1 /* Framework for configuring and reading PHY devices 2 * Based on code in sungem_phy.c and gianfar_phy.c 3 * 4 * Author: Andy Fleming 5 * 6 * Copyright (c) 2004 Freescale Semiconductor, Inc. 7 * Copyright (c) 2006, 2007 Maciej W. Rozycki 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/unistd.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/mm.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/phy.h> 32 #include <linux/timer.h> 33 #include <linux/workqueue.h> 34 #include <linux/mdio.h> 35 #include <linux/io.h> 36 #include <linux/uaccess.h> 37 #include <linux/atomic.h> 38 39 #include <asm/irq.h> 40 41 static const char *phy_speed_to_str(int speed) 42 { 43 switch (speed) { 44 case SPEED_10: 45 return "10Mbps"; 46 case SPEED_100: 47 return "100Mbps"; 48 case SPEED_1000: 49 return "1Gbps"; 50 case SPEED_2500: 51 return "2.5Gbps"; 52 case SPEED_10000: 53 return "10Gbps"; 54 case SPEED_UNKNOWN: 55 return "Unknown"; 56 default: 57 return "Unsupported (update phy.c)"; 58 } 59 } 60 61 /** 62 * phy_print_status - Convenience function to print out the current phy status 63 * @phydev: the phy_device struct 64 */ 65 void phy_print_status(struct phy_device *phydev) 66 { 67 if (phydev->link) { 68 netdev_info(phydev->attached_dev, 69 "Link is Up - %s/%s - flow control %s\n", 70 phy_speed_to_str(phydev->speed), 71 DUPLEX_FULL == phydev->duplex ? "Full" : "Half", 72 phydev->pause ? "rx/tx" : "off"); 73 } else { 74 netdev_info(phydev->attached_dev, "Link is Down\n"); 75 } 76 } 77 EXPORT_SYMBOL(phy_print_status); 78 79 /** 80 * phy_clear_interrupt - Ack the phy device's interrupt 81 * @phydev: the phy_device struct 82 * 83 * If the @phydev driver has an ack_interrupt function, call it to 84 * ack and clear the phy device's interrupt. 85 * 86 * Returns 0 on success or < 0 on error. 87 */ 88 static int phy_clear_interrupt(struct phy_device *phydev) 89 { 90 if (phydev->drv->ack_interrupt) 91 return phydev->drv->ack_interrupt(phydev); 92 93 return 0; 94 } 95 96 /** 97 * phy_config_interrupt - configure the PHY device for the requested interrupts 98 * @phydev: the phy_device struct 99 * @interrupts: interrupt flags to configure for this @phydev 100 * 101 * Returns 0 on success or < 0 on error. 102 */ 103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 104 { 105 phydev->interrupts = interrupts; 106 if (phydev->drv->config_intr) 107 return phydev->drv->config_intr(phydev); 108 109 return 0; 110 } 111 112 113 /** 114 * phy_aneg_done - return auto-negotiation status 115 * @phydev: target phy_device struct 116 * 117 * Description: Return the auto-negotiation status from this @phydev 118 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation 119 * is still pending. 120 */ 121 static inline int phy_aneg_done(struct phy_device *phydev) 122 { 123 if (phydev->drv->aneg_done) 124 return phydev->drv->aneg_done(phydev); 125 126 return genphy_aneg_done(phydev); 127 } 128 129 /* A structure for mapping a particular speed and duplex 130 * combination to a particular SUPPORTED and ADVERTISED value 131 */ 132 struct phy_setting { 133 int speed; 134 int duplex; 135 u32 setting; 136 }; 137 138 /* A mapping of all SUPPORTED settings to speed/duplex */ 139 static const struct phy_setting settings[] = { 140 { 141 .speed = SPEED_10000, 142 .duplex = DUPLEX_FULL, 143 .setting = SUPPORTED_10000baseKR_Full, 144 }, 145 { 146 .speed = SPEED_10000, 147 .duplex = DUPLEX_FULL, 148 .setting = SUPPORTED_10000baseKX4_Full, 149 }, 150 { 151 .speed = SPEED_10000, 152 .duplex = DUPLEX_FULL, 153 .setting = SUPPORTED_10000baseT_Full, 154 }, 155 { 156 .speed = SPEED_2500, 157 .duplex = DUPLEX_FULL, 158 .setting = SUPPORTED_2500baseX_Full, 159 }, 160 { 161 .speed = SPEED_1000, 162 .duplex = DUPLEX_FULL, 163 .setting = SUPPORTED_1000baseKX_Full, 164 }, 165 { 166 .speed = SPEED_1000, 167 .duplex = DUPLEX_FULL, 168 .setting = SUPPORTED_1000baseT_Full, 169 }, 170 { 171 .speed = SPEED_1000, 172 .duplex = DUPLEX_HALF, 173 .setting = SUPPORTED_1000baseT_Half, 174 }, 175 { 176 .speed = SPEED_100, 177 .duplex = DUPLEX_FULL, 178 .setting = SUPPORTED_100baseT_Full, 179 }, 180 { 181 .speed = SPEED_100, 182 .duplex = DUPLEX_HALF, 183 .setting = SUPPORTED_100baseT_Half, 184 }, 185 { 186 .speed = SPEED_10, 187 .duplex = DUPLEX_FULL, 188 .setting = SUPPORTED_10baseT_Full, 189 }, 190 { 191 .speed = SPEED_10, 192 .duplex = DUPLEX_HALF, 193 .setting = SUPPORTED_10baseT_Half, 194 }, 195 }; 196 197 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 198 199 /** 200 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 201 * @speed: speed to match 202 * @duplex: duplex to match 203 * 204 * Description: Searches the settings array for the setting which 205 * matches the desired speed and duplex, and returns the index 206 * of that setting. Returns the index of the last setting if 207 * none of the others match. 208 */ 209 static inline unsigned int phy_find_setting(int speed, int duplex) 210 { 211 unsigned int idx = 0; 212 213 while (idx < ARRAY_SIZE(settings) && 214 (settings[idx].speed != speed || settings[idx].duplex != duplex)) 215 idx++; 216 217 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 218 } 219 220 /** 221 * phy_find_valid - find a PHY setting that matches the requested features mask 222 * @idx: The first index in settings[] to search 223 * @features: A mask of the valid settings 224 * 225 * Description: Returns the index of the first valid setting less 226 * than or equal to the one pointed to by idx, as determined by 227 * the mask in features. Returns the index of the last setting 228 * if nothing else matches. 229 */ 230 static inline unsigned int phy_find_valid(unsigned int idx, u32 features) 231 { 232 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 233 idx++; 234 235 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 236 } 237 238 /** 239 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 240 * @phydev: the target phy_device struct 241 * 242 * Description: Make sure the PHY is set to supported speeds and 243 * duplexes. Drop down by one in this order: 1000/FULL, 244 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 245 */ 246 static void phy_sanitize_settings(struct phy_device *phydev) 247 { 248 u32 features = phydev->supported; 249 unsigned int idx; 250 251 /* Sanitize settings based on PHY capabilities */ 252 if ((features & SUPPORTED_Autoneg) == 0) 253 phydev->autoneg = AUTONEG_DISABLE; 254 255 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 256 features); 257 258 phydev->speed = settings[idx].speed; 259 phydev->duplex = settings[idx].duplex; 260 } 261 262 /** 263 * phy_ethtool_sset - generic ethtool sset function, handles all the details 264 * @phydev: target phy_device struct 265 * @cmd: ethtool_cmd 266 * 267 * A few notes about parameter checking: 268 * - We don't set port or transceiver, so we don't care what they 269 * were set to. 270 * - phy_start_aneg() will make sure forced settings are sane, and 271 * choose the next best ones from the ones selected, so we don't 272 * care if ethtool tries to give us bad values. 273 */ 274 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 275 { 276 u32 speed = ethtool_cmd_speed(cmd); 277 278 if (cmd->phy_address != phydev->addr) 279 return -EINVAL; 280 281 /* We make sure that we don't pass unsupported values in to the PHY */ 282 cmd->advertising &= phydev->supported; 283 284 /* Verify the settings we care about. */ 285 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 286 return -EINVAL; 287 288 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 289 return -EINVAL; 290 291 if (cmd->autoneg == AUTONEG_DISABLE && 292 ((speed != SPEED_1000 && 293 speed != SPEED_100 && 294 speed != SPEED_10) || 295 (cmd->duplex != DUPLEX_HALF && 296 cmd->duplex != DUPLEX_FULL))) 297 return -EINVAL; 298 299 phydev->autoneg = cmd->autoneg; 300 301 phydev->speed = speed; 302 303 phydev->advertising = cmd->advertising; 304 305 if (AUTONEG_ENABLE == cmd->autoneg) 306 phydev->advertising |= ADVERTISED_Autoneg; 307 else 308 phydev->advertising &= ~ADVERTISED_Autoneg; 309 310 phydev->duplex = cmd->duplex; 311 312 /* Restart the PHY */ 313 phy_start_aneg(phydev); 314 315 return 0; 316 } 317 EXPORT_SYMBOL(phy_ethtool_sset); 318 319 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 320 { 321 cmd->supported = phydev->supported; 322 323 cmd->advertising = phydev->advertising; 324 cmd->lp_advertising = phydev->lp_advertising; 325 326 ethtool_cmd_speed_set(cmd, phydev->speed); 327 cmd->duplex = phydev->duplex; 328 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 329 cmd->port = PORT_BNC; 330 else 331 cmd->port = PORT_MII; 332 cmd->phy_address = phydev->addr; 333 cmd->transceiver = phy_is_internal(phydev) ? 334 XCVR_INTERNAL : XCVR_EXTERNAL; 335 cmd->autoneg = phydev->autoneg; 336 337 return 0; 338 } 339 EXPORT_SYMBOL(phy_ethtool_gset); 340 341 /** 342 * phy_mii_ioctl - generic PHY MII ioctl interface 343 * @phydev: the phy_device struct 344 * @ifr: &struct ifreq for socket ioctl's 345 * @cmd: ioctl cmd to execute 346 * 347 * Note that this function is currently incompatible with the 348 * PHYCONTROL layer. It changes registers without regard to 349 * current state. Use at own risk. 350 */ 351 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) 352 { 353 struct mii_ioctl_data *mii_data = if_mii(ifr); 354 u16 val = mii_data->val_in; 355 bool change_autoneg = false; 356 357 switch (cmd) { 358 case SIOCGMIIPHY: 359 mii_data->phy_id = phydev->addr; 360 /* fall through */ 361 362 case SIOCGMIIREG: 363 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id, 364 mii_data->reg_num); 365 return 0; 366 367 case SIOCSMIIREG: 368 if (mii_data->phy_id == phydev->addr) { 369 switch (mii_data->reg_num) { 370 case MII_BMCR: 371 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { 372 if (phydev->autoneg == AUTONEG_ENABLE) 373 change_autoneg = true; 374 phydev->autoneg = AUTONEG_DISABLE; 375 if (val & BMCR_FULLDPLX) 376 phydev->duplex = DUPLEX_FULL; 377 else 378 phydev->duplex = DUPLEX_HALF; 379 if (val & BMCR_SPEED1000) 380 phydev->speed = SPEED_1000; 381 else if (val & BMCR_SPEED100) 382 phydev->speed = SPEED_100; 383 else phydev->speed = SPEED_10; 384 } 385 else { 386 if (phydev->autoneg == AUTONEG_DISABLE) 387 change_autoneg = true; 388 phydev->autoneg = AUTONEG_ENABLE; 389 } 390 break; 391 case MII_ADVERTISE: 392 phydev->advertising = mii_adv_to_ethtool_adv_t(val); 393 change_autoneg = true; 394 break; 395 default: 396 /* do nothing */ 397 break; 398 } 399 } 400 401 mdiobus_write(phydev->bus, mii_data->phy_id, 402 mii_data->reg_num, val); 403 404 if (mii_data->reg_num == MII_BMCR && 405 val & BMCR_RESET) 406 return phy_init_hw(phydev); 407 408 if (change_autoneg) 409 return phy_start_aneg(phydev); 410 411 return 0; 412 413 case SIOCSHWTSTAMP: 414 if (phydev->drv->hwtstamp) 415 return phydev->drv->hwtstamp(phydev, ifr); 416 /* fall through */ 417 418 default: 419 return -EOPNOTSUPP; 420 } 421 } 422 EXPORT_SYMBOL(phy_mii_ioctl); 423 424 /** 425 * phy_start_aneg - start auto-negotiation for this PHY device 426 * @phydev: the phy_device struct 427 * 428 * Description: Sanitizes the settings (if we're not autonegotiating 429 * them), and then calls the driver's config_aneg function. 430 * If the PHYCONTROL Layer is operating, we change the state to 431 * reflect the beginning of Auto-negotiation or forcing. 432 */ 433 int phy_start_aneg(struct phy_device *phydev) 434 { 435 int err; 436 437 mutex_lock(&phydev->lock); 438 439 if (AUTONEG_DISABLE == phydev->autoneg) 440 phy_sanitize_settings(phydev); 441 442 err = phydev->drv->config_aneg(phydev); 443 if (err < 0) 444 goto out_unlock; 445 446 if (phydev->state != PHY_HALTED) { 447 if (AUTONEG_ENABLE == phydev->autoneg) { 448 phydev->state = PHY_AN; 449 phydev->link_timeout = PHY_AN_TIMEOUT; 450 } else { 451 phydev->state = PHY_FORCING; 452 phydev->link_timeout = PHY_FORCE_TIMEOUT; 453 } 454 } 455 456 out_unlock: 457 mutex_unlock(&phydev->lock); 458 return err; 459 } 460 EXPORT_SYMBOL(phy_start_aneg); 461 462 /** 463 * phy_start_machine - start PHY state machine tracking 464 * @phydev: the phy_device struct 465 * 466 * Description: The PHY infrastructure can run a state machine 467 * which tracks whether the PHY is starting up, negotiating, 468 * etc. This function starts the timer which tracks the state 469 * of the PHY. If you want to maintain your own state machine, 470 * do not call this function. 471 */ 472 void phy_start_machine(struct phy_device *phydev) 473 { 474 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 475 } 476 477 /** 478 * phy_stop_machine - stop the PHY state machine tracking 479 * @phydev: target phy_device struct 480 * 481 * Description: Stops the state machine timer, sets the state to UP 482 * (unless it wasn't up yet). This function must be called BEFORE 483 * phy_detach. 484 */ 485 void phy_stop_machine(struct phy_device *phydev) 486 { 487 cancel_delayed_work_sync(&phydev->state_queue); 488 489 mutex_lock(&phydev->lock); 490 if (phydev->state > PHY_UP) 491 phydev->state = PHY_UP; 492 mutex_unlock(&phydev->lock); 493 } 494 495 /** 496 * phy_error - enter HALTED state for this PHY device 497 * @phydev: target phy_device struct 498 * 499 * Moves the PHY to the HALTED state in response to a read 500 * or write error, and tells the controller the link is down. 501 * Must not be called from interrupt context, or while the 502 * phydev->lock is held. 503 */ 504 static void phy_error(struct phy_device *phydev) 505 { 506 mutex_lock(&phydev->lock); 507 phydev->state = PHY_HALTED; 508 mutex_unlock(&phydev->lock); 509 } 510 511 /** 512 * phy_interrupt - PHY interrupt handler 513 * @irq: interrupt line 514 * @phy_dat: phy_device pointer 515 * 516 * Description: When a PHY interrupt occurs, the handler disables 517 * interrupts, and schedules a work task to clear the interrupt. 518 */ 519 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 520 { 521 struct phy_device *phydev = phy_dat; 522 523 if (PHY_HALTED == phydev->state) 524 return IRQ_NONE; /* It can't be ours. */ 525 526 /* The MDIO bus is not allowed to be written in interrupt 527 * context, so we need to disable the irq here. A work 528 * queue will write the PHY to disable and clear the 529 * interrupt, and then reenable the irq line. 530 */ 531 disable_irq_nosync(irq); 532 atomic_inc(&phydev->irq_disable); 533 534 queue_work(system_power_efficient_wq, &phydev->phy_queue); 535 536 return IRQ_HANDLED; 537 } 538 539 /** 540 * phy_enable_interrupts - Enable the interrupts from the PHY side 541 * @phydev: target phy_device struct 542 */ 543 static int phy_enable_interrupts(struct phy_device *phydev) 544 { 545 int err = phy_clear_interrupt(phydev); 546 547 if (err < 0) 548 return err; 549 550 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 551 } 552 553 /** 554 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 555 * @phydev: target phy_device struct 556 */ 557 static int phy_disable_interrupts(struct phy_device *phydev) 558 { 559 int err; 560 561 /* Disable PHY interrupts */ 562 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 563 if (err) 564 goto phy_err; 565 566 /* Clear the interrupt */ 567 err = phy_clear_interrupt(phydev); 568 if (err) 569 goto phy_err; 570 571 return 0; 572 573 phy_err: 574 phy_error(phydev); 575 576 return err; 577 } 578 579 /** 580 * phy_start_interrupts - request and enable interrupts for a PHY device 581 * @phydev: target phy_device struct 582 * 583 * Description: Request the interrupt for the given PHY. 584 * If this fails, then we set irq to PHY_POLL. 585 * Otherwise, we enable the interrupts in the PHY. 586 * This should only be called with a valid IRQ number. 587 * Returns 0 on success or < 0 on error. 588 */ 589 int phy_start_interrupts(struct phy_device *phydev) 590 { 591 atomic_set(&phydev->irq_disable, 0); 592 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt", 593 phydev) < 0) { 594 pr_warn("%s: Can't get IRQ %d (PHY)\n", 595 phydev->bus->name, phydev->irq); 596 phydev->irq = PHY_POLL; 597 return 0; 598 } 599 600 return phy_enable_interrupts(phydev); 601 } 602 EXPORT_SYMBOL(phy_start_interrupts); 603 604 /** 605 * phy_stop_interrupts - disable interrupts from a PHY device 606 * @phydev: target phy_device struct 607 */ 608 int phy_stop_interrupts(struct phy_device *phydev) 609 { 610 int err = phy_disable_interrupts(phydev); 611 612 if (err) 613 phy_error(phydev); 614 615 free_irq(phydev->irq, phydev); 616 617 /* Cannot call flush_scheduled_work() here as desired because 618 * of rtnl_lock(), but we do not really care about what would 619 * be done, except from enable_irq(), so cancel any work 620 * possibly pending and take care of the matter below. 621 */ 622 cancel_work_sync(&phydev->phy_queue); 623 /* If work indeed has been cancelled, disable_irq() will have 624 * been left unbalanced from phy_interrupt() and enable_irq() 625 * has to be called so that other devices on the line work. 626 */ 627 while (atomic_dec_return(&phydev->irq_disable) >= 0) 628 enable_irq(phydev->irq); 629 630 return err; 631 } 632 EXPORT_SYMBOL(phy_stop_interrupts); 633 634 /** 635 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 636 * @work: work_struct that describes the work to be done 637 */ 638 void phy_change(struct work_struct *work) 639 { 640 struct phy_device *phydev = 641 container_of(work, struct phy_device, phy_queue); 642 643 if (phydev->drv->did_interrupt && 644 !phydev->drv->did_interrupt(phydev)) 645 goto ignore; 646 647 if (phy_disable_interrupts(phydev)) 648 goto phy_err; 649 650 mutex_lock(&phydev->lock); 651 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 652 phydev->state = PHY_CHANGELINK; 653 mutex_unlock(&phydev->lock); 654 655 atomic_dec(&phydev->irq_disable); 656 enable_irq(phydev->irq); 657 658 /* Reenable interrupts */ 659 if (PHY_HALTED != phydev->state && 660 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) 661 goto irq_enable_err; 662 663 /* reschedule state queue work to run as soon as possible */ 664 cancel_delayed_work_sync(&phydev->state_queue); 665 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 666 return; 667 668 ignore: 669 atomic_dec(&phydev->irq_disable); 670 enable_irq(phydev->irq); 671 return; 672 673 irq_enable_err: 674 disable_irq(phydev->irq); 675 atomic_inc(&phydev->irq_disable); 676 phy_err: 677 phy_error(phydev); 678 } 679 680 /** 681 * phy_stop - Bring down the PHY link, and stop checking the status 682 * @phydev: target phy_device struct 683 */ 684 void phy_stop(struct phy_device *phydev) 685 { 686 mutex_lock(&phydev->lock); 687 688 if (PHY_HALTED == phydev->state) 689 goto out_unlock; 690 691 if (phy_interrupt_is_valid(phydev)) { 692 /* Disable PHY Interrupts */ 693 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 694 695 /* Clear any pending interrupts */ 696 phy_clear_interrupt(phydev); 697 } 698 699 phydev->state = PHY_HALTED; 700 701 out_unlock: 702 mutex_unlock(&phydev->lock); 703 704 /* Cannot call flush_scheduled_work() here as desired because 705 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 706 * will not reenable interrupts. 707 */ 708 } 709 EXPORT_SYMBOL(phy_stop); 710 711 /** 712 * phy_start - start or restart a PHY device 713 * @phydev: target phy_device struct 714 * 715 * Description: Indicates the attached device's readiness to 716 * handle PHY-related work. Used during startup to start the 717 * PHY, and after a call to phy_stop() to resume operation. 718 * Also used to indicate the MDIO bus has cleared an error 719 * condition. 720 */ 721 void phy_start(struct phy_device *phydev) 722 { 723 mutex_lock(&phydev->lock); 724 725 switch (phydev->state) { 726 case PHY_STARTING: 727 phydev->state = PHY_PENDING; 728 break; 729 case PHY_READY: 730 phydev->state = PHY_UP; 731 break; 732 case PHY_HALTED: 733 phydev->state = PHY_RESUMING; 734 default: 735 break; 736 } 737 mutex_unlock(&phydev->lock); 738 } 739 EXPORT_SYMBOL(phy_start); 740 741 /** 742 * phy_state_machine - Handle the state machine 743 * @work: work_struct that describes the work to be done 744 */ 745 void phy_state_machine(struct work_struct *work) 746 { 747 struct delayed_work *dwork = to_delayed_work(work); 748 struct phy_device *phydev = 749 container_of(dwork, struct phy_device, state_queue); 750 bool needs_aneg = false, do_suspend = false, do_resume = false; 751 int err = 0; 752 753 mutex_lock(&phydev->lock); 754 755 if (phydev->drv->link_change_notify) 756 phydev->drv->link_change_notify(phydev); 757 758 switch (phydev->state) { 759 case PHY_DOWN: 760 case PHY_STARTING: 761 case PHY_READY: 762 case PHY_PENDING: 763 break; 764 case PHY_UP: 765 needs_aneg = true; 766 767 phydev->link_timeout = PHY_AN_TIMEOUT; 768 769 break; 770 case PHY_AN: 771 err = phy_read_status(phydev); 772 if (err < 0) 773 break; 774 775 /* If the link is down, give up on negotiation for now */ 776 if (!phydev->link) { 777 phydev->state = PHY_NOLINK; 778 netif_carrier_off(phydev->attached_dev); 779 phydev->adjust_link(phydev->attached_dev); 780 break; 781 } 782 783 /* Check if negotiation is done. Break if there's an error */ 784 err = phy_aneg_done(phydev); 785 if (err < 0) 786 break; 787 788 /* If AN is done, we're running */ 789 if (err > 0) { 790 phydev->state = PHY_RUNNING; 791 netif_carrier_on(phydev->attached_dev); 792 phydev->adjust_link(phydev->attached_dev); 793 794 } else if (0 == phydev->link_timeout--) 795 needs_aneg = true; 796 break; 797 case PHY_NOLINK: 798 err = phy_read_status(phydev); 799 if (err) 800 break; 801 802 if (phydev->link) { 803 if (AUTONEG_ENABLE == phydev->autoneg) { 804 err = phy_aneg_done(phydev); 805 if (err < 0) 806 break; 807 808 if (!err) { 809 phydev->state = PHY_AN; 810 phydev->link_timeout = PHY_AN_TIMEOUT; 811 break; 812 } 813 } 814 phydev->state = PHY_RUNNING; 815 netif_carrier_on(phydev->attached_dev); 816 phydev->adjust_link(phydev->attached_dev); 817 } 818 break; 819 case PHY_FORCING: 820 err = genphy_update_link(phydev); 821 if (err) 822 break; 823 824 if (phydev->link) { 825 phydev->state = PHY_RUNNING; 826 netif_carrier_on(phydev->attached_dev); 827 } else { 828 if (0 == phydev->link_timeout--) 829 needs_aneg = true; 830 } 831 832 phydev->adjust_link(phydev->attached_dev); 833 break; 834 case PHY_RUNNING: 835 /* Only register a CHANGE if we are 836 * polling or ignoring interrupts 837 */ 838 if (!phy_interrupt_is_valid(phydev)) 839 phydev->state = PHY_CHANGELINK; 840 break; 841 case PHY_CHANGELINK: 842 err = phy_read_status(phydev); 843 if (err) 844 break; 845 846 if (phydev->link) { 847 phydev->state = PHY_RUNNING; 848 netif_carrier_on(phydev->attached_dev); 849 } else { 850 phydev->state = PHY_NOLINK; 851 netif_carrier_off(phydev->attached_dev); 852 } 853 854 phydev->adjust_link(phydev->attached_dev); 855 856 if (phy_interrupt_is_valid(phydev)) 857 err = phy_config_interrupt(phydev, 858 PHY_INTERRUPT_ENABLED); 859 break; 860 case PHY_HALTED: 861 if (phydev->link) { 862 phydev->link = 0; 863 netif_carrier_off(phydev->attached_dev); 864 phydev->adjust_link(phydev->attached_dev); 865 do_suspend = true; 866 } 867 break; 868 case PHY_RESUMING: 869 err = phy_clear_interrupt(phydev); 870 if (err) 871 break; 872 873 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 874 if (err) 875 break; 876 877 if (AUTONEG_ENABLE == phydev->autoneg) { 878 err = phy_aneg_done(phydev); 879 if (err < 0) 880 break; 881 882 /* err > 0 if AN is done. 883 * Otherwise, it's 0, and we're still waiting for AN 884 */ 885 if (err > 0) { 886 err = phy_read_status(phydev); 887 if (err) 888 break; 889 890 if (phydev->link) { 891 phydev->state = PHY_RUNNING; 892 netif_carrier_on(phydev->attached_dev); 893 } else { 894 phydev->state = PHY_NOLINK; 895 } 896 phydev->adjust_link(phydev->attached_dev); 897 } else { 898 phydev->state = PHY_AN; 899 phydev->link_timeout = PHY_AN_TIMEOUT; 900 } 901 } else { 902 err = phy_read_status(phydev); 903 if (err) 904 break; 905 906 if (phydev->link) { 907 phydev->state = PHY_RUNNING; 908 netif_carrier_on(phydev->attached_dev); 909 } else { 910 phydev->state = PHY_NOLINK; 911 } 912 phydev->adjust_link(phydev->attached_dev); 913 } 914 do_resume = true; 915 break; 916 } 917 918 mutex_unlock(&phydev->lock); 919 920 if (needs_aneg) 921 err = phy_start_aneg(phydev); 922 else if (do_suspend) 923 phy_suspend(phydev); 924 else if (do_resume) 925 phy_resume(phydev); 926 927 if (err < 0) 928 phy_error(phydev); 929 930 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 931 PHY_STATE_TIME * HZ); 932 } 933 934 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 935 { 936 cancel_work_sync(&phydev->phy_queue); 937 phydev->link = new_link; 938 schedule_work(&phydev->phy_queue); 939 } 940 EXPORT_SYMBOL(phy_mac_interrupt); 941 942 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 943 int addr) 944 { 945 /* Write the desired MMD Devad */ 946 bus->write(bus, addr, MII_MMD_CTRL, devad); 947 948 /* Write the desired MMD register address */ 949 bus->write(bus, addr, MII_MMD_DATA, prtad); 950 951 /* Select the Function : DATA with no post increment */ 952 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 953 } 954 955 /** 956 * phy_read_mmd_indirect - reads data from the MMD registers 957 * @phydev: The PHY device bus 958 * @prtad: MMD Address 959 * @devad: MMD DEVAD 960 * @addr: PHY address on the MII bus 961 * 962 * Description: it reads data from the MMD registers (clause 22 to access to 963 * clause 45) of the specified phy address. 964 * To read these register we have: 965 * 1) Write reg 13 // DEVAD 966 * 2) Write reg 14 // MMD Address 967 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 968 * 3) Read reg 14 // Read MMD data 969 */ 970 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, 971 int devad, int addr) 972 { 973 struct phy_driver *phydrv = phydev->drv; 974 int value = -1; 975 976 if (phydrv->read_mmd_indirect == NULL) { 977 mmd_phy_indirect(phydev->bus, prtad, devad, addr); 978 979 /* Read the content of the MMD's selected register */ 980 value = phydev->bus->read(phydev->bus, addr, MII_MMD_DATA); 981 } else { 982 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); 983 } 984 return value; 985 } 986 EXPORT_SYMBOL(phy_read_mmd_indirect); 987 988 /** 989 * phy_write_mmd_indirect - writes data to the MMD registers 990 * @phydev: The PHY device 991 * @prtad: MMD Address 992 * @devad: MMD DEVAD 993 * @addr: PHY address on the MII bus 994 * @data: data to write in the MMD register 995 * 996 * Description: Write data from the MMD registers of the specified 997 * phy address. 998 * To write these register we have: 999 * 1) Write reg 13 // DEVAD 1000 * 2) Write reg 14 // MMD Address 1001 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1002 * 3) Write reg 14 // Write MMD data 1003 */ 1004 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, 1005 int devad, int addr, u32 data) 1006 { 1007 struct phy_driver *phydrv = phydev->drv; 1008 1009 if (phydrv->write_mmd_indirect == NULL) { 1010 mmd_phy_indirect(phydev->bus, prtad, devad, addr); 1011 1012 /* Write the data into MMD's selected register */ 1013 phydev->bus->write(phydev->bus, addr, MII_MMD_DATA, data); 1014 } else { 1015 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); 1016 } 1017 } 1018 EXPORT_SYMBOL(phy_write_mmd_indirect); 1019 1020 /** 1021 * phy_init_eee - init and check the EEE feature 1022 * @phydev: target phy_device struct 1023 * @clk_stop_enable: PHY may stop the clock during LPI 1024 * 1025 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1026 * is supported by looking at the MMD registers 3.20 and 7.60/61 1027 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1028 * bit if required. 1029 */ 1030 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1031 { 1032 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1033 * Also EEE feature is active when core is operating with MII, GMII 1034 * or RGMII. Internal PHYs are also allowed to proceed and should 1035 * return an error if they do not support EEE. 1036 */ 1037 if ((phydev->duplex == DUPLEX_FULL) && 1038 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1039 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1040 (phydev->interface == PHY_INTERFACE_MODE_RGMII) || 1041 phy_is_internal(phydev))) { 1042 int eee_lp, eee_cap, eee_adv; 1043 u32 lp, cap, adv; 1044 int status; 1045 unsigned int idx; 1046 1047 /* Read phy status to properly get the right settings */ 1048 status = phy_read_status(phydev); 1049 if (status) 1050 return status; 1051 1052 /* First check if the EEE ability is supported */ 1053 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1054 MDIO_MMD_PCS, phydev->addr); 1055 if (eee_cap <= 0) 1056 goto eee_exit_err; 1057 1058 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1059 if (!cap) 1060 goto eee_exit_err; 1061 1062 /* Check which link settings negotiated and verify it in 1063 * the EEE advertising registers. 1064 */ 1065 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1066 MDIO_MMD_AN, phydev->addr); 1067 if (eee_lp <= 0) 1068 goto eee_exit_err; 1069 1070 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1071 MDIO_MMD_AN, phydev->addr); 1072 if (eee_adv <= 0) 1073 goto eee_exit_err; 1074 1075 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1076 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1077 idx = phy_find_setting(phydev->speed, phydev->duplex); 1078 if (!(lp & adv & settings[idx].setting)) 1079 goto eee_exit_err; 1080 1081 if (clk_stop_enable) { 1082 /* Configure the PHY to stop receiving xMII 1083 * clock while it is signaling LPI. 1084 */ 1085 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, 1086 MDIO_MMD_PCS, 1087 phydev->addr); 1088 if (val < 0) 1089 return val; 1090 1091 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1092 phy_write_mmd_indirect(phydev, MDIO_CTRL1, 1093 MDIO_MMD_PCS, phydev->addr, 1094 val); 1095 } 1096 1097 return 0; /* EEE supported */ 1098 } 1099 eee_exit_err: 1100 return -EPROTONOSUPPORT; 1101 } 1102 EXPORT_SYMBOL(phy_init_eee); 1103 1104 /** 1105 * phy_get_eee_err - report the EEE wake error count 1106 * @phydev: target phy_device struct 1107 * 1108 * Description: it is to report the number of time where the PHY 1109 * failed to complete its normal wake sequence. 1110 */ 1111 int phy_get_eee_err(struct phy_device *phydev) 1112 { 1113 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, 1114 MDIO_MMD_PCS, phydev->addr); 1115 } 1116 EXPORT_SYMBOL(phy_get_eee_err); 1117 1118 /** 1119 * phy_ethtool_get_eee - get EEE supported and status 1120 * @phydev: target phy_device struct 1121 * @data: ethtool_eee data 1122 * 1123 * Description: it reportes the Supported/Advertisement/LP Advertisement 1124 * capabilities. 1125 */ 1126 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1127 { 1128 int val; 1129 1130 /* Get Supported EEE */ 1131 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1132 MDIO_MMD_PCS, phydev->addr); 1133 if (val < 0) 1134 return val; 1135 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1136 1137 /* Get advertisement EEE */ 1138 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1139 MDIO_MMD_AN, phydev->addr); 1140 if (val < 0) 1141 return val; 1142 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1143 1144 /* Get LP advertisement EEE */ 1145 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1146 MDIO_MMD_AN, phydev->addr); 1147 if (val < 0) 1148 return val; 1149 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1150 1151 return 0; 1152 } 1153 EXPORT_SYMBOL(phy_ethtool_get_eee); 1154 1155 /** 1156 * phy_ethtool_set_eee - set EEE supported and status 1157 * @phydev: target phy_device struct 1158 * @data: ethtool_eee data 1159 * 1160 * Description: it is to program the Advertisement EEE register. 1161 */ 1162 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1163 { 1164 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1165 1166 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, 1167 phydev->addr, val); 1168 1169 return 0; 1170 } 1171 EXPORT_SYMBOL(phy_ethtool_set_eee); 1172 1173 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1174 { 1175 if (phydev->drv->set_wol) 1176 return phydev->drv->set_wol(phydev, wol); 1177 1178 return -EOPNOTSUPP; 1179 } 1180 EXPORT_SYMBOL(phy_ethtool_set_wol); 1181 1182 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1183 { 1184 if (phydev->drv->get_wol) 1185 phydev->drv->get_wol(phydev, wol); 1186 } 1187 EXPORT_SYMBOL(phy_ethtool_get_wol); 1188