xref: /openbmc/linux/drivers/net/phy/phy.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 /**
62  * phy_print_status - Convenience function to print out the current phy status
63  * @phydev: the phy_device struct
64  */
65 void phy_print_status(struct phy_device *phydev)
66 {
67 	if (phydev->link) {
68 		netdev_info(phydev->attached_dev,
69 			"Link is Up - %s/%s - flow control %s\n",
70 			phy_speed_to_str(phydev->speed),
71 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
72 			phydev->pause ? "rx/tx" : "off");
73 	} else	{
74 		netdev_info(phydev->attached_dev, "Link is Down\n");
75 	}
76 }
77 EXPORT_SYMBOL(phy_print_status);
78 
79 /**
80  * phy_clear_interrupt - Ack the phy device's interrupt
81  * @phydev: the phy_device struct
82  *
83  * If the @phydev driver has an ack_interrupt function, call it to
84  * ack and clear the phy device's interrupt.
85  *
86  * Returns 0 on success or < 0 on error.
87  */
88 static int phy_clear_interrupt(struct phy_device *phydev)
89 {
90 	if (phydev->drv->ack_interrupt)
91 		return phydev->drv->ack_interrupt(phydev);
92 
93 	return 0;
94 }
95 
96 /**
97  * phy_config_interrupt - configure the PHY device for the requested interrupts
98  * @phydev: the phy_device struct
99  * @interrupts: interrupt flags to configure for this @phydev
100  *
101  * Returns 0 on success or < 0 on error.
102  */
103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
104 {
105 	phydev->interrupts = interrupts;
106 	if (phydev->drv->config_intr)
107 		return phydev->drv->config_intr(phydev);
108 
109 	return 0;
110 }
111 
112 
113 /**
114  * phy_aneg_done - return auto-negotiation status
115  * @phydev: target phy_device struct
116  *
117  * Description: Return the auto-negotiation status from this @phydev
118  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
119  * is still pending.
120  */
121 static inline int phy_aneg_done(struct phy_device *phydev)
122 {
123 	if (phydev->drv->aneg_done)
124 		return phydev->drv->aneg_done(phydev);
125 
126 	return genphy_aneg_done(phydev);
127 }
128 
129 /* A structure for mapping a particular speed and duplex
130  * combination to a particular SUPPORTED and ADVERTISED value
131  */
132 struct phy_setting {
133 	int speed;
134 	int duplex;
135 	u32 setting;
136 };
137 
138 /* A mapping of all SUPPORTED settings to speed/duplex */
139 static const struct phy_setting settings[] = {
140 	{
141 		.speed = 10000,
142 		.duplex = DUPLEX_FULL,
143 		.setting = SUPPORTED_10000baseT_Full,
144 	},
145 	{
146 		.speed = SPEED_1000,
147 		.duplex = DUPLEX_FULL,
148 		.setting = SUPPORTED_1000baseT_Full,
149 	},
150 	{
151 		.speed = SPEED_1000,
152 		.duplex = DUPLEX_HALF,
153 		.setting = SUPPORTED_1000baseT_Half,
154 	},
155 	{
156 		.speed = SPEED_100,
157 		.duplex = DUPLEX_FULL,
158 		.setting = SUPPORTED_100baseT_Full,
159 	},
160 	{
161 		.speed = SPEED_100,
162 		.duplex = DUPLEX_HALF,
163 		.setting = SUPPORTED_100baseT_Half,
164 	},
165 	{
166 		.speed = SPEED_10,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_10baseT_Full,
169 	},
170 	{
171 		.speed = SPEED_10,
172 		.duplex = DUPLEX_HALF,
173 		.setting = SUPPORTED_10baseT_Half,
174 	},
175 };
176 
177 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
178 
179 /**
180  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
181  * @speed: speed to match
182  * @duplex: duplex to match
183  *
184  * Description: Searches the settings array for the setting which
185  *   matches the desired speed and duplex, and returns the index
186  *   of that setting.  Returns the index of the last setting if
187  *   none of the others match.
188  */
189 static inline unsigned int phy_find_setting(int speed, int duplex)
190 {
191 	unsigned int idx = 0;
192 
193 	while (idx < ARRAY_SIZE(settings) &&
194 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
195 		idx++;
196 
197 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
198 }
199 
200 /**
201  * phy_find_valid - find a PHY setting that matches the requested features mask
202  * @idx: The first index in settings[] to search
203  * @features: A mask of the valid settings
204  *
205  * Description: Returns the index of the first valid setting less
206  *   than or equal to the one pointed to by idx, as determined by
207  *   the mask in features.  Returns the index of the last setting
208  *   if nothing else matches.
209  */
210 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
211 {
212 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
213 		idx++;
214 
215 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
216 }
217 
218 /**
219  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
220  * @phydev: the target phy_device struct
221  *
222  * Description: Make sure the PHY is set to supported speeds and
223  *   duplexes.  Drop down by one in this order:  1000/FULL,
224  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
225  */
226 static void phy_sanitize_settings(struct phy_device *phydev)
227 {
228 	u32 features = phydev->supported;
229 	unsigned int idx;
230 
231 	/* Sanitize settings based on PHY capabilities */
232 	if ((features & SUPPORTED_Autoneg) == 0)
233 		phydev->autoneg = AUTONEG_DISABLE;
234 
235 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
236 			features);
237 
238 	phydev->speed = settings[idx].speed;
239 	phydev->duplex = settings[idx].duplex;
240 }
241 
242 /**
243  * phy_ethtool_sset - generic ethtool sset function, handles all the details
244  * @phydev: target phy_device struct
245  * @cmd: ethtool_cmd
246  *
247  * A few notes about parameter checking:
248  * - We don't set port or transceiver, so we don't care what they
249  *   were set to.
250  * - phy_start_aneg() will make sure forced settings are sane, and
251  *   choose the next best ones from the ones selected, so we don't
252  *   care if ethtool tries to give us bad values.
253  */
254 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
255 {
256 	u32 speed = ethtool_cmd_speed(cmd);
257 
258 	if (cmd->phy_address != phydev->addr)
259 		return -EINVAL;
260 
261 	/* We make sure that we don't pass unsupported values in to the PHY */
262 	cmd->advertising &= phydev->supported;
263 
264 	/* Verify the settings we care about. */
265 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
266 		return -EINVAL;
267 
268 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
269 		return -EINVAL;
270 
271 	if (cmd->autoneg == AUTONEG_DISABLE &&
272 	    ((speed != SPEED_1000 &&
273 	      speed != SPEED_100 &&
274 	      speed != SPEED_10) ||
275 	     (cmd->duplex != DUPLEX_HALF &&
276 	      cmd->duplex != DUPLEX_FULL)))
277 		return -EINVAL;
278 
279 	phydev->autoneg = cmd->autoneg;
280 
281 	phydev->speed = speed;
282 
283 	phydev->advertising = cmd->advertising;
284 
285 	if (AUTONEG_ENABLE == cmd->autoneg)
286 		phydev->advertising |= ADVERTISED_Autoneg;
287 	else
288 		phydev->advertising &= ~ADVERTISED_Autoneg;
289 
290 	phydev->duplex = cmd->duplex;
291 
292 	/* Restart the PHY */
293 	phy_start_aneg(phydev);
294 
295 	return 0;
296 }
297 EXPORT_SYMBOL(phy_ethtool_sset);
298 
299 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
300 {
301 	cmd->supported = phydev->supported;
302 
303 	cmd->advertising = phydev->advertising;
304 	cmd->lp_advertising = phydev->lp_advertising;
305 
306 	ethtool_cmd_speed_set(cmd, phydev->speed);
307 	cmd->duplex = phydev->duplex;
308 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
309 		cmd->port = PORT_BNC;
310 	else
311 		cmd->port = PORT_MII;
312 	cmd->phy_address = phydev->addr;
313 	cmd->transceiver = phy_is_internal(phydev) ?
314 		XCVR_INTERNAL : XCVR_EXTERNAL;
315 	cmd->autoneg = phydev->autoneg;
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(phy_ethtool_gset);
320 
321 /**
322  * phy_mii_ioctl - generic PHY MII ioctl interface
323  * @phydev: the phy_device struct
324  * @ifr: &struct ifreq for socket ioctl's
325  * @cmd: ioctl cmd to execute
326  *
327  * Note that this function is currently incompatible with the
328  * PHYCONTROL layer.  It changes registers without regard to
329  * current state.  Use at own risk.
330  */
331 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
332 {
333 	struct mii_ioctl_data *mii_data = if_mii(ifr);
334 	u16 val = mii_data->val_in;
335 
336 	switch (cmd) {
337 	case SIOCGMIIPHY:
338 		mii_data->phy_id = phydev->addr;
339 		/* fall through */
340 
341 	case SIOCGMIIREG:
342 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
343 						 mii_data->reg_num);
344 		return 0;
345 
346 	case SIOCSMIIREG:
347 		if (mii_data->phy_id == phydev->addr) {
348 			switch (mii_data->reg_num) {
349 			case MII_BMCR:
350 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0)
351 					phydev->autoneg = AUTONEG_DISABLE;
352 				else
353 					phydev->autoneg = AUTONEG_ENABLE;
354 				if (!phydev->autoneg && (val & BMCR_FULLDPLX))
355 					phydev->duplex = DUPLEX_FULL;
356 				else
357 					phydev->duplex = DUPLEX_HALF;
358 				if (!phydev->autoneg && (val & BMCR_SPEED1000))
359 					phydev->speed = SPEED_1000;
360 				else if (!phydev->autoneg &&
361 					 (val & BMCR_SPEED100))
362 					phydev->speed = SPEED_100;
363 				break;
364 			case MII_ADVERTISE:
365 				phydev->advertising = val;
366 				break;
367 			default:
368 				/* do nothing */
369 				break;
370 			}
371 		}
372 
373 		mdiobus_write(phydev->bus, mii_data->phy_id,
374 			      mii_data->reg_num, val);
375 
376 		if (mii_data->reg_num == MII_BMCR &&
377 		    val & BMCR_RESET)
378 			return phy_init_hw(phydev);
379 		return 0;
380 
381 	case SIOCSHWTSTAMP:
382 		if (phydev->drv->hwtstamp)
383 			return phydev->drv->hwtstamp(phydev, ifr);
384 		/* fall through */
385 
386 	default:
387 		return -EOPNOTSUPP;
388 	}
389 }
390 EXPORT_SYMBOL(phy_mii_ioctl);
391 
392 /**
393  * phy_start_aneg - start auto-negotiation for this PHY device
394  * @phydev: the phy_device struct
395  *
396  * Description: Sanitizes the settings (if we're not autonegotiating
397  *   them), and then calls the driver's config_aneg function.
398  *   If the PHYCONTROL Layer is operating, we change the state to
399  *   reflect the beginning of Auto-negotiation or forcing.
400  */
401 int phy_start_aneg(struct phy_device *phydev)
402 {
403 	int err;
404 
405 	mutex_lock(&phydev->lock);
406 
407 	if (AUTONEG_DISABLE == phydev->autoneg)
408 		phy_sanitize_settings(phydev);
409 
410 	err = phydev->drv->config_aneg(phydev);
411 	if (err < 0)
412 		goto out_unlock;
413 
414 	if (phydev->state != PHY_HALTED) {
415 		if (AUTONEG_ENABLE == phydev->autoneg) {
416 			phydev->state = PHY_AN;
417 			phydev->link_timeout = PHY_AN_TIMEOUT;
418 		} else {
419 			phydev->state = PHY_FORCING;
420 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
421 		}
422 	}
423 
424 out_unlock:
425 	mutex_unlock(&phydev->lock);
426 	return err;
427 }
428 EXPORT_SYMBOL(phy_start_aneg);
429 
430 /**
431  * phy_start_machine - start PHY state machine tracking
432  * @phydev: the phy_device struct
433  *
434  * Description: The PHY infrastructure can run a state machine
435  *   which tracks whether the PHY is starting up, negotiating,
436  *   etc.  This function starts the timer which tracks the state
437  *   of the PHY.  If you want to maintain your own state machine,
438  *   do not call this function.
439  */
440 void phy_start_machine(struct phy_device *phydev)
441 {
442 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
443 }
444 
445 /**
446  * phy_stop_machine - stop the PHY state machine tracking
447  * @phydev: target phy_device struct
448  *
449  * Description: Stops the state machine timer, sets the state to UP
450  *   (unless it wasn't up yet). This function must be called BEFORE
451  *   phy_detach.
452  */
453 void phy_stop_machine(struct phy_device *phydev)
454 {
455 	cancel_delayed_work_sync(&phydev->state_queue);
456 
457 	mutex_lock(&phydev->lock);
458 	if (phydev->state > PHY_UP)
459 		phydev->state = PHY_UP;
460 	mutex_unlock(&phydev->lock);
461 }
462 
463 /**
464  * phy_error - enter HALTED state for this PHY device
465  * @phydev: target phy_device struct
466  *
467  * Moves the PHY to the HALTED state in response to a read
468  * or write error, and tells the controller the link is down.
469  * Must not be called from interrupt context, or while the
470  * phydev->lock is held.
471  */
472 static void phy_error(struct phy_device *phydev)
473 {
474 	mutex_lock(&phydev->lock);
475 	phydev->state = PHY_HALTED;
476 	mutex_unlock(&phydev->lock);
477 }
478 
479 /**
480  * phy_interrupt - PHY interrupt handler
481  * @irq: interrupt line
482  * @phy_dat: phy_device pointer
483  *
484  * Description: When a PHY interrupt occurs, the handler disables
485  * interrupts, and schedules a work task to clear the interrupt.
486  */
487 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
488 {
489 	struct phy_device *phydev = phy_dat;
490 
491 	if (PHY_HALTED == phydev->state)
492 		return IRQ_NONE;		/* It can't be ours.  */
493 
494 	/* The MDIO bus is not allowed to be written in interrupt
495 	 * context, so we need to disable the irq here.  A work
496 	 * queue will write the PHY to disable and clear the
497 	 * interrupt, and then reenable the irq line.
498 	 */
499 	disable_irq_nosync(irq);
500 	atomic_inc(&phydev->irq_disable);
501 
502 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
503 
504 	return IRQ_HANDLED;
505 }
506 
507 /**
508  * phy_enable_interrupts - Enable the interrupts from the PHY side
509  * @phydev: target phy_device struct
510  */
511 static int phy_enable_interrupts(struct phy_device *phydev)
512 {
513 	int err = phy_clear_interrupt(phydev);
514 
515 	if (err < 0)
516 		return err;
517 
518 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
519 }
520 
521 /**
522  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
523  * @phydev: target phy_device struct
524  */
525 static int phy_disable_interrupts(struct phy_device *phydev)
526 {
527 	int err;
528 
529 	/* Disable PHY interrupts */
530 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
531 	if (err)
532 		goto phy_err;
533 
534 	/* Clear the interrupt */
535 	err = phy_clear_interrupt(phydev);
536 	if (err)
537 		goto phy_err;
538 
539 	return 0;
540 
541 phy_err:
542 	phy_error(phydev);
543 
544 	return err;
545 }
546 
547 /**
548  * phy_start_interrupts - request and enable interrupts for a PHY device
549  * @phydev: target phy_device struct
550  *
551  * Description: Request the interrupt for the given PHY.
552  *   If this fails, then we set irq to PHY_POLL.
553  *   Otherwise, we enable the interrupts in the PHY.
554  *   This should only be called with a valid IRQ number.
555  *   Returns 0 on success or < 0 on error.
556  */
557 int phy_start_interrupts(struct phy_device *phydev)
558 {
559 	atomic_set(&phydev->irq_disable, 0);
560 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
561 			phydev) < 0) {
562 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
563 			phydev->bus->name, phydev->irq);
564 		phydev->irq = PHY_POLL;
565 		return 0;
566 	}
567 
568 	return phy_enable_interrupts(phydev);
569 }
570 EXPORT_SYMBOL(phy_start_interrupts);
571 
572 /**
573  * phy_stop_interrupts - disable interrupts from a PHY device
574  * @phydev: target phy_device struct
575  */
576 int phy_stop_interrupts(struct phy_device *phydev)
577 {
578 	int err = phy_disable_interrupts(phydev);
579 
580 	if (err)
581 		phy_error(phydev);
582 
583 	free_irq(phydev->irq, phydev);
584 
585 	/* Cannot call flush_scheduled_work() here as desired because
586 	 * of rtnl_lock(), but we do not really care about what would
587 	 * be done, except from enable_irq(), so cancel any work
588 	 * possibly pending and take care of the matter below.
589 	 */
590 	cancel_work_sync(&phydev->phy_queue);
591 	/* If work indeed has been cancelled, disable_irq() will have
592 	 * been left unbalanced from phy_interrupt() and enable_irq()
593 	 * has to be called so that other devices on the line work.
594 	 */
595 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
596 		enable_irq(phydev->irq);
597 
598 	return err;
599 }
600 EXPORT_SYMBOL(phy_stop_interrupts);
601 
602 /**
603  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
604  * @work: work_struct that describes the work to be done
605  */
606 void phy_change(struct work_struct *work)
607 {
608 	struct phy_device *phydev =
609 		container_of(work, struct phy_device, phy_queue);
610 
611 	if (phydev->drv->did_interrupt &&
612 	    !phydev->drv->did_interrupt(phydev))
613 		goto ignore;
614 
615 	if (phy_disable_interrupts(phydev))
616 		goto phy_err;
617 
618 	mutex_lock(&phydev->lock);
619 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
620 		phydev->state = PHY_CHANGELINK;
621 	mutex_unlock(&phydev->lock);
622 
623 	atomic_dec(&phydev->irq_disable);
624 	enable_irq(phydev->irq);
625 
626 	/* Reenable interrupts */
627 	if (PHY_HALTED != phydev->state &&
628 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
629 		goto irq_enable_err;
630 
631 	/* reschedule state queue work to run as soon as possible */
632 	cancel_delayed_work_sync(&phydev->state_queue);
633 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
634 	return;
635 
636 ignore:
637 	atomic_dec(&phydev->irq_disable);
638 	enable_irq(phydev->irq);
639 	return;
640 
641 irq_enable_err:
642 	disable_irq(phydev->irq);
643 	atomic_inc(&phydev->irq_disable);
644 phy_err:
645 	phy_error(phydev);
646 }
647 
648 /**
649  * phy_stop - Bring down the PHY link, and stop checking the status
650  * @phydev: target phy_device struct
651  */
652 void phy_stop(struct phy_device *phydev)
653 {
654 	mutex_lock(&phydev->lock);
655 
656 	if (PHY_HALTED == phydev->state)
657 		goto out_unlock;
658 
659 	if (phy_interrupt_is_valid(phydev)) {
660 		/* Disable PHY Interrupts */
661 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
662 
663 		/* Clear any pending interrupts */
664 		phy_clear_interrupt(phydev);
665 	}
666 
667 	phydev->state = PHY_HALTED;
668 
669 out_unlock:
670 	mutex_unlock(&phydev->lock);
671 
672 	/* Cannot call flush_scheduled_work() here as desired because
673 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
674 	 * will not reenable interrupts.
675 	 */
676 }
677 EXPORT_SYMBOL(phy_stop);
678 
679 /**
680  * phy_start - start or restart a PHY device
681  * @phydev: target phy_device struct
682  *
683  * Description: Indicates the attached device's readiness to
684  *   handle PHY-related work.  Used during startup to start the
685  *   PHY, and after a call to phy_stop() to resume operation.
686  *   Also used to indicate the MDIO bus has cleared an error
687  *   condition.
688  */
689 void phy_start(struct phy_device *phydev)
690 {
691 	mutex_lock(&phydev->lock);
692 
693 	switch (phydev->state) {
694 	case PHY_STARTING:
695 		phydev->state = PHY_PENDING;
696 		break;
697 	case PHY_READY:
698 		phydev->state = PHY_UP;
699 		break;
700 	case PHY_HALTED:
701 		phydev->state = PHY_RESUMING;
702 	default:
703 		break;
704 	}
705 	mutex_unlock(&phydev->lock);
706 }
707 EXPORT_SYMBOL(phy_start);
708 
709 /**
710  * phy_state_machine - Handle the state machine
711  * @work: work_struct that describes the work to be done
712  */
713 void phy_state_machine(struct work_struct *work)
714 {
715 	struct delayed_work *dwork = to_delayed_work(work);
716 	struct phy_device *phydev =
717 			container_of(dwork, struct phy_device, state_queue);
718 	int needs_aneg = 0, do_suspend = 0;
719 	int err = 0;
720 
721 	mutex_lock(&phydev->lock);
722 
723 	switch (phydev->state) {
724 	case PHY_DOWN:
725 	case PHY_STARTING:
726 	case PHY_READY:
727 	case PHY_PENDING:
728 		break;
729 	case PHY_UP:
730 		needs_aneg = 1;
731 
732 		phydev->link_timeout = PHY_AN_TIMEOUT;
733 
734 		break;
735 	case PHY_AN:
736 		err = phy_read_status(phydev);
737 		if (err < 0)
738 			break;
739 
740 		/* If the link is down, give up on negotiation for now */
741 		if (!phydev->link) {
742 			phydev->state = PHY_NOLINK;
743 			netif_carrier_off(phydev->attached_dev);
744 			phydev->adjust_link(phydev->attached_dev);
745 			break;
746 		}
747 
748 		/* Check if negotiation is done.  Break if there's an error */
749 		err = phy_aneg_done(phydev);
750 		if (err < 0)
751 			break;
752 
753 		/* If AN is done, we're running */
754 		if (err > 0) {
755 			phydev->state = PHY_RUNNING;
756 			netif_carrier_on(phydev->attached_dev);
757 			phydev->adjust_link(phydev->attached_dev);
758 
759 		} else if (0 == phydev->link_timeout--)
760 			needs_aneg = 1;
761 		break;
762 	case PHY_NOLINK:
763 		err = phy_read_status(phydev);
764 		if (err)
765 			break;
766 
767 		if (phydev->link) {
768 			phydev->state = PHY_RUNNING;
769 			netif_carrier_on(phydev->attached_dev);
770 			phydev->adjust_link(phydev->attached_dev);
771 		}
772 		break;
773 	case PHY_FORCING:
774 		err = genphy_update_link(phydev);
775 		if (err)
776 			break;
777 
778 		if (phydev->link) {
779 			phydev->state = PHY_RUNNING;
780 			netif_carrier_on(phydev->attached_dev);
781 		} else {
782 			if (0 == phydev->link_timeout--)
783 				needs_aneg = 1;
784 		}
785 
786 		phydev->adjust_link(phydev->attached_dev);
787 		break;
788 	case PHY_RUNNING:
789 		/* Only register a CHANGE if we are
790 		 * polling or ignoring interrupts
791 		 */
792 		if (!phy_interrupt_is_valid(phydev))
793 			phydev->state = PHY_CHANGELINK;
794 		break;
795 	case PHY_CHANGELINK:
796 		err = phy_read_status(phydev);
797 		if (err)
798 			break;
799 
800 		if (phydev->link) {
801 			phydev->state = PHY_RUNNING;
802 			netif_carrier_on(phydev->attached_dev);
803 		} else {
804 			phydev->state = PHY_NOLINK;
805 			netif_carrier_off(phydev->attached_dev);
806 		}
807 
808 		phydev->adjust_link(phydev->attached_dev);
809 
810 		if (phy_interrupt_is_valid(phydev))
811 			err = phy_config_interrupt(phydev,
812 						   PHY_INTERRUPT_ENABLED);
813 		break;
814 	case PHY_HALTED:
815 		if (phydev->link) {
816 			phydev->link = 0;
817 			netif_carrier_off(phydev->attached_dev);
818 			phydev->adjust_link(phydev->attached_dev);
819 			do_suspend = 1;
820 		}
821 		break;
822 	case PHY_RESUMING:
823 		err = phy_clear_interrupt(phydev);
824 		if (err)
825 			break;
826 
827 		err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
828 		if (err)
829 			break;
830 
831 		if (AUTONEG_ENABLE == phydev->autoneg) {
832 			err = phy_aneg_done(phydev);
833 			if (err < 0)
834 				break;
835 
836 			/* err > 0 if AN is done.
837 			 * Otherwise, it's 0, and we're  still waiting for AN
838 			 */
839 			if (err > 0) {
840 				err = phy_read_status(phydev);
841 				if (err)
842 					break;
843 
844 				if (phydev->link) {
845 					phydev->state = PHY_RUNNING;
846 					netif_carrier_on(phydev->attached_dev);
847 				} else	{
848 					phydev->state = PHY_NOLINK;
849 				}
850 				phydev->adjust_link(phydev->attached_dev);
851 			} else {
852 				phydev->state = PHY_AN;
853 				phydev->link_timeout = PHY_AN_TIMEOUT;
854 			}
855 		} else {
856 			err = phy_read_status(phydev);
857 			if (err)
858 				break;
859 
860 			if (phydev->link) {
861 				phydev->state = PHY_RUNNING;
862 				netif_carrier_on(phydev->attached_dev);
863 			} else	{
864 				phydev->state = PHY_NOLINK;
865 			}
866 			phydev->adjust_link(phydev->attached_dev);
867 		}
868 		break;
869 	}
870 
871 	mutex_unlock(&phydev->lock);
872 
873 	if (needs_aneg)
874 		err = phy_start_aneg(phydev);
875 
876 	if (do_suspend)
877 		phy_suspend(phydev);
878 
879 	if (err < 0)
880 		phy_error(phydev);
881 
882 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
883 			   PHY_STATE_TIME * HZ);
884 }
885 
886 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
887 {
888 	cancel_work_sync(&phydev->phy_queue);
889 	phydev->link = new_link;
890 	schedule_work(&phydev->phy_queue);
891 }
892 EXPORT_SYMBOL(phy_mac_interrupt);
893 
894 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
895 				    int addr)
896 {
897 	/* Write the desired MMD Devad */
898 	bus->write(bus, addr, MII_MMD_CTRL, devad);
899 
900 	/* Write the desired MMD register address */
901 	bus->write(bus, addr, MII_MMD_DATA, prtad);
902 
903 	/* Select the Function : DATA with no post increment */
904 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
905 }
906 
907 /**
908  * phy_read_mmd_indirect - reads data from the MMD registers
909  * @bus: the target MII bus
910  * @prtad: MMD Address
911  * @devad: MMD DEVAD
912  * @addr: PHY address on the MII bus
913  *
914  * Description: it reads data from the MMD registers (clause 22 to access to
915  * clause 45) of the specified phy address.
916  * To read these register we have:
917  * 1) Write reg 13 // DEVAD
918  * 2) Write reg 14 // MMD Address
919  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
920  * 3) Read  reg 14 // Read MMD data
921  */
922 static int phy_read_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
923 				 int addr)
924 {
925 	mmd_phy_indirect(bus, prtad, devad, addr);
926 
927 	/* Read the content of the MMD's selected register */
928 	return bus->read(bus, addr, MII_MMD_DATA);
929 }
930 
931 /**
932  * phy_write_mmd_indirect - writes data to the MMD registers
933  * @bus: the target MII bus
934  * @prtad: MMD Address
935  * @devad: MMD DEVAD
936  * @addr: PHY address on the MII bus
937  * @data: data to write in the MMD register
938  *
939  * Description: Write data from the MMD registers of the specified
940  * phy address.
941  * To write these register we have:
942  * 1) Write reg 13 // DEVAD
943  * 2) Write reg 14 // MMD Address
944  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
945  * 3) Write reg 14 // Write MMD data
946  */
947 static void phy_write_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
948 				   int addr, u32 data)
949 {
950 	mmd_phy_indirect(bus, prtad, devad, addr);
951 
952 	/* Write the data into MMD's selected register */
953 	bus->write(bus, addr, MII_MMD_DATA, data);
954 }
955 
956 /**
957  * phy_init_eee - init and check the EEE feature
958  * @phydev: target phy_device struct
959  * @clk_stop_enable: PHY may stop the clock during LPI
960  *
961  * Description: it checks if the Energy-Efficient Ethernet (EEE)
962  * is supported by looking at the MMD registers 3.20 and 7.60/61
963  * and it programs the MMD register 3.0 setting the "Clock stop enable"
964  * bit if required.
965  */
966 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
967 {
968 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
969 	 * Also EEE feature is active when core is operating with MII, GMII
970 	 * or RGMII.
971 	 */
972 	if ((phydev->duplex == DUPLEX_FULL) &&
973 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
974 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
975 	    (phydev->interface == PHY_INTERFACE_MODE_RGMII))) {
976 		int eee_lp, eee_cap, eee_adv;
977 		u32 lp, cap, adv;
978 		int status;
979 		unsigned int idx;
980 
981 		/* Read phy status to properly get the right settings */
982 		status = phy_read_status(phydev);
983 		if (status)
984 			return status;
985 
986 		/* First check if the EEE ability is supported */
987 		eee_cap = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
988 						MDIO_MMD_PCS, phydev->addr);
989 		if (eee_cap < 0)
990 			return eee_cap;
991 
992 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
993 		if (!cap)
994 			return -EPROTONOSUPPORT;
995 
996 		/* Check which link settings negotiated and verify it in
997 		 * the EEE advertising registers.
998 		 */
999 		eee_lp = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1000 					       MDIO_MMD_AN, phydev->addr);
1001 		if (eee_lp < 0)
1002 			return eee_lp;
1003 
1004 		eee_adv = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1005 						MDIO_MMD_AN, phydev->addr);
1006 		if (eee_adv < 0)
1007 			return eee_adv;
1008 
1009 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1010 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1011 		idx = phy_find_setting(phydev->speed, phydev->duplex);
1012 		if (!(lp & adv & settings[idx].setting))
1013 			return -EPROTONOSUPPORT;
1014 
1015 		if (clk_stop_enable) {
1016 			/* Configure the PHY to stop receiving xMII
1017 			 * clock while it is signaling LPI.
1018 			 */
1019 			int val = phy_read_mmd_indirect(phydev->bus, MDIO_CTRL1,
1020 							MDIO_MMD_PCS,
1021 							phydev->addr);
1022 			if (val < 0)
1023 				return val;
1024 
1025 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1026 			phy_write_mmd_indirect(phydev->bus, MDIO_CTRL1,
1027 					       MDIO_MMD_PCS, phydev->addr, val);
1028 		}
1029 
1030 		return 0; /* EEE supported */
1031 	}
1032 
1033 	return -EPROTONOSUPPORT;
1034 }
1035 EXPORT_SYMBOL(phy_init_eee);
1036 
1037 /**
1038  * phy_get_eee_err - report the EEE wake error count
1039  * @phydev: target phy_device struct
1040  *
1041  * Description: it is to report the number of time where the PHY
1042  * failed to complete its normal wake sequence.
1043  */
1044 int phy_get_eee_err(struct phy_device *phydev)
1045 {
1046 	return phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_WK_ERR,
1047 				     MDIO_MMD_PCS, phydev->addr);
1048 }
1049 EXPORT_SYMBOL(phy_get_eee_err);
1050 
1051 /**
1052  * phy_ethtool_get_eee - get EEE supported and status
1053  * @phydev: target phy_device struct
1054  * @data: ethtool_eee data
1055  *
1056  * Description: it reportes the Supported/Advertisement/LP Advertisement
1057  * capabilities.
1058  */
1059 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1060 {
1061 	int val;
1062 
1063 	/* Get Supported EEE */
1064 	val = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
1065 				    MDIO_MMD_PCS, phydev->addr);
1066 	if (val < 0)
1067 		return val;
1068 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1069 
1070 	/* Get advertisement EEE */
1071 	val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1072 				    MDIO_MMD_AN, phydev->addr);
1073 	if (val < 0)
1074 		return val;
1075 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1076 
1077 	/* Get LP advertisement EEE */
1078 	val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1079 				    MDIO_MMD_AN, phydev->addr);
1080 	if (val < 0)
1081 		return val;
1082 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1083 
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL(phy_ethtool_get_eee);
1087 
1088 /**
1089  * phy_ethtool_set_eee - set EEE supported and status
1090  * @phydev: target phy_device struct
1091  * @data: ethtool_eee data
1092  *
1093  * Description: it is to program the Advertisement EEE register.
1094  */
1095 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1096 {
1097 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1098 
1099 	phy_write_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1100 			       phydev->addr, val);
1101 
1102 	return 0;
1103 }
1104 EXPORT_SYMBOL(phy_ethtool_set_eee);
1105 
1106 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1107 {
1108 	if (phydev->drv->set_wol)
1109 		return phydev->drv->set_wol(phydev, wol);
1110 
1111 	return -EOPNOTSUPP;
1112 }
1113 EXPORT_SYMBOL(phy_ethtool_set_wol);
1114 
1115 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1116 {
1117 	if (phydev->drv->get_wol)
1118 		phydev->drv->get_wol(phydev, wol);
1119 }
1120 EXPORT_SYMBOL(phy_ethtool_get_wol);
1121