 992 * phy_write_mmd_indirect - writes data to the MMD registers 993 * @phydev: The PHY device 994 * @prtad: MMD Address 995 * @devad: MMD DEVAD 996 * @addr: PHY address on the MII bus 997 * @data: data to write in the MMD register 998 * 999 * Description: Write data from the MMD registers of the specified 1000 * phy address. 1001 * To write these register we have: 1002 * 1) Write reg 13 // DEVAD 1003 * 2) Write reg 14 // MMD Address 1004 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1005 * 3) Write reg 14 // Write MMD data 1006 */ 1007 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, 1008 int devad, int addr, u32 data) 1009 { 1010 struct phy_driver *phydrv = phydev->drv; 1011 1012 if (phydrv->write_mmd_indirect == NULL) { 1013 mmd_phy_indirect(phydev->bus, prtad, devad, addr); 1014 1015 /* Write the data into MMD's selected register */ 1016 phydev->bus->write(phydev->bus, addr, MII_MMD_DATA, data); 1017 } else { 1018 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); 1019 } 1020 } 1021 EXPORT_SYMBOL(phy_write_mmd_indirect); 1022 1023 /** 1024 * phy_init_eee - init and check the EEE feature 1025 * @phydev: target phy_device struct 1026 * @clk_stop_enable: PHY may stop the clock during LPI 1027 * 1028 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1029 * is supported by looking at the MMD registers 3.20 and 7.60/61 1030 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1031 * bit if required. 1032 */ 1033 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1034 { 1035 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1036 * Also EEE feature is active when core is operating with MII, GMII 1037 * or RGMII. Internal PHYs are also allowed to proceed and should 1038 * return an error if they do not support EEE. 1039 */ 1040 if ((phydev->duplex == DUPLEX_FULL) && 1041 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1042 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1043 (phydev->interface == PHY_INTERFACE_MODE_RGMII) || 1044 phy_is_internal(phydev))) { 1045 int eee_lp, eee_cap, eee_adv; 1046 u32 lp, cap, adv; 1047 int status; 1048 unsigned int idx; 1049 1050 /* Read phy status to properly get the right settings */ 1051 status = phy_read_status(phydev); 1052 if (status) 1053 return status; 1054 1055 /* First check if the EEE ability is supported */ 1056 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1057 MDIO_MMD_PCS, phydev->addr); 1058 if (eee_cap <= 0) 1059 goto eee_exit_err; 1060 1061 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1062 if (!cap) 1063 goto eee_exit_err; 1064 1065 /* Check which link settings negotiated and verify it in 1066 * the EEE advertising registers. 1067 */ 1068 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1069 MDIO_MMD_AN, phydev->addr); 1070 if (eee_lp <= 0) 1071 goto eee_exit_err; 1072 1073 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1074 MDIO_MMD_AN, phydev->addr); 1075 if (eee_adv <= 0) 1076 goto eee_exit_err; 1077 1078 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1079 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1080 idx = phy_find_setting(phydev->speed, phydev->duplex); 1081 if (!(lp & adv & settings[idx].setting)) 1082 goto eee_exit_err; 1083 1084 if (clk_stop_enable) { 1085 /* Configure the PHY to stop receiving xMII 1086 * clock while it is signaling LPI. 1087 */ 1088 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, 1089 MDIO_MMD_PCS, 1090 phydev->addr); 1091 if (val < 0) 1092 return val; 1093 1094 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1095 phy_write_mmd_indirect(phydev, MDIO_CTRL1, 1096 MDIO_MMD_PCS, phydev->addr, 1097 val); 1098 } 1099 1100 return 0; /* EEE supported */ 1101 } 1102 eee_exit_err: 1103 return -EPROTONOSUPPORT; 1104 } 1105 EXPORT_SYMBOL(phy_init_eee); 1106 1107 /** 1108 * phy_get_eee_err - report the EEE wake error count 1109 * @phydev: target phy_device struct 1110 * 1111 * Description: it is to report the number of time where the PHY 1112 * failed to complete its normal wake sequence. 1113 */ 1114 int phy_get_eee_err(struct phy_device *phydev) 1115 { 1116 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, 1117 MDIO_MMD_PCS, phydev->addr); 1118 } 1119 EXPORT_SYMBOL(phy_get_eee_err); 1120 1121 /** 1122 * phy_ethtool_get_eee - get EEE supported and status 1123 * @phydev: target phy_device struct 1124 * @data: ethtool_eee data 1125 * 1126 * Description: it reportes the Supported/Advertisement/LP Advertisement 1127 * capabilities. 1128 */ 1129 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1130 { 1131 int val; 1132 1133 /* Get Supported EEE */ 1134 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1135 MDIO_MMD_PCS, phydev->addr); 1136 if (val < 0) 1137 return val; 1138 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1139 1140 /* Get advertisement EEE */ 1141 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1142 MDIO_MMD_AN, phydev->addr); 1143 if (val < 0) 1144 return val; 1145 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1146 1147 /* Get LP advertisement EEE */ 1148 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1149 MDIO_MMD_AN, phydev->addr); 1150 if (val < 0) 1151 return val; 1152 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL(phy_ethtool_get_eee); 1157 1158 /** 1159 * phy_ethtool_set_eee - set EEE supported and status 1160 * @phydev: target phy_device struct 1161 * @data: ethtool_eee data 1162 * 1163 * Description: it is to program the Advertisement EEE register. 1164 */ 1165 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1166 { 1167 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1168 1169 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, 1170 phydev->addr, val); 1171 1172 return 0; 1173 } 1174 EXPORT_SYMBOL(phy_ethtool_set_eee); 1175 1176 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1177 { 1178 if (phydev->drv->set_wol) 1179 return phydev->drv->set_wol(phydev, wol); 1180 1181 return -EOPNOTSUPP; 1182 } 1183 EXPORT_SYMBOL(phy_ethtool_set_wol); 1184 1185 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1186 { 1187 if (phydev->drv->get_wol) 1188 phydev->drv->get_wol(phydev, wol); 1189 } 1190 EXPORT_SYMBOL(phy_ethtool_get_wol); 1191