xref: /openbmc/linux/drivers/net/phy/dp83640.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for the National Semiconductor DP83640 PHYTER
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/crc32.h>
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/mii.h>
15 #include <linux/module.h>
16 #include <linux/net_tstamp.h>
17 #include <linux/netdevice.h>
18 #include <linux/if_vlan.h>
19 #include <linux/phy.h>
20 #include <linux/ptp_classify.h>
21 #include <linux/ptp_clock_kernel.h>
22 
23 #include "dp83640_reg.h"
24 
25 #define DP83640_PHY_ID	0x20005ce1
26 #define PAGESEL		0x13
27 #define MAX_RXTS	64
28 #define N_EXT_TS	6
29 #define N_PER_OUT	7
30 #define PSF_PTPVER	2
31 #define PSF_EVNT	0x4000
32 #define PSF_RX		0x2000
33 #define PSF_TX		0x1000
34 #define EXT_EVENT	1
35 #define CAL_EVENT	7
36 #define CAL_TRIGGER	1
37 #define DP83640_N_PINS	12
38 
39 #define MII_DP83640_MICR 0x11
40 #define MII_DP83640_MISR 0x12
41 
42 #define MII_DP83640_MICR_OE 0x1
43 #define MII_DP83640_MICR_IE 0x2
44 
45 #define MII_DP83640_MISR_RHF_INT_EN 0x01
46 #define MII_DP83640_MISR_FHF_INT_EN 0x02
47 #define MII_DP83640_MISR_ANC_INT_EN 0x04
48 #define MII_DP83640_MISR_DUP_INT_EN 0x08
49 #define MII_DP83640_MISR_SPD_INT_EN 0x10
50 #define MII_DP83640_MISR_LINK_INT_EN 0x20
51 #define MII_DP83640_MISR_ED_INT_EN 0x40
52 #define MII_DP83640_MISR_LQ_INT_EN 0x80
53 
54 /* phyter seems to miss the mark by 16 ns */
55 #define ADJTIME_FIX	16
56 
57 #define SKB_TIMESTAMP_TIMEOUT	2 /* jiffies */
58 
59 #if defined(__BIG_ENDIAN)
60 #define ENDIAN_FLAG	0
61 #elif defined(__LITTLE_ENDIAN)
62 #define ENDIAN_FLAG	PSF_ENDIAN
63 #endif
64 
65 struct dp83640_skb_info {
66 	int ptp_type;
67 	unsigned long tmo;
68 };
69 
70 struct phy_rxts {
71 	u16 ns_lo;   /* ns[15:0] */
72 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
73 	u16 sec_lo;  /* sec[15:0] */
74 	u16 sec_hi;  /* sec[31:16] */
75 	u16 seqid;   /* sequenceId[15:0] */
76 	u16 msgtype; /* messageType[3:0], hash[11:0] */
77 };
78 
79 struct phy_txts {
80 	u16 ns_lo;   /* ns[15:0] */
81 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
82 	u16 sec_lo;  /* sec[15:0] */
83 	u16 sec_hi;  /* sec[31:16] */
84 };
85 
86 struct rxts {
87 	struct list_head list;
88 	unsigned long tmo;
89 	u64 ns;
90 	u16 seqid;
91 	u8  msgtype;
92 	u16 hash;
93 };
94 
95 struct dp83640_clock;
96 
97 struct dp83640_private {
98 	struct list_head list;
99 	struct dp83640_clock *clock;
100 	struct phy_device *phydev;
101 	struct delayed_work ts_work;
102 	int hwts_tx_en;
103 	int hwts_rx_en;
104 	int layer;
105 	int version;
106 	/* remember state of cfg0 during calibration */
107 	int cfg0;
108 	/* remember the last event time stamp */
109 	struct phy_txts edata;
110 	/* list of rx timestamps */
111 	struct list_head rxts;
112 	struct list_head rxpool;
113 	struct rxts rx_pool_data[MAX_RXTS];
114 	/* protects above three fields from concurrent access */
115 	spinlock_t rx_lock;
116 	/* queues of incoming and outgoing packets */
117 	struct sk_buff_head rx_queue;
118 	struct sk_buff_head tx_queue;
119 };
120 
121 struct dp83640_clock {
122 	/* keeps the instance in the 'phyter_clocks' list */
123 	struct list_head list;
124 	/* we create one clock instance per MII bus */
125 	struct mii_bus *bus;
126 	/* protects extended registers from concurrent access */
127 	struct mutex extreg_lock;
128 	/* remembers which page was last selected */
129 	int page;
130 	/* our advertised capabilities */
131 	struct ptp_clock_info caps;
132 	/* protects the three fields below from concurrent access */
133 	struct mutex clock_lock;
134 	/* the one phyter from which we shall read */
135 	struct dp83640_private *chosen;
136 	/* list of the other attached phyters, not chosen */
137 	struct list_head phylist;
138 	/* reference to our PTP hardware clock */
139 	struct ptp_clock *ptp_clock;
140 };
141 
142 /* globals */
143 
144 enum {
145 	CALIBRATE_GPIO,
146 	PEROUT_GPIO,
147 	EXTTS0_GPIO,
148 	EXTTS1_GPIO,
149 	EXTTS2_GPIO,
150 	EXTTS3_GPIO,
151 	EXTTS4_GPIO,
152 	EXTTS5_GPIO,
153 	GPIO_TABLE_SIZE
154 };
155 
156 static int chosen_phy = -1;
157 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
158 	1, 2, 3, 4, 8, 9, 10, 11
159 };
160 
161 module_param(chosen_phy, int, 0444);
162 module_param_array(gpio_tab, ushort, NULL, 0444);
163 
164 MODULE_PARM_DESC(chosen_phy, \
165 	"The address of the PHY to use for the ancillary clock features");
166 MODULE_PARM_DESC(gpio_tab, \
167 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
168 
169 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
170 {
171 	int i, index;
172 
173 	for (i = 0; i < DP83640_N_PINS; i++) {
174 		snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
175 		pd[i].index = i;
176 	}
177 
178 	for (i = 0; i < GPIO_TABLE_SIZE; i++) {
179 		if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
180 			pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
181 			return;
182 		}
183 	}
184 
185 	index = gpio_tab[CALIBRATE_GPIO] - 1;
186 	pd[index].func = PTP_PF_PHYSYNC;
187 	pd[index].chan = 0;
188 
189 	index = gpio_tab[PEROUT_GPIO] - 1;
190 	pd[index].func = PTP_PF_PEROUT;
191 	pd[index].chan = 0;
192 
193 	for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
194 		index = gpio_tab[i] - 1;
195 		pd[index].func = PTP_PF_EXTTS;
196 		pd[index].chan = i - EXTTS0_GPIO;
197 	}
198 }
199 
200 /* a list of clocks and a mutex to protect it */
201 static LIST_HEAD(phyter_clocks);
202 static DEFINE_MUTEX(phyter_clocks_lock);
203 
204 static void rx_timestamp_work(struct work_struct *work);
205 
206 /* extended register access functions */
207 
208 #define BROADCAST_ADDR 31
209 
210 static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
211 				  u16 val)
212 {
213 	return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
214 }
215 
216 /* Caller must hold extreg_lock. */
217 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
218 {
219 	struct dp83640_private *dp83640 = phydev->priv;
220 	int val;
221 
222 	if (dp83640->clock->page != page) {
223 		broadcast_write(phydev, PAGESEL, page);
224 		dp83640->clock->page = page;
225 	}
226 	val = phy_read(phydev, regnum);
227 
228 	return val;
229 }
230 
231 /* Caller must hold extreg_lock. */
232 static void ext_write(int broadcast, struct phy_device *phydev,
233 		      int page, u32 regnum, u16 val)
234 {
235 	struct dp83640_private *dp83640 = phydev->priv;
236 
237 	if (dp83640->clock->page != page) {
238 		broadcast_write(phydev, PAGESEL, page);
239 		dp83640->clock->page = page;
240 	}
241 	if (broadcast)
242 		broadcast_write(phydev, regnum, val);
243 	else
244 		phy_write(phydev, regnum, val);
245 }
246 
247 /* Caller must hold extreg_lock. */
248 static int tdr_write(int bc, struct phy_device *dev,
249 		     const struct timespec64 *ts, u16 cmd)
250 {
251 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
252 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
253 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
254 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
255 
256 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
257 
258 	return 0;
259 }
260 
261 /* convert phy timestamps into driver timestamps */
262 
263 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
264 {
265 	u32 sec;
266 
267 	sec = p->sec_lo;
268 	sec |= p->sec_hi << 16;
269 
270 	rxts->ns = p->ns_lo;
271 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
272 	rxts->ns += ((u64)sec) * 1000000000ULL;
273 	rxts->seqid = p->seqid;
274 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
275 	rxts->hash = p->msgtype & 0x0fff;
276 	rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
277 }
278 
279 static u64 phy2txts(struct phy_txts *p)
280 {
281 	u64 ns;
282 	u32 sec;
283 
284 	sec = p->sec_lo;
285 	sec |= p->sec_hi << 16;
286 
287 	ns = p->ns_lo;
288 	ns |= (p->ns_hi & 0x3fff) << 16;
289 	ns += ((u64)sec) * 1000000000ULL;
290 
291 	return ns;
292 }
293 
294 static int periodic_output(struct dp83640_clock *clock,
295 			   struct ptp_clock_request *clkreq, bool on,
296 			   int trigger)
297 {
298 	struct dp83640_private *dp83640 = clock->chosen;
299 	struct phy_device *phydev = dp83640->phydev;
300 	u32 sec, nsec, pwidth;
301 	u16 gpio, ptp_trig, val;
302 
303 	if (on) {
304 		gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
305 					trigger);
306 		if (gpio < 1)
307 			return -EINVAL;
308 	} else {
309 		gpio = 0;
310 	}
311 
312 	ptp_trig = TRIG_WR |
313 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
314 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
315 		TRIG_PER |
316 		TRIG_PULSE;
317 
318 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
319 
320 	if (!on) {
321 		val |= TRIG_DIS;
322 		mutex_lock(&clock->extreg_lock);
323 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
324 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
325 		mutex_unlock(&clock->extreg_lock);
326 		return 0;
327 	}
328 
329 	sec = clkreq->perout.start.sec;
330 	nsec = clkreq->perout.start.nsec;
331 	pwidth = clkreq->perout.period.sec * 1000000000UL;
332 	pwidth += clkreq->perout.period.nsec;
333 	pwidth /= 2;
334 
335 	mutex_lock(&clock->extreg_lock);
336 
337 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
338 
339 	/*load trigger*/
340 	val |= TRIG_LOAD;
341 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
342 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
343 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
344 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
345 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
346 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
347 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);    /* ns[31:16] */
348 	/* Triggers 0 and 1 has programmable pulsewidth2 */
349 	if (trigger < 2) {
350 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
351 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
352 	}
353 
354 	/*enable trigger*/
355 	val &= ~TRIG_LOAD;
356 	val |= TRIG_EN;
357 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
358 
359 	mutex_unlock(&clock->extreg_lock);
360 	return 0;
361 }
362 
363 /* ptp clock methods */
364 
365 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
366 {
367 	struct dp83640_clock *clock =
368 		container_of(ptp, struct dp83640_clock, caps);
369 	struct phy_device *phydev = clock->chosen->phydev;
370 	u64 rate;
371 	int neg_adj = 0;
372 	u16 hi, lo;
373 
374 	if (scaled_ppm < 0) {
375 		neg_adj = 1;
376 		scaled_ppm = -scaled_ppm;
377 	}
378 	rate = scaled_ppm;
379 	rate <<= 13;
380 	rate = div_u64(rate, 15625);
381 
382 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
383 	if (neg_adj)
384 		hi |= PTP_RATE_DIR;
385 
386 	lo = rate & 0xffff;
387 
388 	mutex_lock(&clock->extreg_lock);
389 
390 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
391 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
392 
393 	mutex_unlock(&clock->extreg_lock);
394 
395 	return 0;
396 }
397 
398 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
399 {
400 	struct dp83640_clock *clock =
401 		container_of(ptp, struct dp83640_clock, caps);
402 	struct phy_device *phydev = clock->chosen->phydev;
403 	struct timespec64 ts;
404 	int err;
405 
406 	delta += ADJTIME_FIX;
407 
408 	ts = ns_to_timespec64(delta);
409 
410 	mutex_lock(&clock->extreg_lock);
411 
412 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
413 
414 	mutex_unlock(&clock->extreg_lock);
415 
416 	return err;
417 }
418 
419 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
420 			       struct timespec64 *ts)
421 {
422 	struct dp83640_clock *clock =
423 		container_of(ptp, struct dp83640_clock, caps);
424 	struct phy_device *phydev = clock->chosen->phydev;
425 	unsigned int val[4];
426 
427 	mutex_lock(&clock->extreg_lock);
428 
429 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
430 
431 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
432 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
433 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
434 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
435 
436 	mutex_unlock(&clock->extreg_lock);
437 
438 	ts->tv_nsec = val[0] | (val[1] << 16);
439 	ts->tv_sec  = val[2] | (val[3] << 16);
440 
441 	return 0;
442 }
443 
444 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
445 			       const struct timespec64 *ts)
446 {
447 	struct dp83640_clock *clock =
448 		container_of(ptp, struct dp83640_clock, caps);
449 	struct phy_device *phydev = clock->chosen->phydev;
450 	int err;
451 
452 	mutex_lock(&clock->extreg_lock);
453 
454 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
455 
456 	mutex_unlock(&clock->extreg_lock);
457 
458 	return err;
459 }
460 
461 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
462 			      struct ptp_clock_request *rq, int on)
463 {
464 	struct dp83640_clock *clock =
465 		container_of(ptp, struct dp83640_clock, caps);
466 	struct phy_device *phydev = clock->chosen->phydev;
467 	unsigned int index;
468 	u16 evnt, event_num, gpio_num;
469 
470 	switch (rq->type) {
471 	case PTP_CLK_REQ_EXTTS:
472 		index = rq->extts.index;
473 		if (index >= N_EXT_TS)
474 			return -EINVAL;
475 		event_num = EXT_EVENT + index;
476 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
477 		if (on) {
478 			gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
479 						    PTP_PF_EXTTS, index);
480 			if (gpio_num < 1)
481 				return -EINVAL;
482 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
483 			if (rq->extts.flags & PTP_FALLING_EDGE)
484 				evnt |= EVNT_FALL;
485 			else
486 				evnt |= EVNT_RISE;
487 		}
488 		mutex_lock(&clock->extreg_lock);
489 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
490 		mutex_unlock(&clock->extreg_lock);
491 		return 0;
492 
493 	case PTP_CLK_REQ_PEROUT:
494 		if (rq->perout.index >= N_PER_OUT)
495 			return -EINVAL;
496 		return periodic_output(clock, rq, on, rq->perout.index);
497 
498 	default:
499 		break;
500 	}
501 
502 	return -EOPNOTSUPP;
503 }
504 
505 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
506 			      enum ptp_pin_function func, unsigned int chan)
507 {
508 	struct dp83640_clock *clock =
509 		container_of(ptp, struct dp83640_clock, caps);
510 
511 	if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
512 	    !list_empty(&clock->phylist))
513 		return 1;
514 
515 	if (func == PTP_PF_PHYSYNC)
516 		return 1;
517 
518 	return 0;
519 }
520 
521 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
522 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
523 
524 static void enable_status_frames(struct phy_device *phydev, bool on)
525 {
526 	struct dp83640_private *dp83640 = phydev->priv;
527 	struct dp83640_clock *clock = dp83640->clock;
528 	u16 cfg0 = 0, ver;
529 
530 	if (on)
531 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
532 
533 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
534 
535 	mutex_lock(&clock->extreg_lock);
536 
537 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
538 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
539 
540 	mutex_unlock(&clock->extreg_lock);
541 
542 	if (!phydev->attached_dev) {
543 		phydev_warn(phydev,
544 			    "expected to find an attached netdevice\n");
545 		return;
546 	}
547 
548 	if (on) {
549 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
550 			phydev_warn(phydev, "failed to add mc address\n");
551 	} else {
552 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
553 			phydev_warn(phydev, "failed to delete mc address\n");
554 	}
555 }
556 
557 static bool is_status_frame(struct sk_buff *skb, int type)
558 {
559 	struct ethhdr *h = eth_hdr(skb);
560 
561 	if (PTP_CLASS_V2_L2 == type &&
562 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
563 		return true;
564 	else
565 		return false;
566 }
567 
568 static int expired(struct rxts *rxts)
569 {
570 	return time_after(jiffies, rxts->tmo);
571 }
572 
573 /* Caller must hold rx_lock. */
574 static void prune_rx_ts(struct dp83640_private *dp83640)
575 {
576 	struct list_head *this, *next;
577 	struct rxts *rxts;
578 
579 	list_for_each_safe(this, next, &dp83640->rxts) {
580 		rxts = list_entry(this, struct rxts, list);
581 		if (expired(rxts)) {
582 			list_del_init(&rxts->list);
583 			list_add(&rxts->list, &dp83640->rxpool);
584 		}
585 	}
586 }
587 
588 /* synchronize the phyters so they act as one clock */
589 
590 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
591 {
592 	int val;
593 	phy_write(phydev, PAGESEL, 0);
594 	val = phy_read(phydev, PHYCR2);
595 	if (on)
596 		val |= BC_WRITE;
597 	else
598 		val &= ~BC_WRITE;
599 	phy_write(phydev, PHYCR2, val);
600 	phy_write(phydev, PAGESEL, init_page);
601 }
602 
603 static void recalibrate(struct dp83640_clock *clock)
604 {
605 	s64 now, diff;
606 	struct phy_txts event_ts;
607 	struct timespec64 ts;
608 	struct list_head *this;
609 	struct dp83640_private *tmp;
610 	struct phy_device *master = clock->chosen->phydev;
611 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
612 
613 	trigger = CAL_TRIGGER;
614 	cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
615 	if (cal_gpio < 1) {
616 		pr_err("PHY calibration pin not available - PHY is not calibrated.");
617 		return;
618 	}
619 
620 	mutex_lock(&clock->extreg_lock);
621 
622 	/*
623 	 * enable broadcast, disable status frames, enable ptp clock
624 	 */
625 	list_for_each(this, &clock->phylist) {
626 		tmp = list_entry(this, struct dp83640_private, list);
627 		enable_broadcast(tmp->phydev, clock->page, 1);
628 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
629 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
630 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
631 	}
632 	enable_broadcast(master, clock->page, 1);
633 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
634 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
635 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
636 
637 	/*
638 	 * enable an event timestamp
639 	 */
640 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
641 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
642 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
643 
644 	list_for_each(this, &clock->phylist) {
645 		tmp = list_entry(this, struct dp83640_private, list);
646 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
647 	}
648 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
649 
650 	/*
651 	 * configure a trigger
652 	 */
653 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
654 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
655 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
656 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
657 
658 	/* load trigger */
659 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
660 	val |= TRIG_LOAD;
661 	ext_write(0, master, PAGE4, PTP_CTL, val);
662 
663 	/* enable trigger */
664 	val &= ~TRIG_LOAD;
665 	val |= TRIG_EN;
666 	ext_write(0, master, PAGE4, PTP_CTL, val);
667 
668 	/* disable trigger */
669 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
670 	val |= TRIG_DIS;
671 	ext_write(0, master, PAGE4, PTP_CTL, val);
672 
673 	/*
674 	 * read out and correct offsets
675 	 */
676 	val = ext_read(master, PAGE4, PTP_STS);
677 	phydev_info(master, "master PTP_STS  0x%04hx\n", val);
678 	val = ext_read(master, PAGE4, PTP_ESTS);
679 	phydev_info(master, "master PTP_ESTS 0x%04hx\n", val);
680 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
681 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
682 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
683 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
684 	now = phy2txts(&event_ts);
685 
686 	list_for_each(this, &clock->phylist) {
687 		tmp = list_entry(this, struct dp83640_private, list);
688 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
689 		phydev_info(tmp->phydev, "slave  PTP_STS  0x%04hx\n", val);
690 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
691 		phydev_info(tmp->phydev, "slave  PTP_ESTS 0x%04hx\n", val);
692 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
693 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
694 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
695 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
696 		diff = now - (s64) phy2txts(&event_ts);
697 		phydev_info(tmp->phydev, "slave offset %lld nanoseconds\n",
698 			    diff);
699 		diff += ADJTIME_FIX;
700 		ts = ns_to_timespec64(diff);
701 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
702 	}
703 
704 	/*
705 	 * restore status frames
706 	 */
707 	list_for_each(this, &clock->phylist) {
708 		tmp = list_entry(this, struct dp83640_private, list);
709 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
710 	}
711 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
712 
713 	mutex_unlock(&clock->extreg_lock);
714 }
715 
716 /* time stamping methods */
717 
718 static inline u16 exts_chan_to_edata(int ch)
719 {
720 	return 1 << ((ch + EXT_EVENT) * 2);
721 }
722 
723 static int decode_evnt(struct dp83640_private *dp83640,
724 		       void *data, int len, u16 ests)
725 {
726 	struct phy_txts *phy_txts;
727 	struct ptp_clock_event event;
728 	int i, parsed;
729 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
730 	u16 ext_status = 0;
731 
732 	/* calculate length of the event timestamp status message */
733 	if (ests & MULT_EVNT)
734 		parsed = (words + 2) * sizeof(u16);
735 	else
736 		parsed = (words + 1) * sizeof(u16);
737 
738 	/* check if enough data is available */
739 	if (len < parsed)
740 		return len;
741 
742 	if (ests & MULT_EVNT) {
743 		ext_status = *(u16 *) data;
744 		data += sizeof(ext_status);
745 	}
746 
747 	phy_txts = data;
748 
749 	switch (words) {
750 	case 3:
751 		dp83640->edata.sec_hi = phy_txts->sec_hi;
752 		/* fall through */
753 	case 2:
754 		dp83640->edata.sec_lo = phy_txts->sec_lo;
755 		/* fall through */
756 	case 1:
757 		dp83640->edata.ns_hi = phy_txts->ns_hi;
758 		/* fall through */
759 	case 0:
760 		dp83640->edata.ns_lo = phy_txts->ns_lo;
761 	}
762 
763 	if (!ext_status) {
764 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
765 		ext_status = exts_chan_to_edata(i);
766 	}
767 
768 	event.type = PTP_CLOCK_EXTTS;
769 	event.timestamp = phy2txts(&dp83640->edata);
770 
771 	/* Compensate for input path and synchronization delays */
772 	event.timestamp -= 35;
773 
774 	for (i = 0; i < N_EXT_TS; i++) {
775 		if (ext_status & exts_chan_to_edata(i)) {
776 			event.index = i;
777 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
778 		}
779 	}
780 
781 	return parsed;
782 }
783 
784 #define DP83640_PACKET_HASH_OFFSET	20
785 #define DP83640_PACKET_HASH_LEN		10
786 
787 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
788 {
789 	u16 *seqid, hash;
790 	unsigned int offset = 0;
791 	u8 *msgtype, *data = skb_mac_header(skb);
792 
793 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
794 
795 	if (type & PTP_CLASS_VLAN)
796 		offset += VLAN_HLEN;
797 
798 	switch (type & PTP_CLASS_PMASK) {
799 	case PTP_CLASS_IPV4:
800 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
801 		break;
802 	case PTP_CLASS_IPV6:
803 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
804 		break;
805 	case PTP_CLASS_L2:
806 		offset += ETH_HLEN;
807 		break;
808 	default:
809 		return 0;
810 	}
811 
812 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
813 		return 0;
814 
815 	if (unlikely(type & PTP_CLASS_V1))
816 		msgtype = data + offset + OFF_PTP_CONTROL;
817 	else
818 		msgtype = data + offset;
819 	if (rxts->msgtype != (*msgtype & 0xf))
820 		return 0;
821 
822 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
823 	if (rxts->seqid != ntohs(*seqid))
824 		return 0;
825 
826 	hash = ether_crc(DP83640_PACKET_HASH_LEN,
827 			 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
828 	if (rxts->hash != hash)
829 		return 0;
830 
831 	return 1;
832 }
833 
834 static void decode_rxts(struct dp83640_private *dp83640,
835 			struct phy_rxts *phy_rxts)
836 {
837 	struct rxts *rxts;
838 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
839 	struct sk_buff *skb;
840 	unsigned long flags;
841 	u8 overflow;
842 
843 	overflow = (phy_rxts->ns_hi >> 14) & 0x3;
844 	if (overflow)
845 		pr_debug("rx timestamp queue overflow, count %d\n", overflow);
846 
847 	spin_lock_irqsave(&dp83640->rx_lock, flags);
848 
849 	prune_rx_ts(dp83640);
850 
851 	if (list_empty(&dp83640->rxpool)) {
852 		pr_debug("rx timestamp pool is empty\n");
853 		goto out;
854 	}
855 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
856 	list_del_init(&rxts->list);
857 	phy2rxts(phy_rxts, rxts);
858 
859 	spin_lock(&dp83640->rx_queue.lock);
860 	skb_queue_walk(&dp83640->rx_queue, skb) {
861 		struct dp83640_skb_info *skb_info;
862 
863 		skb_info = (struct dp83640_skb_info *)skb->cb;
864 		if (match(skb, skb_info->ptp_type, rxts)) {
865 			__skb_unlink(skb, &dp83640->rx_queue);
866 			shhwtstamps = skb_hwtstamps(skb);
867 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
868 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
869 			list_add(&rxts->list, &dp83640->rxpool);
870 			break;
871 		}
872 	}
873 	spin_unlock(&dp83640->rx_queue.lock);
874 
875 	if (!shhwtstamps)
876 		list_add_tail(&rxts->list, &dp83640->rxts);
877 out:
878 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
879 
880 	if (shhwtstamps)
881 		netif_rx_ni(skb);
882 }
883 
884 static void decode_txts(struct dp83640_private *dp83640,
885 			struct phy_txts *phy_txts)
886 {
887 	struct skb_shared_hwtstamps shhwtstamps;
888 	struct dp83640_skb_info *skb_info;
889 	struct sk_buff *skb;
890 	u8 overflow;
891 	u64 ns;
892 
893 	/* We must already have the skb that triggered this. */
894 again:
895 	skb = skb_dequeue(&dp83640->tx_queue);
896 	if (!skb) {
897 		pr_debug("have timestamp but tx_queue empty\n");
898 		return;
899 	}
900 
901 	overflow = (phy_txts->ns_hi >> 14) & 0x3;
902 	if (overflow) {
903 		pr_debug("tx timestamp queue overflow, count %d\n", overflow);
904 		while (skb) {
905 			kfree_skb(skb);
906 			skb = skb_dequeue(&dp83640->tx_queue);
907 		}
908 		return;
909 	}
910 	skb_info = (struct dp83640_skb_info *)skb->cb;
911 	if (time_after(jiffies, skb_info->tmo)) {
912 		kfree_skb(skb);
913 		goto again;
914 	}
915 
916 	ns = phy2txts(phy_txts);
917 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
918 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
919 	skb_complete_tx_timestamp(skb, &shhwtstamps);
920 }
921 
922 static void decode_status_frame(struct dp83640_private *dp83640,
923 				struct sk_buff *skb)
924 {
925 	struct phy_rxts *phy_rxts;
926 	struct phy_txts *phy_txts;
927 	u8 *ptr;
928 	int len, size;
929 	u16 ests, type;
930 
931 	ptr = skb->data + 2;
932 
933 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
934 
935 		type = *(u16 *)ptr;
936 		ests = type & 0x0fff;
937 		type = type & 0xf000;
938 		len -= sizeof(type);
939 		ptr += sizeof(type);
940 
941 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
942 
943 			phy_rxts = (struct phy_rxts *) ptr;
944 			decode_rxts(dp83640, phy_rxts);
945 			size = sizeof(*phy_rxts);
946 
947 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
948 
949 			phy_txts = (struct phy_txts *) ptr;
950 			decode_txts(dp83640, phy_txts);
951 			size = sizeof(*phy_txts);
952 
953 		} else if (PSF_EVNT == type) {
954 
955 			size = decode_evnt(dp83640, ptr, len, ests);
956 
957 		} else {
958 			size = 0;
959 			break;
960 		}
961 		ptr += size;
962 	}
963 }
964 
965 static int is_sync(struct sk_buff *skb, int type)
966 {
967 	u8 *data = skb->data, *msgtype;
968 	unsigned int offset = 0;
969 
970 	if (type & PTP_CLASS_VLAN)
971 		offset += VLAN_HLEN;
972 
973 	switch (type & PTP_CLASS_PMASK) {
974 	case PTP_CLASS_IPV4:
975 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
976 		break;
977 	case PTP_CLASS_IPV6:
978 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
979 		break;
980 	case PTP_CLASS_L2:
981 		offset += ETH_HLEN;
982 		break;
983 	default:
984 		return 0;
985 	}
986 
987 	if (type & PTP_CLASS_V1)
988 		offset += OFF_PTP_CONTROL;
989 
990 	if (skb->len < offset + 1)
991 		return 0;
992 
993 	msgtype = data + offset;
994 
995 	return (*msgtype & 0xf) == 0;
996 }
997 
998 static void dp83640_free_clocks(void)
999 {
1000 	struct dp83640_clock *clock;
1001 	struct list_head *this, *next;
1002 
1003 	mutex_lock(&phyter_clocks_lock);
1004 
1005 	list_for_each_safe(this, next, &phyter_clocks) {
1006 		clock = list_entry(this, struct dp83640_clock, list);
1007 		if (!list_empty(&clock->phylist)) {
1008 			pr_warn("phy list non-empty while unloading\n");
1009 			BUG();
1010 		}
1011 		list_del(&clock->list);
1012 		mutex_destroy(&clock->extreg_lock);
1013 		mutex_destroy(&clock->clock_lock);
1014 		put_device(&clock->bus->dev);
1015 		kfree(clock->caps.pin_config);
1016 		kfree(clock);
1017 	}
1018 
1019 	mutex_unlock(&phyter_clocks_lock);
1020 }
1021 
1022 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1023 {
1024 	INIT_LIST_HEAD(&clock->list);
1025 	clock->bus = bus;
1026 	mutex_init(&clock->extreg_lock);
1027 	mutex_init(&clock->clock_lock);
1028 	INIT_LIST_HEAD(&clock->phylist);
1029 	clock->caps.owner = THIS_MODULE;
1030 	sprintf(clock->caps.name, "dp83640 timer");
1031 	clock->caps.max_adj	= 1953124;
1032 	clock->caps.n_alarm	= 0;
1033 	clock->caps.n_ext_ts	= N_EXT_TS;
1034 	clock->caps.n_per_out	= N_PER_OUT;
1035 	clock->caps.n_pins	= DP83640_N_PINS;
1036 	clock->caps.pps		= 0;
1037 	clock->caps.adjfine	= ptp_dp83640_adjfine;
1038 	clock->caps.adjtime	= ptp_dp83640_adjtime;
1039 	clock->caps.gettime64	= ptp_dp83640_gettime;
1040 	clock->caps.settime64	= ptp_dp83640_settime;
1041 	clock->caps.enable	= ptp_dp83640_enable;
1042 	clock->caps.verify	= ptp_dp83640_verify;
1043 	/*
1044 	 * Convert the module param defaults into a dynamic pin configuration.
1045 	 */
1046 	dp83640_gpio_defaults(clock->caps.pin_config);
1047 	/*
1048 	 * Get a reference to this bus instance.
1049 	 */
1050 	get_device(&bus->dev);
1051 }
1052 
1053 static int choose_this_phy(struct dp83640_clock *clock,
1054 			   struct phy_device *phydev)
1055 {
1056 	if (chosen_phy == -1 && !clock->chosen)
1057 		return 1;
1058 
1059 	if (chosen_phy == phydev->mdio.addr)
1060 		return 1;
1061 
1062 	return 0;
1063 }
1064 
1065 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1066 {
1067 	if (clock)
1068 		mutex_lock(&clock->clock_lock);
1069 	return clock;
1070 }
1071 
1072 /*
1073  * Look up and lock a clock by bus instance.
1074  * If there is no clock for this bus, then create it first.
1075  */
1076 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1077 {
1078 	struct dp83640_clock *clock = NULL, *tmp;
1079 	struct list_head *this;
1080 
1081 	mutex_lock(&phyter_clocks_lock);
1082 
1083 	list_for_each(this, &phyter_clocks) {
1084 		tmp = list_entry(this, struct dp83640_clock, list);
1085 		if (tmp->bus == bus) {
1086 			clock = tmp;
1087 			break;
1088 		}
1089 	}
1090 	if (clock)
1091 		goto out;
1092 
1093 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1094 	if (!clock)
1095 		goto out;
1096 
1097 	clock->caps.pin_config = kcalloc(DP83640_N_PINS,
1098 					 sizeof(struct ptp_pin_desc),
1099 					 GFP_KERNEL);
1100 	if (!clock->caps.pin_config) {
1101 		kfree(clock);
1102 		clock = NULL;
1103 		goto out;
1104 	}
1105 	dp83640_clock_init(clock, bus);
1106 	list_add_tail(&phyter_clocks, &clock->list);
1107 out:
1108 	mutex_unlock(&phyter_clocks_lock);
1109 
1110 	return dp83640_clock_get(clock);
1111 }
1112 
1113 static void dp83640_clock_put(struct dp83640_clock *clock)
1114 {
1115 	mutex_unlock(&clock->clock_lock);
1116 }
1117 
1118 static int dp83640_probe(struct phy_device *phydev)
1119 {
1120 	struct dp83640_clock *clock;
1121 	struct dp83640_private *dp83640;
1122 	int err = -ENOMEM, i;
1123 
1124 	if (phydev->mdio.addr == BROADCAST_ADDR)
1125 		return 0;
1126 
1127 	clock = dp83640_clock_get_bus(phydev->mdio.bus);
1128 	if (!clock)
1129 		goto no_clock;
1130 
1131 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1132 	if (!dp83640)
1133 		goto no_memory;
1134 
1135 	dp83640->phydev = phydev;
1136 	INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
1137 
1138 	INIT_LIST_HEAD(&dp83640->rxts);
1139 	INIT_LIST_HEAD(&dp83640->rxpool);
1140 	for (i = 0; i < MAX_RXTS; i++)
1141 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1142 
1143 	phydev->priv = dp83640;
1144 
1145 	spin_lock_init(&dp83640->rx_lock);
1146 	skb_queue_head_init(&dp83640->rx_queue);
1147 	skb_queue_head_init(&dp83640->tx_queue);
1148 
1149 	dp83640->clock = clock;
1150 
1151 	if (choose_this_phy(clock, phydev)) {
1152 		clock->chosen = dp83640;
1153 		clock->ptp_clock = ptp_clock_register(&clock->caps,
1154 						      &phydev->mdio.dev);
1155 		if (IS_ERR(clock->ptp_clock)) {
1156 			err = PTR_ERR(clock->ptp_clock);
1157 			goto no_register;
1158 		}
1159 	} else
1160 		list_add_tail(&dp83640->list, &clock->phylist);
1161 
1162 	dp83640_clock_put(clock);
1163 	return 0;
1164 
1165 no_register:
1166 	clock->chosen = NULL;
1167 	kfree(dp83640);
1168 no_memory:
1169 	dp83640_clock_put(clock);
1170 no_clock:
1171 	return err;
1172 }
1173 
1174 static void dp83640_remove(struct phy_device *phydev)
1175 {
1176 	struct dp83640_clock *clock;
1177 	struct list_head *this, *next;
1178 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1179 
1180 	if (phydev->mdio.addr == BROADCAST_ADDR)
1181 		return;
1182 
1183 	enable_status_frames(phydev, false);
1184 	cancel_delayed_work_sync(&dp83640->ts_work);
1185 
1186 	skb_queue_purge(&dp83640->rx_queue);
1187 	skb_queue_purge(&dp83640->tx_queue);
1188 
1189 	clock = dp83640_clock_get(dp83640->clock);
1190 
1191 	if (dp83640 == clock->chosen) {
1192 		ptp_clock_unregister(clock->ptp_clock);
1193 		clock->chosen = NULL;
1194 	} else {
1195 		list_for_each_safe(this, next, &clock->phylist) {
1196 			tmp = list_entry(this, struct dp83640_private, list);
1197 			if (tmp == dp83640) {
1198 				list_del_init(&tmp->list);
1199 				break;
1200 			}
1201 		}
1202 	}
1203 
1204 	dp83640_clock_put(clock);
1205 	kfree(dp83640);
1206 }
1207 
1208 static int dp83640_soft_reset(struct phy_device *phydev)
1209 {
1210 	int ret;
1211 
1212 	ret = genphy_soft_reset(phydev);
1213 	if (ret < 0)
1214 		return ret;
1215 
1216 	/* From DP83640 datasheet: "Software driver code must wait 3 us
1217 	 * following a software reset before allowing further serial MII
1218 	 * operations with the DP83640."
1219 	 */
1220 	udelay(10);		/* Taking udelay inaccuracy into account */
1221 
1222 	return 0;
1223 }
1224 
1225 static int dp83640_config_init(struct phy_device *phydev)
1226 {
1227 	struct dp83640_private *dp83640 = phydev->priv;
1228 	struct dp83640_clock *clock = dp83640->clock;
1229 
1230 	if (clock->chosen && !list_empty(&clock->phylist))
1231 		recalibrate(clock);
1232 	else {
1233 		mutex_lock(&clock->extreg_lock);
1234 		enable_broadcast(phydev, clock->page, 1);
1235 		mutex_unlock(&clock->extreg_lock);
1236 	}
1237 
1238 	enable_status_frames(phydev, true);
1239 
1240 	mutex_lock(&clock->extreg_lock);
1241 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1242 	mutex_unlock(&clock->extreg_lock);
1243 
1244 	return 0;
1245 }
1246 
1247 static int dp83640_ack_interrupt(struct phy_device *phydev)
1248 {
1249 	int err = phy_read(phydev, MII_DP83640_MISR);
1250 
1251 	if (err < 0)
1252 		return err;
1253 
1254 	return 0;
1255 }
1256 
1257 static int dp83640_config_intr(struct phy_device *phydev)
1258 {
1259 	int micr;
1260 	int misr;
1261 	int err;
1262 
1263 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1264 		misr = phy_read(phydev, MII_DP83640_MISR);
1265 		if (misr < 0)
1266 			return misr;
1267 		misr |=
1268 			(MII_DP83640_MISR_ANC_INT_EN |
1269 			MII_DP83640_MISR_DUP_INT_EN |
1270 			MII_DP83640_MISR_SPD_INT_EN |
1271 			MII_DP83640_MISR_LINK_INT_EN);
1272 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1273 		if (err < 0)
1274 			return err;
1275 
1276 		micr = phy_read(phydev, MII_DP83640_MICR);
1277 		if (micr < 0)
1278 			return micr;
1279 		micr |=
1280 			(MII_DP83640_MICR_OE |
1281 			MII_DP83640_MICR_IE);
1282 		return phy_write(phydev, MII_DP83640_MICR, micr);
1283 	} else {
1284 		micr = phy_read(phydev, MII_DP83640_MICR);
1285 		if (micr < 0)
1286 			return micr;
1287 		micr &=
1288 			~(MII_DP83640_MICR_OE |
1289 			MII_DP83640_MICR_IE);
1290 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1291 		if (err < 0)
1292 			return err;
1293 
1294 		misr = phy_read(phydev, MII_DP83640_MISR);
1295 		if (misr < 0)
1296 			return misr;
1297 		misr &=
1298 			~(MII_DP83640_MISR_ANC_INT_EN |
1299 			MII_DP83640_MISR_DUP_INT_EN |
1300 			MII_DP83640_MISR_SPD_INT_EN |
1301 			MII_DP83640_MISR_LINK_INT_EN);
1302 		return phy_write(phydev, MII_DP83640_MISR, misr);
1303 	}
1304 }
1305 
1306 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1307 {
1308 	struct dp83640_private *dp83640 = phydev->priv;
1309 	struct hwtstamp_config cfg;
1310 	u16 txcfg0, rxcfg0;
1311 
1312 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1313 		return -EFAULT;
1314 
1315 	if (cfg.flags) /* reserved for future extensions */
1316 		return -EINVAL;
1317 
1318 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1319 		return -ERANGE;
1320 
1321 	dp83640->hwts_tx_en = cfg.tx_type;
1322 
1323 	switch (cfg.rx_filter) {
1324 	case HWTSTAMP_FILTER_NONE:
1325 		dp83640->hwts_rx_en = 0;
1326 		dp83640->layer = 0;
1327 		dp83640->version = 0;
1328 		break;
1329 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1330 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1331 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1332 		dp83640->hwts_rx_en = 1;
1333 		dp83640->layer = PTP_CLASS_L4;
1334 		dp83640->version = PTP_CLASS_V1;
1335 		break;
1336 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1337 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1338 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1339 		dp83640->hwts_rx_en = 1;
1340 		dp83640->layer = PTP_CLASS_L4;
1341 		dp83640->version = PTP_CLASS_V2;
1342 		break;
1343 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1344 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1345 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1346 		dp83640->hwts_rx_en = 1;
1347 		dp83640->layer = PTP_CLASS_L2;
1348 		dp83640->version = PTP_CLASS_V2;
1349 		break;
1350 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1351 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1352 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1353 		dp83640->hwts_rx_en = 1;
1354 		dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
1355 		dp83640->version = PTP_CLASS_V2;
1356 		break;
1357 	default:
1358 		return -ERANGE;
1359 	}
1360 
1361 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1362 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1363 
1364 	if (dp83640->layer & PTP_CLASS_L2) {
1365 		txcfg0 |= TX_L2_EN;
1366 		rxcfg0 |= RX_L2_EN;
1367 	}
1368 	if (dp83640->layer & PTP_CLASS_L4) {
1369 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1370 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1371 	}
1372 
1373 	if (dp83640->hwts_tx_en)
1374 		txcfg0 |= TX_TS_EN;
1375 
1376 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1377 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1378 
1379 	if (dp83640->hwts_rx_en)
1380 		rxcfg0 |= RX_TS_EN;
1381 
1382 	mutex_lock(&dp83640->clock->extreg_lock);
1383 
1384 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1385 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1386 
1387 	mutex_unlock(&dp83640->clock->extreg_lock);
1388 
1389 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1390 }
1391 
1392 static void rx_timestamp_work(struct work_struct *work)
1393 {
1394 	struct dp83640_private *dp83640 =
1395 		container_of(work, struct dp83640_private, ts_work.work);
1396 	struct sk_buff *skb;
1397 
1398 	/* Deliver expired packets. */
1399 	while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1400 		struct dp83640_skb_info *skb_info;
1401 
1402 		skb_info = (struct dp83640_skb_info *)skb->cb;
1403 		if (!time_after(jiffies, skb_info->tmo)) {
1404 			skb_queue_head(&dp83640->rx_queue, skb);
1405 			break;
1406 		}
1407 
1408 		netif_rx_ni(skb);
1409 	}
1410 
1411 	if (!skb_queue_empty(&dp83640->rx_queue))
1412 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1413 }
1414 
1415 static bool dp83640_rxtstamp(struct phy_device *phydev,
1416 			     struct sk_buff *skb, int type)
1417 {
1418 	struct dp83640_private *dp83640 = phydev->priv;
1419 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1420 	struct list_head *this, *next;
1421 	struct rxts *rxts;
1422 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
1423 	unsigned long flags;
1424 
1425 	if (is_status_frame(skb, type)) {
1426 		decode_status_frame(dp83640, skb);
1427 		kfree_skb(skb);
1428 		return true;
1429 	}
1430 
1431 	if (!dp83640->hwts_rx_en)
1432 		return false;
1433 
1434 	if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
1435 		return false;
1436 
1437 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1438 	prune_rx_ts(dp83640);
1439 	list_for_each_safe(this, next, &dp83640->rxts) {
1440 		rxts = list_entry(this, struct rxts, list);
1441 		if (match(skb, type, rxts)) {
1442 			shhwtstamps = skb_hwtstamps(skb);
1443 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1444 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1445 			list_del_init(&rxts->list);
1446 			list_add(&rxts->list, &dp83640->rxpool);
1447 			break;
1448 		}
1449 	}
1450 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1451 
1452 	if (!shhwtstamps) {
1453 		skb_info->ptp_type = type;
1454 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1455 		skb_queue_tail(&dp83640->rx_queue, skb);
1456 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1457 	} else {
1458 		netif_rx_ni(skb);
1459 	}
1460 
1461 	return true;
1462 }
1463 
1464 static void dp83640_txtstamp(struct phy_device *phydev,
1465 			     struct sk_buff *skb, int type)
1466 {
1467 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1468 	struct dp83640_private *dp83640 = phydev->priv;
1469 
1470 	switch (dp83640->hwts_tx_en) {
1471 
1472 	case HWTSTAMP_TX_ONESTEP_SYNC:
1473 		if (is_sync(skb, type)) {
1474 			kfree_skb(skb);
1475 			return;
1476 		}
1477 		/* fall through */
1478 	case HWTSTAMP_TX_ON:
1479 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1480 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1481 		skb_queue_tail(&dp83640->tx_queue, skb);
1482 		break;
1483 
1484 	case HWTSTAMP_TX_OFF:
1485 	default:
1486 		kfree_skb(skb);
1487 		break;
1488 	}
1489 }
1490 
1491 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1492 {
1493 	struct dp83640_private *dp83640 = dev->priv;
1494 
1495 	info->so_timestamping =
1496 		SOF_TIMESTAMPING_TX_HARDWARE |
1497 		SOF_TIMESTAMPING_RX_HARDWARE |
1498 		SOF_TIMESTAMPING_RAW_HARDWARE;
1499 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1500 	info->tx_types =
1501 		(1 << HWTSTAMP_TX_OFF) |
1502 		(1 << HWTSTAMP_TX_ON) |
1503 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1504 	info->rx_filters =
1505 		(1 << HWTSTAMP_FILTER_NONE) |
1506 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1507 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1508 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1509 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1510 	return 0;
1511 }
1512 
1513 static struct phy_driver dp83640_driver = {
1514 	.phy_id		= DP83640_PHY_ID,
1515 	.phy_id_mask	= 0xfffffff0,
1516 	.name		= "NatSemi DP83640",
1517 	/* PHY_BASIC_FEATURES */
1518 	.probe		= dp83640_probe,
1519 	.remove		= dp83640_remove,
1520 	.soft_reset	= dp83640_soft_reset,
1521 	.config_init	= dp83640_config_init,
1522 	.ack_interrupt  = dp83640_ack_interrupt,
1523 	.config_intr    = dp83640_config_intr,
1524 	.ts_info	= dp83640_ts_info,
1525 	.hwtstamp	= dp83640_hwtstamp,
1526 	.rxtstamp	= dp83640_rxtstamp,
1527 	.txtstamp	= dp83640_txtstamp,
1528 };
1529 
1530 static int __init dp83640_init(void)
1531 {
1532 	return phy_driver_register(&dp83640_driver, THIS_MODULE);
1533 }
1534 
1535 static void __exit dp83640_exit(void)
1536 {
1537 	dp83640_free_clocks();
1538 	phy_driver_unregister(&dp83640_driver);
1539 }
1540 
1541 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1542 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1543 MODULE_LICENSE("GPL");
1544 
1545 module_init(dp83640_init);
1546 module_exit(dp83640_exit);
1547 
1548 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1549 	{ DP83640_PHY_ID, 0xfffffff0 },
1550 	{ }
1551 };
1552 
1553 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1554