xref: /openbmc/linux/drivers/net/phy/phy.c (revision 36bccb11)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 /**
62  * phy_print_status - Convenience function to print out the current phy status
63  * @phydev: the phy_device struct
64  */
65 void phy_print_status(struct phy_device *phydev)
66 {
67 	if (phydev->link) {
68 		netdev_info(phydev->attached_dev,
69 			"Link is Up - %s/%s - flow control %s\n",
70 			phy_speed_to_str(phydev->speed),
71 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
72 			phydev->pause ? "rx/tx" : "off");
73 	} else	{
74 		netdev_info(phydev->attached_dev, "Link is Down\n");
75 	}
76 }
77 EXPORT_SYMBOL(phy_print_status);
78 
79 /**
80  * phy_clear_interrupt - Ack the phy device's interrupt
81  * @phydev: the phy_device struct
82  *
83  * If the @phydev driver has an ack_interrupt function, call it to
84  * ack and clear the phy device's interrupt.
85  *
86  * Returns 0 on success or < 0 on error.
87  */
88 static int phy_clear_interrupt(struct phy_device *phydev)
89 {
90 	if (phydev->drv->ack_interrupt)
91 		return phydev->drv->ack_interrupt(phydev);
92 
93 	return 0;
94 }
95 
96 /**
97  * phy_config_interrupt - configure the PHY device for the requested interrupts
98  * @phydev: the phy_device struct
99  * @interrupts: interrupt flags to configure for this @phydev
100  *
101  * Returns 0 on success or < 0 on error.
102  */
103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
104 {
105 	phydev->interrupts = interrupts;
106 	if (phydev->drv->config_intr)
107 		return phydev->drv->config_intr(phydev);
108 
109 	return 0;
110 }
111 
112 
113 /**
114  * phy_aneg_done - return auto-negotiation status
115  * @phydev: target phy_device struct
116  *
117  * Description: Return the auto-negotiation status from this @phydev
118  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
119  * is still pending.
120  */
121 static inline int phy_aneg_done(struct phy_device *phydev)
122 {
123 	if (phydev->drv->aneg_done)
124 		return phydev->drv->aneg_done(phydev);
125 
126 	return genphy_aneg_done(phydev);
127 }
128 
129 /* A structure for mapping a particular speed and duplex
130  * combination to a particular SUPPORTED and ADVERTISED value
131  */
132 struct phy_setting {
133 	int speed;
134 	int duplex;
135 	u32 setting;
136 };
137 
138 /* A mapping of all SUPPORTED settings to speed/duplex */
139 static const struct phy_setting settings[] = {
140 	{
141 		.speed = 10000,
142 		.duplex = DUPLEX_FULL,
143 		.setting = SUPPORTED_10000baseT_Full,
144 	},
145 	{
146 		.speed = SPEED_1000,
147 		.duplex = DUPLEX_FULL,
148 		.setting = SUPPORTED_1000baseT_Full,
149 	},
150 	{
151 		.speed = SPEED_1000,
152 		.duplex = DUPLEX_HALF,
153 		.setting = SUPPORTED_1000baseT_Half,
154 	},
155 	{
156 		.speed = SPEED_100,
157 		.duplex = DUPLEX_FULL,
158 		.setting = SUPPORTED_100baseT_Full,
159 	},
160 	{
161 		.speed = SPEED_100,
162 		.duplex = DUPLEX_HALF,
163 		.setting = SUPPORTED_100baseT_Half,
164 	},
165 	{
166 		.speed = SPEED_10,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_10baseT_Full,
169 	},
170 	{
171 		.speed = SPEED_10,
172 		.duplex = DUPLEX_HALF,
173 		.setting = SUPPORTED_10baseT_Half,
174 	},
175 };
176 
177 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
178 
179 /**
180  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
181  * @speed: speed to match
182  * @duplex: duplex to match
183  *
184  * Description: Searches the settings array for the setting which
185  *   matches the desired speed and duplex, and returns the index
186  *   of that setting.  Returns the index of the last setting if
187  *   none of the others match.
188  */
189 static inline unsigned int phy_find_setting(int speed, int duplex)
190 {
191 	unsigned int idx = 0;
192 
193 	while (idx < ARRAY_SIZE(settings) &&
194 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
195 		idx++;
196 
197 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
198 }
199 
200 /**
201  * phy_find_valid - find a PHY setting that matches the requested features mask
202  * @idx: The first index in settings[] to search
203  * @features: A mask of the valid settings
204  *
205  * Description: Returns the index of the first valid setting less
206  *   than or equal to the one pointed to by idx, as determined by
207  *   the mask in features.  Returns the index of the last setting
208  *   if nothing else matches.
209  */
210 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
211 {
212 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
213 		idx++;
214 
215 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
216 }
217 
218 /**
219  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
220  * @phydev: the target phy_device struct
221  *
222  * Description: Make sure the PHY is set to supported speeds and
223  *   duplexes.  Drop down by one in this order:  1000/FULL,
224  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
225  */
226 static void phy_sanitize_settings(struct phy_device *phydev)
227 {
228 	u32 features = phydev->supported;
229 	unsigned int idx;
230 
231 	/* Sanitize settings based on PHY capabilities */
232 	if ((features & SUPPORTED_Autoneg) == 0)
233 		phydev->autoneg = AUTONEG_DISABLE;
234 
235 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
236 			features);
237 
238 	phydev->speed = settings[idx].speed;
239 	phydev->duplex = settings[idx].duplex;
240 }
241 
242 /**
243  * phy_ethtool_sset - generic ethtool sset function, handles all the details
244  * @phydev: target phy_device struct
245  * @cmd: ethtool_cmd
246  *
247  * A few notes about parameter checking:
248  * - We don't set port or transceiver, so we don't care what they
249  *   were set to.
250  * - phy_start_aneg() will make sure forced settings are sane, and
251  *   choose the next best ones from the ones selected, so we don't
252  *   care if ethtool tries to give us bad values.
253  */
254 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
255 {
256 	u32 speed = ethtool_cmd_speed(cmd);
257 
258 	if (cmd->phy_address != phydev->addr)
259 		return -EINVAL;
260 
261 	/* We make sure that we don't pass unsupported values in to the PHY */
262 	cmd->advertising &= phydev->supported;
263 
264 	/* Verify the settings we care about. */
265 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
266 		return -EINVAL;
267 
268 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
269 		return -EINVAL;
270 
271 	if (cmd->autoneg == AUTONEG_DISABLE &&
272 	    ((speed != SPEED_1000 &&
273 	      speed != SPEED_100 &&
274 	      speed != SPEED_10) ||
275 	     (cmd->duplex != DUPLEX_HALF &&
276 	      cmd->duplex != DUPLEX_FULL)))
277 		return -EINVAL;
278 
279 	phydev->autoneg = cmd->autoneg;
280 
281 	phydev->speed = speed;
282 
283 	phydev->advertising = cmd->advertising;
284 
285 	if (AUTONEG_ENABLE == cmd->autoneg)
286 		phydev->advertising |= ADVERTISED_Autoneg;
287 	else
288 		phydev->advertising &= ~ADVERTISED_Autoneg;
289 
290 	phydev->duplex = cmd->duplex;
291 
292 	/* Restart the PHY */
293 	phy_start_aneg(phydev);
294 
295 	return 0;
296 }
297 EXPORT_SYMBOL(phy_ethtool_sset);
298 
299 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
300 {
301 	cmd->supported = phydev->supported;
302 
303 	cmd->advertising = phydev->advertising;
304 	cmd->lp_advertising = phydev->lp_advertising;
305 
306 	ethtool_cmd_speed_set(cmd, phydev->speed);
307 	cmd->duplex = phydev->duplex;
308 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
309 		cmd->port = PORT_BNC;
310 	else
311 		cmd->port = PORT_MII;
312 	cmd->phy_address = phydev->addr;
313 	cmd->transceiver = phy_is_internal(phydev) ?
314 		XCVR_INTERNAL : XCVR_EXTERNAL;
315 	cmd->autoneg = phydev->autoneg;
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(phy_ethtool_gset);
320 
321 /**
322  * phy_mii_ioctl - generic PHY MII ioctl interface
323  * @phydev: the phy_device struct
324  * @ifr: &struct ifreq for socket ioctl's
325  * @cmd: ioctl cmd to execute
326  *
327  * Note that this function is currently incompatible with the
328  * PHYCONTROL layer.  It changes registers without regard to
329  * current state.  Use at own risk.
330  */
331 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
332 {
333 	struct mii_ioctl_data *mii_data = if_mii(ifr);
334 	u16 val = mii_data->val_in;
335 
336 	switch (cmd) {
337 	case SIOCGMIIPHY:
338 		mii_data->phy_id = phydev->addr;
339 		/* fall through */
340 
341 	case SIOCGMIIREG:
342 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
343 						 mii_data->reg_num);
344 		return 0;
345 
346 	case SIOCSMIIREG:
347 		if (mii_data->phy_id == phydev->addr) {
348 			switch (mii_data->reg_num) {
349 			case MII_BMCR:
350 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0)
351 					phydev->autoneg = AUTONEG_DISABLE;
352 				else
353 					phydev->autoneg = AUTONEG_ENABLE;
354 				if (!phydev->autoneg && (val & BMCR_FULLDPLX))
355 					phydev->duplex = DUPLEX_FULL;
356 				else
357 					phydev->duplex = DUPLEX_HALF;
358 				if (!phydev->autoneg && (val & BMCR_SPEED1000))
359 					phydev->speed = SPEED_1000;
360 				else if (!phydev->autoneg &&
361 					 (val & BMCR_SPEED100))
362 					phydev->speed = SPEED_100;
363 				break;
364 			case MII_ADVERTISE:
365 				phydev->advertising = val;
366 				break;
367 			default:
368 				/* do nothing */
369 				break;
370 			}
371 		}
372 
373 		mdiobus_write(phydev->bus, mii_data->phy_id,
374 			      mii_data->reg_num, val);
375 
376 		if (mii_data->reg_num == MII_BMCR &&
377 		    val & BMCR_RESET)
378 			return phy_init_hw(phydev);
379 		return 0;
380 
381 	case SIOCSHWTSTAMP:
382 		if (phydev->drv->hwtstamp)
383 			return phydev->drv->hwtstamp(phydev, ifr);
384 		/* fall through */
385 
386 	default:
387 		return -EOPNOTSUPP;
388 	}
389 }
390 EXPORT_SYMBOL(phy_mii_ioctl);
391 
392 /**
393  * phy_start_aneg - start auto-negotiation for this PHY device
394  * @phydev: the phy_device struct
395  *
396  * Description: Sanitizes the settings (if we're not autonegotiating
397  *   them), and then calls the driver's config_aneg function.
398  *   If the PHYCONTROL Layer is operating, we change the state to
399  *   reflect the beginning of Auto-negotiation or forcing.
400  */
401 int phy_start_aneg(struct phy_device *phydev)
402 {
403 	int err;
404 
405 	mutex_lock(&phydev->lock);
406 
407 	if (AUTONEG_DISABLE == phydev->autoneg)
408 		phy_sanitize_settings(phydev);
409 
410 	err = phydev->drv->config_aneg(phydev);
411 	if (err < 0)
412 		goto out_unlock;
413 
414 	if (phydev->state != PHY_HALTED) {
415 		if (AUTONEG_ENABLE == phydev->autoneg) {
416 			phydev->state = PHY_AN;
417 			phydev->link_timeout = PHY_AN_TIMEOUT;
418 		} else {
419 			phydev->state = PHY_FORCING;
420 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
421 		}
422 	}
423 
424 out_unlock:
425 	mutex_unlock(&phydev->lock);
426 	return err;
427 }
428 EXPORT_SYMBOL(phy_start_aneg);
429 
430 /**
431  * phy_start_machine - start PHY state machine tracking
432  * @phydev: the phy_device struct
433  *
434  * Description: The PHY infrastructure can run a state machine
435  *   which tracks whether the PHY is starting up, negotiating,
436  *   etc.  This function starts the timer which tracks the state
437  *   of the PHY.  If you want to maintain your own state machine,
438  *   do not call this function.
439  */
440 void phy_start_machine(struct phy_device *phydev)
441 {
442 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
443 }
444 
445 /**
446  * phy_stop_machine - stop the PHY state machine tracking
447  * @phydev: target phy_device struct
448  *
449  * Description: Stops the state machine timer, sets the state to UP
450  *   (unless it wasn't up yet). This function must be called BEFORE
451  *   phy_detach.
452  */
453 void phy_stop_machine(struct phy_device *phydev)
454 {
455 	cancel_delayed_work_sync(&phydev->state_queue);
456 
457 	mutex_lock(&phydev->lock);
458 	if (phydev->state > PHY_UP)
459 		phydev->state = PHY_UP;
460 	mutex_unlock(&phydev->lock);
461 }
462 
463 /**
464  * phy_error - enter HALTED state for this PHY device
465  * @phydev: target phy_device struct
466  *
467  * Moves the PHY to the HALTED state in response to a read
468  * or write error, and tells the controller the link is down.
469  * Must not be called from interrupt context, or while the
470  * phydev->lock is held.
471  */
472 static void phy_error(struct phy_device *phydev)
473 {
474 	mutex_lock(&phydev->lock);
475 	phydev->state = PHY_HALTED;
476 	mutex_unlock(&phydev->lock);
477 }
478 
479 /**
480  * phy_interrupt - PHY interrupt handler
481  * @irq: interrupt line
482  * @phy_dat: phy_device pointer
483  *
484  * Description: When a PHY interrupt occurs, the handler disables
485  * interrupts, and schedules a work task to clear the interrupt.
486  */
487 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
488 {
489 	struct phy_device *phydev = phy_dat;
490 
491 	if (PHY_HALTED == phydev->state)
492 		return IRQ_NONE;		/* It can't be ours.  */
493 
494 	/* The MDIO bus is not allowed to be written in interrupt
495 	 * context, so we need to disable the irq here.  A work
496 	 * queue will write the PHY to disable and clear the
497 	 * interrupt, and then reenable the irq line.
498 	 */
499 	disable_irq_nosync(irq);
500 	atomic_inc(&phydev->irq_disable);
501 
502 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
503 
504 	return IRQ_HANDLED;
505 }
506 
507 /**
508  * phy_enable_interrupts - Enable the interrupts from the PHY side
509  * @phydev: target phy_device struct
510  */
511 static int phy_enable_interrupts(struct phy_device *phydev)
512 {
513 	int err = phy_clear_interrupt(phydev);
514 
515 	if (err < 0)
516 		return err;
517 
518 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
519 }
520 
521 /**
522  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
523  * @phydev: target phy_device struct
524  */
525 static int phy_disable_interrupts(struct phy_device *phydev)
526 {
527 	int err;
528 
529 	/* Disable PHY interrupts */
530 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
531 	if (err)
532 		goto phy_err;
533 
534 	/* Clear the interrupt */
535 	err = phy_clear_interrupt(phydev);
536 	if (err)
537 		goto phy_err;
538 
539 	return 0;
540 
541 phy_err:
542 	phy_error(phydev);
543 
544 	return err;
545 }
546 
547 /**
548  * phy_start_interrupts - request and enable interrupts for a PHY device
549  * @phydev: target phy_device struct
550  *
551  * Description: Request the interrupt for the given PHY.
552  *   If this fails, then we set irq to PHY_POLL.
553  *   Otherwise, we enable the interrupts in the PHY.
554  *   This should only be called with a valid IRQ number.
555  *   Returns 0 on success or < 0 on error.
556  */
557 int phy_start_interrupts(struct phy_device *phydev)
558 {
559 	atomic_set(&phydev->irq_disable, 0);
560 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
561 			phydev) < 0) {
562 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
563 			phydev->bus->name, phydev->irq);
564 		phydev->irq = PHY_POLL;
565 		return 0;
566 	}
567 
568 	return phy_enable_interrupts(phydev);
569 }
570 EXPORT_SYMBOL(phy_start_interrupts);
571 
572 /**
573  * phy_stop_interrupts - disable interrupts from a PHY device
574  * @phydev: target phy_device struct
575  */
576 int phy_stop_interrupts(struct phy_device *phydev)
577 {
578 	int err = phy_disable_interrupts(phydev);
579 
580 	if (err)
581 		phy_error(phydev);
582 
583 	free_irq(phydev->irq, phydev);
584 
585 	/* Cannot call flush_scheduled_work() here as desired because
586 	 * of rtnl_lock(), but we do not really care about what would
587 	 * be done, except from enable_irq(), so cancel any work
588 	 * possibly pending and take care of the matter below.
589 	 */
590 	cancel_work_sync(&phydev->phy_queue);
591 	/* If work indeed has been cancelled, disable_irq() will have
592 	 * been left unbalanced from phy_interrupt() and enable_irq()
593 	 * has to be called so that other devices on the line work.
594 	 */
595 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
596 		enable_irq(phydev->irq);
597 
598 	return err;
599 }
600 EXPORT_SYMBOL(phy_stop_interrupts);
601 
602 /**
603  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
604  * @work: work_struct that describes the work to be done
605  */
606 void phy_change(struct work_struct *work)
607 {
608 	struct phy_device *phydev =
609 		container_of(work, struct phy_device, phy_queue);
610 
611 	if (phydev->drv->did_interrupt &&
612 	    !phydev->drv->did_interrupt(phydev))
613 		goto ignore;
614 
615 	if (phy_disable_interrupts(phydev))
616 		goto phy_err;
617 
618 	mutex_lock(&phydev->lock);
619 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
620 		phydev->state = PHY_CHANGELINK;
621 	mutex_unlock(&phydev->lock);
622 
623 	atomic_dec(&phydev->irq_disable);
624 	enable_irq(phydev->irq);
625 
626 	/* Reenable interrupts */
627 	if (PHY_HALTED != phydev->state &&
628 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
629 		goto irq_enable_err;
630 
631 	/* reschedule state queue work to run as soon as possible */
632 	cancel_delayed_work_sync(&phydev->state_queue);
633 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
634 	return;
635 
636 ignore:
637 	atomic_dec(&phydev->irq_disable);
638 	enable_irq(phydev->irq);
639 	return;
640 
641 irq_enable_err:
642 	disable_irq(phydev->irq);
643 	atomic_inc(&phydev->irq_disable);
644 phy_err:
645 	phy_error(phydev);
646 }
647 
648 /**
649  * phy_stop - Bring down the PHY link, and stop checking the status
650  * @phydev: target phy_device struct
651  */
652 void phy_stop(struct phy_device *phydev)
653 {
654 	mutex_lock(&phydev->lock);
655 
656 	if (PHY_HALTED == phydev->state)
657 		goto out_unlock;
658 
659 	if (phy_interrupt_is_valid(phydev)) {
660 		/* Disable PHY Interrupts */
661 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
662 
663 		/* Clear any pending interrupts */
664 		phy_clear_interrupt(phydev);
665 	}
666 
667 	phydev->state = PHY_HALTED;
668 
669 out_unlock:
670 	mutex_unlock(&phydev->lock);
671 
672 	/* Cannot call flush_scheduled_work() here as desired because
673 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
674 	 * will not reenable interrupts.
675 	 */
676 }
677 EXPORT_SYMBOL(phy_stop);
678 
679 /**
680  * phy_start - start or restart a PHY device
681  * @phydev: target phy_device struct
682  *
683  * Description: Indicates the attached device's readiness to
684  *   handle PHY-related work.  Used during startup to start the
685  *   PHY, and after a call to phy_stop() to resume operation.
686  *   Also used to indicate the MDIO bus has cleared an error
687  *   condition.
688  */
689 void phy_start(struct phy_device *phydev)
690 {
691 	mutex_lock(&phydev->lock);
692 
693 	switch (phydev->state) {
694 	case PHY_STARTING:
695 		phydev->state = PHY_PENDING;
696 		break;
697 	case PHY_READY:
698 		phydev->state = PHY_UP;
699 		break;
700 	case PHY_HALTED:
701 		phydev->state = PHY_RESUMING;
702 	default:
703 		break;
704 	}
705 	mutex_unlock(&phydev->lock);
706 }
707 EXPORT_SYMBOL(phy_start);
708 
709 /**
710  * phy_state_machine - Handle the state machine
711  * @work: work_struct that describes the work to be done
712  */
713 void phy_state_machine(struct work_struct *work)
714 {
715 	struct delayed_work *dwork = to_delayed_work(work);
716 	struct phy_device *phydev =
717 			container_of(dwork, struct phy_device, state_queue);
718 	int needs_aneg = 0, do_suspend = 0;
719 	int err = 0;
720 
721 	mutex_lock(&phydev->lock);
722 
723 	switch (phydev->state) {
724 	case PHY_DOWN:
725 	case PHY_STARTING:
726 	case PHY_READY:
727 	case PHY_PENDING:
728 		break;
729 	case PHY_UP:
730 		needs_aneg = 1;
731 
732 		phydev->link_timeout = PHY_AN_TIMEOUT;
733 
734 		break;
735 	case PHY_AN:
736 		err = phy_read_status(phydev);
737 		if (err < 0)
738 			break;
739 
740 		/* If the link is down, give up on negotiation for now */
741 		if (!phydev->link) {
742 			phydev->state = PHY_NOLINK;
743 			netif_carrier_off(phydev->attached_dev);
744 			phydev->adjust_link(phydev->attached_dev);
745 			break;
746 		}
747 
748 		/* Check if negotiation is done.  Break if there's an error */
749 		err = phy_aneg_done(phydev);
750 		if (err < 0)
751 			break;
752 
753 		/* If AN is done, we're running */
754 		if (err > 0) {
755 			phydev->state = PHY_RUNNING;
756 			netif_carrier_on(phydev->attached_dev);
757 			phydev->adjust_link(phydev->attached_dev);
758 
759 		} else if (0 == phydev->link_timeout--)
760 			needs_aneg = 1;
761 		break;
762 	case PHY_NOLINK:
763 		err = phy_read_status(phydev);
764 		if (err)
765 			break;
766 
767 		if (phydev->link) {
768 			if (AUTONEG_ENABLE == phydev->autoneg) {
769 				err = phy_aneg_done(phydev);
770 				if (err < 0)
771 					break;
772 
773 				if (!err) {
774 					phydev->state = PHY_AN;
775 					phydev->link_timeout = PHY_AN_TIMEOUT;
776 					break;
777 				}
778 			}
779 			phydev->state = PHY_RUNNING;
780 			netif_carrier_on(phydev->attached_dev);
781 			phydev->adjust_link(phydev->attached_dev);
782 		}
783 		break;
784 	case PHY_FORCING:
785 		err = genphy_update_link(phydev);
786 		if (err)
787 			break;
788 
789 		if (phydev->link) {
790 			phydev->state = PHY_RUNNING;
791 			netif_carrier_on(phydev->attached_dev);
792 		} else {
793 			if (0 == phydev->link_timeout--)
794 				needs_aneg = 1;
795 		}
796 
797 		phydev->adjust_link(phydev->attached_dev);
798 		break;
799 	case PHY_RUNNING:
800 		/* Only register a CHANGE if we are
801 		 * polling or ignoring interrupts
802 		 */
803 		if (!phy_interrupt_is_valid(phydev))
804 			phydev->state = PHY_CHANGELINK;
805 		break;
806 	case PHY_CHANGELINK:
807 		err = phy_read_status(phydev);
808 		if (err)
809 			break;
810 
811 		if (phydev->link) {
812 			phydev->state = PHY_RUNNING;
813 			netif_carrier_on(phydev->attached_dev);
814 		} else {
815 			phydev->state = PHY_NOLINK;
816 			netif_carrier_off(phydev->attached_dev);
817 		}
818 
819 		phydev->adjust_link(phydev->attached_dev);
820 
821 		if (phy_interrupt_is_valid(phydev))
822 			err = phy_config_interrupt(phydev,
823 						   PHY_INTERRUPT_ENABLED);
824 		break;
825 	case PHY_HALTED:
826 		if (phydev->link) {
827 			phydev->link = 0;
828 			netif_carrier_off(phydev->attached_dev);
829 			phydev->adjust_link(phydev->attached_dev);
830 			do_suspend = 1;
831 		}
832 		break;
833 	case PHY_RESUMING:
834 		err = phy_clear_interrupt(phydev);
835 		if (err)
836 			break;
837 
838 		err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
839 		if (err)
840 			break;
841 
842 		if (AUTONEG_ENABLE == phydev->autoneg) {
843 			err = phy_aneg_done(phydev);
844 			if (err < 0)
845 				break;
846 
847 			/* err > 0 if AN is done.
848 			 * Otherwise, it's 0, and we're  still waiting for AN
849 			 */
850 			if (err > 0) {
851 				err = phy_read_status(phydev);
852 				if (err)
853 					break;
854 
855 				if (phydev->link) {
856 					phydev->state = PHY_RUNNING;
857 					netif_carrier_on(phydev->attached_dev);
858 				} else	{
859 					phydev->state = PHY_NOLINK;
860 				}
861 				phydev->adjust_link(phydev->attached_dev);
862 			} else {
863 				phydev->state = PHY_AN;
864 				phydev->link_timeout = PHY_AN_TIMEOUT;
865 			}
866 		} else {
867 			err = phy_read_status(phydev);
868 			if (err)
869 				break;
870 
871 			if (phydev->link) {
872 				phydev->state = PHY_RUNNING;
873 				netif_carrier_on(phydev->attached_dev);
874 			} else	{
875 				phydev->state = PHY_NOLINK;
876 			}
877 			phydev->adjust_link(phydev->attached_dev);
878 		}
879 		break;
880 	}
881 
882 	mutex_unlock(&phydev->lock);
883 
884 	if (needs_aneg)
885 		err = phy_start_aneg(phydev);
886 
887 	if (do_suspend)
888 		phy_suspend(phydev);
889 
890 	if (err < 0)
891 		phy_error(phydev);
892 
893 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
894 			   PHY_STATE_TIME * HZ);
895 }
896 
897 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
898 {
899 	cancel_work_sync(&phydev->phy_queue);
900 	phydev->link = new_link;
901 	schedule_work(&phydev->phy_queue);
902 }
903 EXPORT_SYMBOL(phy_mac_interrupt);
904 
905 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
906 				    int addr)
907 {
908 	/* Write the desired MMD Devad */
909 	bus->write(bus, addr, MII_MMD_CTRL, devad);
910 
911 	/* Write the desired MMD register address */
912 	bus->write(bus, addr, MII_MMD_DATA, prtad);
913 
914 	/* Select the Function : DATA with no post increment */
915 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
916 }
917 
918 /**
919  * phy_read_mmd_indirect - reads data from the MMD registers
920  * @bus: the target MII bus
921  * @prtad: MMD Address
922  * @devad: MMD DEVAD
923  * @addr: PHY address on the MII bus
924  *
925  * Description: it reads data from the MMD registers (clause 22 to access to
926  * clause 45) of the specified phy address.
927  * To read these register we have:
928  * 1) Write reg 13 // DEVAD
929  * 2) Write reg 14 // MMD Address
930  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
931  * 3) Read  reg 14 // Read MMD data
932  */
933 static int phy_read_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
934 				 int addr)
935 {
936 	mmd_phy_indirect(bus, prtad, devad, addr);
937 
938 	/* Read the content of the MMD's selected register */
939 	return bus->read(bus, addr, MII_MMD_DATA);
940 }
941 
942 /**
943  * phy_write_mmd_indirect - writes data to the MMD registers
944  * @bus: the target MII bus
945  * @prtad: MMD Address
946  * @devad: MMD DEVAD
947  * @addr: PHY address on the MII bus
948  * @data: data to write in the MMD register
949  *
950  * Description: Write data from the MMD registers of the specified
951  * phy address.
952  * To write these register we have:
953  * 1) Write reg 13 // DEVAD
954  * 2) Write reg 14 // MMD Address
955  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
956  * 3) Write reg 14 // Write MMD data
957  */
958 static void phy_write_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
959 				   int addr, u32 data)
960 {
961 	mmd_phy_indirect(bus, prtad, devad, addr);
962 
963 	/* Write the data into MMD's selected register */
964 	bus->write(bus, addr, MII_MMD_DATA, data);
965 }
966 
967 /**
968  * phy_init_eee - init and check the EEE feature
969  * @phydev: target phy_device struct
970  * @clk_stop_enable: PHY may stop the clock during LPI
971  *
972  * Description: it checks if the Energy-Efficient Ethernet (EEE)
973  * is supported by looking at the MMD registers 3.20 and 7.60/61
974  * and it programs the MMD register 3.0 setting the "Clock stop enable"
975  * bit if required.
976  */
977 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
978 {
979 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
980 	 * Also EEE feature is active when core is operating with MII, GMII
981 	 * or RGMII.
982 	 */
983 	if ((phydev->duplex == DUPLEX_FULL) &&
984 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
985 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
986 	    (phydev->interface == PHY_INTERFACE_MODE_RGMII))) {
987 		int eee_lp, eee_cap, eee_adv;
988 		u32 lp, cap, adv;
989 		int status;
990 		unsigned int idx;
991 
992 		/* Read phy status to properly get the right settings */
993 		status = phy_read_status(phydev);
994 		if (status)
995 			return status;
996 
997 		/* First check if the EEE ability is supported */
998 		eee_cap = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
999 						MDIO_MMD_PCS, phydev->addr);
1000 		if (eee_cap < 0)
1001 			return eee_cap;
1002 
1003 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1004 		if (!cap)
1005 			return -EPROTONOSUPPORT;
1006 
1007 		/* Check which link settings negotiated and verify it in
1008 		 * the EEE advertising registers.
1009 		 */
1010 		eee_lp = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1011 					       MDIO_MMD_AN, phydev->addr);
1012 		if (eee_lp < 0)
1013 			return eee_lp;
1014 
1015 		eee_adv = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1016 						MDIO_MMD_AN, phydev->addr);
1017 		if (eee_adv < 0)
1018 			return eee_adv;
1019 
1020 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1021 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1022 		idx = phy_find_setting(phydev->speed, phydev->duplex);
1023 		if (!(lp & adv & settings[idx].setting))
1024 			return -EPROTONOSUPPORT;
1025 
1026 		if (clk_stop_enable) {
1027 			/* Configure the PHY to stop receiving xMII
1028 			 * clock while it is signaling LPI.
1029 			 */
1030 			int val = phy_read_mmd_indirect(phydev->bus, MDIO_CTRL1,
1031 							MDIO_MMD_PCS,
1032 							phydev->addr);
1033 			if (val < 0)
1034 				return val;
1035 
1036 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1037 			phy_write_mmd_indirect(phydev->bus, MDIO_CTRL1,
1038 					       MDIO_MMD_PCS, phydev->addr, val);
1039 		}
1040 
1041 		return 0; /* EEE supported */
1042 	}
1043 
1044 	return -EPROTONOSUPPORT;
1045 }
1046 EXPORT_SYMBOL(phy_init_eee);
1047 
1048 /**
1049  * phy_get_eee_err - report the EEE wake error count
1050  * @phydev: target phy_device struct
1051  *
1052  * Description: it is to report the number of time where the PHY
1053  * failed to complete its normal wake sequence.
1054  */
1055 int phy_get_eee_err(struct phy_device *phydev)
1056 {
1057 	return phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_WK_ERR,
1058 				     MDIO_MMD_PCS, phydev->addr);
1059 }
1060 EXPORT_SYMBOL(phy_get_eee_err);
1061 
1062 /**
1063  * phy_ethtool_get_eee - get EEE supported and status
1064  * @phydev: target phy_device struct
1065  * @data: ethtool_eee data
1066  *
1067  * Description: it reportes the Supported/Advertisement/LP Advertisement
1068  * capabilities.
1069  */
1070 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1071 {
1072 	int val;
1073 
1074 	/* Get Supported EEE */
1075 	val = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
1076 				    MDIO_MMD_PCS, phydev->addr);
1077 	if (val < 0)
1078 		return val;
1079 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1080 
1081 	/* Get advertisement EEE */
1082 	val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1083 				    MDIO_MMD_AN, phydev->addr);
1084 	if (val < 0)
1085 		return val;
1086 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1087 
1088 	/* Get LP advertisement EEE */
1089 	val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1090 				    MDIO_MMD_AN, phydev->addr);
1091 	if (val < 0)
1092 		return val;
1093 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1094 
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL(phy_ethtool_get_eee);
1098 
1099 /**
1100  * phy_ethtool_set_eee - set EEE supported and status
1101  * @phydev: target phy_device struct
1102  * @data: ethtool_eee data
1103  *
1104  * Description: it is to program the Advertisement EEE register.
1105  */
1106 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1107 {
1108 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1109 
1110 	phy_write_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1111 			       phydev->addr, val);
1112 
1113 	return 0;
1114 }
1115 EXPORT_SYMBOL(phy_ethtool_set_eee);
1116 
1117 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1118 {
1119 	if (phydev->drv->set_wol)
1120 		return phydev->drv->set_wol(phydev, wol);
1121 
1122 	return -EOPNOTSUPP;
1123 }
1124 EXPORT_SYMBOL(phy_ethtool_set_wol);
1125 
1126 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1127 {
1128 	if (phydev->drv->get_wol)
1129 		phydev->drv->get_wol(phydev, wol);
1130 }
1131 EXPORT_SYMBOL(phy_ethtool_get_wol);
1132