1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for the National Semiconductor DP83640 PHYTER 4 * 5 * Copyright (C) 2010 OMICRON electronics GmbH 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/crc32.h> 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/list.h> 14 #include <linux/mii.h> 15 #include <linux/module.h> 16 #include <linux/net_tstamp.h> 17 #include <linux/netdevice.h> 18 #include <linux/if_vlan.h> 19 #include <linux/phy.h> 20 #include <linux/ptp_classify.h> 21 #include <linux/ptp_clock_kernel.h> 22 23 #include "dp83640_reg.h" 24 25 #define DP83640_PHY_ID 0x20005ce1 26 #define PAGESEL 0x13 27 #define MAX_RXTS 64 28 #define N_EXT_TS 6 29 #define N_PER_OUT 7 30 #define PSF_PTPVER 2 31 #define PSF_EVNT 0x4000 32 #define PSF_RX 0x2000 33 #define PSF_TX 0x1000 34 #define EXT_EVENT 1 35 #define CAL_EVENT 7 36 #define CAL_TRIGGER 1 37 #define DP83640_N_PINS 12 38 39 #define MII_DP83640_MICR 0x11 40 #define MII_DP83640_MISR 0x12 41 42 #define MII_DP83640_MICR_OE 0x1 43 #define MII_DP83640_MICR_IE 0x2 44 45 #define MII_DP83640_MISR_RHF_INT_EN 0x01 46 #define MII_DP83640_MISR_FHF_INT_EN 0x02 47 #define MII_DP83640_MISR_ANC_INT_EN 0x04 48 #define MII_DP83640_MISR_DUP_INT_EN 0x08 49 #define MII_DP83640_MISR_SPD_INT_EN 0x10 50 #define MII_DP83640_MISR_LINK_INT_EN 0x20 51 #define MII_DP83640_MISR_ED_INT_EN 0x40 52 #define MII_DP83640_MISR_LQ_INT_EN 0x80 53 54 /* phyter seems to miss the mark by 16 ns */ 55 #define ADJTIME_FIX 16 56 57 #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */ 58 59 #if defined(__BIG_ENDIAN) 60 #define ENDIAN_FLAG 0 61 #elif defined(__LITTLE_ENDIAN) 62 #define ENDIAN_FLAG PSF_ENDIAN 63 #endif 64 65 struct dp83640_skb_info { 66 int ptp_type; 67 unsigned long tmo; 68 }; 69 70 struct phy_rxts { 71 u16 ns_lo; /* ns[15:0] */ 72 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 73 u16 sec_lo; /* sec[15:0] */ 74 u16 sec_hi; /* sec[31:16] */ 75 u16 seqid; /* sequenceId[15:0] */ 76 u16 msgtype; /* messageType[3:0], hash[11:0] */ 77 }; 78 79 struct phy_txts { 80 u16 ns_lo; /* ns[15:0] */ 81 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 82 u16 sec_lo; /* sec[15:0] */ 83 u16 sec_hi; /* sec[31:16] */ 84 }; 85 86 struct rxts { 87 struct list_head list; 88 unsigned long tmo; 89 u64 ns; 90 u16 seqid; 91 u8 msgtype; 92 u16 hash; 93 }; 94 95 struct dp83640_clock; 96 97 struct dp83640_private { 98 struct list_head list; 99 struct dp83640_clock *clock; 100 struct phy_device *phydev; 101 struct mii_timestamper mii_ts; 102 struct delayed_work ts_work; 103 int hwts_tx_en; 104 int hwts_rx_en; 105 int layer; 106 int version; 107 /* remember state of cfg0 during calibration */ 108 int cfg0; 109 /* remember the last event time stamp */ 110 struct phy_txts edata; 111 /* list of rx timestamps */ 112 struct list_head rxts; 113 struct list_head rxpool; 114 struct rxts rx_pool_data[MAX_RXTS]; 115 /* protects above three fields from concurrent access */ 116 spinlock_t rx_lock; 117 /* queues of incoming and outgoing packets */ 118 struct sk_buff_head rx_queue; 119 struct sk_buff_head tx_queue; 120 }; 121 122 struct dp83640_clock { 123 /* keeps the instance in the 'phyter_clocks' list */ 124 struct list_head list; 125 /* we create one clock instance per MII bus */ 126 struct mii_bus *bus; 127 /* protects extended registers from concurrent access */ 128 struct mutex extreg_lock; 129 /* remembers which page was last selected */ 130 int page; 131 /* our advertised capabilities */ 132 struct ptp_clock_info caps; 133 /* protects the three fields below from concurrent access */ 134 struct mutex clock_lock; 135 /* the one phyter from which we shall read */ 136 struct dp83640_private *chosen; 137 /* list of the other attached phyters, not chosen */ 138 struct list_head phylist; 139 /* reference to our PTP hardware clock */ 140 struct ptp_clock *ptp_clock; 141 }; 142 143 /* globals */ 144 145 enum { 146 CALIBRATE_GPIO, 147 PEROUT_GPIO, 148 EXTTS0_GPIO, 149 EXTTS1_GPIO, 150 EXTTS2_GPIO, 151 EXTTS3_GPIO, 152 EXTTS4_GPIO, 153 EXTTS5_GPIO, 154 GPIO_TABLE_SIZE 155 }; 156 157 static int chosen_phy = -1; 158 static ushort gpio_tab[GPIO_TABLE_SIZE] = { 159 1, 2, 3, 4, 8, 9, 10, 11 160 }; 161 162 module_param(chosen_phy, int, 0444); 163 module_param_array(gpio_tab, ushort, NULL, 0444); 164 165 MODULE_PARM_DESC(chosen_phy, \ 166 "The address of the PHY to use for the ancillary clock features"); 167 MODULE_PARM_DESC(gpio_tab, \ 168 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); 169 170 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd) 171 { 172 int i, index; 173 174 for (i = 0; i < DP83640_N_PINS; i++) { 175 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i); 176 pd[i].index = i; 177 } 178 179 for (i = 0; i < GPIO_TABLE_SIZE; i++) { 180 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) { 181 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]); 182 return; 183 } 184 } 185 186 index = gpio_tab[CALIBRATE_GPIO] - 1; 187 pd[index].func = PTP_PF_PHYSYNC; 188 pd[index].chan = 0; 189 190 index = gpio_tab[PEROUT_GPIO] - 1; 191 pd[index].func = PTP_PF_PEROUT; 192 pd[index].chan = 0; 193 194 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) { 195 index = gpio_tab[i] - 1; 196 pd[index].func = PTP_PF_EXTTS; 197 pd[index].chan = i - EXTTS0_GPIO; 198 } 199 } 200 201 /* a list of clocks and a mutex to protect it */ 202 static LIST_HEAD(phyter_clocks); 203 static DEFINE_MUTEX(phyter_clocks_lock); 204 205 static void rx_timestamp_work(struct work_struct *work); 206 207 /* extended register access functions */ 208 209 #define BROADCAST_ADDR 31 210 211 static inline int broadcast_write(struct phy_device *phydev, u32 regnum, 212 u16 val) 213 { 214 return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val); 215 } 216 217 /* Caller must hold extreg_lock. */ 218 static int ext_read(struct phy_device *phydev, int page, u32 regnum) 219 { 220 struct dp83640_private *dp83640 = phydev->priv; 221 int val; 222 223 if (dp83640->clock->page != page) { 224 broadcast_write(phydev, PAGESEL, page); 225 dp83640->clock->page = page; 226 } 227 val = phy_read(phydev, regnum); 228 229 return val; 230 } 231 232 /* Caller must hold extreg_lock. */ 233 static void ext_write(int broadcast, struct phy_device *phydev, 234 int page, u32 regnum, u16 val) 235 { 236 struct dp83640_private *dp83640 = phydev->priv; 237 238 if (dp83640->clock->page != page) { 239 broadcast_write(phydev, PAGESEL, page); 240 dp83640->clock->page = page; 241 } 242 if (broadcast) 243 broadcast_write(phydev, regnum, val); 244 else 245 phy_write(phydev, regnum, val); 246 } 247 248 /* Caller must hold extreg_lock. */ 249 static int tdr_write(int bc, struct phy_device *dev, 250 const struct timespec64 *ts, u16 cmd) 251 { 252 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ 253 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ 254 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ 255 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ 256 257 ext_write(bc, dev, PAGE4, PTP_CTL, cmd); 258 259 return 0; 260 } 261 262 /* convert phy timestamps into driver timestamps */ 263 264 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) 265 { 266 u32 sec; 267 268 sec = p->sec_lo; 269 sec |= p->sec_hi << 16; 270 271 rxts->ns = p->ns_lo; 272 rxts->ns |= (p->ns_hi & 0x3fff) << 16; 273 rxts->ns += ((u64)sec) * 1000000000ULL; 274 rxts->seqid = p->seqid; 275 rxts->msgtype = (p->msgtype >> 12) & 0xf; 276 rxts->hash = p->msgtype & 0x0fff; 277 rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 278 } 279 280 static u64 phy2txts(struct phy_txts *p) 281 { 282 u64 ns; 283 u32 sec; 284 285 sec = p->sec_lo; 286 sec |= p->sec_hi << 16; 287 288 ns = p->ns_lo; 289 ns |= (p->ns_hi & 0x3fff) << 16; 290 ns += ((u64)sec) * 1000000000ULL; 291 292 return ns; 293 } 294 295 static int periodic_output(struct dp83640_clock *clock, 296 struct ptp_clock_request *clkreq, bool on, 297 int trigger) 298 { 299 struct dp83640_private *dp83640 = clock->chosen; 300 struct phy_device *phydev = dp83640->phydev; 301 u32 sec, nsec, pwidth; 302 u16 gpio, ptp_trig, val; 303 304 if (on) { 305 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 306 trigger); 307 if (gpio < 1) 308 return -EINVAL; 309 } else { 310 gpio = 0; 311 } 312 313 ptp_trig = TRIG_WR | 314 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | 315 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | 316 TRIG_PER | 317 TRIG_PULSE; 318 319 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 320 321 if (!on) { 322 val |= TRIG_DIS; 323 mutex_lock(&clock->extreg_lock); 324 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 325 ext_write(0, phydev, PAGE4, PTP_CTL, val); 326 mutex_unlock(&clock->extreg_lock); 327 return 0; 328 } 329 330 sec = clkreq->perout.start.sec; 331 nsec = clkreq->perout.start.nsec; 332 pwidth = clkreq->perout.period.sec * 1000000000UL; 333 pwidth += clkreq->perout.period.nsec; 334 pwidth /= 2; 335 336 mutex_lock(&clock->extreg_lock); 337 338 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 339 340 /*load trigger*/ 341 val |= TRIG_LOAD; 342 ext_write(0, phydev, PAGE4, PTP_CTL, val); 343 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ 344 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ 345 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ 346 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ 347 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */ 348 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */ 349 /* Triggers 0 and 1 has programmable pulsewidth2 */ 350 if (trigger < 2) { 351 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); 352 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); 353 } 354 355 /*enable trigger*/ 356 val &= ~TRIG_LOAD; 357 val |= TRIG_EN; 358 ext_write(0, phydev, PAGE4, PTP_CTL, val); 359 360 mutex_unlock(&clock->extreg_lock); 361 return 0; 362 } 363 364 /* ptp clock methods */ 365 366 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 367 { 368 struct dp83640_clock *clock = 369 container_of(ptp, struct dp83640_clock, caps); 370 struct phy_device *phydev = clock->chosen->phydev; 371 u64 rate; 372 int neg_adj = 0; 373 u16 hi, lo; 374 375 if (scaled_ppm < 0) { 376 neg_adj = 1; 377 scaled_ppm = -scaled_ppm; 378 } 379 rate = scaled_ppm; 380 rate <<= 13; 381 rate = div_u64(rate, 15625); 382 383 hi = (rate >> 16) & PTP_RATE_HI_MASK; 384 if (neg_adj) 385 hi |= PTP_RATE_DIR; 386 387 lo = rate & 0xffff; 388 389 mutex_lock(&clock->extreg_lock); 390 391 ext_write(1, phydev, PAGE4, PTP_RATEH, hi); 392 ext_write(1, phydev, PAGE4, PTP_RATEL, lo); 393 394 mutex_unlock(&clock->extreg_lock); 395 396 return 0; 397 } 398 399 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) 400 { 401 struct dp83640_clock *clock = 402 container_of(ptp, struct dp83640_clock, caps); 403 struct phy_device *phydev = clock->chosen->phydev; 404 struct timespec64 ts; 405 int err; 406 407 delta += ADJTIME_FIX; 408 409 ts = ns_to_timespec64(delta); 410 411 mutex_lock(&clock->extreg_lock); 412 413 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); 414 415 mutex_unlock(&clock->extreg_lock); 416 417 return err; 418 } 419 420 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, 421 struct timespec64 *ts) 422 { 423 struct dp83640_clock *clock = 424 container_of(ptp, struct dp83640_clock, caps); 425 struct phy_device *phydev = clock->chosen->phydev; 426 unsigned int val[4]; 427 428 mutex_lock(&clock->extreg_lock); 429 430 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); 431 432 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ 433 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ 434 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ 435 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ 436 437 mutex_unlock(&clock->extreg_lock); 438 439 ts->tv_nsec = val[0] | (val[1] << 16); 440 ts->tv_sec = val[2] | (val[3] << 16); 441 442 return 0; 443 } 444 445 static int ptp_dp83640_settime(struct ptp_clock_info *ptp, 446 const struct timespec64 *ts) 447 { 448 struct dp83640_clock *clock = 449 container_of(ptp, struct dp83640_clock, caps); 450 struct phy_device *phydev = clock->chosen->phydev; 451 int err; 452 453 mutex_lock(&clock->extreg_lock); 454 455 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); 456 457 mutex_unlock(&clock->extreg_lock); 458 459 return err; 460 } 461 462 static int ptp_dp83640_enable(struct ptp_clock_info *ptp, 463 struct ptp_clock_request *rq, int on) 464 { 465 struct dp83640_clock *clock = 466 container_of(ptp, struct dp83640_clock, caps); 467 struct phy_device *phydev = clock->chosen->phydev; 468 unsigned int index; 469 u16 evnt, event_num, gpio_num; 470 471 switch (rq->type) { 472 case PTP_CLK_REQ_EXTTS: 473 /* Reject requests with unsupported flags */ 474 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 475 PTP_RISING_EDGE | 476 PTP_FALLING_EDGE | 477 PTP_STRICT_FLAGS)) 478 return -EOPNOTSUPP; 479 480 /* Reject requests to enable time stamping on both edges. */ 481 if ((rq->extts.flags & PTP_STRICT_FLAGS) && 482 (rq->extts.flags & PTP_ENABLE_FEATURE) && 483 (rq->extts.flags & PTP_EXTTS_EDGES) == PTP_EXTTS_EDGES) 484 return -EOPNOTSUPP; 485 486 index = rq->extts.index; 487 if (index >= N_EXT_TS) 488 return -EINVAL; 489 event_num = EXT_EVENT + index; 490 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 491 if (on) { 492 gpio_num = 1 + ptp_find_pin(clock->ptp_clock, 493 PTP_PF_EXTTS, index); 494 if (gpio_num < 1) 495 return -EINVAL; 496 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 497 if (rq->extts.flags & PTP_FALLING_EDGE) 498 evnt |= EVNT_FALL; 499 else 500 evnt |= EVNT_RISE; 501 } 502 mutex_lock(&clock->extreg_lock); 503 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); 504 mutex_unlock(&clock->extreg_lock); 505 return 0; 506 507 case PTP_CLK_REQ_PEROUT: 508 /* Reject requests with unsupported flags */ 509 if (rq->perout.flags) 510 return -EOPNOTSUPP; 511 if (rq->perout.index >= N_PER_OUT) 512 return -EINVAL; 513 return periodic_output(clock, rq, on, rq->perout.index); 514 515 default: 516 break; 517 } 518 519 return -EOPNOTSUPP; 520 } 521 522 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin, 523 enum ptp_pin_function func, unsigned int chan) 524 { 525 struct dp83640_clock *clock = 526 container_of(ptp, struct dp83640_clock, caps); 527 528 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC && 529 !list_empty(&clock->phylist)) 530 return 1; 531 532 if (func == PTP_PF_PHYSYNC) 533 return 1; 534 535 return 0; 536 } 537 538 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; 539 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; 540 541 static void enable_status_frames(struct phy_device *phydev, bool on) 542 { 543 struct dp83640_private *dp83640 = phydev->priv; 544 struct dp83640_clock *clock = dp83640->clock; 545 u16 cfg0 = 0, ver; 546 547 if (on) 548 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; 549 550 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; 551 552 mutex_lock(&clock->extreg_lock); 553 554 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); 555 ext_write(0, phydev, PAGE6, PSF_CFG1, ver); 556 557 mutex_unlock(&clock->extreg_lock); 558 559 if (!phydev->attached_dev) { 560 phydev_warn(phydev, 561 "expected to find an attached netdevice\n"); 562 return; 563 } 564 565 if (on) { 566 if (dev_mc_add(phydev->attached_dev, status_frame_dst)) 567 phydev_warn(phydev, "failed to add mc address\n"); 568 } else { 569 if (dev_mc_del(phydev->attached_dev, status_frame_dst)) 570 phydev_warn(phydev, "failed to delete mc address\n"); 571 } 572 } 573 574 static bool is_status_frame(struct sk_buff *skb, int type) 575 { 576 struct ethhdr *h = eth_hdr(skb); 577 578 if (PTP_CLASS_V2_L2 == type && 579 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) 580 return true; 581 else 582 return false; 583 } 584 585 static int expired(struct rxts *rxts) 586 { 587 return time_after(jiffies, rxts->tmo); 588 } 589 590 /* Caller must hold rx_lock. */ 591 static void prune_rx_ts(struct dp83640_private *dp83640) 592 { 593 struct list_head *this, *next; 594 struct rxts *rxts; 595 596 list_for_each_safe(this, next, &dp83640->rxts) { 597 rxts = list_entry(this, struct rxts, list); 598 if (expired(rxts)) { 599 list_del_init(&rxts->list); 600 list_add(&rxts->list, &dp83640->rxpool); 601 } 602 } 603 } 604 605 /* synchronize the phyters so they act as one clock */ 606 607 static void enable_broadcast(struct phy_device *phydev, int init_page, int on) 608 { 609 int val; 610 phy_write(phydev, PAGESEL, 0); 611 val = phy_read(phydev, PHYCR2); 612 if (on) 613 val |= BC_WRITE; 614 else 615 val &= ~BC_WRITE; 616 phy_write(phydev, PHYCR2, val); 617 phy_write(phydev, PAGESEL, init_page); 618 } 619 620 static void recalibrate(struct dp83640_clock *clock) 621 { 622 s64 now, diff; 623 struct phy_txts event_ts; 624 struct timespec64 ts; 625 struct list_head *this; 626 struct dp83640_private *tmp; 627 struct phy_device *master = clock->chosen->phydev; 628 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; 629 630 trigger = CAL_TRIGGER; 631 cal_gpio = 1 + ptp_find_pin_unlocked(clock->ptp_clock, PTP_PF_PHYSYNC, 0); 632 if (cal_gpio < 1) { 633 pr_err("PHY calibration pin not available - PHY is not calibrated."); 634 return; 635 } 636 637 mutex_lock(&clock->extreg_lock); 638 639 /* 640 * enable broadcast, disable status frames, enable ptp clock 641 */ 642 list_for_each(this, &clock->phylist) { 643 tmp = list_entry(this, struct dp83640_private, list); 644 enable_broadcast(tmp->phydev, clock->page, 1); 645 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); 646 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); 647 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); 648 } 649 enable_broadcast(master, clock->page, 1); 650 cfg0 = ext_read(master, PAGE5, PSF_CFG0); 651 ext_write(0, master, PAGE5, PSF_CFG0, 0); 652 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); 653 654 /* 655 * enable an event timestamp 656 */ 657 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; 658 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 659 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 660 661 list_for_each(this, &clock->phylist) { 662 tmp = list_entry(this, struct dp83640_private, list); 663 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); 664 } 665 ext_write(0, master, PAGE5, PTP_EVNT, evnt); 666 667 /* 668 * configure a trigger 669 */ 670 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; 671 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; 672 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; 673 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); 674 675 /* load trigger */ 676 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 677 val |= TRIG_LOAD; 678 ext_write(0, master, PAGE4, PTP_CTL, val); 679 680 /* enable trigger */ 681 val &= ~TRIG_LOAD; 682 val |= TRIG_EN; 683 ext_write(0, master, PAGE4, PTP_CTL, val); 684 685 /* disable trigger */ 686 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 687 val |= TRIG_DIS; 688 ext_write(0, master, PAGE4, PTP_CTL, val); 689 690 /* 691 * read out and correct offsets 692 */ 693 val = ext_read(master, PAGE4, PTP_STS); 694 phydev_info(master, "master PTP_STS 0x%04hx\n", val); 695 val = ext_read(master, PAGE4, PTP_ESTS); 696 phydev_info(master, "master PTP_ESTS 0x%04hx\n", val); 697 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); 698 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); 699 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); 700 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); 701 now = phy2txts(&event_ts); 702 703 list_for_each(this, &clock->phylist) { 704 tmp = list_entry(this, struct dp83640_private, list); 705 val = ext_read(tmp->phydev, PAGE4, PTP_STS); 706 phydev_info(tmp->phydev, "slave PTP_STS 0x%04hx\n", val); 707 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); 708 phydev_info(tmp->phydev, "slave PTP_ESTS 0x%04hx\n", val); 709 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 710 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 711 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 712 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 713 diff = now - (s64) phy2txts(&event_ts); 714 phydev_info(tmp->phydev, "slave offset %lld nanoseconds\n", 715 diff); 716 diff += ADJTIME_FIX; 717 ts = ns_to_timespec64(diff); 718 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); 719 } 720 721 /* 722 * restore status frames 723 */ 724 list_for_each(this, &clock->phylist) { 725 tmp = list_entry(this, struct dp83640_private, list); 726 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); 727 } 728 ext_write(0, master, PAGE5, PSF_CFG0, cfg0); 729 730 mutex_unlock(&clock->extreg_lock); 731 } 732 733 /* time stamping methods */ 734 735 static inline u16 exts_chan_to_edata(int ch) 736 { 737 return 1 << ((ch + EXT_EVENT) * 2); 738 } 739 740 static int decode_evnt(struct dp83640_private *dp83640, 741 void *data, int len, u16 ests) 742 { 743 struct phy_txts *phy_txts; 744 struct ptp_clock_event event; 745 int i, parsed; 746 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; 747 u16 ext_status = 0; 748 749 /* calculate length of the event timestamp status message */ 750 if (ests & MULT_EVNT) 751 parsed = (words + 2) * sizeof(u16); 752 else 753 parsed = (words + 1) * sizeof(u16); 754 755 /* check if enough data is available */ 756 if (len < parsed) 757 return len; 758 759 if (ests & MULT_EVNT) { 760 ext_status = *(u16 *) data; 761 data += sizeof(ext_status); 762 } 763 764 phy_txts = data; 765 766 switch (words) { 767 case 3: 768 dp83640->edata.sec_hi = phy_txts->sec_hi; 769 fallthrough; 770 case 2: 771 dp83640->edata.sec_lo = phy_txts->sec_lo; 772 fallthrough; 773 case 1: 774 dp83640->edata.ns_hi = phy_txts->ns_hi; 775 fallthrough; 776 case 0: 777 dp83640->edata.ns_lo = phy_txts->ns_lo; 778 } 779 780 if (!ext_status) { 781 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; 782 ext_status = exts_chan_to_edata(i); 783 } 784 785 event.type = PTP_CLOCK_EXTTS; 786 event.timestamp = phy2txts(&dp83640->edata); 787 788 /* Compensate for input path and synchronization delays */ 789 event.timestamp -= 35; 790 791 for (i = 0; i < N_EXT_TS; i++) { 792 if (ext_status & exts_chan_to_edata(i)) { 793 event.index = i; 794 ptp_clock_event(dp83640->clock->ptp_clock, &event); 795 } 796 } 797 798 return parsed; 799 } 800 801 #define DP83640_PACKET_HASH_OFFSET 20 802 #define DP83640_PACKET_HASH_LEN 10 803 804 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) 805 { 806 unsigned int offset = 0; 807 u8 *msgtype, *data = skb_mac_header(skb); 808 __be16 *seqid; 809 u16 hash; 810 811 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ 812 813 if (type & PTP_CLASS_VLAN) 814 offset += VLAN_HLEN; 815 816 switch (type & PTP_CLASS_PMASK) { 817 case PTP_CLASS_IPV4: 818 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 819 break; 820 case PTP_CLASS_IPV6: 821 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 822 break; 823 case PTP_CLASS_L2: 824 offset += ETH_HLEN; 825 break; 826 default: 827 return 0; 828 } 829 830 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) 831 return 0; 832 833 if (unlikely(type & PTP_CLASS_V1)) 834 msgtype = data + offset + OFF_PTP_CONTROL; 835 else 836 msgtype = data + offset; 837 if (rxts->msgtype != (*msgtype & 0xf)) 838 return 0; 839 840 seqid = (__be16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 841 if (rxts->seqid != ntohs(*seqid)) 842 return 0; 843 844 hash = ether_crc(DP83640_PACKET_HASH_LEN, 845 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20; 846 if (rxts->hash != hash) 847 return 0; 848 849 return 1; 850 } 851 852 static void decode_rxts(struct dp83640_private *dp83640, 853 struct phy_rxts *phy_rxts) 854 { 855 struct rxts *rxts; 856 struct skb_shared_hwtstamps *shhwtstamps = NULL; 857 struct sk_buff *skb; 858 unsigned long flags; 859 u8 overflow; 860 861 overflow = (phy_rxts->ns_hi >> 14) & 0x3; 862 if (overflow) 863 pr_debug("rx timestamp queue overflow, count %d\n", overflow); 864 865 spin_lock_irqsave(&dp83640->rx_lock, flags); 866 867 prune_rx_ts(dp83640); 868 869 if (list_empty(&dp83640->rxpool)) { 870 pr_debug("rx timestamp pool is empty\n"); 871 goto out; 872 } 873 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); 874 list_del_init(&rxts->list); 875 phy2rxts(phy_rxts, rxts); 876 877 spin_lock(&dp83640->rx_queue.lock); 878 skb_queue_walk(&dp83640->rx_queue, skb) { 879 struct dp83640_skb_info *skb_info; 880 881 skb_info = (struct dp83640_skb_info *)skb->cb; 882 if (match(skb, skb_info->ptp_type, rxts)) { 883 __skb_unlink(skb, &dp83640->rx_queue); 884 shhwtstamps = skb_hwtstamps(skb); 885 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 886 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 887 list_add(&rxts->list, &dp83640->rxpool); 888 break; 889 } 890 } 891 spin_unlock(&dp83640->rx_queue.lock); 892 893 if (!shhwtstamps) 894 list_add_tail(&rxts->list, &dp83640->rxts); 895 out: 896 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 897 898 if (shhwtstamps) 899 netif_rx_ni(skb); 900 } 901 902 static void decode_txts(struct dp83640_private *dp83640, 903 struct phy_txts *phy_txts) 904 { 905 struct skb_shared_hwtstamps shhwtstamps; 906 struct dp83640_skb_info *skb_info; 907 struct sk_buff *skb; 908 u8 overflow; 909 u64 ns; 910 911 /* We must already have the skb that triggered this. */ 912 again: 913 skb = skb_dequeue(&dp83640->tx_queue); 914 if (!skb) { 915 pr_debug("have timestamp but tx_queue empty\n"); 916 return; 917 } 918 919 overflow = (phy_txts->ns_hi >> 14) & 0x3; 920 if (overflow) { 921 pr_debug("tx timestamp queue overflow, count %d\n", overflow); 922 while (skb) { 923 kfree_skb(skb); 924 skb = skb_dequeue(&dp83640->tx_queue); 925 } 926 return; 927 } 928 skb_info = (struct dp83640_skb_info *)skb->cb; 929 if (time_after(jiffies, skb_info->tmo)) { 930 kfree_skb(skb); 931 goto again; 932 } 933 934 ns = phy2txts(phy_txts); 935 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 936 shhwtstamps.hwtstamp = ns_to_ktime(ns); 937 skb_complete_tx_timestamp(skb, &shhwtstamps); 938 } 939 940 static void decode_status_frame(struct dp83640_private *dp83640, 941 struct sk_buff *skb) 942 { 943 struct phy_rxts *phy_rxts; 944 struct phy_txts *phy_txts; 945 u8 *ptr; 946 int len, size; 947 u16 ests, type; 948 949 ptr = skb->data + 2; 950 951 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { 952 953 type = *(u16 *)ptr; 954 ests = type & 0x0fff; 955 type = type & 0xf000; 956 len -= sizeof(type); 957 ptr += sizeof(type); 958 959 if (PSF_RX == type && len >= sizeof(*phy_rxts)) { 960 961 phy_rxts = (struct phy_rxts *) ptr; 962 decode_rxts(dp83640, phy_rxts); 963 size = sizeof(*phy_rxts); 964 965 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { 966 967 phy_txts = (struct phy_txts *) ptr; 968 decode_txts(dp83640, phy_txts); 969 size = sizeof(*phy_txts); 970 971 } else if (PSF_EVNT == type) { 972 973 size = decode_evnt(dp83640, ptr, len, ests); 974 975 } else { 976 size = 0; 977 break; 978 } 979 ptr += size; 980 } 981 } 982 983 static int is_sync(struct sk_buff *skb, int type) 984 { 985 u8 *data = skb->data, *msgtype; 986 unsigned int offset = 0; 987 988 if (type & PTP_CLASS_VLAN) 989 offset += VLAN_HLEN; 990 991 switch (type & PTP_CLASS_PMASK) { 992 case PTP_CLASS_IPV4: 993 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 994 break; 995 case PTP_CLASS_IPV6: 996 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 997 break; 998 case PTP_CLASS_L2: 999 offset += ETH_HLEN; 1000 break; 1001 default: 1002 return 0; 1003 } 1004 1005 if (type & PTP_CLASS_V1) 1006 offset += OFF_PTP_CONTROL; 1007 1008 if (skb->len < offset + 1) 1009 return 0; 1010 1011 msgtype = data + offset; 1012 1013 return (*msgtype & 0xf) == 0; 1014 } 1015 1016 static void dp83640_free_clocks(void) 1017 { 1018 struct dp83640_clock *clock; 1019 struct list_head *this, *next; 1020 1021 mutex_lock(&phyter_clocks_lock); 1022 1023 list_for_each_safe(this, next, &phyter_clocks) { 1024 clock = list_entry(this, struct dp83640_clock, list); 1025 if (!list_empty(&clock->phylist)) { 1026 pr_warn("phy list non-empty while unloading\n"); 1027 BUG(); 1028 } 1029 list_del(&clock->list); 1030 mutex_destroy(&clock->extreg_lock); 1031 mutex_destroy(&clock->clock_lock); 1032 put_device(&clock->bus->dev); 1033 kfree(clock->caps.pin_config); 1034 kfree(clock); 1035 } 1036 1037 mutex_unlock(&phyter_clocks_lock); 1038 } 1039 1040 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) 1041 { 1042 INIT_LIST_HEAD(&clock->list); 1043 clock->bus = bus; 1044 mutex_init(&clock->extreg_lock); 1045 mutex_init(&clock->clock_lock); 1046 INIT_LIST_HEAD(&clock->phylist); 1047 clock->caps.owner = THIS_MODULE; 1048 sprintf(clock->caps.name, "dp83640 timer"); 1049 clock->caps.max_adj = 1953124; 1050 clock->caps.n_alarm = 0; 1051 clock->caps.n_ext_ts = N_EXT_TS; 1052 clock->caps.n_per_out = N_PER_OUT; 1053 clock->caps.n_pins = DP83640_N_PINS; 1054 clock->caps.pps = 0; 1055 clock->caps.adjfine = ptp_dp83640_adjfine; 1056 clock->caps.adjtime = ptp_dp83640_adjtime; 1057 clock->caps.gettime64 = ptp_dp83640_gettime; 1058 clock->caps.settime64 = ptp_dp83640_settime; 1059 clock->caps.enable = ptp_dp83640_enable; 1060 clock->caps.verify = ptp_dp83640_verify; 1061 /* 1062 * Convert the module param defaults into a dynamic pin configuration. 1063 */ 1064 dp83640_gpio_defaults(clock->caps.pin_config); 1065 /* 1066 * Get a reference to this bus instance. 1067 */ 1068 get_device(&bus->dev); 1069 } 1070 1071 static int choose_this_phy(struct dp83640_clock *clock, 1072 struct phy_device *phydev) 1073 { 1074 if (chosen_phy == -1 && !clock->chosen) 1075 return 1; 1076 1077 if (chosen_phy == phydev->mdio.addr) 1078 return 1; 1079 1080 return 0; 1081 } 1082 1083 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) 1084 { 1085 if (clock) 1086 mutex_lock(&clock->clock_lock); 1087 return clock; 1088 } 1089 1090 /* 1091 * Look up and lock a clock by bus instance. 1092 * If there is no clock for this bus, then create it first. 1093 */ 1094 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) 1095 { 1096 struct dp83640_clock *clock = NULL, *tmp; 1097 struct list_head *this; 1098 1099 mutex_lock(&phyter_clocks_lock); 1100 1101 list_for_each(this, &phyter_clocks) { 1102 tmp = list_entry(this, struct dp83640_clock, list); 1103 if (tmp->bus == bus) { 1104 clock = tmp; 1105 break; 1106 } 1107 } 1108 if (clock) 1109 goto out; 1110 1111 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); 1112 if (!clock) 1113 goto out; 1114 1115 clock->caps.pin_config = kcalloc(DP83640_N_PINS, 1116 sizeof(struct ptp_pin_desc), 1117 GFP_KERNEL); 1118 if (!clock->caps.pin_config) { 1119 kfree(clock); 1120 clock = NULL; 1121 goto out; 1122 } 1123 dp83640_clock_init(clock, bus); 1124 list_add_tail(&clock->list, &phyter_clocks); 1125 out: 1126 mutex_unlock(&phyter_clocks_lock); 1127 1128 return dp83640_clock_get(clock); 1129 } 1130 1131 static void dp83640_clock_put(struct dp83640_clock *clock) 1132 { 1133 mutex_unlock(&clock->clock_lock); 1134 } 1135 1136 static int dp83640_soft_reset(struct phy_device *phydev) 1137 { 1138 int ret; 1139 1140 ret = genphy_soft_reset(phydev); 1141 if (ret < 0) 1142 return ret; 1143 1144 /* From DP83640 datasheet: "Software driver code must wait 3 us 1145 * following a software reset before allowing further serial MII 1146 * operations with the DP83640." 1147 */ 1148 udelay(10); /* Taking udelay inaccuracy into account */ 1149 1150 return 0; 1151 } 1152 1153 static int dp83640_config_init(struct phy_device *phydev) 1154 { 1155 struct dp83640_private *dp83640 = phydev->priv; 1156 struct dp83640_clock *clock = dp83640->clock; 1157 1158 if (clock->chosen && !list_empty(&clock->phylist)) 1159 recalibrate(clock); 1160 else { 1161 mutex_lock(&clock->extreg_lock); 1162 enable_broadcast(phydev, clock->page, 1); 1163 mutex_unlock(&clock->extreg_lock); 1164 } 1165 1166 enable_status_frames(phydev, true); 1167 1168 mutex_lock(&clock->extreg_lock); 1169 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); 1170 mutex_unlock(&clock->extreg_lock); 1171 1172 return 0; 1173 } 1174 1175 static int dp83640_ack_interrupt(struct phy_device *phydev) 1176 { 1177 int err = phy_read(phydev, MII_DP83640_MISR); 1178 1179 if (err < 0) 1180 return err; 1181 1182 return 0; 1183 } 1184 1185 static int dp83640_config_intr(struct phy_device *phydev) 1186 { 1187 int micr; 1188 int misr; 1189 int err; 1190 1191 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 1192 misr = phy_read(phydev, MII_DP83640_MISR); 1193 if (misr < 0) 1194 return misr; 1195 misr |= 1196 (MII_DP83640_MISR_ANC_INT_EN | 1197 MII_DP83640_MISR_DUP_INT_EN | 1198 MII_DP83640_MISR_SPD_INT_EN | 1199 MII_DP83640_MISR_LINK_INT_EN); 1200 err = phy_write(phydev, MII_DP83640_MISR, misr); 1201 if (err < 0) 1202 return err; 1203 1204 micr = phy_read(phydev, MII_DP83640_MICR); 1205 if (micr < 0) 1206 return micr; 1207 micr |= 1208 (MII_DP83640_MICR_OE | 1209 MII_DP83640_MICR_IE); 1210 return phy_write(phydev, MII_DP83640_MICR, micr); 1211 } else { 1212 micr = phy_read(phydev, MII_DP83640_MICR); 1213 if (micr < 0) 1214 return micr; 1215 micr &= 1216 ~(MII_DP83640_MICR_OE | 1217 MII_DP83640_MICR_IE); 1218 err = phy_write(phydev, MII_DP83640_MICR, micr); 1219 if (err < 0) 1220 return err; 1221 1222 misr = phy_read(phydev, MII_DP83640_MISR); 1223 if (misr < 0) 1224 return misr; 1225 misr &= 1226 ~(MII_DP83640_MISR_ANC_INT_EN | 1227 MII_DP83640_MISR_DUP_INT_EN | 1228 MII_DP83640_MISR_SPD_INT_EN | 1229 MII_DP83640_MISR_LINK_INT_EN); 1230 return phy_write(phydev, MII_DP83640_MISR, misr); 1231 } 1232 } 1233 1234 static int dp83640_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 1235 { 1236 struct dp83640_private *dp83640 = 1237 container_of(mii_ts, struct dp83640_private, mii_ts); 1238 struct hwtstamp_config cfg; 1239 u16 txcfg0, rxcfg0; 1240 1241 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1242 return -EFAULT; 1243 1244 if (cfg.flags) /* reserved for future extensions */ 1245 return -EINVAL; 1246 1247 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) 1248 return -ERANGE; 1249 1250 dp83640->hwts_tx_en = cfg.tx_type; 1251 1252 switch (cfg.rx_filter) { 1253 case HWTSTAMP_FILTER_NONE: 1254 dp83640->hwts_rx_en = 0; 1255 dp83640->layer = 0; 1256 dp83640->version = 0; 1257 break; 1258 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1259 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1260 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1261 dp83640->hwts_rx_en = 1; 1262 dp83640->layer = PTP_CLASS_L4; 1263 dp83640->version = PTP_CLASS_V1; 1264 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1265 break; 1266 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1267 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1268 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1269 dp83640->hwts_rx_en = 1; 1270 dp83640->layer = PTP_CLASS_L4; 1271 dp83640->version = PTP_CLASS_V2; 1272 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 1273 break; 1274 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1275 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1276 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1277 dp83640->hwts_rx_en = 1; 1278 dp83640->layer = PTP_CLASS_L2; 1279 dp83640->version = PTP_CLASS_V2; 1280 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 1281 break; 1282 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1283 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1284 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1285 dp83640->hwts_rx_en = 1; 1286 dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 1287 dp83640->version = PTP_CLASS_V2; 1288 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1289 break; 1290 default: 1291 return -ERANGE; 1292 } 1293 1294 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1295 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1296 1297 if (dp83640->layer & PTP_CLASS_L2) { 1298 txcfg0 |= TX_L2_EN; 1299 rxcfg0 |= RX_L2_EN; 1300 } 1301 if (dp83640->layer & PTP_CLASS_L4) { 1302 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; 1303 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; 1304 } 1305 1306 if (dp83640->hwts_tx_en) 1307 txcfg0 |= TX_TS_EN; 1308 1309 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) 1310 txcfg0 |= SYNC_1STEP | CHK_1STEP; 1311 1312 if (dp83640->hwts_rx_en) 1313 rxcfg0 |= RX_TS_EN; 1314 1315 mutex_lock(&dp83640->clock->extreg_lock); 1316 1317 ext_write(0, dp83640->phydev, PAGE5, PTP_TXCFG0, txcfg0); 1318 ext_write(0, dp83640->phydev, PAGE5, PTP_RXCFG0, rxcfg0); 1319 1320 mutex_unlock(&dp83640->clock->extreg_lock); 1321 1322 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1323 } 1324 1325 static void rx_timestamp_work(struct work_struct *work) 1326 { 1327 struct dp83640_private *dp83640 = 1328 container_of(work, struct dp83640_private, ts_work.work); 1329 struct sk_buff *skb; 1330 1331 /* Deliver expired packets. */ 1332 while ((skb = skb_dequeue(&dp83640->rx_queue))) { 1333 struct dp83640_skb_info *skb_info; 1334 1335 skb_info = (struct dp83640_skb_info *)skb->cb; 1336 if (!time_after(jiffies, skb_info->tmo)) { 1337 skb_queue_head(&dp83640->rx_queue, skb); 1338 break; 1339 } 1340 1341 netif_rx_ni(skb); 1342 } 1343 1344 if (!skb_queue_empty(&dp83640->rx_queue)) 1345 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1346 } 1347 1348 static bool dp83640_rxtstamp(struct mii_timestamper *mii_ts, 1349 struct sk_buff *skb, int type) 1350 { 1351 struct dp83640_private *dp83640 = 1352 container_of(mii_ts, struct dp83640_private, mii_ts); 1353 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; 1354 struct list_head *this, *next; 1355 struct rxts *rxts; 1356 struct skb_shared_hwtstamps *shhwtstamps = NULL; 1357 unsigned long flags; 1358 1359 if (is_status_frame(skb, type)) { 1360 decode_status_frame(dp83640, skb); 1361 kfree_skb(skb); 1362 return true; 1363 } 1364 1365 if (!dp83640->hwts_rx_en) 1366 return false; 1367 1368 if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0) 1369 return false; 1370 1371 spin_lock_irqsave(&dp83640->rx_lock, flags); 1372 prune_rx_ts(dp83640); 1373 list_for_each_safe(this, next, &dp83640->rxts) { 1374 rxts = list_entry(this, struct rxts, list); 1375 if (match(skb, type, rxts)) { 1376 shhwtstamps = skb_hwtstamps(skb); 1377 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 1378 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 1379 list_del_init(&rxts->list); 1380 list_add(&rxts->list, &dp83640->rxpool); 1381 break; 1382 } 1383 } 1384 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1385 1386 if (!shhwtstamps) { 1387 skb_info->ptp_type = type; 1388 skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 1389 skb_queue_tail(&dp83640->rx_queue, skb); 1390 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1391 } else { 1392 netif_rx_ni(skb); 1393 } 1394 1395 return true; 1396 } 1397 1398 static void dp83640_txtstamp(struct mii_timestamper *mii_ts, 1399 struct sk_buff *skb, int type) 1400 { 1401 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; 1402 struct dp83640_private *dp83640 = 1403 container_of(mii_ts, struct dp83640_private, mii_ts); 1404 1405 switch (dp83640->hwts_tx_en) { 1406 1407 case HWTSTAMP_TX_ONESTEP_SYNC: 1408 if (is_sync(skb, type)) { 1409 kfree_skb(skb); 1410 return; 1411 } 1412 fallthrough; 1413 case HWTSTAMP_TX_ON: 1414 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1415 skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 1416 skb_queue_tail(&dp83640->tx_queue, skb); 1417 break; 1418 1419 case HWTSTAMP_TX_OFF: 1420 default: 1421 kfree_skb(skb); 1422 break; 1423 } 1424 } 1425 1426 static int dp83640_ts_info(struct mii_timestamper *mii_ts, 1427 struct ethtool_ts_info *info) 1428 { 1429 struct dp83640_private *dp83640 = 1430 container_of(mii_ts, struct dp83640_private, mii_ts); 1431 1432 info->so_timestamping = 1433 SOF_TIMESTAMPING_TX_HARDWARE | 1434 SOF_TIMESTAMPING_RX_HARDWARE | 1435 SOF_TIMESTAMPING_RAW_HARDWARE; 1436 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); 1437 info->tx_types = 1438 (1 << HWTSTAMP_TX_OFF) | 1439 (1 << HWTSTAMP_TX_ON) | 1440 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 1441 info->rx_filters = 1442 (1 << HWTSTAMP_FILTER_NONE) | 1443 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 1444 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 1445 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1446 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1447 return 0; 1448 } 1449 1450 static int dp83640_probe(struct phy_device *phydev) 1451 { 1452 struct dp83640_clock *clock; 1453 struct dp83640_private *dp83640; 1454 int err = -ENOMEM, i; 1455 1456 if (phydev->mdio.addr == BROADCAST_ADDR) 1457 return 0; 1458 1459 clock = dp83640_clock_get_bus(phydev->mdio.bus); 1460 if (!clock) 1461 goto no_clock; 1462 1463 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); 1464 if (!dp83640) 1465 goto no_memory; 1466 1467 dp83640->phydev = phydev; 1468 dp83640->mii_ts.rxtstamp = dp83640_rxtstamp; 1469 dp83640->mii_ts.txtstamp = dp83640_txtstamp; 1470 dp83640->mii_ts.hwtstamp = dp83640_hwtstamp; 1471 dp83640->mii_ts.ts_info = dp83640_ts_info; 1472 1473 INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work); 1474 INIT_LIST_HEAD(&dp83640->rxts); 1475 INIT_LIST_HEAD(&dp83640->rxpool); 1476 for (i = 0; i < MAX_RXTS; i++) 1477 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); 1478 1479 phydev->mii_ts = &dp83640->mii_ts; 1480 phydev->priv = dp83640; 1481 1482 spin_lock_init(&dp83640->rx_lock); 1483 skb_queue_head_init(&dp83640->rx_queue); 1484 skb_queue_head_init(&dp83640->tx_queue); 1485 1486 dp83640->clock = clock; 1487 1488 if (choose_this_phy(clock, phydev)) { 1489 clock->chosen = dp83640; 1490 clock->ptp_clock = ptp_clock_register(&clock->caps, 1491 &phydev->mdio.dev); 1492 if (IS_ERR(clock->ptp_clock)) { 1493 err = PTR_ERR(clock->ptp_clock); 1494 goto no_register; 1495 } 1496 } else 1497 list_add_tail(&dp83640->list, &clock->phylist); 1498 1499 dp83640_clock_put(clock); 1500 return 0; 1501 1502 no_register: 1503 clock->chosen = NULL; 1504 kfree(dp83640); 1505 no_memory: 1506 dp83640_clock_put(clock); 1507 no_clock: 1508 return err; 1509 } 1510 1511 static void dp83640_remove(struct phy_device *phydev) 1512 { 1513 struct dp83640_clock *clock; 1514 struct list_head *this, *next; 1515 struct dp83640_private *tmp, *dp83640 = phydev->priv; 1516 1517 if (phydev->mdio.addr == BROADCAST_ADDR) 1518 return; 1519 1520 phydev->mii_ts = NULL; 1521 1522 enable_status_frames(phydev, false); 1523 cancel_delayed_work_sync(&dp83640->ts_work); 1524 1525 skb_queue_purge(&dp83640->rx_queue); 1526 skb_queue_purge(&dp83640->tx_queue); 1527 1528 clock = dp83640_clock_get(dp83640->clock); 1529 1530 if (dp83640 == clock->chosen) { 1531 ptp_clock_unregister(clock->ptp_clock); 1532 clock->chosen = NULL; 1533 } else { 1534 list_for_each_safe(this, next, &clock->phylist) { 1535 tmp = list_entry(this, struct dp83640_private, list); 1536 if (tmp == dp83640) { 1537 list_del_init(&tmp->list); 1538 break; 1539 } 1540 } 1541 } 1542 1543 dp83640_clock_put(clock); 1544 kfree(dp83640); 1545 } 1546 1547 static struct phy_driver dp83640_driver = { 1548 .phy_id = DP83640_PHY_ID, 1549 .phy_id_mask = 0xfffffff0, 1550 .name = "NatSemi DP83640", 1551 /* PHY_BASIC_FEATURES */ 1552 .probe = dp83640_probe, 1553 .remove = dp83640_remove, 1554 .soft_reset = dp83640_soft_reset, 1555 .config_init = dp83640_config_init, 1556 .ack_interrupt = dp83640_ack_interrupt, 1557 .config_intr = dp83640_config_intr, 1558 }; 1559 1560 static int __init dp83640_init(void) 1561 { 1562 return phy_driver_register(&dp83640_driver, THIS_MODULE); 1563 } 1564 1565 static void __exit dp83640_exit(void) 1566 { 1567 dp83640_free_clocks(); 1568 phy_driver_unregister(&dp83640_driver); 1569 } 1570 1571 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); 1572 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 1573 MODULE_LICENSE("GPL"); 1574 1575 module_init(dp83640_init); 1576 module_exit(dp83640_exit); 1577 1578 static struct mdio_device_id __maybe_unused dp83640_tbl[] = { 1579 { DP83640_PHY_ID, 0xfffffff0 }, 1580 { } 1581 }; 1582 1583 MODULE_DEVICE_TABLE(mdio, dp83640_tbl); 1584