xref: /openbmc/linux/drivers/net/phy/phy.c (revision 588b48ca)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 /**
62  * phy_print_status - Convenience function to print out the current phy status
63  * @phydev: the phy_device struct
64  */
65 void phy_print_status(struct phy_device *phydev)
66 {
67 	if (phydev->link) {
68 		netdev_info(phydev->attached_dev,
69 			"Link is Up - %s/%s - flow control %s\n",
70 			phy_speed_to_str(phydev->speed),
71 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
72 			phydev->pause ? "rx/tx" : "off");
73 	} else	{
74 		netdev_info(phydev->attached_dev, "Link is Down\n");
75 	}
76 }
77 EXPORT_SYMBOL(phy_print_status);
78 
79 /**
80  * phy_clear_interrupt - Ack the phy device's interrupt
81  * @phydev: the phy_device struct
82  *
83  * If the @phydev driver has an ack_interrupt function, call it to
84  * ack and clear the phy device's interrupt.
85  *
86  * Returns 0 on success or < 0 on error.
87  */
88 static int phy_clear_interrupt(struct phy_device *phydev)
89 {
90 	if (phydev->drv->ack_interrupt)
91 		return phydev->drv->ack_interrupt(phydev);
92 
93 	return 0;
94 }
95 
96 /**
97  * phy_config_interrupt - configure the PHY device for the requested interrupts
98  * @phydev: the phy_device struct
99  * @interrupts: interrupt flags to configure for this @phydev
100  *
101  * Returns 0 on success or < 0 on error.
102  */
103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
104 {
105 	phydev->interrupts = interrupts;
106 	if (phydev->drv->config_intr)
107 		return phydev->drv->config_intr(phydev);
108 
109 	return 0;
110 }
111 
112 
113 /**
114  * phy_aneg_done - return auto-negotiation status
115  * @phydev: target phy_device struct
116  *
117  * Description: Return the auto-negotiation status from this @phydev
118  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
119  * is still pending.
120  */
121 static inline int phy_aneg_done(struct phy_device *phydev)
122 {
123 	if (phydev->drv->aneg_done)
124 		return phydev->drv->aneg_done(phydev);
125 
126 	return genphy_aneg_done(phydev);
127 }
128 
129 /* A structure for mapping a particular speed and duplex
130  * combination to a particular SUPPORTED and ADVERTISED value
131  */
132 struct phy_setting {
133 	int speed;
134 	int duplex;
135 	u32 setting;
136 };
137 
138 /* A mapping of all SUPPORTED settings to speed/duplex */
139 static const struct phy_setting settings[] = {
140 	{
141 		.speed = SPEED_10000,
142 		.duplex = DUPLEX_FULL,
143 		.setting = SUPPORTED_10000baseKR_Full,
144 	},
145 	{
146 		.speed = SPEED_10000,
147 		.duplex = DUPLEX_FULL,
148 		.setting = SUPPORTED_10000baseKX4_Full,
149 	},
150 	{
151 		.speed = SPEED_10000,
152 		.duplex = DUPLEX_FULL,
153 		.setting = SUPPORTED_10000baseT_Full,
154 	},
155 	{
156 		.speed = SPEED_2500,
157 		.duplex = DUPLEX_FULL,
158 		.setting = SUPPORTED_2500baseX_Full,
159 	},
160 	{
161 		.speed = SPEED_1000,
162 		.duplex = DUPLEX_FULL,
163 		.setting = SUPPORTED_1000baseKX_Full,
164 	},
165 	{
166 		.speed = SPEED_1000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_1000baseT_Full,
169 	},
170 	{
171 		.speed = SPEED_1000,
172 		.duplex = DUPLEX_HALF,
173 		.setting = SUPPORTED_1000baseT_Half,
174 	},
175 	{
176 		.speed = SPEED_100,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_100baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_100,
182 		.duplex = DUPLEX_HALF,
183 		.setting = SUPPORTED_100baseT_Half,
184 	},
185 	{
186 		.speed = SPEED_10,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_10baseT_Full,
189 	},
190 	{
191 		.speed = SPEED_10,
192 		.duplex = DUPLEX_HALF,
193 		.setting = SUPPORTED_10baseT_Half,
194 	},
195 };
196 
197 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
198 
199 /**
200  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
201  * @speed: speed to match
202  * @duplex: duplex to match
203  *
204  * Description: Searches the settings array for the setting which
205  *   matches the desired speed and duplex, and returns the index
206  *   of that setting.  Returns the index of the last setting if
207  *   none of the others match.
208  */
209 static inline unsigned int phy_find_setting(int speed, int duplex)
210 {
211 	unsigned int idx = 0;
212 
213 	while (idx < ARRAY_SIZE(settings) &&
214 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
215 		idx++;
216 
217 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
218 }
219 
220 /**
221  * phy_find_valid - find a PHY setting that matches the requested features mask
222  * @idx: The first index in settings[] to search
223  * @features: A mask of the valid settings
224  *
225  * Description: Returns the index of the first valid setting less
226  *   than or equal to the one pointed to by idx, as determined by
227  *   the mask in features.  Returns the index of the last setting
228  *   if nothing else matches.
229  */
230 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
231 {
232 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
233 		idx++;
234 
235 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
236 }
237 
238 /**
239  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
240  * @phydev: the target phy_device struct
241  *
242  * Description: Make sure the PHY is set to supported speeds and
243  *   duplexes.  Drop down by one in this order:  1000/FULL,
244  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
245  */
246 static void phy_sanitize_settings(struct phy_device *phydev)
247 {
248 	u32 features = phydev->supported;
249 	unsigned int idx;
250 
251 	/* Sanitize settings based on PHY capabilities */
252 	if ((features & SUPPORTED_Autoneg) == 0)
253 		phydev->autoneg = AUTONEG_DISABLE;
254 
255 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
256 			features);
257 
258 	phydev->speed = settings[idx].speed;
259 	phydev->duplex = settings[idx].duplex;
260 }
261 
262 /**
263  * phy_ethtool_sset - generic ethtool sset function, handles all the details
264  * @phydev: target phy_device struct
265  * @cmd: ethtool_cmd
266  *
267  * A few notes about parameter checking:
268  * - We don't set port or transceiver, so we don't care what they
269  *   were set to.
270  * - phy_start_aneg() will make sure forced settings are sane, and
271  *   choose the next best ones from the ones selected, so we don't
272  *   care if ethtool tries to give us bad values.
273  */
274 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
275 {
276 	u32 speed = ethtool_cmd_speed(cmd);
277 
278 	if (cmd->phy_address != phydev->addr)
279 		return -EINVAL;
280 
281 	/* We make sure that we don't pass unsupported values in to the PHY */
282 	cmd->advertising &= phydev->supported;
283 
284 	/* Verify the settings we care about. */
285 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
286 		return -EINVAL;
287 
288 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
289 		return -EINVAL;
290 
291 	if (cmd->autoneg == AUTONEG_DISABLE &&
292 	    ((speed != SPEED_1000 &&
293 	      speed != SPEED_100 &&
294 	      speed != SPEED_10) ||
295 	     (cmd->duplex != DUPLEX_HALF &&
296 	      cmd->duplex != DUPLEX_FULL)))
297 		return -EINVAL;
298 
299 	phydev->autoneg = cmd->autoneg;
300 
301 	phydev->speed = speed;
302 
303 	phydev->advertising = cmd->advertising;
304 
305 	if (AUTONEG_ENABLE == cmd->autoneg)
306 		phydev->advertising |= ADVERTISED_Autoneg;
307 	else
308 		phydev->advertising &= ~ADVERTISED_Autoneg;
309 
310 	phydev->duplex = cmd->duplex;
311 
312 	/* Restart the PHY */
313 	phy_start_aneg(phydev);
314 
315 	return 0;
316 }
317 EXPORT_SYMBOL(phy_ethtool_sset);
318 
319 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
320 {
321 	cmd->supported = phydev->supported;
322 
323 	cmd->advertising = phydev->advertising;
324 	cmd->lp_advertising = phydev->lp_advertising;
325 
326 	ethtool_cmd_speed_set(cmd, phydev->speed);
327 	cmd->duplex = phydev->duplex;
328 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
329 		cmd->port = PORT_BNC;
330 	else
331 		cmd->port = PORT_MII;
332 	cmd->phy_address = phydev->addr;
333 	cmd->transceiver = phy_is_internal(phydev) ?
334 		XCVR_INTERNAL : XCVR_EXTERNAL;
335 	cmd->autoneg = phydev->autoneg;
336 
337 	return 0;
338 }
339 EXPORT_SYMBOL(phy_ethtool_gset);
340 
341 /**
342  * phy_mii_ioctl - generic PHY MII ioctl interface
343  * @phydev: the phy_device struct
344  * @ifr: &struct ifreq for socket ioctl's
345  * @cmd: ioctl cmd to execute
346  *
347  * Note that this function is currently incompatible with the
348  * PHYCONTROL layer.  It changes registers without regard to
349  * current state.  Use at own risk.
350  */
351 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
352 {
353 	struct mii_ioctl_data *mii_data = if_mii(ifr);
354 	u16 val = mii_data->val_in;
355 
356 	switch (cmd) {
357 	case SIOCGMIIPHY:
358 		mii_data->phy_id = phydev->addr;
359 		/* fall through */
360 
361 	case SIOCGMIIREG:
362 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
363 						 mii_data->reg_num);
364 		return 0;
365 
366 	case SIOCSMIIREG:
367 		if (mii_data->phy_id == phydev->addr) {
368 			switch (mii_data->reg_num) {
369 			case MII_BMCR:
370 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0)
371 					phydev->autoneg = AUTONEG_DISABLE;
372 				else
373 					phydev->autoneg = AUTONEG_ENABLE;
374 				if (!phydev->autoneg && (val & BMCR_FULLDPLX))
375 					phydev->duplex = DUPLEX_FULL;
376 				else
377 					phydev->duplex = DUPLEX_HALF;
378 				if (!phydev->autoneg && (val & BMCR_SPEED1000))
379 					phydev->speed = SPEED_1000;
380 				else if (!phydev->autoneg &&
381 					 (val & BMCR_SPEED100))
382 					phydev->speed = SPEED_100;
383 				break;
384 			case MII_ADVERTISE:
385 				phydev->advertising = val;
386 				break;
387 			default:
388 				/* do nothing */
389 				break;
390 			}
391 		}
392 
393 		mdiobus_write(phydev->bus, mii_data->phy_id,
394 			      mii_data->reg_num, val);
395 
396 		if (mii_data->reg_num == MII_BMCR &&
397 		    val & BMCR_RESET)
398 			return phy_init_hw(phydev);
399 		return 0;
400 
401 	case SIOCSHWTSTAMP:
402 		if (phydev->drv->hwtstamp)
403 			return phydev->drv->hwtstamp(phydev, ifr);
404 		/* fall through */
405 
406 	default:
407 		return -EOPNOTSUPP;
408 	}
409 }
410 EXPORT_SYMBOL(phy_mii_ioctl);
411 
412 /**
413  * phy_start_aneg - start auto-negotiation for this PHY device
414  * @phydev: the phy_device struct
415  *
416  * Description: Sanitizes the settings (if we're not autonegotiating
417  *   them), and then calls the driver's config_aneg function.
418  *   If the PHYCONTROL Layer is operating, we change the state to
419  *   reflect the beginning of Auto-negotiation or forcing.
420  */
421 int phy_start_aneg(struct phy_device *phydev)
422 {
423 	int err;
424 
425 	mutex_lock(&phydev->lock);
426 
427 	if (AUTONEG_DISABLE == phydev->autoneg)
428 		phy_sanitize_settings(phydev);
429 
430 	err = phydev->drv->config_aneg(phydev);
431 	if (err < 0)
432 		goto out_unlock;
433 
434 	if (phydev->state != PHY_HALTED) {
435 		if (AUTONEG_ENABLE == phydev->autoneg) {
436 			phydev->state = PHY_AN;
437 			phydev->link_timeout = PHY_AN_TIMEOUT;
438 		} else {
439 			phydev->state = PHY_FORCING;
440 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
441 		}
442 	}
443 
444 out_unlock:
445 	mutex_unlock(&phydev->lock);
446 	return err;
447 }
448 EXPORT_SYMBOL(phy_start_aneg);
449 
450 /**
451  * phy_start_machine - start PHY state machine tracking
452  * @phydev: the phy_device struct
453  *
454  * Description: The PHY infrastructure can run a state machine
455  *   which tracks whether the PHY is starting up, negotiating,
456  *   etc.  This function starts the timer which tracks the state
457  *   of the PHY.  If you want to maintain your own state machine,
458  *   do not call this function.
459  */
460 void phy_start_machine(struct phy_device *phydev)
461 {
462 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
463 }
464 
465 /**
466  * phy_stop_machine - stop the PHY state machine tracking
467  * @phydev: target phy_device struct
468  *
469  * Description: Stops the state machine timer, sets the state to UP
470  *   (unless it wasn't up yet). This function must be called BEFORE
471  *   phy_detach.
472  */
473 void phy_stop_machine(struct phy_device *phydev)
474 {
475 	cancel_delayed_work_sync(&phydev->state_queue);
476 
477 	mutex_lock(&phydev->lock);
478 	if (phydev->state > PHY_UP)
479 		phydev->state = PHY_UP;
480 	mutex_unlock(&phydev->lock);
481 }
482 
483 /**
484  * phy_error - enter HALTED state for this PHY device
485  * @phydev: target phy_device struct
486  *
487  * Moves the PHY to the HALTED state in response to a read
488  * or write error, and tells the controller the link is down.
489  * Must not be called from interrupt context, or while the
490  * phydev->lock is held.
491  */
492 static void phy_error(struct phy_device *phydev)
493 {
494 	mutex_lock(&phydev->lock);
495 	phydev->state = PHY_HALTED;
496 	mutex_unlock(&phydev->lock);
497 }
498 
499 /**
500  * phy_interrupt - PHY interrupt handler
501  * @irq: interrupt line
502  * @phy_dat: phy_device pointer
503  *
504  * Description: When a PHY interrupt occurs, the handler disables
505  * interrupts, and schedules a work task to clear the interrupt.
506  */
507 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
508 {
509 	struct phy_device *phydev = phy_dat;
510 
511 	if (PHY_HALTED == phydev->state)
512 		return IRQ_NONE;		/* It can't be ours.  */
513 
514 	/* The MDIO bus is not allowed to be written in interrupt
515 	 * context, so we need to disable the irq here.  A work
516 	 * queue will write the PHY to disable and clear the
517 	 * interrupt, and then reenable the irq line.
518 	 */
519 	disable_irq_nosync(irq);
520 	atomic_inc(&phydev->irq_disable);
521 
522 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
523 
524 	return IRQ_HANDLED;
525 }
526 
527 /**
528  * phy_enable_interrupts - Enable the interrupts from the PHY side
529  * @phydev: target phy_device struct
530  */
531 static int phy_enable_interrupts(struct phy_device *phydev)
532 {
533 	int err = phy_clear_interrupt(phydev);
534 
535 	if (err < 0)
536 		return err;
537 
538 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
539 }
540 
541 /**
542  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
543  * @phydev: target phy_device struct
544  */
545 static int phy_disable_interrupts(struct phy_device *phydev)
546 {
547 	int err;
548 
549 	/* Disable PHY interrupts */
550 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
551 	if (err)
552 		goto phy_err;
553 
554 	/* Clear the interrupt */
555 	err = phy_clear_interrupt(phydev);
556 	if (err)
557 		goto phy_err;
558 
559 	return 0;
560 
561 phy_err:
562 	phy_error(phydev);
563 
564 	return err;
565 }
566 
567 /**
568  * phy_start_interrupts - request and enable interrupts for a PHY device
569  * @phydev: target phy_device struct
570  *
571  * Description: Request the interrupt for the given PHY.
572  *   If this fails, then we set irq to PHY_POLL.
573  *   Otherwise, we enable the interrupts in the PHY.
574  *   This should only be called with a valid IRQ number.
575  *   Returns 0 on success or < 0 on error.
576  */
577 int phy_start_interrupts(struct phy_device *phydev)
578 {
579 	atomic_set(&phydev->irq_disable, 0);
580 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
581 			phydev) < 0) {
582 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
583 			phydev->bus->name, phydev->irq);
584 		phydev->irq = PHY_POLL;
585 		return 0;
586 	}
587 
588 	return phy_enable_interrupts(phydev);
589 }
590 EXPORT_SYMBOL(phy_start_interrupts);
591 
592 /**
593  * phy_stop_interrupts - disable interrupts from a PHY device
594  * @phydev: target phy_device struct
595  */
596 int phy_stop_interrupts(struct phy_device *phydev)
597 {
598 	int err = phy_disable_interrupts(phydev);
599 
600 	if (err)
601 		phy_error(phydev);
602 
603 	free_irq(phydev->irq, phydev);
604 
605 	/* Cannot call flush_scheduled_work() here as desired because
606 	 * of rtnl_lock(), but we do not really care about what would
607 	 * be done, except from enable_irq(), so cancel any work
608 	 * possibly pending and take care of the matter below.
609 	 */
610 	cancel_work_sync(&phydev->phy_queue);
611 	/* If work indeed has been cancelled, disable_irq() will have
612 	 * been left unbalanced from phy_interrupt() and enable_irq()
613 	 * has to be called so that other devices on the line work.
614 	 */
615 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
616 		enable_irq(phydev->irq);
617 
618 	return err;
619 }
620 EXPORT_SYMBOL(phy_stop_interrupts);
621 
622 /**
623  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
624  * @work: work_struct that describes the work to be done
625  */
626 void phy_change(struct work_struct *work)
627 {
628 	struct phy_device *phydev =
629 		container_of(work, struct phy_device, phy_queue);
630 
631 	if (phydev->drv->did_interrupt &&
632 	    !phydev->drv->did_interrupt(phydev))
633 		goto ignore;
634 
635 	if (phy_disable_interrupts(phydev))
636 		goto phy_err;
637 
638 	mutex_lock(&phydev->lock);
639 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
640 		phydev->state = PHY_CHANGELINK;
641 	mutex_unlock(&phydev->lock);
642 
643 	atomic_dec(&phydev->irq_disable);
644 	enable_irq(phydev->irq);
645 
646 	/* Reenable interrupts */
647 	if (PHY_HALTED != phydev->state &&
648 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
649 		goto irq_enable_err;
650 
651 	/* reschedule state queue work to run as soon as possible */
652 	cancel_delayed_work_sync(&phydev->state_queue);
653 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
654 	return;
655 
656 ignore:
657 	atomic_dec(&phydev->irq_disable);
658 	enable_irq(phydev->irq);
659 	return;
660 
661 irq_enable_err:
662 	disable_irq(phydev->irq);
663 	atomic_inc(&phydev->irq_disable);
664 phy_err:
665 	phy_error(phydev);
666 }
667 
668 /**
669  * phy_stop - Bring down the PHY link, and stop checking the status
670  * @phydev: target phy_device struct
671  */
672 void phy_stop(struct phy_device *phydev)
673 {
674 	mutex_lock(&phydev->lock);
675 
676 	if (PHY_HALTED == phydev->state)
677 		goto out_unlock;
678 
679 	if (phy_interrupt_is_valid(phydev)) {
680 		/* Disable PHY Interrupts */
681 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
682 
683 		/* Clear any pending interrupts */
684 		phy_clear_interrupt(phydev);
685 	}
686 
687 	phydev->state = PHY_HALTED;
688 
689 out_unlock:
690 	mutex_unlock(&phydev->lock);
691 
692 	/* Cannot call flush_scheduled_work() here as desired because
693 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
694 	 * will not reenable interrupts.
695 	 */
696 }
697 EXPORT_SYMBOL(phy_stop);
698 
699 /**
700  * phy_start - start or restart a PHY device
701  * @phydev: target phy_device struct
702  *
703  * Description: Indicates the attached device's readiness to
704  *   handle PHY-related work.  Used during startup to start the
705  *   PHY, and after a call to phy_stop() to resume operation.
706  *   Also used to indicate the MDIO bus has cleared an error
707  *   condition.
708  */
709 void phy_start(struct phy_device *phydev)
710 {
711 	mutex_lock(&phydev->lock);
712 
713 	switch (phydev->state) {
714 	case PHY_STARTING:
715 		phydev->state = PHY_PENDING;
716 		break;
717 	case PHY_READY:
718 		phydev->state = PHY_UP;
719 		break;
720 	case PHY_HALTED:
721 		phydev->state = PHY_RESUMING;
722 	default:
723 		break;
724 	}
725 	mutex_unlock(&phydev->lock);
726 }
727 EXPORT_SYMBOL(phy_start);
728 
729 /**
730  * phy_state_machine - Handle the state machine
731  * @work: work_struct that describes the work to be done
732  */
733 void phy_state_machine(struct work_struct *work)
734 {
735 	struct delayed_work *dwork = to_delayed_work(work);
736 	struct phy_device *phydev =
737 			container_of(dwork, struct phy_device, state_queue);
738 	bool needs_aneg = false, do_suspend = false, do_resume = false;
739 	int err = 0;
740 
741 	mutex_lock(&phydev->lock);
742 
743 	if (phydev->drv->link_change_notify)
744 		phydev->drv->link_change_notify(phydev);
745 
746 	switch (phydev->state) {
747 	case PHY_DOWN:
748 	case PHY_STARTING:
749 	case PHY_READY:
750 	case PHY_PENDING:
751 		break;
752 	case PHY_UP:
753 		needs_aneg = true;
754 
755 		phydev->link_timeout = PHY_AN_TIMEOUT;
756 
757 		break;
758 	case PHY_AN:
759 		err = phy_read_status(phydev);
760 		if (err < 0)
761 			break;
762 
763 		/* If the link is down, give up on negotiation for now */
764 		if (!phydev->link) {
765 			phydev->state = PHY_NOLINK;
766 			netif_carrier_off(phydev->attached_dev);
767 			phydev->adjust_link(phydev->attached_dev);
768 			break;
769 		}
770 
771 		/* Check if negotiation is done.  Break if there's an error */
772 		err = phy_aneg_done(phydev);
773 		if (err < 0)
774 			break;
775 
776 		/* If AN is done, we're running */
777 		if (err > 0) {
778 			phydev->state = PHY_RUNNING;
779 			netif_carrier_on(phydev->attached_dev);
780 			phydev->adjust_link(phydev->attached_dev);
781 
782 		} else if (0 == phydev->link_timeout--)
783 			needs_aneg = true;
784 		break;
785 	case PHY_NOLINK:
786 		err = phy_read_status(phydev);
787 		if (err)
788 			break;
789 
790 		if (phydev->link) {
791 			if (AUTONEG_ENABLE == phydev->autoneg) {
792 				err = phy_aneg_done(phydev);
793 				if (err < 0)
794 					break;
795 
796 				if (!err) {
797 					phydev->state = PHY_AN;
798 					phydev->link_timeout = PHY_AN_TIMEOUT;
799 					break;
800 				}
801 			}
802 			phydev->state = PHY_RUNNING;
803 			netif_carrier_on(phydev->attached_dev);
804 			phydev->adjust_link(phydev->attached_dev);
805 		}
806 		break;
807 	case PHY_FORCING:
808 		err = genphy_update_link(phydev);
809 		if (err)
810 			break;
811 
812 		if (phydev->link) {
813 			phydev->state = PHY_RUNNING;
814 			netif_carrier_on(phydev->attached_dev);
815 		} else {
816 			if (0 == phydev->link_timeout--)
817 				needs_aneg = true;
818 		}
819 
820 		phydev->adjust_link(phydev->attached_dev);
821 		break;
822 	case PHY_RUNNING:
823 		/* Only register a CHANGE if we are
824 		 * polling or ignoring interrupts
825 		 */
826 		if (!phy_interrupt_is_valid(phydev))
827 			phydev->state = PHY_CHANGELINK;
828 		break;
829 	case PHY_CHANGELINK:
830 		err = phy_read_status(phydev);
831 		if (err)
832 			break;
833 
834 		if (phydev->link) {
835 			phydev->state = PHY_RUNNING;
836 			netif_carrier_on(phydev->attached_dev);
837 		} else {
838 			phydev->state = PHY_NOLINK;
839 			netif_carrier_off(phydev->attached_dev);
840 		}
841 
842 		phydev->adjust_link(phydev->attached_dev);
843 
844 		if (phy_interrupt_is_valid(phydev))
845 			err = phy_config_interrupt(phydev,
846 						   PHY_INTERRUPT_ENABLED);
847 		break;
848 	case PHY_HALTED:
849 		if (phydev->link) {
850 			phydev->link = 0;
851 			netif_carrier_off(phydev->attached_dev);
852 			phydev->adjust_link(phydev->attached_dev);
853 			do_suspend = true;
854 		}
855 		break;
856 	case PHY_RESUMING:
857 		err = phy_clear_interrupt(phydev);
858 		if (err)
859 			break;
860 
861 		err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
862 		if (err)
863 			break;
864 
865 		if (AUTONEG_ENABLE == phydev->autoneg) {
866 			err = phy_aneg_done(phydev);
867 			if (err < 0)
868 				break;
869 
870 			/* err > 0 if AN is done.
871 			 * Otherwise, it's 0, and we're  still waiting for AN
872 			 */
873 			if (err > 0) {
874 				err = phy_read_status(phydev);
875 				if (err)
876 					break;
877 
878 				if (phydev->link) {
879 					phydev->state = PHY_RUNNING;
880 					netif_carrier_on(phydev->attached_dev);
881 				} else	{
882 					phydev->state = PHY_NOLINK;
883 				}
884 				phydev->adjust_link(phydev->attached_dev);
885 			} else {
886 				phydev->state = PHY_AN;
887 				phydev->link_timeout = PHY_AN_TIMEOUT;
888 			}
889 		} else {
890 			err = phy_read_status(phydev);
891 			if (err)
892 				break;
893 
894 			if (phydev->link) {
895 				phydev->state = PHY_RUNNING;
896 				netif_carrier_on(phydev->attached_dev);
897 			} else	{
898 				phydev->state = PHY_NOLINK;
899 			}
900 			phydev->adjust_link(phydev->attached_dev);
901 		}
902 		do_resume = true;
903 		break;
904 	}
905 
906 	mutex_unlock(&phydev->lock);
907 
908 	if (needs_aneg)
909 		err = phy_start_aneg(phydev);
910 	else if (do_suspend)
911 		phy_suspend(phydev);
912 	else if (do_resume)
913 		phy_resume(phydev);
914 
915 	if (err < 0)
916 		phy_error(phydev);
917 
918 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
919 			   PHY_STATE_TIME * HZ);
920 }
921 
922 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
923 {
924 	cancel_work_sync(&phydev->phy_queue);
925 	phydev->link = new_link;
926 	schedule_work(&phydev->phy_queue);
927 }
928 EXPORT_SYMBOL(phy_mac_interrupt);
929 
930 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
931 				    int addr)
932 {
933 	/* Write the desired MMD Devad */
934 	bus->write(bus, addr, MII_MMD_CTRL, devad);
935 
936 	/* Write the desired MMD register address */
937 	bus->write(bus, addr, MII_MMD_DATA, prtad);
938 
939 	/* Select the Function : DATA with no post increment */
940 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
941 }
942 
943 /**
944  * phy_read_mmd_indirect - reads data from the MMD registers
945  * @phydev: The PHY device bus
946  * @prtad: MMD Address
947  * @devad: MMD DEVAD
948  * @addr: PHY address on the MII bus
949  *
950  * Description: it reads data from the MMD registers (clause 22 to access to
951  * clause 45) of the specified phy address.
952  * To read these register we have:
953  * 1) Write reg 13 // DEVAD
954  * 2) Write reg 14 // MMD Address
955  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
956  * 3) Read  reg 14 // Read MMD data
957  */
958 static int phy_read_mmd_indirect(struct phy_device *phydev, int prtad,
959 				 int devad, int addr)
960 {
961 	struct phy_driver *phydrv = phydev->drv;
962 	int value = -1;
963 
964 	if (phydrv->read_mmd_indirect == NULL) {
965 		mmd_phy_indirect(phydev->bus, prtad, devad, addr);
966 
967 		/* Read the content of the MMD's selected register */
968 		value = phydev->bus->read(phydev->bus, addr, MII_MMD_DATA);
969 	} else {
970 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
971 	}
972 	return value;
973 }
974 
975 /**
976  * phy_write_mmd_indirect - writes data to the MMD registers
977  * @phydev: The PHY device
978  * @prtad: MMD Address
979  * @devad: MMD DEVAD
980  * @addr: PHY address on the MII bus
981  * @data: data to write in the MMD register
982  *
983  * Description: Write data from the MMD registers of the specified
984  * phy address.
985  * To write these register we have:
986  * 1) Write reg 13 // DEVAD
987  * 2) Write reg 14 // MMD Address
988  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
989  * 3) Write reg 14 // Write MMD data
990  */
991 static void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
992 				   int devad, int addr, u32 data)
993 {
994 	struct phy_driver *phydrv = phydev->drv;
995 
996 	if (phydrv->write_mmd_indirect == NULL) {
997 		mmd_phy_indirect(phydev->bus, prtad, devad, addr);
998 
999 		/* Write the data into MMD's selected register */
1000 		phydev->bus->write(phydev->bus, addr, MII_MMD_DATA, data);
1001 	} else {
1002 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1003 	}
1004 }
1005 
1006 /**
1007  * phy_init_eee - init and check the EEE feature
1008  * @phydev: target phy_device struct
1009  * @clk_stop_enable: PHY may stop the clock during LPI
1010  *
1011  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1012  * is supported by looking at the MMD registers 3.20 and 7.60/61
1013  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1014  * bit if required.
1015  */
1016 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1017 {
1018 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1019 	 * Also EEE feature is active when core is operating with MII, GMII
1020 	 * or RGMII.
1021 	 */
1022 	if ((phydev->duplex == DUPLEX_FULL) &&
1023 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1024 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1025 	    (phydev->interface == PHY_INTERFACE_MODE_RGMII))) {
1026 		int eee_lp, eee_cap, eee_adv;
1027 		u32 lp, cap, adv;
1028 		int status;
1029 		unsigned int idx;
1030 
1031 		/* Read phy status to properly get the right settings */
1032 		status = phy_read_status(phydev);
1033 		if (status)
1034 			return status;
1035 
1036 		/* First check if the EEE ability is supported */
1037 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1038 						MDIO_MMD_PCS, phydev->addr);
1039 		if (eee_cap < 0)
1040 			return eee_cap;
1041 
1042 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1043 		if (!cap)
1044 			return -EPROTONOSUPPORT;
1045 
1046 		/* Check which link settings negotiated and verify it in
1047 		 * the EEE advertising registers.
1048 		 */
1049 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1050 					       MDIO_MMD_AN, phydev->addr);
1051 		if (eee_lp < 0)
1052 			return eee_lp;
1053 
1054 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1055 						MDIO_MMD_AN, phydev->addr);
1056 		if (eee_adv < 0)
1057 			return eee_adv;
1058 
1059 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1060 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1061 		idx = phy_find_setting(phydev->speed, phydev->duplex);
1062 		if (!(lp & adv & settings[idx].setting))
1063 			return -EPROTONOSUPPORT;
1064 
1065 		if (clk_stop_enable) {
1066 			/* Configure the PHY to stop receiving xMII
1067 			 * clock while it is signaling LPI.
1068 			 */
1069 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1070 							MDIO_MMD_PCS,
1071 							phydev->addr);
1072 			if (val < 0)
1073 				return val;
1074 
1075 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1076 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1077 					       MDIO_MMD_PCS, phydev->addr,
1078 					       val);
1079 		}
1080 
1081 		return 0; /* EEE supported */
1082 	}
1083 
1084 	return -EPROTONOSUPPORT;
1085 }
1086 EXPORT_SYMBOL(phy_init_eee);
1087 
1088 /**
1089  * phy_get_eee_err - report the EEE wake error count
1090  * @phydev: target phy_device struct
1091  *
1092  * Description: it is to report the number of time where the PHY
1093  * failed to complete its normal wake sequence.
1094  */
1095 int phy_get_eee_err(struct phy_device *phydev)
1096 {
1097 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR,
1098 				     MDIO_MMD_PCS, phydev->addr);
1099 }
1100 EXPORT_SYMBOL(phy_get_eee_err);
1101 
1102 /**
1103  * phy_ethtool_get_eee - get EEE supported and status
1104  * @phydev: target phy_device struct
1105  * @data: ethtool_eee data
1106  *
1107  * Description: it reportes the Supported/Advertisement/LP Advertisement
1108  * capabilities.
1109  */
1110 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1111 {
1112 	int val;
1113 
1114 	/* Get Supported EEE */
1115 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1116 				    MDIO_MMD_PCS, phydev->addr);
1117 	if (val < 0)
1118 		return val;
1119 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1120 
1121 	/* Get advertisement EEE */
1122 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1123 				    MDIO_MMD_AN, phydev->addr);
1124 	if (val < 0)
1125 		return val;
1126 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1127 
1128 	/* Get LP advertisement EEE */
1129 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1130 				    MDIO_MMD_AN, phydev->addr);
1131 	if (val < 0)
1132 		return val;
1133 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1134 
1135 	return 0;
1136 }
1137 EXPORT_SYMBOL(phy_ethtool_get_eee);
1138 
1139 /**
1140  * phy_ethtool_set_eee - set EEE supported and status
1141  * @phydev: target phy_device struct
1142  * @data: ethtool_eee data
1143  *
1144  * Description: it is to program the Advertisement EEE register.
1145  */
1146 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1147 {
1148 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1149 
1150 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1151 			       phydev->addr, val);
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL(phy_ethtool_set_eee);
1156 
1157 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1158 {
1159 	if (phydev->drv->set_wol)
1160 		return phydev->drv->set_wol(phydev, wol);
1161 
1162 	return -EOPNOTSUPP;
1163 }
1164 EXPORT_SYMBOL(phy_ethtool_set_wol);
1165 
1166 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1167 {
1168 	if (phydev->drv->get_wol)
1169 		phydev->drv->get_wol(phydev, wol);
1170 }
1171 EXPORT_SYMBOL(phy_ethtool_get_wol);
1172