xref: /openbmc/linux/drivers/net/phy/dp83640.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/ptp_classify.h>
32 #include <linux/ptp_clock_kernel.h>
33 
34 #include "dp83640_reg.h"
35 
36 #define DP83640_PHY_ID	0x20005ce1
37 #define PAGESEL		0x13
38 #define LAYER4		0x02
39 #define LAYER2		0x01
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define PSF_PTPVER	2
43 #define PSF_EVNT	0x4000
44 #define PSF_RX		0x2000
45 #define PSF_TX		0x1000
46 #define EXT_EVENT	1
47 #define CAL_EVENT	7
48 #define CAL_TRIGGER	7
49 #define PER_TRIGGER	6
50 
51 #define MII_DP83640_MICR 0x11
52 #define MII_DP83640_MISR 0x12
53 
54 #define MII_DP83640_MICR_OE 0x1
55 #define MII_DP83640_MICR_IE 0x2
56 
57 #define MII_DP83640_MISR_RHF_INT_EN 0x01
58 #define MII_DP83640_MISR_FHF_INT_EN 0x02
59 #define MII_DP83640_MISR_ANC_INT_EN 0x04
60 #define MII_DP83640_MISR_DUP_INT_EN 0x08
61 #define MII_DP83640_MISR_SPD_INT_EN 0x10
62 #define MII_DP83640_MISR_LINK_INT_EN 0x20
63 #define MII_DP83640_MISR_ED_INT_EN 0x40
64 #define MII_DP83640_MISR_LQ_INT_EN 0x80
65 
66 /* phyter seems to miss the mark by 16 ns */
67 #define ADJTIME_FIX	16
68 
69 #if defined(__BIG_ENDIAN)
70 #define ENDIAN_FLAG	0
71 #elif defined(__LITTLE_ENDIAN)
72 #define ENDIAN_FLAG	PSF_ENDIAN
73 #endif
74 
75 #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
76 
77 struct phy_rxts {
78 	u16 ns_lo;   /* ns[15:0] */
79 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
80 	u16 sec_lo;  /* sec[15:0] */
81 	u16 sec_hi;  /* sec[31:16] */
82 	u16 seqid;   /* sequenceId[15:0] */
83 	u16 msgtype; /* messageType[3:0], hash[11:0] */
84 };
85 
86 struct phy_txts {
87 	u16 ns_lo;   /* ns[15:0] */
88 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
89 	u16 sec_lo;  /* sec[15:0] */
90 	u16 sec_hi;  /* sec[31:16] */
91 };
92 
93 struct rxts {
94 	struct list_head list;
95 	unsigned long tmo;
96 	u64 ns;
97 	u16 seqid;
98 	u8  msgtype;
99 	u16 hash;
100 };
101 
102 struct dp83640_clock;
103 
104 struct dp83640_private {
105 	struct list_head list;
106 	struct dp83640_clock *clock;
107 	struct phy_device *phydev;
108 	struct work_struct ts_work;
109 	int hwts_tx_en;
110 	int hwts_rx_en;
111 	int layer;
112 	int version;
113 	/* remember state of cfg0 during calibration */
114 	int cfg0;
115 	/* remember the last event time stamp */
116 	struct phy_txts edata;
117 	/* list of rx timestamps */
118 	struct list_head rxts;
119 	struct list_head rxpool;
120 	struct rxts rx_pool_data[MAX_RXTS];
121 	/* protects above three fields from concurrent access */
122 	spinlock_t rx_lock;
123 	/* queues of incoming and outgoing packets */
124 	struct sk_buff_head rx_queue;
125 	struct sk_buff_head tx_queue;
126 };
127 
128 struct dp83640_clock {
129 	/* keeps the instance in the 'phyter_clocks' list */
130 	struct list_head list;
131 	/* we create one clock instance per MII bus */
132 	struct mii_bus *bus;
133 	/* protects extended registers from concurrent access */
134 	struct mutex extreg_lock;
135 	/* remembers which page was last selected */
136 	int page;
137 	/* our advertised capabilities */
138 	struct ptp_clock_info caps;
139 	/* protects the three fields below from concurrent access */
140 	struct mutex clock_lock;
141 	/* the one phyter from which we shall read */
142 	struct dp83640_private *chosen;
143 	/* list of the other attached phyters, not chosen */
144 	struct list_head phylist;
145 	/* reference to our PTP hardware clock */
146 	struct ptp_clock *ptp_clock;
147 };
148 
149 /* globals */
150 
151 enum {
152 	CALIBRATE_GPIO,
153 	PEROUT_GPIO,
154 	EXTTS0_GPIO,
155 	EXTTS1_GPIO,
156 	EXTTS2_GPIO,
157 	EXTTS3_GPIO,
158 	EXTTS4_GPIO,
159 	EXTTS5_GPIO,
160 	GPIO_TABLE_SIZE
161 };
162 
163 static int chosen_phy = -1;
164 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
165 	1, 2, 3, 4, 8, 9, 10, 11
166 };
167 
168 module_param(chosen_phy, int, 0444);
169 module_param_array(gpio_tab, ushort, NULL, 0444);
170 
171 MODULE_PARM_DESC(chosen_phy, \
172 	"The address of the PHY to use for the ancillary clock features");
173 MODULE_PARM_DESC(gpio_tab, \
174 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
175 
176 /* a list of clocks and a mutex to protect it */
177 static LIST_HEAD(phyter_clocks);
178 static DEFINE_MUTEX(phyter_clocks_lock);
179 
180 static void rx_timestamp_work(struct work_struct *work);
181 
182 /* extended register access functions */
183 
184 #define BROADCAST_ADDR 31
185 
186 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
187 {
188 	return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
189 }
190 
191 /* Caller must hold extreg_lock. */
192 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
193 {
194 	struct dp83640_private *dp83640 = phydev->priv;
195 	int val;
196 
197 	if (dp83640->clock->page != page) {
198 		broadcast_write(phydev->bus, PAGESEL, page);
199 		dp83640->clock->page = page;
200 	}
201 	val = phy_read(phydev, regnum);
202 
203 	return val;
204 }
205 
206 /* Caller must hold extreg_lock. */
207 static void ext_write(int broadcast, struct phy_device *phydev,
208 		      int page, u32 regnum, u16 val)
209 {
210 	struct dp83640_private *dp83640 = phydev->priv;
211 
212 	if (dp83640->clock->page != page) {
213 		broadcast_write(phydev->bus, PAGESEL, page);
214 		dp83640->clock->page = page;
215 	}
216 	if (broadcast)
217 		broadcast_write(phydev->bus, regnum, val);
218 	else
219 		phy_write(phydev, regnum, val);
220 }
221 
222 /* Caller must hold extreg_lock. */
223 static int tdr_write(int bc, struct phy_device *dev,
224 		     const struct timespec *ts, u16 cmd)
225 {
226 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
227 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
228 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
229 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
230 
231 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
232 
233 	return 0;
234 }
235 
236 /* convert phy timestamps into driver timestamps */
237 
238 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
239 {
240 	u32 sec;
241 
242 	sec = p->sec_lo;
243 	sec |= p->sec_hi << 16;
244 
245 	rxts->ns = p->ns_lo;
246 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
247 	rxts->ns += ((u64)sec) * 1000000000ULL;
248 	rxts->seqid = p->seqid;
249 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
250 	rxts->hash = p->msgtype & 0x0fff;
251 	rxts->tmo = jiffies + 2;
252 }
253 
254 static u64 phy2txts(struct phy_txts *p)
255 {
256 	u64 ns;
257 	u32 sec;
258 
259 	sec = p->sec_lo;
260 	sec |= p->sec_hi << 16;
261 
262 	ns = p->ns_lo;
263 	ns |= (p->ns_hi & 0x3fff) << 16;
264 	ns += ((u64)sec) * 1000000000ULL;
265 
266 	return ns;
267 }
268 
269 static void periodic_output(struct dp83640_clock *clock,
270 			    struct ptp_clock_request *clkreq, bool on)
271 {
272 	struct dp83640_private *dp83640 = clock->chosen;
273 	struct phy_device *phydev = dp83640->phydev;
274 	u32 sec, nsec, period;
275 	u16 gpio, ptp_trig, trigger, val;
276 
277 	gpio = on ? gpio_tab[PEROUT_GPIO] : 0;
278 	trigger = PER_TRIGGER;
279 
280 	ptp_trig = TRIG_WR |
281 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
282 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
283 		TRIG_PER |
284 		TRIG_PULSE;
285 
286 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
287 
288 	if (!on) {
289 		val |= TRIG_DIS;
290 		mutex_lock(&clock->extreg_lock);
291 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
292 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
293 		mutex_unlock(&clock->extreg_lock);
294 		return;
295 	}
296 
297 	sec = clkreq->perout.start.sec;
298 	nsec = clkreq->perout.start.nsec;
299 	period = clkreq->perout.period.sec * 1000000000UL;
300 	period += clkreq->perout.period.nsec;
301 
302 	mutex_lock(&clock->extreg_lock);
303 
304 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
305 
306 	/*load trigger*/
307 	val |= TRIG_LOAD;
308 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
309 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
310 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
311 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
312 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
313 	ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */
314 	ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16);    /* ns[31:16] */
315 
316 	/*enable trigger*/
317 	val &= ~TRIG_LOAD;
318 	val |= TRIG_EN;
319 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
320 
321 	mutex_unlock(&clock->extreg_lock);
322 }
323 
324 /* ptp clock methods */
325 
326 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
327 {
328 	struct dp83640_clock *clock =
329 		container_of(ptp, struct dp83640_clock, caps);
330 	struct phy_device *phydev = clock->chosen->phydev;
331 	u64 rate;
332 	int neg_adj = 0;
333 	u16 hi, lo;
334 
335 	if (ppb < 0) {
336 		neg_adj = 1;
337 		ppb = -ppb;
338 	}
339 	rate = ppb;
340 	rate <<= 26;
341 	rate = div_u64(rate, 1953125);
342 
343 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
344 	if (neg_adj)
345 		hi |= PTP_RATE_DIR;
346 
347 	lo = rate & 0xffff;
348 
349 	mutex_lock(&clock->extreg_lock);
350 
351 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
352 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
353 
354 	mutex_unlock(&clock->extreg_lock);
355 
356 	return 0;
357 }
358 
359 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
360 {
361 	struct dp83640_clock *clock =
362 		container_of(ptp, struct dp83640_clock, caps);
363 	struct phy_device *phydev = clock->chosen->phydev;
364 	struct timespec ts;
365 	int err;
366 
367 	delta += ADJTIME_FIX;
368 
369 	ts = ns_to_timespec(delta);
370 
371 	mutex_lock(&clock->extreg_lock);
372 
373 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
374 
375 	mutex_unlock(&clock->extreg_lock);
376 
377 	return err;
378 }
379 
380 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
381 {
382 	struct dp83640_clock *clock =
383 		container_of(ptp, struct dp83640_clock, caps);
384 	struct phy_device *phydev = clock->chosen->phydev;
385 	unsigned int val[4];
386 
387 	mutex_lock(&clock->extreg_lock);
388 
389 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
390 
391 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
392 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
393 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
394 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
395 
396 	mutex_unlock(&clock->extreg_lock);
397 
398 	ts->tv_nsec = val[0] | (val[1] << 16);
399 	ts->tv_sec  = val[2] | (val[3] << 16);
400 
401 	return 0;
402 }
403 
404 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
405 			       const struct timespec *ts)
406 {
407 	struct dp83640_clock *clock =
408 		container_of(ptp, struct dp83640_clock, caps);
409 	struct phy_device *phydev = clock->chosen->phydev;
410 	int err;
411 
412 	mutex_lock(&clock->extreg_lock);
413 
414 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
415 
416 	mutex_unlock(&clock->extreg_lock);
417 
418 	return err;
419 }
420 
421 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
422 			      struct ptp_clock_request *rq, int on)
423 {
424 	struct dp83640_clock *clock =
425 		container_of(ptp, struct dp83640_clock, caps);
426 	struct phy_device *phydev = clock->chosen->phydev;
427 	int index;
428 	u16 evnt, event_num, gpio_num;
429 
430 	switch (rq->type) {
431 	case PTP_CLK_REQ_EXTTS:
432 		index = rq->extts.index;
433 		if (index < 0 || index >= N_EXT_TS)
434 			return -EINVAL;
435 		event_num = EXT_EVENT + index;
436 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
437 		if (on) {
438 			gpio_num = gpio_tab[EXTTS0_GPIO + index];
439 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
440 			evnt |= EVNT_RISE;
441 		}
442 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
443 		return 0;
444 
445 	case PTP_CLK_REQ_PEROUT:
446 		if (rq->perout.index != 0)
447 			return -EINVAL;
448 		periodic_output(clock, rq, on);
449 		return 0;
450 
451 	default:
452 		break;
453 	}
454 
455 	return -EOPNOTSUPP;
456 }
457 
458 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
459 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
460 
461 static void enable_status_frames(struct phy_device *phydev, bool on)
462 {
463 	u16 cfg0 = 0, ver;
464 
465 	if (on)
466 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
467 
468 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
469 
470 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
471 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
472 
473 	if (!phydev->attached_dev) {
474 		pr_warn("expected to find an attached netdevice\n");
475 		return;
476 	}
477 
478 	if (on) {
479 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
480 			pr_warn("failed to add mc address\n");
481 	} else {
482 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
483 			pr_warn("failed to delete mc address\n");
484 	}
485 }
486 
487 static bool is_status_frame(struct sk_buff *skb, int type)
488 {
489 	struct ethhdr *h = eth_hdr(skb);
490 
491 	if (PTP_CLASS_V2_L2 == type &&
492 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
493 		return true;
494 	else
495 		return false;
496 }
497 
498 static int expired(struct rxts *rxts)
499 {
500 	return time_after(jiffies, rxts->tmo);
501 }
502 
503 /* Caller must hold rx_lock. */
504 static void prune_rx_ts(struct dp83640_private *dp83640)
505 {
506 	struct list_head *this, *next;
507 	struct rxts *rxts;
508 
509 	list_for_each_safe(this, next, &dp83640->rxts) {
510 		rxts = list_entry(this, struct rxts, list);
511 		if (expired(rxts)) {
512 			list_del_init(&rxts->list);
513 			list_add(&rxts->list, &dp83640->rxpool);
514 		}
515 	}
516 }
517 
518 /* synchronize the phyters so they act as one clock */
519 
520 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
521 {
522 	int val;
523 	phy_write(phydev, PAGESEL, 0);
524 	val = phy_read(phydev, PHYCR2);
525 	if (on)
526 		val |= BC_WRITE;
527 	else
528 		val &= ~BC_WRITE;
529 	phy_write(phydev, PHYCR2, val);
530 	phy_write(phydev, PAGESEL, init_page);
531 }
532 
533 static void recalibrate(struct dp83640_clock *clock)
534 {
535 	s64 now, diff;
536 	struct phy_txts event_ts;
537 	struct timespec ts;
538 	struct list_head *this;
539 	struct dp83640_private *tmp;
540 	struct phy_device *master = clock->chosen->phydev;
541 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
542 
543 	trigger = CAL_TRIGGER;
544 	cal_gpio = gpio_tab[CALIBRATE_GPIO];
545 
546 	mutex_lock(&clock->extreg_lock);
547 
548 	/*
549 	 * enable broadcast, disable status frames, enable ptp clock
550 	 */
551 	list_for_each(this, &clock->phylist) {
552 		tmp = list_entry(this, struct dp83640_private, list);
553 		enable_broadcast(tmp->phydev, clock->page, 1);
554 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
555 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
556 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
557 	}
558 	enable_broadcast(master, clock->page, 1);
559 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
560 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
561 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
562 
563 	/*
564 	 * enable an event timestamp
565 	 */
566 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
567 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
568 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
569 
570 	list_for_each(this, &clock->phylist) {
571 		tmp = list_entry(this, struct dp83640_private, list);
572 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
573 	}
574 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
575 
576 	/*
577 	 * configure a trigger
578 	 */
579 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
580 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
581 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
582 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
583 
584 	/* load trigger */
585 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
586 	val |= TRIG_LOAD;
587 	ext_write(0, master, PAGE4, PTP_CTL, val);
588 
589 	/* enable trigger */
590 	val &= ~TRIG_LOAD;
591 	val |= TRIG_EN;
592 	ext_write(0, master, PAGE4, PTP_CTL, val);
593 
594 	/* disable trigger */
595 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
596 	val |= TRIG_DIS;
597 	ext_write(0, master, PAGE4, PTP_CTL, val);
598 
599 	/*
600 	 * read out and correct offsets
601 	 */
602 	val = ext_read(master, PAGE4, PTP_STS);
603 	pr_info("master PTP_STS  0x%04hx\n", val);
604 	val = ext_read(master, PAGE4, PTP_ESTS);
605 	pr_info("master PTP_ESTS 0x%04hx\n", val);
606 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
607 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
608 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
609 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
610 	now = phy2txts(&event_ts);
611 
612 	list_for_each(this, &clock->phylist) {
613 		tmp = list_entry(this, struct dp83640_private, list);
614 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
615 		pr_info("slave  PTP_STS  0x%04hx\n", val);
616 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
617 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
618 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
619 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
620 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
621 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
622 		diff = now - (s64) phy2txts(&event_ts);
623 		pr_info("slave offset %lld nanoseconds\n", diff);
624 		diff += ADJTIME_FIX;
625 		ts = ns_to_timespec(diff);
626 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
627 	}
628 
629 	/*
630 	 * restore status frames
631 	 */
632 	list_for_each(this, &clock->phylist) {
633 		tmp = list_entry(this, struct dp83640_private, list);
634 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
635 	}
636 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
637 
638 	mutex_unlock(&clock->extreg_lock);
639 }
640 
641 /* time stamping methods */
642 
643 static inline u16 exts_chan_to_edata(int ch)
644 {
645 	return 1 << ((ch + EXT_EVENT) * 2);
646 }
647 
648 static int decode_evnt(struct dp83640_private *dp83640,
649 		       void *data, u16 ests)
650 {
651 	struct phy_txts *phy_txts;
652 	struct ptp_clock_event event;
653 	int i, parsed;
654 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
655 	u16 ext_status = 0;
656 
657 	if (ests & MULT_EVNT) {
658 		ext_status = *(u16 *) data;
659 		data += sizeof(ext_status);
660 	}
661 
662 	phy_txts = data;
663 
664 	switch (words) { /* fall through in every case */
665 	case 3:
666 		dp83640->edata.sec_hi = phy_txts->sec_hi;
667 	case 2:
668 		dp83640->edata.sec_lo = phy_txts->sec_lo;
669 	case 1:
670 		dp83640->edata.ns_hi = phy_txts->ns_hi;
671 	case 0:
672 		dp83640->edata.ns_lo = phy_txts->ns_lo;
673 	}
674 
675 	if (ext_status) {
676 		parsed = words + 2;
677 	} else {
678 		parsed = words + 1;
679 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
680 		ext_status = exts_chan_to_edata(i);
681 	}
682 
683 	event.type = PTP_CLOCK_EXTTS;
684 	event.timestamp = phy2txts(&dp83640->edata);
685 
686 	for (i = 0; i < N_EXT_TS; i++) {
687 		if (ext_status & exts_chan_to_edata(i)) {
688 			event.index = i;
689 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
690 		}
691 	}
692 
693 	return parsed * sizeof(u16);
694 }
695 
696 static void decode_rxts(struct dp83640_private *dp83640,
697 			struct phy_rxts *phy_rxts)
698 {
699 	struct rxts *rxts;
700 	unsigned long flags;
701 
702 	spin_lock_irqsave(&dp83640->rx_lock, flags);
703 
704 	prune_rx_ts(dp83640);
705 
706 	if (list_empty(&dp83640->rxpool)) {
707 		pr_debug("rx timestamp pool is empty\n");
708 		goto out;
709 	}
710 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
711 	list_del_init(&rxts->list);
712 	phy2rxts(phy_rxts, rxts);
713 	list_add_tail(&rxts->list, &dp83640->rxts);
714 out:
715 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
716 }
717 
718 static void decode_txts(struct dp83640_private *dp83640,
719 			struct phy_txts *phy_txts)
720 {
721 	struct skb_shared_hwtstamps shhwtstamps;
722 	struct sk_buff *skb;
723 	u64 ns;
724 
725 	/* We must already have the skb that triggered this. */
726 
727 	skb = skb_dequeue(&dp83640->tx_queue);
728 
729 	if (!skb) {
730 		pr_debug("have timestamp but tx_queue empty\n");
731 		return;
732 	}
733 	ns = phy2txts(phy_txts);
734 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
735 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
736 	skb_complete_tx_timestamp(skb, &shhwtstamps);
737 }
738 
739 static void decode_status_frame(struct dp83640_private *dp83640,
740 				struct sk_buff *skb)
741 {
742 	struct phy_rxts *phy_rxts;
743 	struct phy_txts *phy_txts;
744 	u8 *ptr;
745 	int len, size;
746 	u16 ests, type;
747 
748 	ptr = skb->data + 2;
749 
750 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
751 
752 		type = *(u16 *)ptr;
753 		ests = type & 0x0fff;
754 		type = type & 0xf000;
755 		len -= sizeof(type);
756 		ptr += sizeof(type);
757 
758 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
759 
760 			phy_rxts = (struct phy_rxts *) ptr;
761 			decode_rxts(dp83640, phy_rxts);
762 			size = sizeof(*phy_rxts);
763 
764 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
765 
766 			phy_txts = (struct phy_txts *) ptr;
767 			decode_txts(dp83640, phy_txts);
768 			size = sizeof(*phy_txts);
769 
770 		} else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
771 
772 			size = decode_evnt(dp83640, ptr, ests);
773 
774 		} else {
775 			size = 0;
776 			break;
777 		}
778 		ptr += size;
779 	}
780 }
781 
782 static int is_sync(struct sk_buff *skb, int type)
783 {
784 	u8 *data = skb->data, *msgtype;
785 	unsigned int offset = 0;
786 
787 	switch (type) {
788 	case PTP_CLASS_V1_IPV4:
789 	case PTP_CLASS_V2_IPV4:
790 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
791 		break;
792 	case PTP_CLASS_V1_IPV6:
793 	case PTP_CLASS_V2_IPV6:
794 		offset = OFF_PTP6;
795 		break;
796 	case PTP_CLASS_V2_L2:
797 		offset = ETH_HLEN;
798 		break;
799 	case PTP_CLASS_V2_VLAN:
800 		offset = ETH_HLEN + VLAN_HLEN;
801 		break;
802 	default:
803 		return 0;
804 	}
805 
806 	if (type & PTP_CLASS_V1)
807 		offset += OFF_PTP_CONTROL;
808 
809 	if (skb->len < offset + 1)
810 		return 0;
811 
812 	msgtype = data + offset;
813 
814 	return (*msgtype & 0xf) == 0;
815 }
816 
817 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
818 {
819 	u16 *seqid;
820 	unsigned int offset;
821 	u8 *msgtype, *data = skb_mac_header(skb);
822 
823 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
824 
825 	switch (type) {
826 	case PTP_CLASS_V1_IPV4:
827 	case PTP_CLASS_V2_IPV4:
828 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
829 		break;
830 	case PTP_CLASS_V1_IPV6:
831 	case PTP_CLASS_V2_IPV6:
832 		offset = OFF_PTP6;
833 		break;
834 	case PTP_CLASS_V2_L2:
835 		offset = ETH_HLEN;
836 		break;
837 	case PTP_CLASS_V2_VLAN:
838 		offset = ETH_HLEN + VLAN_HLEN;
839 		break;
840 	default:
841 		return 0;
842 	}
843 
844 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
845 		return 0;
846 
847 	if (unlikely(type & PTP_CLASS_V1))
848 		msgtype = data + offset + OFF_PTP_CONTROL;
849 	else
850 		msgtype = data + offset;
851 
852 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
853 
854 	return (rxts->msgtype == (*msgtype & 0xf) &&
855 		rxts->seqid   == ntohs(*seqid));
856 }
857 
858 static void dp83640_free_clocks(void)
859 {
860 	struct dp83640_clock *clock;
861 	struct list_head *this, *next;
862 
863 	mutex_lock(&phyter_clocks_lock);
864 
865 	list_for_each_safe(this, next, &phyter_clocks) {
866 		clock = list_entry(this, struct dp83640_clock, list);
867 		if (!list_empty(&clock->phylist)) {
868 			pr_warn("phy list non-empty while unloading\n");
869 			BUG();
870 		}
871 		list_del(&clock->list);
872 		mutex_destroy(&clock->extreg_lock);
873 		mutex_destroy(&clock->clock_lock);
874 		put_device(&clock->bus->dev);
875 		kfree(clock);
876 	}
877 
878 	mutex_unlock(&phyter_clocks_lock);
879 }
880 
881 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
882 {
883 	INIT_LIST_HEAD(&clock->list);
884 	clock->bus = bus;
885 	mutex_init(&clock->extreg_lock);
886 	mutex_init(&clock->clock_lock);
887 	INIT_LIST_HEAD(&clock->phylist);
888 	clock->caps.owner = THIS_MODULE;
889 	sprintf(clock->caps.name, "dp83640 timer");
890 	clock->caps.max_adj	= 1953124;
891 	clock->caps.n_alarm	= 0;
892 	clock->caps.n_ext_ts	= N_EXT_TS;
893 	clock->caps.n_per_out	= 1;
894 	clock->caps.pps		= 0;
895 	clock->caps.adjfreq	= ptp_dp83640_adjfreq;
896 	clock->caps.adjtime	= ptp_dp83640_adjtime;
897 	clock->caps.gettime	= ptp_dp83640_gettime;
898 	clock->caps.settime	= ptp_dp83640_settime;
899 	clock->caps.enable	= ptp_dp83640_enable;
900 	/*
901 	 * Get a reference to this bus instance.
902 	 */
903 	get_device(&bus->dev);
904 }
905 
906 static int choose_this_phy(struct dp83640_clock *clock,
907 			   struct phy_device *phydev)
908 {
909 	if (chosen_phy == -1 && !clock->chosen)
910 		return 1;
911 
912 	if (chosen_phy == phydev->addr)
913 		return 1;
914 
915 	return 0;
916 }
917 
918 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
919 {
920 	if (clock)
921 		mutex_lock(&clock->clock_lock);
922 	return clock;
923 }
924 
925 /*
926  * Look up and lock a clock by bus instance.
927  * If there is no clock for this bus, then create it first.
928  */
929 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
930 {
931 	struct dp83640_clock *clock = NULL, *tmp;
932 	struct list_head *this;
933 
934 	mutex_lock(&phyter_clocks_lock);
935 
936 	list_for_each(this, &phyter_clocks) {
937 		tmp = list_entry(this, struct dp83640_clock, list);
938 		if (tmp->bus == bus) {
939 			clock = tmp;
940 			break;
941 		}
942 	}
943 	if (clock)
944 		goto out;
945 
946 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
947 	if (!clock)
948 		goto out;
949 
950 	dp83640_clock_init(clock, bus);
951 	list_add_tail(&phyter_clocks, &clock->list);
952 out:
953 	mutex_unlock(&phyter_clocks_lock);
954 
955 	return dp83640_clock_get(clock);
956 }
957 
958 static void dp83640_clock_put(struct dp83640_clock *clock)
959 {
960 	mutex_unlock(&clock->clock_lock);
961 }
962 
963 static int dp83640_probe(struct phy_device *phydev)
964 {
965 	struct dp83640_clock *clock;
966 	struct dp83640_private *dp83640;
967 	int err = -ENOMEM, i;
968 
969 	if (phydev->addr == BROADCAST_ADDR)
970 		return 0;
971 
972 	clock = dp83640_clock_get_bus(phydev->bus);
973 	if (!clock)
974 		goto no_clock;
975 
976 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
977 	if (!dp83640)
978 		goto no_memory;
979 
980 	dp83640->phydev = phydev;
981 	INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
982 
983 	INIT_LIST_HEAD(&dp83640->rxts);
984 	INIT_LIST_HEAD(&dp83640->rxpool);
985 	for (i = 0; i < MAX_RXTS; i++)
986 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
987 
988 	phydev->priv = dp83640;
989 
990 	spin_lock_init(&dp83640->rx_lock);
991 	skb_queue_head_init(&dp83640->rx_queue);
992 	skb_queue_head_init(&dp83640->tx_queue);
993 
994 	dp83640->clock = clock;
995 
996 	if (choose_this_phy(clock, phydev)) {
997 		clock->chosen = dp83640;
998 		clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
999 		if (IS_ERR(clock->ptp_clock)) {
1000 			err = PTR_ERR(clock->ptp_clock);
1001 			goto no_register;
1002 		}
1003 	} else
1004 		list_add_tail(&dp83640->list, &clock->phylist);
1005 
1006 	if (clock->chosen && !list_empty(&clock->phylist))
1007 		recalibrate(clock);
1008 	else
1009 		enable_broadcast(dp83640->phydev, clock->page, 1);
1010 
1011 	dp83640_clock_put(clock);
1012 	return 0;
1013 
1014 no_register:
1015 	clock->chosen = NULL;
1016 	kfree(dp83640);
1017 no_memory:
1018 	dp83640_clock_put(clock);
1019 no_clock:
1020 	return err;
1021 }
1022 
1023 static void dp83640_remove(struct phy_device *phydev)
1024 {
1025 	struct dp83640_clock *clock;
1026 	struct list_head *this, *next;
1027 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1028 	struct sk_buff *skb;
1029 
1030 	if (phydev->addr == BROADCAST_ADDR)
1031 		return;
1032 
1033 	enable_status_frames(phydev, false);
1034 	cancel_work_sync(&dp83640->ts_work);
1035 
1036 	while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
1037 		kfree_skb(skb);
1038 
1039 	while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
1040 		skb_complete_tx_timestamp(skb, NULL);
1041 
1042 	clock = dp83640_clock_get(dp83640->clock);
1043 
1044 	if (dp83640 == clock->chosen) {
1045 		ptp_clock_unregister(clock->ptp_clock);
1046 		clock->chosen = NULL;
1047 	} else {
1048 		list_for_each_safe(this, next, &clock->phylist) {
1049 			tmp = list_entry(this, struct dp83640_private, list);
1050 			if (tmp == dp83640) {
1051 				list_del_init(&tmp->list);
1052 				break;
1053 			}
1054 		}
1055 	}
1056 
1057 	dp83640_clock_put(clock);
1058 	kfree(dp83640);
1059 }
1060 
1061 static int dp83640_ack_interrupt(struct phy_device *phydev)
1062 {
1063 	int err = phy_read(phydev, MII_DP83640_MISR);
1064 
1065 	if (err < 0)
1066 		return err;
1067 
1068 	return 0;
1069 }
1070 
1071 static int dp83640_config_intr(struct phy_device *phydev)
1072 {
1073 	int micr;
1074 	int misr;
1075 	int err;
1076 
1077 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1078 		misr = phy_read(phydev, MII_DP83640_MISR);
1079 		if (misr < 0)
1080 			return misr;
1081 		misr |=
1082 			(MII_DP83640_MISR_ANC_INT_EN |
1083 			MII_DP83640_MISR_DUP_INT_EN |
1084 			MII_DP83640_MISR_SPD_INT_EN |
1085 			MII_DP83640_MISR_LINK_INT_EN);
1086 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1087 		if (err < 0)
1088 			return err;
1089 
1090 		micr = phy_read(phydev, MII_DP83640_MICR);
1091 		if (micr < 0)
1092 			return micr;
1093 		micr |=
1094 			(MII_DP83640_MICR_OE |
1095 			MII_DP83640_MICR_IE);
1096 		return phy_write(phydev, MII_DP83640_MICR, micr);
1097 	} else {
1098 		micr = phy_read(phydev, MII_DP83640_MICR);
1099 		if (micr < 0)
1100 			return micr;
1101 		micr &=
1102 			~(MII_DP83640_MICR_OE |
1103 			MII_DP83640_MICR_IE);
1104 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1105 		if (err < 0)
1106 			return err;
1107 
1108 		misr = phy_read(phydev, MII_DP83640_MISR);
1109 		if (misr < 0)
1110 			return misr;
1111 		misr &=
1112 			~(MII_DP83640_MISR_ANC_INT_EN |
1113 			MII_DP83640_MISR_DUP_INT_EN |
1114 			MII_DP83640_MISR_SPD_INT_EN |
1115 			MII_DP83640_MISR_LINK_INT_EN);
1116 		return phy_write(phydev, MII_DP83640_MISR, misr);
1117 	}
1118 }
1119 
1120 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1121 {
1122 	struct dp83640_private *dp83640 = phydev->priv;
1123 	struct hwtstamp_config cfg;
1124 	u16 txcfg0, rxcfg0;
1125 
1126 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1127 		return -EFAULT;
1128 
1129 	if (cfg.flags) /* reserved for future extensions */
1130 		return -EINVAL;
1131 
1132 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1133 		return -ERANGE;
1134 
1135 	dp83640->hwts_tx_en = cfg.tx_type;
1136 
1137 	switch (cfg.rx_filter) {
1138 	case HWTSTAMP_FILTER_NONE:
1139 		dp83640->hwts_rx_en = 0;
1140 		dp83640->layer = 0;
1141 		dp83640->version = 0;
1142 		break;
1143 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1144 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1145 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1146 		dp83640->hwts_rx_en = 1;
1147 		dp83640->layer = LAYER4;
1148 		dp83640->version = 1;
1149 		break;
1150 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1151 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1152 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1153 		dp83640->hwts_rx_en = 1;
1154 		dp83640->layer = LAYER4;
1155 		dp83640->version = 2;
1156 		break;
1157 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1158 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1159 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1160 		dp83640->hwts_rx_en = 1;
1161 		dp83640->layer = LAYER2;
1162 		dp83640->version = 2;
1163 		break;
1164 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1165 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1166 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1167 		dp83640->hwts_rx_en = 1;
1168 		dp83640->layer = LAYER4|LAYER2;
1169 		dp83640->version = 2;
1170 		break;
1171 	default:
1172 		return -ERANGE;
1173 	}
1174 
1175 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1176 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1177 
1178 	if (dp83640->layer & LAYER2) {
1179 		txcfg0 |= TX_L2_EN;
1180 		rxcfg0 |= RX_L2_EN;
1181 	}
1182 	if (dp83640->layer & LAYER4) {
1183 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1184 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1185 	}
1186 
1187 	if (dp83640->hwts_tx_en)
1188 		txcfg0 |= TX_TS_EN;
1189 
1190 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1191 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1192 
1193 	if (dp83640->hwts_rx_en)
1194 		rxcfg0 |= RX_TS_EN;
1195 
1196 	mutex_lock(&dp83640->clock->extreg_lock);
1197 
1198 	if (dp83640->hwts_tx_en || dp83640->hwts_rx_en) {
1199 		enable_status_frames(phydev, true);
1200 		ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1201 	}
1202 
1203 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1204 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1205 
1206 	mutex_unlock(&dp83640->clock->extreg_lock);
1207 
1208 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1209 }
1210 
1211 static void rx_timestamp_work(struct work_struct *work)
1212 {
1213 	struct dp83640_private *dp83640 =
1214 		container_of(work, struct dp83640_private, ts_work);
1215 	struct list_head *this, *next;
1216 	struct rxts *rxts;
1217 	struct skb_shared_hwtstamps *shhwtstamps;
1218 	struct sk_buff *skb;
1219 	unsigned int type;
1220 	unsigned long flags;
1221 
1222 	/* Deliver each deferred packet, with or without a time stamp. */
1223 
1224 	while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
1225 		type = SKB_PTP_TYPE(skb);
1226 		spin_lock_irqsave(&dp83640->rx_lock, flags);
1227 		list_for_each_safe(this, next, &dp83640->rxts) {
1228 			rxts = list_entry(this, struct rxts, list);
1229 			if (match(skb, type, rxts)) {
1230 				shhwtstamps = skb_hwtstamps(skb);
1231 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1232 				shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1233 				list_del_init(&rxts->list);
1234 				list_add(&rxts->list, &dp83640->rxpool);
1235 				break;
1236 			}
1237 		}
1238 		spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1239 		netif_rx_ni(skb);
1240 	}
1241 
1242 	/* Clear out expired time stamps. */
1243 
1244 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1245 	prune_rx_ts(dp83640);
1246 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1247 }
1248 
1249 static bool dp83640_rxtstamp(struct phy_device *phydev,
1250 			     struct sk_buff *skb, int type)
1251 {
1252 	struct dp83640_private *dp83640 = phydev->priv;
1253 
1254 	if (!dp83640->hwts_rx_en)
1255 		return false;
1256 
1257 	if (is_status_frame(skb, type)) {
1258 		decode_status_frame(dp83640, skb);
1259 		kfree_skb(skb);
1260 		return true;
1261 	}
1262 
1263 	SKB_PTP_TYPE(skb) = type;
1264 	skb_queue_tail(&dp83640->rx_queue, skb);
1265 	schedule_work(&dp83640->ts_work);
1266 
1267 	return true;
1268 }
1269 
1270 static void dp83640_txtstamp(struct phy_device *phydev,
1271 			     struct sk_buff *skb, int type)
1272 {
1273 	struct dp83640_private *dp83640 = phydev->priv;
1274 
1275 	switch (dp83640->hwts_tx_en) {
1276 
1277 	case HWTSTAMP_TX_ONESTEP_SYNC:
1278 		if (is_sync(skb, type)) {
1279 			skb_complete_tx_timestamp(skb, NULL);
1280 			return;
1281 		}
1282 		/* fall through */
1283 	case HWTSTAMP_TX_ON:
1284 		skb_queue_tail(&dp83640->tx_queue, skb);
1285 		schedule_work(&dp83640->ts_work);
1286 		break;
1287 
1288 	case HWTSTAMP_TX_OFF:
1289 	default:
1290 		skb_complete_tx_timestamp(skb, NULL);
1291 		break;
1292 	}
1293 }
1294 
1295 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1296 {
1297 	struct dp83640_private *dp83640 = dev->priv;
1298 
1299 	info->so_timestamping =
1300 		SOF_TIMESTAMPING_TX_HARDWARE |
1301 		SOF_TIMESTAMPING_RX_HARDWARE |
1302 		SOF_TIMESTAMPING_RAW_HARDWARE;
1303 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1304 	info->tx_types =
1305 		(1 << HWTSTAMP_TX_OFF) |
1306 		(1 << HWTSTAMP_TX_ON) |
1307 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1308 	info->rx_filters =
1309 		(1 << HWTSTAMP_FILTER_NONE) |
1310 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1311 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1312 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1313 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1314 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1315 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1316 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1317 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1318 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1319 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1320 		(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1321 		(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1322 	return 0;
1323 }
1324 
1325 static struct phy_driver dp83640_driver = {
1326 	.phy_id		= DP83640_PHY_ID,
1327 	.phy_id_mask	= 0xfffffff0,
1328 	.name		= "NatSemi DP83640",
1329 	.features	= PHY_BASIC_FEATURES,
1330 	.flags		= PHY_HAS_INTERRUPT,
1331 	.probe		= dp83640_probe,
1332 	.remove		= dp83640_remove,
1333 	.config_aneg	= genphy_config_aneg,
1334 	.read_status	= genphy_read_status,
1335 	.ack_interrupt  = dp83640_ack_interrupt,
1336 	.config_intr    = dp83640_config_intr,
1337 	.ts_info	= dp83640_ts_info,
1338 	.hwtstamp	= dp83640_hwtstamp,
1339 	.rxtstamp	= dp83640_rxtstamp,
1340 	.txtstamp	= dp83640_txtstamp,
1341 	.driver		= {.owner = THIS_MODULE,}
1342 };
1343 
1344 static int __init dp83640_init(void)
1345 {
1346 	return phy_driver_register(&dp83640_driver);
1347 }
1348 
1349 static void __exit dp83640_exit(void)
1350 {
1351 	dp83640_free_clocks();
1352 	phy_driver_unregister(&dp83640_driver);
1353 }
1354 
1355 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1356 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.at>");
1357 MODULE_LICENSE("GPL");
1358 
1359 module_init(dp83640_init);
1360 module_exit(dp83640_exit);
1361 
1362 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1363 	{ DP83640_PHY_ID, 0xfffffff0 },
1364 	{ }
1365 };
1366 
1367 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1368