xref: /openbmc/linux/drivers/net/phy/phy.c (revision 2572f00d)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 #define PHY_STATE_STR(_state)			\
62 	case PHY_##_state:			\
63 		return __stringify(_state);	\
64 
65 static const char *phy_state_to_str(enum phy_state st)
66 {
67 	switch (st) {
68 	PHY_STATE_STR(DOWN)
69 	PHY_STATE_STR(STARTING)
70 	PHY_STATE_STR(READY)
71 	PHY_STATE_STR(PENDING)
72 	PHY_STATE_STR(UP)
73 	PHY_STATE_STR(AN)
74 	PHY_STATE_STR(RUNNING)
75 	PHY_STATE_STR(NOLINK)
76 	PHY_STATE_STR(FORCING)
77 	PHY_STATE_STR(CHANGELINK)
78 	PHY_STATE_STR(HALTED)
79 	PHY_STATE_STR(RESUMING)
80 	}
81 
82 	return NULL;
83 }
84 
85 
86 /**
87  * phy_print_status - Convenience function to print out the current phy status
88  * @phydev: the phy_device struct
89  */
90 void phy_print_status(struct phy_device *phydev)
91 {
92 	if (phydev->link) {
93 		netdev_info(phydev->attached_dev,
94 			"Link is Up - %s/%s - flow control %s\n",
95 			phy_speed_to_str(phydev->speed),
96 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
97 			phydev->pause ? "rx/tx" : "off");
98 	} else	{
99 		netdev_info(phydev->attached_dev, "Link is Down\n");
100 	}
101 }
102 EXPORT_SYMBOL(phy_print_status);
103 
104 /**
105  * phy_clear_interrupt - Ack the phy device's interrupt
106  * @phydev: the phy_device struct
107  *
108  * If the @phydev driver has an ack_interrupt function, call it to
109  * ack and clear the phy device's interrupt.
110  *
111  * Returns 0 on success or < 0 on error.
112  */
113 static int phy_clear_interrupt(struct phy_device *phydev)
114 {
115 	if (phydev->drv->ack_interrupt)
116 		return phydev->drv->ack_interrupt(phydev);
117 
118 	return 0;
119 }
120 
121 /**
122  * phy_config_interrupt - configure the PHY device for the requested interrupts
123  * @phydev: the phy_device struct
124  * @interrupts: interrupt flags to configure for this @phydev
125  *
126  * Returns 0 on success or < 0 on error.
127  */
128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
129 {
130 	phydev->interrupts = interrupts;
131 	if (phydev->drv->config_intr)
132 		return phydev->drv->config_intr(phydev);
133 
134 	return 0;
135 }
136 
137 
138 /**
139  * phy_aneg_done - return auto-negotiation status
140  * @phydev: target phy_device struct
141  *
142  * Description: Return the auto-negotiation status from this @phydev
143  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
144  * is still pending.
145  */
146 static inline int phy_aneg_done(struct phy_device *phydev)
147 {
148 	if (phydev->drv->aneg_done)
149 		return phydev->drv->aneg_done(phydev);
150 
151 	return genphy_aneg_done(phydev);
152 }
153 
154 /* A structure for mapping a particular speed and duplex
155  * combination to a particular SUPPORTED and ADVERTISED value
156  */
157 struct phy_setting {
158 	int speed;
159 	int duplex;
160 	u32 setting;
161 };
162 
163 /* A mapping of all SUPPORTED settings to speed/duplex */
164 static const struct phy_setting settings[] = {
165 	{
166 		.speed = SPEED_10000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_10000baseKR_Full,
169 	},
170 	{
171 		.speed = SPEED_10000,
172 		.duplex = DUPLEX_FULL,
173 		.setting = SUPPORTED_10000baseKX4_Full,
174 	},
175 	{
176 		.speed = SPEED_10000,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_10000baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_2500,
182 		.duplex = DUPLEX_FULL,
183 		.setting = SUPPORTED_2500baseX_Full,
184 	},
185 	{
186 		.speed = SPEED_1000,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_1000baseKX_Full,
189 	},
190 	{
191 		.speed = SPEED_1000,
192 		.duplex = DUPLEX_FULL,
193 		.setting = SUPPORTED_1000baseT_Full,
194 	},
195 	{
196 		.speed = SPEED_1000,
197 		.duplex = DUPLEX_HALF,
198 		.setting = SUPPORTED_1000baseT_Half,
199 	},
200 	{
201 		.speed = SPEED_100,
202 		.duplex = DUPLEX_FULL,
203 		.setting = SUPPORTED_100baseT_Full,
204 	},
205 	{
206 		.speed = SPEED_100,
207 		.duplex = DUPLEX_HALF,
208 		.setting = SUPPORTED_100baseT_Half,
209 	},
210 	{
211 		.speed = SPEED_10,
212 		.duplex = DUPLEX_FULL,
213 		.setting = SUPPORTED_10baseT_Full,
214 	},
215 	{
216 		.speed = SPEED_10,
217 		.duplex = DUPLEX_HALF,
218 		.setting = SUPPORTED_10baseT_Half,
219 	},
220 };
221 
222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
223 
224 /**
225  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
226  * @speed: speed to match
227  * @duplex: duplex to match
228  *
229  * Description: Searches the settings array for the setting which
230  *   matches the desired speed and duplex, and returns the index
231  *   of that setting.  Returns the index of the last setting if
232  *   none of the others match.
233  */
234 static inline unsigned int phy_find_setting(int speed, int duplex)
235 {
236 	unsigned int idx = 0;
237 
238 	while (idx < ARRAY_SIZE(settings) &&
239 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
240 		idx++;
241 
242 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
243 }
244 
245 /**
246  * phy_find_valid - find a PHY setting that matches the requested features mask
247  * @idx: The first index in settings[] to search
248  * @features: A mask of the valid settings
249  *
250  * Description: Returns the index of the first valid setting less
251  *   than or equal to the one pointed to by idx, as determined by
252  *   the mask in features.  Returns the index of the last setting
253  *   if nothing else matches.
254  */
255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
256 {
257 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
258 		idx++;
259 
260 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
261 }
262 
263 /**
264  * phy_check_valid - check if there is a valid PHY setting which matches
265  *		     speed, duplex, and feature mask
266  * @speed: speed to match
267  * @duplex: duplex to match
268  * @features: A mask of the valid settings
269  *
270  * Description: Returns true if there is a valid setting, false otherwise.
271  */
272 static inline bool phy_check_valid(int speed, int duplex, u32 features)
273 {
274 	unsigned int idx;
275 
276 	idx = phy_find_valid(phy_find_setting(speed, duplex), features);
277 
278 	return settings[idx].speed == speed && settings[idx].duplex == duplex &&
279 		(settings[idx].setting & features);
280 }
281 
282 /**
283  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
284  * @phydev: the target phy_device struct
285  *
286  * Description: Make sure the PHY is set to supported speeds and
287  *   duplexes.  Drop down by one in this order:  1000/FULL,
288  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
289  */
290 static void phy_sanitize_settings(struct phy_device *phydev)
291 {
292 	u32 features = phydev->supported;
293 	unsigned int idx;
294 
295 	/* Sanitize settings based on PHY capabilities */
296 	if ((features & SUPPORTED_Autoneg) == 0)
297 		phydev->autoneg = AUTONEG_DISABLE;
298 
299 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
300 			features);
301 
302 	phydev->speed = settings[idx].speed;
303 	phydev->duplex = settings[idx].duplex;
304 }
305 
306 /**
307  * phy_ethtool_sset - generic ethtool sset function, handles all the details
308  * @phydev: target phy_device struct
309  * @cmd: ethtool_cmd
310  *
311  * A few notes about parameter checking:
312  * - We don't set port or transceiver, so we don't care what they
313  *   were set to.
314  * - phy_start_aneg() will make sure forced settings are sane, and
315  *   choose the next best ones from the ones selected, so we don't
316  *   care if ethtool tries to give us bad values.
317  */
318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
319 {
320 	u32 speed = ethtool_cmd_speed(cmd);
321 
322 	if (cmd->phy_address != phydev->addr)
323 		return -EINVAL;
324 
325 	/* We make sure that we don't pass unsupported values in to the PHY */
326 	cmd->advertising &= phydev->supported;
327 
328 	/* Verify the settings we care about. */
329 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
330 		return -EINVAL;
331 
332 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
333 		return -EINVAL;
334 
335 	if (cmd->autoneg == AUTONEG_DISABLE &&
336 	    ((speed != SPEED_1000 &&
337 	      speed != SPEED_100 &&
338 	      speed != SPEED_10) ||
339 	     (cmd->duplex != DUPLEX_HALF &&
340 	      cmd->duplex != DUPLEX_FULL)))
341 		return -EINVAL;
342 
343 	phydev->autoneg = cmd->autoneg;
344 
345 	phydev->speed = speed;
346 
347 	phydev->advertising = cmd->advertising;
348 
349 	if (AUTONEG_ENABLE == cmd->autoneg)
350 		phydev->advertising |= ADVERTISED_Autoneg;
351 	else
352 		phydev->advertising &= ~ADVERTISED_Autoneg;
353 
354 	phydev->duplex = cmd->duplex;
355 
356 	phydev->mdix = cmd->eth_tp_mdix_ctrl;
357 
358 	/* Restart the PHY */
359 	phy_start_aneg(phydev);
360 
361 	return 0;
362 }
363 EXPORT_SYMBOL(phy_ethtool_sset);
364 
365 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
366 {
367 	cmd->supported = phydev->supported;
368 
369 	cmd->advertising = phydev->advertising;
370 	cmd->lp_advertising = phydev->lp_advertising;
371 
372 	ethtool_cmd_speed_set(cmd, phydev->speed);
373 	cmd->duplex = phydev->duplex;
374 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
375 		cmd->port = PORT_BNC;
376 	else
377 		cmd->port = PORT_MII;
378 	cmd->phy_address = phydev->addr;
379 	cmd->transceiver = phy_is_internal(phydev) ?
380 		XCVR_INTERNAL : XCVR_EXTERNAL;
381 	cmd->autoneg = phydev->autoneg;
382 	cmd->eth_tp_mdix_ctrl = phydev->mdix;
383 
384 	return 0;
385 }
386 EXPORT_SYMBOL(phy_ethtool_gset);
387 
388 /**
389  * phy_mii_ioctl - generic PHY MII ioctl interface
390  * @phydev: the phy_device struct
391  * @ifr: &struct ifreq for socket ioctl's
392  * @cmd: ioctl cmd to execute
393  *
394  * Note that this function is currently incompatible with the
395  * PHYCONTROL layer.  It changes registers without regard to
396  * current state.  Use at own risk.
397  */
398 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
399 {
400 	struct mii_ioctl_data *mii_data = if_mii(ifr);
401 	u16 val = mii_data->val_in;
402 	bool change_autoneg = false;
403 
404 	switch (cmd) {
405 	case SIOCGMIIPHY:
406 		mii_data->phy_id = phydev->addr;
407 		/* fall through */
408 
409 	case SIOCGMIIREG:
410 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
411 						 mii_data->reg_num);
412 		return 0;
413 
414 	case SIOCSMIIREG:
415 		if (mii_data->phy_id == phydev->addr) {
416 			switch (mii_data->reg_num) {
417 			case MII_BMCR:
418 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
419 					if (phydev->autoneg == AUTONEG_ENABLE)
420 						change_autoneg = true;
421 					phydev->autoneg = AUTONEG_DISABLE;
422 					if (val & BMCR_FULLDPLX)
423 						phydev->duplex = DUPLEX_FULL;
424 					else
425 						phydev->duplex = DUPLEX_HALF;
426 					if (val & BMCR_SPEED1000)
427 						phydev->speed = SPEED_1000;
428 					else if (val & BMCR_SPEED100)
429 						phydev->speed = SPEED_100;
430 					else phydev->speed = SPEED_10;
431 				}
432 				else {
433 					if (phydev->autoneg == AUTONEG_DISABLE)
434 						change_autoneg = true;
435 					phydev->autoneg = AUTONEG_ENABLE;
436 				}
437 				break;
438 			case MII_ADVERTISE:
439 				phydev->advertising = mii_adv_to_ethtool_adv_t(val);
440 				change_autoneg = true;
441 				break;
442 			default:
443 				/* do nothing */
444 				break;
445 			}
446 		}
447 
448 		mdiobus_write(phydev->bus, mii_data->phy_id,
449 			      mii_data->reg_num, val);
450 
451 		if (mii_data->phy_id == phydev->addr &&
452 		    mii_data->reg_num == MII_BMCR &&
453 		    val & BMCR_RESET)
454 			return phy_init_hw(phydev);
455 
456 		if (change_autoneg)
457 			return phy_start_aneg(phydev);
458 
459 		return 0;
460 
461 	case SIOCSHWTSTAMP:
462 		if (phydev->drv->hwtstamp)
463 			return phydev->drv->hwtstamp(phydev, ifr);
464 		/* fall through */
465 
466 	default:
467 		return -EOPNOTSUPP;
468 	}
469 }
470 EXPORT_SYMBOL(phy_mii_ioctl);
471 
472 /**
473  * phy_start_aneg - start auto-negotiation for this PHY device
474  * @phydev: the phy_device struct
475  *
476  * Description: Sanitizes the settings (if we're not autonegotiating
477  *   them), and then calls the driver's config_aneg function.
478  *   If the PHYCONTROL Layer is operating, we change the state to
479  *   reflect the beginning of Auto-negotiation or forcing.
480  */
481 int phy_start_aneg(struct phy_device *phydev)
482 {
483 	int err;
484 
485 	mutex_lock(&phydev->lock);
486 
487 	if (AUTONEG_DISABLE == phydev->autoneg)
488 		phy_sanitize_settings(phydev);
489 
490 	/* Invalidate LP advertising flags */
491 	phydev->lp_advertising = 0;
492 
493 	err = phydev->drv->config_aneg(phydev);
494 	if (err < 0)
495 		goto out_unlock;
496 
497 	if (phydev->state != PHY_HALTED) {
498 		if (AUTONEG_ENABLE == phydev->autoneg) {
499 			phydev->state = PHY_AN;
500 			phydev->link_timeout = PHY_AN_TIMEOUT;
501 		} else {
502 			phydev->state = PHY_FORCING;
503 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
504 		}
505 	}
506 
507 out_unlock:
508 	mutex_unlock(&phydev->lock);
509 	return err;
510 }
511 EXPORT_SYMBOL(phy_start_aneg);
512 
513 /**
514  * phy_start_machine - start PHY state machine tracking
515  * @phydev: the phy_device struct
516  *
517  * Description: The PHY infrastructure can run a state machine
518  *   which tracks whether the PHY is starting up, negotiating,
519  *   etc.  This function starts the timer which tracks the state
520  *   of the PHY.  If you want to maintain your own state machine,
521  *   do not call this function.
522  */
523 void phy_start_machine(struct phy_device *phydev)
524 {
525 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
526 }
527 
528 /**
529  * phy_stop_machine - stop the PHY state machine tracking
530  * @phydev: target phy_device struct
531  *
532  * Description: Stops the state machine timer, sets the state to UP
533  *   (unless it wasn't up yet). This function must be called BEFORE
534  *   phy_detach.
535  */
536 void phy_stop_machine(struct phy_device *phydev)
537 {
538 	cancel_delayed_work_sync(&phydev->state_queue);
539 
540 	mutex_lock(&phydev->lock);
541 	if (phydev->state > PHY_UP)
542 		phydev->state = PHY_UP;
543 	mutex_unlock(&phydev->lock);
544 }
545 
546 /**
547  * phy_error - enter HALTED state for this PHY device
548  * @phydev: target phy_device struct
549  *
550  * Moves the PHY to the HALTED state in response to a read
551  * or write error, and tells the controller the link is down.
552  * Must not be called from interrupt context, or while the
553  * phydev->lock is held.
554  */
555 static void phy_error(struct phy_device *phydev)
556 {
557 	mutex_lock(&phydev->lock);
558 	phydev->state = PHY_HALTED;
559 	mutex_unlock(&phydev->lock);
560 }
561 
562 /**
563  * phy_interrupt - PHY interrupt handler
564  * @irq: interrupt line
565  * @phy_dat: phy_device pointer
566  *
567  * Description: When a PHY interrupt occurs, the handler disables
568  * interrupts, and schedules a work task to clear the interrupt.
569  */
570 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
571 {
572 	struct phy_device *phydev = phy_dat;
573 
574 	if (PHY_HALTED == phydev->state)
575 		return IRQ_NONE;		/* It can't be ours.  */
576 
577 	/* The MDIO bus is not allowed to be written in interrupt
578 	 * context, so we need to disable the irq here.  A work
579 	 * queue will write the PHY to disable and clear the
580 	 * interrupt, and then reenable the irq line.
581 	 */
582 	disable_irq_nosync(irq);
583 	atomic_inc(&phydev->irq_disable);
584 
585 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
586 
587 	return IRQ_HANDLED;
588 }
589 
590 /**
591  * phy_enable_interrupts - Enable the interrupts from the PHY side
592  * @phydev: target phy_device struct
593  */
594 static int phy_enable_interrupts(struct phy_device *phydev)
595 {
596 	int err = phy_clear_interrupt(phydev);
597 
598 	if (err < 0)
599 		return err;
600 
601 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
602 }
603 
604 /**
605  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
606  * @phydev: target phy_device struct
607  */
608 static int phy_disable_interrupts(struct phy_device *phydev)
609 {
610 	int err;
611 
612 	/* Disable PHY interrupts */
613 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
614 	if (err)
615 		goto phy_err;
616 
617 	/* Clear the interrupt */
618 	err = phy_clear_interrupt(phydev);
619 	if (err)
620 		goto phy_err;
621 
622 	return 0;
623 
624 phy_err:
625 	phy_error(phydev);
626 
627 	return err;
628 }
629 
630 /**
631  * phy_start_interrupts - request and enable interrupts for a PHY device
632  * @phydev: target phy_device struct
633  *
634  * Description: Request the interrupt for the given PHY.
635  *   If this fails, then we set irq to PHY_POLL.
636  *   Otherwise, we enable the interrupts in the PHY.
637  *   This should only be called with a valid IRQ number.
638  *   Returns 0 on success or < 0 on error.
639  */
640 int phy_start_interrupts(struct phy_device *phydev)
641 {
642 	atomic_set(&phydev->irq_disable, 0);
643 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
644 			phydev) < 0) {
645 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
646 			phydev->bus->name, phydev->irq);
647 		phydev->irq = PHY_POLL;
648 		return 0;
649 	}
650 
651 	return phy_enable_interrupts(phydev);
652 }
653 EXPORT_SYMBOL(phy_start_interrupts);
654 
655 /**
656  * phy_stop_interrupts - disable interrupts from a PHY device
657  * @phydev: target phy_device struct
658  */
659 int phy_stop_interrupts(struct phy_device *phydev)
660 {
661 	int err = phy_disable_interrupts(phydev);
662 
663 	if (err)
664 		phy_error(phydev);
665 
666 	free_irq(phydev->irq, phydev);
667 
668 	/* Cannot call flush_scheduled_work() here as desired because
669 	 * of rtnl_lock(), but we do not really care about what would
670 	 * be done, except from enable_irq(), so cancel any work
671 	 * possibly pending and take care of the matter below.
672 	 */
673 	cancel_work_sync(&phydev->phy_queue);
674 	/* If work indeed has been cancelled, disable_irq() will have
675 	 * been left unbalanced from phy_interrupt() and enable_irq()
676 	 * has to be called so that other devices on the line work.
677 	 */
678 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
679 		enable_irq(phydev->irq);
680 
681 	return err;
682 }
683 EXPORT_SYMBOL(phy_stop_interrupts);
684 
685 /**
686  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
687  * @work: work_struct that describes the work to be done
688  */
689 void phy_change(struct work_struct *work)
690 {
691 	struct phy_device *phydev =
692 		container_of(work, struct phy_device, phy_queue);
693 
694 	if (phydev->drv->did_interrupt &&
695 	    !phydev->drv->did_interrupt(phydev))
696 		goto ignore;
697 
698 	if (phy_disable_interrupts(phydev))
699 		goto phy_err;
700 
701 	mutex_lock(&phydev->lock);
702 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
703 		phydev->state = PHY_CHANGELINK;
704 	mutex_unlock(&phydev->lock);
705 
706 	atomic_dec(&phydev->irq_disable);
707 	enable_irq(phydev->irq);
708 
709 	/* Reenable interrupts */
710 	if (PHY_HALTED != phydev->state &&
711 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
712 		goto irq_enable_err;
713 
714 	/* reschedule state queue work to run as soon as possible */
715 	cancel_delayed_work_sync(&phydev->state_queue);
716 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
717 	return;
718 
719 ignore:
720 	atomic_dec(&phydev->irq_disable);
721 	enable_irq(phydev->irq);
722 	return;
723 
724 irq_enable_err:
725 	disable_irq(phydev->irq);
726 	atomic_inc(&phydev->irq_disable);
727 phy_err:
728 	phy_error(phydev);
729 }
730 
731 /**
732  * phy_stop - Bring down the PHY link, and stop checking the status
733  * @phydev: target phy_device struct
734  */
735 void phy_stop(struct phy_device *phydev)
736 {
737 	mutex_lock(&phydev->lock);
738 
739 	if (PHY_HALTED == phydev->state)
740 		goto out_unlock;
741 
742 	if (phy_interrupt_is_valid(phydev)) {
743 		/* Disable PHY Interrupts */
744 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
745 
746 		/* Clear any pending interrupts */
747 		phy_clear_interrupt(phydev);
748 	}
749 
750 	phydev->state = PHY_HALTED;
751 
752 out_unlock:
753 	mutex_unlock(&phydev->lock);
754 
755 	/* Cannot call flush_scheduled_work() here as desired because
756 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
757 	 * will not reenable interrupts.
758 	 */
759 }
760 EXPORT_SYMBOL(phy_stop);
761 
762 /**
763  * phy_start - start or restart a PHY device
764  * @phydev: target phy_device struct
765  *
766  * Description: Indicates the attached device's readiness to
767  *   handle PHY-related work.  Used during startup to start the
768  *   PHY, and after a call to phy_stop() to resume operation.
769  *   Also used to indicate the MDIO bus has cleared an error
770  *   condition.
771  */
772 void phy_start(struct phy_device *phydev)
773 {
774 	bool do_resume = false;
775 	int err = 0;
776 
777 	mutex_lock(&phydev->lock);
778 
779 	switch (phydev->state) {
780 	case PHY_STARTING:
781 		phydev->state = PHY_PENDING;
782 		break;
783 	case PHY_READY:
784 		phydev->state = PHY_UP;
785 		break;
786 	case PHY_HALTED:
787 		/* make sure interrupts are re-enabled for the PHY */
788 		err = phy_enable_interrupts(phydev);
789 		if (err < 0)
790 			break;
791 
792 		phydev->state = PHY_RESUMING;
793 		do_resume = true;
794 		break;
795 	default:
796 		break;
797 	}
798 	mutex_unlock(&phydev->lock);
799 
800 	/* if phy was suspended, bring the physical link up again */
801 	if (do_resume)
802 		phy_resume(phydev);
803 }
804 EXPORT_SYMBOL(phy_start);
805 
806 /**
807  * phy_state_machine - Handle the state machine
808  * @work: work_struct that describes the work to be done
809  */
810 void phy_state_machine(struct work_struct *work)
811 {
812 	struct delayed_work *dwork = to_delayed_work(work);
813 	struct phy_device *phydev =
814 			container_of(dwork, struct phy_device, state_queue);
815 	bool needs_aneg = false, do_suspend = false;
816 	enum phy_state old_state;
817 	int err = 0;
818 	int old_link;
819 
820 	mutex_lock(&phydev->lock);
821 
822 	old_state = phydev->state;
823 
824 	if (phydev->drv->link_change_notify)
825 		phydev->drv->link_change_notify(phydev);
826 
827 	switch (phydev->state) {
828 	case PHY_DOWN:
829 	case PHY_STARTING:
830 	case PHY_READY:
831 	case PHY_PENDING:
832 		break;
833 	case PHY_UP:
834 		needs_aneg = true;
835 
836 		phydev->link_timeout = PHY_AN_TIMEOUT;
837 
838 		break;
839 	case PHY_AN:
840 		err = phy_read_status(phydev);
841 		if (err < 0)
842 			break;
843 
844 		/* If the link is down, give up on negotiation for now */
845 		if (!phydev->link) {
846 			phydev->state = PHY_NOLINK;
847 			netif_carrier_off(phydev->attached_dev);
848 			phydev->adjust_link(phydev->attached_dev);
849 			break;
850 		}
851 
852 		/* Check if negotiation is done.  Break if there's an error */
853 		err = phy_aneg_done(phydev);
854 		if (err < 0)
855 			break;
856 
857 		/* If AN is done, we're running */
858 		if (err > 0) {
859 			phydev->state = PHY_RUNNING;
860 			netif_carrier_on(phydev->attached_dev);
861 			phydev->adjust_link(phydev->attached_dev);
862 
863 		} else if (0 == phydev->link_timeout--)
864 			needs_aneg = true;
865 		break;
866 	case PHY_NOLINK:
867 		if (phy_interrupt_is_valid(phydev))
868 			break;
869 
870 		err = phy_read_status(phydev);
871 		if (err)
872 			break;
873 
874 		if (phydev->link) {
875 			if (AUTONEG_ENABLE == phydev->autoneg) {
876 				err = phy_aneg_done(phydev);
877 				if (err < 0)
878 					break;
879 
880 				if (!err) {
881 					phydev->state = PHY_AN;
882 					phydev->link_timeout = PHY_AN_TIMEOUT;
883 					break;
884 				}
885 			}
886 			phydev->state = PHY_RUNNING;
887 			netif_carrier_on(phydev->attached_dev);
888 			phydev->adjust_link(phydev->attached_dev);
889 		}
890 		break;
891 	case PHY_FORCING:
892 		err = genphy_update_link(phydev);
893 		if (err)
894 			break;
895 
896 		if (phydev->link) {
897 			phydev->state = PHY_RUNNING;
898 			netif_carrier_on(phydev->attached_dev);
899 		} else {
900 			if (0 == phydev->link_timeout--)
901 				needs_aneg = true;
902 		}
903 
904 		phydev->adjust_link(phydev->attached_dev);
905 		break;
906 	case PHY_RUNNING:
907 		/* Only register a CHANGE if we are polling or ignoring
908 		 * interrupts and link changed since latest checking.
909 		 */
910 		if (!phy_interrupt_is_valid(phydev)) {
911 			old_link = phydev->link;
912 			err = phy_read_status(phydev);
913 			if (err)
914 				break;
915 
916 			if (old_link != phydev->link)
917 				phydev->state = PHY_CHANGELINK;
918 		}
919 		break;
920 	case PHY_CHANGELINK:
921 		err = phy_read_status(phydev);
922 		if (err)
923 			break;
924 
925 		if (phydev->link) {
926 			phydev->state = PHY_RUNNING;
927 			netif_carrier_on(phydev->attached_dev);
928 		} else {
929 			phydev->state = PHY_NOLINK;
930 			netif_carrier_off(phydev->attached_dev);
931 		}
932 
933 		phydev->adjust_link(phydev->attached_dev);
934 
935 		if (phy_interrupt_is_valid(phydev))
936 			err = phy_config_interrupt(phydev,
937 						   PHY_INTERRUPT_ENABLED);
938 		break;
939 	case PHY_HALTED:
940 		if (phydev->link) {
941 			phydev->link = 0;
942 			netif_carrier_off(phydev->attached_dev);
943 			phydev->adjust_link(phydev->attached_dev);
944 			do_suspend = true;
945 		}
946 		break;
947 	case PHY_RESUMING:
948 		if (AUTONEG_ENABLE == phydev->autoneg) {
949 			err = phy_aneg_done(phydev);
950 			if (err < 0)
951 				break;
952 
953 			/* err > 0 if AN is done.
954 			 * Otherwise, it's 0, and we're  still waiting for AN
955 			 */
956 			if (err > 0) {
957 				err = phy_read_status(phydev);
958 				if (err)
959 					break;
960 
961 				if (phydev->link) {
962 					phydev->state = PHY_RUNNING;
963 					netif_carrier_on(phydev->attached_dev);
964 				} else	{
965 					phydev->state = PHY_NOLINK;
966 				}
967 				phydev->adjust_link(phydev->attached_dev);
968 			} else {
969 				phydev->state = PHY_AN;
970 				phydev->link_timeout = PHY_AN_TIMEOUT;
971 			}
972 		} else {
973 			err = phy_read_status(phydev);
974 			if (err)
975 				break;
976 
977 			if (phydev->link) {
978 				phydev->state = PHY_RUNNING;
979 				netif_carrier_on(phydev->attached_dev);
980 			} else	{
981 				phydev->state = PHY_NOLINK;
982 			}
983 			phydev->adjust_link(phydev->attached_dev);
984 		}
985 		break;
986 	}
987 
988 	mutex_unlock(&phydev->lock);
989 
990 	if (needs_aneg)
991 		err = phy_start_aneg(phydev);
992 	else if (do_suspend)
993 		phy_suspend(phydev);
994 
995 	if (err < 0)
996 		phy_error(phydev);
997 
998 	dev_dbg(&phydev->dev, "PHY state change %s -> %s\n",
999 		phy_state_to_str(old_state), phy_state_to_str(phydev->state));
1000 
1001 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
1002 			   PHY_STATE_TIME * HZ);
1003 }
1004 
1005 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
1006 {
1007 	cancel_work_sync(&phydev->phy_queue);
1008 	phydev->link = new_link;
1009 	schedule_work(&phydev->phy_queue);
1010 }
1011 EXPORT_SYMBOL(phy_mac_interrupt);
1012 
1013 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
1014 				    int addr)
1015 {
1016 	/* Write the desired MMD Devad */
1017 	bus->write(bus, addr, MII_MMD_CTRL, devad);
1018 
1019 	/* Write the desired MMD register address */
1020 	bus->write(bus, addr, MII_MMD_DATA, prtad);
1021 
1022 	/* Select the Function : DATA with no post increment */
1023 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
1024 }
1025 
1026 /**
1027  * phy_read_mmd_indirect - reads data from the MMD registers
1028  * @phydev: The PHY device bus
1029  * @prtad: MMD Address
1030  * @devad: MMD DEVAD
1031  * @addr: PHY address on the MII bus
1032  *
1033  * Description: it reads data from the MMD registers (clause 22 to access to
1034  * clause 45) of the specified phy address.
1035  * To read these register we have:
1036  * 1) Write reg 13 // DEVAD
1037  * 2) Write reg 14 // MMD Address
1038  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1039  * 3) Read  reg 14 // Read MMD data
1040  */
1041 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad,
1042 				 int devad, int addr)
1043 {
1044 	struct phy_driver *phydrv = phydev->drv;
1045 	int value = -1;
1046 
1047 	if (!phydrv->read_mmd_indirect) {
1048 		struct mii_bus *bus = phydev->bus;
1049 
1050 		mutex_lock(&bus->mdio_lock);
1051 		mmd_phy_indirect(bus, prtad, devad, addr);
1052 
1053 		/* Read the content of the MMD's selected register */
1054 		value = bus->read(bus, addr, MII_MMD_DATA);
1055 		mutex_unlock(&bus->mdio_lock);
1056 	} else {
1057 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1058 	}
1059 	return value;
1060 }
1061 EXPORT_SYMBOL(phy_read_mmd_indirect);
1062 
1063 /**
1064  * phy_write_mmd_indirect - writes data to the MMD registers
1065  * @phydev: The PHY device
1066  * @prtad: MMD Address
1067  * @devad: MMD DEVAD
1068  * @addr: PHY address on the MII bus
1069  * @data: data to write in the MMD register
1070  *
1071  * Description: Write data from the MMD registers of the specified
1072  * phy address.
1073  * To write these register we have:
1074  * 1) Write reg 13 // DEVAD
1075  * 2) Write reg 14 // MMD Address
1076  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1077  * 3) Write reg 14 // Write MMD data
1078  */
1079 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1080 				   int devad, int addr, u32 data)
1081 {
1082 	struct phy_driver *phydrv = phydev->drv;
1083 
1084 	if (!phydrv->write_mmd_indirect) {
1085 		struct mii_bus *bus = phydev->bus;
1086 
1087 		mutex_lock(&bus->mdio_lock);
1088 		mmd_phy_indirect(bus, prtad, devad, addr);
1089 
1090 		/* Write the data into MMD's selected register */
1091 		bus->write(bus, addr, MII_MMD_DATA, data);
1092 		mutex_unlock(&bus->mdio_lock);
1093 	} else {
1094 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1095 	}
1096 }
1097 EXPORT_SYMBOL(phy_write_mmd_indirect);
1098 
1099 /**
1100  * phy_init_eee - init and check the EEE feature
1101  * @phydev: target phy_device struct
1102  * @clk_stop_enable: PHY may stop the clock during LPI
1103  *
1104  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1105  * is supported by looking at the MMD registers 3.20 and 7.60/61
1106  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1107  * bit if required.
1108  */
1109 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1110 {
1111 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1112 	 * Also EEE feature is active when core is operating with MII, GMII
1113 	 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1114 	 * should return an error if they do not support EEE.
1115 	 */
1116 	if ((phydev->duplex == DUPLEX_FULL) &&
1117 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1118 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1119 	     phy_interface_is_rgmii(phydev) ||
1120 	     phy_is_internal(phydev))) {
1121 		int eee_lp, eee_cap, eee_adv;
1122 		u32 lp, cap, adv;
1123 		int status;
1124 
1125 		/* Read phy status to properly get the right settings */
1126 		status = phy_read_status(phydev);
1127 		if (status)
1128 			return status;
1129 
1130 		/* First check if the EEE ability is supported */
1131 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1132 						MDIO_MMD_PCS, phydev->addr);
1133 		if (eee_cap <= 0)
1134 			goto eee_exit_err;
1135 
1136 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1137 		if (!cap)
1138 			goto eee_exit_err;
1139 
1140 		/* Check which link settings negotiated and verify it in
1141 		 * the EEE advertising registers.
1142 		 */
1143 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1144 					       MDIO_MMD_AN, phydev->addr);
1145 		if (eee_lp <= 0)
1146 			goto eee_exit_err;
1147 
1148 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1149 						MDIO_MMD_AN, phydev->addr);
1150 		if (eee_adv <= 0)
1151 			goto eee_exit_err;
1152 
1153 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1154 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1155 		if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1156 			goto eee_exit_err;
1157 
1158 		if (clk_stop_enable) {
1159 			/* Configure the PHY to stop receiving xMII
1160 			 * clock while it is signaling LPI.
1161 			 */
1162 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1163 							MDIO_MMD_PCS,
1164 							phydev->addr);
1165 			if (val < 0)
1166 				return val;
1167 
1168 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1169 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1170 					       MDIO_MMD_PCS, phydev->addr,
1171 					       val);
1172 		}
1173 
1174 		return 0; /* EEE supported */
1175 	}
1176 eee_exit_err:
1177 	return -EPROTONOSUPPORT;
1178 }
1179 EXPORT_SYMBOL(phy_init_eee);
1180 
1181 /**
1182  * phy_get_eee_err - report the EEE wake error count
1183  * @phydev: target phy_device struct
1184  *
1185  * Description: it is to report the number of time where the PHY
1186  * failed to complete its normal wake sequence.
1187  */
1188 int phy_get_eee_err(struct phy_device *phydev)
1189 {
1190 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR,
1191 				     MDIO_MMD_PCS, phydev->addr);
1192 }
1193 EXPORT_SYMBOL(phy_get_eee_err);
1194 
1195 /**
1196  * phy_ethtool_get_eee - get EEE supported and status
1197  * @phydev: target phy_device struct
1198  * @data: ethtool_eee data
1199  *
1200  * Description: it reportes the Supported/Advertisement/LP Advertisement
1201  * capabilities.
1202  */
1203 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1204 {
1205 	int val;
1206 
1207 	/* Get Supported EEE */
1208 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1209 				    MDIO_MMD_PCS, phydev->addr);
1210 	if (val < 0)
1211 		return val;
1212 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1213 
1214 	/* Get advertisement EEE */
1215 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1216 				    MDIO_MMD_AN, phydev->addr);
1217 	if (val < 0)
1218 		return val;
1219 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1220 
1221 	/* Get LP advertisement EEE */
1222 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1223 				    MDIO_MMD_AN, phydev->addr);
1224 	if (val < 0)
1225 		return val;
1226 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1227 
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL(phy_ethtool_get_eee);
1231 
1232 /**
1233  * phy_ethtool_set_eee - set EEE supported and status
1234  * @phydev: target phy_device struct
1235  * @data: ethtool_eee data
1236  *
1237  * Description: it is to program the Advertisement EEE register.
1238  */
1239 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1240 {
1241 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1242 
1243 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1244 			       phydev->addr, val);
1245 
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL(phy_ethtool_set_eee);
1249 
1250 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1251 {
1252 	if (phydev->drv->set_wol)
1253 		return phydev->drv->set_wol(phydev, wol);
1254 
1255 	return -EOPNOTSUPP;
1256 }
1257 EXPORT_SYMBOL(phy_ethtool_set_wol);
1258 
1259 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1260 {
1261 	if (phydev->drv->get_wol)
1262 		phydev->drv->get_wol(phydev, wol);
1263 }
1264 EXPORT_SYMBOL(phy_ethtool_get_wol);
1265