1 /* Framework for configuring and reading PHY devices 2 * Based on code in sungem_phy.c and gianfar_phy.c 3 * 4 * Author: Andy Fleming 5 * 6 * Copyright (c) 2004 Freescale Semiconductor, Inc. 7 * Copyright (c) 2006, 2007 Maciej W. Rozycki 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/unistd.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/mm.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/phy.h> 32 #include <linux/timer.h> 33 #include <linux/workqueue.h> 34 #include <linux/mdio.h> 35 #include <linux/io.h> 36 #include <linux/uaccess.h> 37 #include <linux/atomic.h> 38 39 #include <asm/irq.h> 40 41 static const char *phy_speed_to_str(int speed) 42 { 43 switch (speed) { 44 case SPEED_10: 45 return "10Mbps"; 46 case SPEED_100: 47 return "100Mbps"; 48 case SPEED_1000: 49 return "1Gbps"; 50 case SPEED_2500: 51 return "2.5Gbps"; 52 case SPEED_10000: 53 return "10Gbps"; 54 case SPEED_UNKNOWN: 55 return "Unknown"; 56 default: 57 return "Unsupported (update phy.c)"; 58 } 59 } 60 61 #define PHY_STATE_STR(_state) \ 62 case PHY_##_state: \ 63 return __stringify(_state); \ 64 65 static const char *phy_state_to_str(enum phy_state st) 66 { 67 switch (st) { 68 PHY_STATE_STR(DOWN) 69 PHY_STATE_STR(STARTING) 70 PHY_STATE_STR(READY) 71 PHY_STATE_STR(PENDING) 72 PHY_STATE_STR(UP) 73 PHY_STATE_STR(AN) 74 PHY_STATE_STR(RUNNING) 75 PHY_STATE_STR(NOLINK) 76 PHY_STATE_STR(FORCING) 77 PHY_STATE_STR(CHANGELINK) 78 PHY_STATE_STR(HALTED) 79 PHY_STATE_STR(RESUMING) 80 } 81 82 return NULL; 83 } 84 85 86 /** 87 * phy_print_status - Convenience function to print out the current phy status 88 * @phydev: the phy_device struct 89 */ 90 void phy_print_status(struct phy_device *phydev) 91 { 92 if (phydev->link) { 93 netdev_info(phydev->attached_dev, 94 "Link is Up - %s/%s - flow control %s\n", 95 phy_speed_to_str(phydev->speed), 96 DUPLEX_FULL == phydev->duplex ? "Full" : "Half", 97 phydev->pause ? "rx/tx" : "off"); 98 } else { 99 netdev_info(phydev->attached_dev, "Link is Down\n"); 100 } 101 } 102 EXPORT_SYMBOL(phy_print_status); 103 104 /** 105 * phy_clear_interrupt - Ack the phy device's interrupt 106 * @phydev: the phy_device struct 107 * 108 * If the @phydev driver has an ack_interrupt function, call it to 109 * ack and clear the phy device's interrupt. 110 * 111 * Returns 0 on success or < 0 on error. 112 */ 113 static int phy_clear_interrupt(struct phy_device *phydev) 114 { 115 if (phydev->drv->ack_interrupt) 116 return phydev->drv->ack_interrupt(phydev); 117 118 return 0; 119 } 120 121 /** 122 * phy_config_interrupt - configure the PHY device for the requested interrupts 123 * @phydev: the phy_device struct 124 * @interrupts: interrupt flags to configure for this @phydev 125 * 126 * Returns 0 on success or < 0 on error. 127 */ 128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 129 { 130 phydev->interrupts = interrupts; 131 if (phydev->drv->config_intr) 132 return phydev->drv->config_intr(phydev); 133 134 return 0; 135 } 136 137 138 /** 139 * phy_aneg_done - return auto-negotiation status 140 * @phydev: target phy_device struct 141 * 142 * Description: Return the auto-negotiation status from this @phydev 143 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation 144 * is still pending. 145 */ 146 static inline int phy_aneg_done(struct phy_device *phydev) 147 { 148 if (phydev->drv->aneg_done) 149 return phydev->drv->aneg_done(phydev); 150 151 return genphy_aneg_done(phydev); 152 } 153 154 /* A structure for mapping a particular speed and duplex 155 * combination to a particular SUPPORTED and ADVERTISED value 156 */ 157 struct phy_setting { 158 int speed; 159 int duplex; 160 u32 setting; 161 }; 162 163 /* A mapping of all SUPPORTED settings to speed/duplex */ 164 static const struct phy_setting settings[] = { 165 { 166 .speed = SPEED_10000, 167 .duplex = DUPLEX_FULL, 168 .setting = SUPPORTED_10000baseKR_Full, 169 }, 170 { 171 .speed = SPEED_10000, 172 .duplex = DUPLEX_FULL, 173 .setting = SUPPORTED_10000baseKX4_Full, 174 }, 175 { 176 .speed = SPEED_10000, 177 .duplex = DUPLEX_FULL, 178 .setting = SUPPORTED_10000baseT_Full, 179 }, 180 { 181 .speed = SPEED_2500, 182 .duplex = DUPLEX_FULL, 183 .setting = SUPPORTED_2500baseX_Full, 184 }, 185 { 186 .speed = SPEED_1000, 187 .duplex = DUPLEX_FULL, 188 .setting = SUPPORTED_1000baseKX_Full, 189 }, 190 { 191 .speed = SPEED_1000, 192 .duplex = DUPLEX_FULL, 193 .setting = SUPPORTED_1000baseT_Full, 194 }, 195 { 196 .speed = SPEED_1000, 197 .duplex = DUPLEX_HALF, 198 .setting = SUPPORTED_1000baseT_Half, 199 }, 200 { 201 .speed = SPEED_100, 202 .duplex = DUPLEX_FULL, 203 .setting = SUPPORTED_100baseT_Full, 204 }, 205 { 206 .speed = SPEED_100, 207 .duplex = DUPLEX_HALF, 208 .setting = SUPPORTED_100baseT_Half, 209 }, 210 { 211 .speed = SPEED_10, 212 .duplex = DUPLEX_FULL, 213 .setting = SUPPORTED_10baseT_Full, 214 }, 215 { 216 .speed = SPEED_10, 217 .duplex = DUPLEX_HALF, 218 .setting = SUPPORTED_10baseT_Half, 219 }, 220 }; 221 222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 223 224 /** 225 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 226 * @speed: speed to match 227 * @duplex: duplex to match 228 * 229 * Description: Searches the settings array for the setting which 230 * matches the desired speed and duplex, and returns the index 231 * of that setting. Returns the index of the last setting if 232 * none of the others match. 233 */ 234 static inline unsigned int phy_find_setting(int speed, int duplex) 235 { 236 unsigned int idx = 0; 237 238 while (idx < ARRAY_SIZE(settings) && 239 (settings[idx].speed != speed || settings[idx].duplex != duplex)) 240 idx++; 241 242 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 243 } 244 245 /** 246 * phy_find_valid - find a PHY setting that matches the requested features mask 247 * @idx: The first index in settings[] to search 248 * @features: A mask of the valid settings 249 * 250 * Description: Returns the index of the first valid setting less 251 * than or equal to the one pointed to by idx, as determined by 252 * the mask in features. Returns the index of the last setting 253 * if nothing else matches. 254 */ 255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features) 256 { 257 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 258 idx++; 259 260 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 261 } 262 263 /** 264 * phy_check_valid - check if there is a valid PHY setting which matches 265 * speed, duplex, and feature mask 266 * @speed: speed to match 267 * @duplex: duplex to match 268 * @features: A mask of the valid settings 269 * 270 * Description: Returns true if there is a valid setting, false otherwise. 271 */ 272 static inline bool phy_check_valid(int speed, int duplex, u32 features) 273 { 274 unsigned int idx; 275 276 idx = phy_find_valid(phy_find_setting(speed, duplex), features); 277 278 return settings[idx].speed == speed && settings[idx].duplex == duplex && 279 (settings[idx].setting & features); 280 } 281 282 /** 283 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 284 * @phydev: the target phy_device struct 285 * 286 * Description: Make sure the PHY is set to supported speeds and 287 * duplexes. Drop down by one in this order: 1000/FULL, 288 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 289 */ 290 static void phy_sanitize_settings(struct phy_device *phydev) 291 { 292 u32 features = phydev->supported; 293 unsigned int idx; 294 295 /* Sanitize settings based on PHY capabilities */ 296 if ((features & SUPPORTED_Autoneg) == 0) 297 phydev->autoneg = AUTONEG_DISABLE; 298 299 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 300 features); 301 302 phydev->speed = settings[idx].speed; 303 phydev->duplex = settings[idx].duplex; 304 } 305 306 /** 307 * phy_ethtool_sset - generic ethtool sset function, handles all the details 308 * @phydev: target phy_device struct 309 * @cmd: ethtool_cmd 310 * 311 * A few notes about parameter checking: 312 * - We don't set port or transceiver, so we don't care what they 313 * were set to. 314 * - phy_start_aneg() will make sure forced settings are sane, and 315 * choose the next best ones from the ones selected, so we don't 316 * care if ethtool tries to give us bad values. 317 */ 318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 319 { 320 u32 speed = ethtool_cmd_speed(cmd); 321 322 if (cmd->phy_address != phydev->addr) 323 return -EINVAL; 324 325 /* We make sure that we don't pass unsupported values in to the PHY */ 326 cmd->advertising &= phydev->supported; 327 328 /* Verify the settings we care about. */ 329 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 330 return -EINVAL; 331 332 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 333 return -EINVAL; 334 335 if (cmd->autoneg == AUTONEG_DISABLE && 336 ((speed != SPEED_1000 && 337 speed != SPEED_100 && 338 speed != SPEED_10) || 339 (cmd->duplex != DUPLEX_HALF && 340 cmd->duplex != DUPLEX_FULL))) 341 return -EINVAL; 342 343 phydev->autoneg = cmd->autoneg; 344 345 phydev->speed = speed; 346 347 phydev->advertising = cmd->advertising; 348 349 if (AUTONEG_ENABLE == cmd->autoneg) 350 phydev->advertising |= ADVERTISED_Autoneg; 351 else 352 phydev->advertising &= ~ADVERTISED_Autoneg; 353 354 phydev->duplex = cmd->duplex; 355 356 phydev->mdix = cmd->eth_tp_mdix_ctrl; 357 358 /* Restart the PHY */ 359 phy_start_aneg(phydev); 360 361 return 0; 362 } 363 EXPORT_SYMBOL(phy_ethtool_sset); 364 365 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 366 { 367 cmd->supported = phydev->supported; 368 369 cmd->advertising = phydev->advertising; 370 cmd->lp_advertising = phydev->lp_advertising; 371 372 ethtool_cmd_speed_set(cmd, phydev->speed); 373 cmd->duplex = phydev->duplex; 374 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 375 cmd->port = PORT_BNC; 376 else 377 cmd->port = PORT_MII; 378 cmd->phy_address = phydev->addr; 379 cmd->transceiver = phy_is_internal(phydev) ? 380 XCVR_INTERNAL : XCVR_EXTERNAL; 381 cmd->autoneg = phydev->autoneg; 382 cmd->eth_tp_mdix_ctrl = phydev->mdix; 383 384 return 0; 385 } 386 EXPORT_SYMBOL(phy_ethtool_gset); 387 388 /** 389 * phy_mii_ioctl - generic PHY MII ioctl interface 390 * @phydev: the phy_device struct 391 * @ifr: &struct ifreq for socket ioctl's 392 * @cmd: ioctl cmd to execute 393 * 394 * Note that this function is currently incompatible with the 395 * PHYCONTROL layer. It changes registers without regard to 396 * current state. Use at own risk. 397 */ 398 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) 399 { 400 struct mii_ioctl_data *mii_data = if_mii(ifr); 401 u16 val = mii_data->val_in; 402 bool change_autoneg = false; 403 404 switch (cmd) { 405 case SIOCGMIIPHY: 406 mii_data->phy_id = phydev->addr; 407 /* fall through */ 408 409 case SIOCGMIIREG: 410 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id, 411 mii_data->reg_num); 412 return 0; 413 414 case SIOCSMIIREG: 415 if (mii_data->phy_id == phydev->addr) { 416 switch (mii_data->reg_num) { 417 case MII_BMCR: 418 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { 419 if (phydev->autoneg == AUTONEG_ENABLE) 420 change_autoneg = true; 421 phydev->autoneg = AUTONEG_DISABLE; 422 if (val & BMCR_FULLDPLX) 423 phydev->duplex = DUPLEX_FULL; 424 else 425 phydev->duplex = DUPLEX_HALF; 426 if (val & BMCR_SPEED1000) 427 phydev->speed = SPEED_1000; 428 else if (val & BMCR_SPEED100) 429 phydev->speed = SPEED_100; 430 else phydev->speed = SPEED_10; 431 } 432 else { 433 if (phydev->autoneg == AUTONEG_DISABLE) 434 change_autoneg = true; 435 phydev->autoneg = AUTONEG_ENABLE; 436 } 437 break; 438 case MII_ADVERTISE: 439 phydev->advertising = mii_adv_to_ethtool_adv_t(val); 440 change_autoneg = true; 441 break; 442 default: 443 /* do nothing */ 444 break; 445 } 446 } 447 448 mdiobus_write(phydev->bus, mii_data->phy_id, 449 mii_data->reg_num, val); 450 451 if (mii_data->phy_id == phydev->addr && 452 mii_data->reg_num == MII_BMCR && 453 val & BMCR_RESET) 454 return phy_init_hw(phydev); 455 456 if (change_autoneg) 457 return phy_start_aneg(phydev); 458 459 return 0; 460 461 case SIOCSHWTSTAMP: 462 if (phydev->drv->hwtstamp) 463 return phydev->drv->hwtstamp(phydev, ifr); 464 /* fall through */ 465 466 default: 467 return -EOPNOTSUPP; 468 } 469 } 470 EXPORT_SYMBOL(phy_mii_ioctl); 471 472 /** 473 * phy_start_aneg - start auto-negotiation for this PHY device 474 * @phydev: the phy_device struct 475 * 476 * Description: Sanitizes the settings (if we're not autonegotiating 477 * them), and then calls the driver's config_aneg function. 478 * If the PHYCONTROL Layer is operating, we change the state to 479 * reflect the beginning of Auto-negotiation or forcing. 480 */ 481 int phy_start_aneg(struct phy_device *phydev) 482 { 483 int err; 484 485 mutex_lock(&phydev->lock); 486 487 if (AUTONEG_DISABLE == phydev->autoneg) 488 phy_sanitize_settings(phydev); 489 490 /* Invalidate LP advertising flags */ 491 phydev->lp_advertising = 0; 492 493 err = phydev->drv->config_aneg(phydev); 494 if (err < 0) 495 goto out_unlock; 496 497 if (phydev->state != PHY_HALTED) { 498 if (AUTONEG_ENABLE == phydev->autoneg) { 499 phydev->state = PHY_AN; 500 phydev->link_timeout = PHY_AN_TIMEOUT; 501 } else { 502 phydev->state = PHY_FORCING; 503 phydev->link_timeout = PHY_FORCE_TIMEOUT; 504 } 505 } 506 507 out_unlock: 508 mutex_unlock(&phydev->lock); 509 return err; 510 } 511 EXPORT_SYMBOL(phy_start_aneg); 512 513 /** 514 * phy_start_machine - start PHY state machine tracking 515 * @phydev: the phy_device struct 516 * 517 * Description: The PHY infrastructure can run a state machine 518 * which tracks whether the PHY is starting up, negotiating, 519 * etc. This function starts the timer which tracks the state 520 * of the PHY. If you want to maintain your own state machine, 521 * do not call this function. 522 */ 523 void phy_start_machine(struct phy_device *phydev) 524 { 525 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 526 } 527 528 /** 529 * phy_stop_machine - stop the PHY state machine tracking 530 * @phydev: target phy_device struct 531 * 532 * Description: Stops the state machine timer, sets the state to UP 533 * (unless it wasn't up yet). This function must be called BEFORE 534 * phy_detach. 535 */ 536 void phy_stop_machine(struct phy_device *phydev) 537 { 538 cancel_delayed_work_sync(&phydev->state_queue); 539 540 mutex_lock(&phydev->lock); 541 if (phydev->state > PHY_UP) 542 phydev->state = PHY_UP; 543 mutex_unlock(&phydev->lock); 544 } 545 546 /** 547 * phy_error - enter HALTED state for this PHY device 548 * @phydev: target phy_device struct 549 * 550 * Moves the PHY to the HALTED state in response to a read 551 * or write error, and tells the controller the link is down. 552 * Must not be called from interrupt context, or while the 553 * phydev->lock is held. 554 */ 555 static void phy_error(struct phy_device *phydev) 556 { 557 mutex_lock(&phydev->lock); 558 phydev->state = PHY_HALTED; 559 mutex_unlock(&phydev->lock); 560 } 561 562 /** 563 * phy_interrupt - PHY interrupt handler 564 * @irq: interrupt line 565 * @phy_dat: phy_device pointer 566 * 567 * Description: When a PHY interrupt occurs, the handler disables 568 * interrupts, and schedules a work task to clear the interrupt. 569 */ 570 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 571 { 572 struct phy_device *phydev = phy_dat; 573 574 if (PHY_HALTED == phydev->state) 575 return IRQ_NONE; /* It can't be ours. */ 576 577 /* The MDIO bus is not allowed to be written in interrupt 578 * context, so we need to disable the irq here. A work 579 * queue will write the PHY to disable and clear the 580 * interrupt, and then reenable the irq line. 581 */ 582 disable_irq_nosync(irq); 583 atomic_inc(&phydev->irq_disable); 584 585 queue_work(system_power_efficient_wq, &phydev->phy_queue); 586 587 return IRQ_HANDLED; 588 } 589 590 /** 591 * phy_enable_interrupts - Enable the interrupts from the PHY side 592 * @phydev: target phy_device struct 593 */ 594 static int phy_enable_interrupts(struct phy_device *phydev) 595 { 596 int err = phy_clear_interrupt(phydev); 597 598 if (err < 0) 599 return err; 600 601 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 602 } 603 604 /** 605 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 606 * @phydev: target phy_device struct 607 */ 608 static int phy_disable_interrupts(struct phy_device *phydev) 609 { 610 int err; 611 612 /* Disable PHY interrupts */ 613 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 614 if (err) 615 goto phy_err; 616 617 /* Clear the interrupt */ 618 err = phy_clear_interrupt(phydev); 619 if (err) 620 goto phy_err; 621 622 return 0; 623 624 phy_err: 625 phy_error(phydev); 626 627 return err; 628 } 629 630 /** 631 * phy_start_interrupts - request and enable interrupts for a PHY device 632 * @phydev: target phy_device struct 633 * 634 * Description: Request the interrupt for the given PHY. 635 * If this fails, then we set irq to PHY_POLL. 636 * Otherwise, we enable the interrupts in the PHY. 637 * This should only be called with a valid IRQ number. 638 * Returns 0 on success or < 0 on error. 639 */ 640 int phy_start_interrupts(struct phy_device *phydev) 641 { 642 atomic_set(&phydev->irq_disable, 0); 643 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt", 644 phydev) < 0) { 645 pr_warn("%s: Can't get IRQ %d (PHY)\n", 646 phydev->bus->name, phydev->irq); 647 phydev->irq = PHY_POLL; 648 return 0; 649 } 650 651 return phy_enable_interrupts(phydev); 652 } 653 EXPORT_SYMBOL(phy_start_interrupts); 654 655 /** 656 * phy_stop_interrupts - disable interrupts from a PHY device 657 * @phydev: target phy_device struct 658 */ 659 int phy_stop_interrupts(struct phy_device *phydev) 660 { 661 int err = phy_disable_interrupts(phydev); 662 663 if (err) 664 phy_error(phydev); 665 666 free_irq(phydev->irq, phydev); 667 668 /* Cannot call flush_scheduled_work() here as desired because 669 * of rtnl_lock(), but we do not really care about what would 670 * be done, except from enable_irq(), so cancel any work 671 * possibly pending and take care of the matter below. 672 */ 673 cancel_work_sync(&phydev->phy_queue); 674 /* If work indeed has been cancelled, disable_irq() will have 675 * been left unbalanced from phy_interrupt() and enable_irq() 676 * has to be called so that other devices on the line work. 677 */ 678 while (atomic_dec_return(&phydev->irq_disable) >= 0) 679 enable_irq(phydev->irq); 680 681 return err; 682 } 683 EXPORT_SYMBOL(phy_stop_interrupts); 684 685 /** 686 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 687 * @work: work_struct that describes the work to be done 688 */ 689 void phy_change(struct work_struct *work) 690 { 691 struct phy_device *phydev = 692 container_of(work, struct phy_device, phy_queue); 693 694 if (phydev->drv->did_interrupt && 695 !phydev->drv->did_interrupt(phydev)) 696 goto ignore; 697 698 if (phy_disable_interrupts(phydev)) 699 goto phy_err; 700 701 mutex_lock(&phydev->lock); 702 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 703 phydev->state = PHY_CHANGELINK; 704 mutex_unlock(&phydev->lock); 705 706 atomic_dec(&phydev->irq_disable); 707 enable_irq(phydev->irq); 708 709 /* Reenable interrupts */ 710 if (PHY_HALTED != phydev->state && 711 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) 712 goto irq_enable_err; 713 714 /* reschedule state queue work to run as soon as possible */ 715 cancel_delayed_work_sync(&phydev->state_queue); 716 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 717 return; 718 719 ignore: 720 atomic_dec(&phydev->irq_disable); 721 enable_irq(phydev->irq); 722 return; 723 724 irq_enable_err: 725 disable_irq(phydev->irq); 726 atomic_inc(&phydev->irq_disable); 727 phy_err: 728 phy_error(phydev); 729 } 730 731 /** 732 * phy_stop - Bring down the PHY link, and stop checking the status 733 * @phydev: target phy_device struct 734 */ 735 void phy_stop(struct phy_device *phydev) 736 { 737 mutex_lock(&phydev->lock); 738 739 if (PHY_HALTED == phydev->state) 740 goto out_unlock; 741 742 if (phy_interrupt_is_valid(phydev)) { 743 /* Disable PHY Interrupts */ 744 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 745 746 /* Clear any pending interrupts */ 747 phy_clear_interrupt(phydev); 748 } 749 750 phydev->state = PHY_HALTED; 751 752 out_unlock: 753 mutex_unlock(&phydev->lock); 754 755 /* Cannot call flush_scheduled_work() here as desired because 756 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 757 * will not reenable interrupts. 758 */ 759 } 760 EXPORT_SYMBOL(phy_stop); 761 762 /** 763 * phy_start - start or restart a PHY device 764 * @phydev: target phy_device struct 765 * 766 * Description: Indicates the attached device's readiness to 767 * handle PHY-related work. Used during startup to start the 768 * PHY, and after a call to phy_stop() to resume operation. 769 * Also used to indicate the MDIO bus has cleared an error 770 * condition. 771 */ 772 void phy_start(struct phy_device *phydev) 773 { 774 bool do_resume = false; 775 int err = 0; 776 777 mutex_lock(&phydev->lock); 778 779 switch (phydev->state) { 780 case PHY_STARTING: 781 phydev->state = PHY_PENDING; 782 break; 783 case PHY_READY: 784 phydev->state = PHY_UP; 785 break; 786 case PHY_HALTED: 787 /* make sure interrupts are re-enabled for the PHY */ 788 err = phy_enable_interrupts(phydev); 789 if (err < 0) 790 break; 791 792 phydev->state = PHY_RESUMING; 793 do_resume = true; 794 break; 795 default: 796 break; 797 } 798 mutex_unlock(&phydev->lock); 799 800 /* if phy was suspended, bring the physical link up again */ 801 if (do_resume) 802 phy_resume(phydev); 803 } 804 EXPORT_SYMBOL(phy_start); 805 806 /** 807 * phy_state_machine - Handle the state machine 808 * @work: work_struct that describes the work to be done 809 */ 810 void phy_state_machine(struct work_struct *work) 811 { 812 struct delayed_work *dwork = to_delayed_work(work); 813 struct phy_device *phydev = 814 container_of(dwork, struct phy_device, state_queue); 815 bool needs_aneg = false, do_suspend = false; 816 enum phy_state old_state; 817 int err = 0; 818 int old_link; 819 820 mutex_lock(&phydev->lock); 821 822 old_state = phydev->state; 823 824 if (phydev->drv->link_change_notify) 825 phydev->drv->link_change_notify(phydev); 826 827 switch (phydev->state) { 828 case PHY_DOWN: 829 case PHY_STARTING: 830 case PHY_READY: 831 case PHY_PENDING: 832 break; 833 case PHY_UP: 834 needs_aneg = true; 835 836 phydev->link_timeout = PHY_AN_TIMEOUT; 837 838 break; 839 case PHY_AN: 840 err = phy_read_status(phydev); 841 if (err < 0) 842 break; 843 844 /* If the link is down, give up on negotiation for now */ 845 if (!phydev->link) { 846 phydev->state = PHY_NOLINK; 847 netif_carrier_off(phydev->attached_dev); 848 phydev->adjust_link(phydev->attached_dev); 849 break; 850 } 851 852 /* Check if negotiation is done. Break if there's an error */ 853 err = phy_aneg_done(phydev); 854 if (err < 0) 855 break; 856 857 /* If AN is done, we're running */ 858 if (err > 0) { 859 phydev->state = PHY_RUNNING; 860 netif_carrier_on(phydev->attached_dev); 861 phydev->adjust_link(phydev->attached_dev); 862 863 } else if (0 == phydev->link_timeout--) 864 needs_aneg = true; 865 break; 866 case PHY_NOLINK: 867 if (phy_interrupt_is_valid(phydev)) 868 break; 869 870 err = phy_read_status(phydev); 871 if (err) 872 break; 873 874 if (phydev->link) { 875 if (AUTONEG_ENABLE == phydev->autoneg) { 876 err = phy_aneg_done(phydev); 877 if (err < 0) 878 break; 879 880 if (!err) { 881 phydev->state = PHY_AN; 882 phydev->link_timeout = PHY_AN_TIMEOUT; 883 break; 884 } 885 } 886 phydev->state = PHY_RUNNING; 887 netif_carrier_on(phydev->attached_dev); 888 phydev->adjust_link(phydev->attached_dev); 889 } 890 break; 891 case PHY_FORCING: 892 err = genphy_update_link(phydev); 893 if (err) 894 break; 895 896 if (phydev->link) { 897 phydev->state = PHY_RUNNING; 898 netif_carrier_on(phydev->attached_dev); 899 } else { 900 if (0 == phydev->link_timeout--) 901 needs_aneg = true; 902 } 903 904 phydev->adjust_link(phydev->attached_dev); 905 break; 906 case PHY_RUNNING: 907 /* Only register a CHANGE if we are polling or ignoring 908 * interrupts and link changed since latest checking. 909 */ 910 if (!phy_interrupt_is_valid(phydev)) { 911 old_link = phydev->link; 912 err = phy_read_status(phydev); 913 if (err) 914 break; 915 916 if (old_link != phydev->link) 917 phydev->state = PHY_CHANGELINK; 918 } 919 break; 920 case PHY_CHANGELINK: 921 err = phy_read_status(phydev); 922 if (err) 923 break; 924 925 if (phydev->link) { 926 phydev->state = PHY_RUNNING; 927 netif_carrier_on(phydev->attached_dev); 928 } else { 929 phydev->state = PHY_NOLINK; 930 netif_carrier_off(phydev->attached_dev); 931 } 932 933 phydev->adjust_link(phydev->attached_dev); 934 935 if (phy_interrupt_is_valid(phydev)) 936 err = phy_config_interrupt(phydev, 937 PHY_INTERRUPT_ENABLED); 938 break; 939 case PHY_HALTED: 940 if (phydev->link) { 941 phydev->link = 0; 942 netif_carrier_off(phydev->attached_dev); 943 phydev->adjust_link(phydev->attached_dev); 944 do_suspend = true; 945 } 946 break; 947 case PHY_RESUMING: 948 if (AUTONEG_ENABLE == phydev->autoneg) { 949 err = phy_aneg_done(phydev); 950 if (err < 0) 951 break; 952 953 /* err > 0 if AN is done. 954 * Otherwise, it's 0, and we're still waiting for AN 955 */ 956 if (err > 0) { 957 err = phy_read_status(phydev); 958 if (err) 959 break; 960 961 if (phydev->link) { 962 phydev->state = PHY_RUNNING; 963 netif_carrier_on(phydev->attached_dev); 964 } else { 965 phydev->state = PHY_NOLINK; 966 } 967 phydev->adjust_link(phydev->attached_dev); 968 } else { 969 phydev->state = PHY_AN; 970 phydev->link_timeout = PHY_AN_TIMEOUT; 971 } 972 } else { 973 err = phy_read_status(phydev); 974 if (err) 975 break; 976 977 if (phydev->link) { 978 phydev->state = PHY_RUNNING; 979 netif_carrier_on(phydev->attached_dev); 980 } else { 981 phydev->state = PHY_NOLINK; 982 } 983 phydev->adjust_link(phydev->attached_dev); 984 } 985 break; 986 } 987 988 mutex_unlock(&phydev->lock); 989 990 if (needs_aneg) 991 err = phy_start_aneg(phydev); 992 else if (do_suspend) 993 phy_suspend(phydev); 994 995 if (err < 0) 996 phy_error(phydev); 997 998 dev_dbg(&phydev->dev, "PHY state change %s -> %s\n", 999 phy_state_to_str(old_state), phy_state_to_str(phydev->state)); 1000 1001 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 1002 PHY_STATE_TIME * HZ); 1003 } 1004 1005 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 1006 { 1007 cancel_work_sync(&phydev->phy_queue); 1008 phydev->link = new_link; 1009 schedule_work(&phydev->phy_queue); 1010 } 1011 EXPORT_SYMBOL(phy_mac_interrupt); 1012 1013 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 1014 int addr) 1015 { 1016 /* Write the desired MMD Devad */ 1017 bus->write(bus, addr, MII_MMD_CTRL, devad); 1018 1019 /* Write the desired MMD register address */ 1020 bus->write(bus, addr, MII_MMD_DATA, prtad); 1021 1022 /* Select the Function : DATA with no post increment */ 1023 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 1024 } 1025 1026 /** 1027 * phy_read_mmd_indirect - reads data from the MMD registers 1028 * @phydev: The PHY device bus 1029 * @prtad: MMD Address 1030 * @devad: MMD DEVAD 1031 * @addr: PHY address on the MII bus 1032 * 1033 * Description: it reads data from the MMD registers (clause 22 to access to 1034 * clause 45) of the specified phy address. 1035 * To read these register we have: 1036 * 1) Write reg 13 // DEVAD 1037 * 2) Write reg 14 // MMD Address 1038 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1039 * 3) Read reg 14 // Read MMD data 1040 */ 1041 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, 1042 int devad, int addr) 1043 { 1044 struct phy_driver *phydrv = phydev->drv; 1045 int value = -1; 1046 1047 if (!phydrv->read_mmd_indirect) { 1048 struct mii_bus *bus = phydev->bus; 1049 1050 mutex_lock(&bus->mdio_lock); 1051 mmd_phy_indirect(bus, prtad, devad, addr); 1052 1053 /* Read the content of the MMD's selected register */ 1054 value = bus->read(bus, addr, MII_MMD_DATA); 1055 mutex_unlock(&bus->mdio_lock); 1056 } else { 1057 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); 1058 } 1059 return value; 1060 } 1061 EXPORT_SYMBOL(phy_read_mmd_indirect); 1062 1063 /** 1064 * phy_write_mmd_indirect - writes data to the MMD registers 1065 * @phydev: The PHY device 1066 * @prtad: MMD Address 1067 * @devad: MMD DEVAD 1068 * @addr: PHY address on the MII bus 1069 * @data: data to write in the MMD register 1070 * 1071 * Description: Write data from the MMD registers of the specified 1072 * phy address. 1073 * To write these register we have: 1074 * 1) Write reg 13 // DEVAD 1075 * 2) Write reg 14 // MMD Address 1076 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1077 * 3) Write reg 14 // Write MMD data 1078 */ 1079 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, 1080 int devad, int addr, u32 data) 1081 { 1082 struct phy_driver *phydrv = phydev->drv; 1083 1084 if (!phydrv->write_mmd_indirect) { 1085 struct mii_bus *bus = phydev->bus; 1086 1087 mutex_lock(&bus->mdio_lock); 1088 mmd_phy_indirect(bus, prtad, devad, addr); 1089 1090 /* Write the data into MMD's selected register */ 1091 bus->write(bus, addr, MII_MMD_DATA, data); 1092 mutex_unlock(&bus->mdio_lock); 1093 } else { 1094 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); 1095 } 1096 } 1097 EXPORT_SYMBOL(phy_write_mmd_indirect); 1098 1099 /** 1100 * phy_init_eee - init and check the EEE feature 1101 * @phydev: target phy_device struct 1102 * @clk_stop_enable: PHY may stop the clock during LPI 1103 * 1104 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1105 * is supported by looking at the MMD registers 3.20 and 7.60/61 1106 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1107 * bit if required. 1108 */ 1109 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1110 { 1111 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1112 * Also EEE feature is active when core is operating with MII, GMII 1113 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and 1114 * should return an error if they do not support EEE. 1115 */ 1116 if ((phydev->duplex == DUPLEX_FULL) && 1117 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1118 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1119 phy_interface_is_rgmii(phydev) || 1120 phy_is_internal(phydev))) { 1121 int eee_lp, eee_cap, eee_adv; 1122 u32 lp, cap, adv; 1123 int status; 1124 1125 /* Read phy status to properly get the right settings */ 1126 status = phy_read_status(phydev); 1127 if (status) 1128 return status; 1129 1130 /* First check if the EEE ability is supported */ 1131 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1132 MDIO_MMD_PCS, phydev->addr); 1133 if (eee_cap <= 0) 1134 goto eee_exit_err; 1135 1136 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1137 if (!cap) 1138 goto eee_exit_err; 1139 1140 /* Check which link settings negotiated and verify it in 1141 * the EEE advertising registers. 1142 */ 1143 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1144 MDIO_MMD_AN, phydev->addr); 1145 if (eee_lp <= 0) 1146 goto eee_exit_err; 1147 1148 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1149 MDIO_MMD_AN, phydev->addr); 1150 if (eee_adv <= 0) 1151 goto eee_exit_err; 1152 1153 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1154 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1155 if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv)) 1156 goto eee_exit_err; 1157 1158 if (clk_stop_enable) { 1159 /* Configure the PHY to stop receiving xMII 1160 * clock while it is signaling LPI. 1161 */ 1162 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, 1163 MDIO_MMD_PCS, 1164 phydev->addr); 1165 if (val < 0) 1166 return val; 1167 1168 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1169 phy_write_mmd_indirect(phydev, MDIO_CTRL1, 1170 MDIO_MMD_PCS, phydev->addr, 1171 val); 1172 } 1173 1174 return 0; /* EEE supported */ 1175 } 1176 eee_exit_err: 1177 return -EPROTONOSUPPORT; 1178 } 1179 EXPORT_SYMBOL(phy_init_eee); 1180 1181 /** 1182 * phy_get_eee_err - report the EEE wake error count 1183 * @phydev: target phy_device struct 1184 * 1185 * Description: it is to report the number of time where the PHY 1186 * failed to complete its normal wake sequence. 1187 */ 1188 int phy_get_eee_err(struct phy_device *phydev) 1189 { 1190 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, 1191 MDIO_MMD_PCS, phydev->addr); 1192 } 1193 EXPORT_SYMBOL(phy_get_eee_err); 1194 1195 /** 1196 * phy_ethtool_get_eee - get EEE supported and status 1197 * @phydev: target phy_device struct 1198 * @data: ethtool_eee data 1199 * 1200 * Description: it reportes the Supported/Advertisement/LP Advertisement 1201 * capabilities. 1202 */ 1203 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1204 { 1205 int val; 1206 1207 /* Get Supported EEE */ 1208 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1209 MDIO_MMD_PCS, phydev->addr); 1210 if (val < 0) 1211 return val; 1212 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1213 1214 /* Get advertisement EEE */ 1215 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1216 MDIO_MMD_AN, phydev->addr); 1217 if (val < 0) 1218 return val; 1219 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1220 1221 /* Get LP advertisement EEE */ 1222 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1223 MDIO_MMD_AN, phydev->addr); 1224 if (val < 0) 1225 return val; 1226 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1227 1228 return 0; 1229 } 1230 EXPORT_SYMBOL(phy_ethtool_get_eee); 1231 1232 /** 1233 * phy_ethtool_set_eee - set EEE supported and status 1234 * @phydev: target phy_device struct 1235 * @data: ethtool_eee data 1236 * 1237 * Description: it is to program the Advertisement EEE register. 1238 */ 1239 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1240 { 1241 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1242 1243 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, 1244 phydev->addr, val); 1245 1246 return 0; 1247 } 1248 EXPORT_SYMBOL(phy_ethtool_set_eee); 1249 1250 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1251 { 1252 if (phydev->drv->set_wol) 1253 return phydev->drv->set_wol(phydev, wol); 1254 1255 return -EOPNOTSUPP; 1256 } 1257 EXPORT_SYMBOL(phy_ethtool_set_wol); 1258 1259 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1260 { 1261 if (phydev->drv->get_wol) 1262 phydev->drv->get_wol(phydev, wol); 1263 } 1264 EXPORT_SYMBOL(phy_ethtool_get_wol); 1265