xref: /openbmc/linux/drivers/net/phy/dp83640.c (revision a2fb4d78)
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/ptp_classify.h>
32 #include <linux/ptp_clock_kernel.h>
33 
34 #include "dp83640_reg.h"
35 
36 #define DP83640_PHY_ID	0x20005ce1
37 #define PAGESEL		0x13
38 #define LAYER4		0x02
39 #define LAYER2		0x01
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define PSF_PTPVER	2
43 #define PSF_EVNT	0x4000
44 #define PSF_RX		0x2000
45 #define PSF_TX		0x1000
46 #define EXT_EVENT	1
47 #define CAL_EVENT	7
48 #define CAL_TRIGGER	7
49 #define PER_TRIGGER	6
50 
51 #define MII_DP83640_MICR 0x11
52 #define MII_DP83640_MISR 0x12
53 
54 #define MII_DP83640_MICR_OE 0x1
55 #define MII_DP83640_MICR_IE 0x2
56 
57 #define MII_DP83640_MISR_RHF_INT_EN 0x01
58 #define MII_DP83640_MISR_FHF_INT_EN 0x02
59 #define MII_DP83640_MISR_ANC_INT_EN 0x04
60 #define MII_DP83640_MISR_DUP_INT_EN 0x08
61 #define MII_DP83640_MISR_SPD_INT_EN 0x10
62 #define MII_DP83640_MISR_LINK_INT_EN 0x20
63 #define MII_DP83640_MISR_ED_INT_EN 0x40
64 #define MII_DP83640_MISR_LQ_INT_EN 0x80
65 
66 /* phyter seems to miss the mark by 16 ns */
67 #define ADJTIME_FIX	16
68 
69 #if defined(__BIG_ENDIAN)
70 #define ENDIAN_FLAG	0
71 #elif defined(__LITTLE_ENDIAN)
72 #define ENDIAN_FLAG	PSF_ENDIAN
73 #endif
74 
75 #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
76 
77 struct phy_rxts {
78 	u16 ns_lo;   /* ns[15:0] */
79 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
80 	u16 sec_lo;  /* sec[15:0] */
81 	u16 sec_hi;  /* sec[31:16] */
82 	u16 seqid;   /* sequenceId[15:0] */
83 	u16 msgtype; /* messageType[3:0], hash[11:0] */
84 };
85 
86 struct phy_txts {
87 	u16 ns_lo;   /* ns[15:0] */
88 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
89 	u16 sec_lo;  /* sec[15:0] */
90 	u16 sec_hi;  /* sec[31:16] */
91 };
92 
93 struct rxts {
94 	struct list_head list;
95 	unsigned long tmo;
96 	u64 ns;
97 	u16 seqid;
98 	u8  msgtype;
99 	u16 hash;
100 };
101 
102 struct dp83640_clock;
103 
104 struct dp83640_private {
105 	struct list_head list;
106 	struct dp83640_clock *clock;
107 	struct phy_device *phydev;
108 	struct work_struct ts_work;
109 	int hwts_tx_en;
110 	int hwts_rx_en;
111 	int layer;
112 	int version;
113 	/* remember state of cfg0 during calibration */
114 	int cfg0;
115 	/* remember the last event time stamp */
116 	struct phy_txts edata;
117 	/* list of rx timestamps */
118 	struct list_head rxts;
119 	struct list_head rxpool;
120 	struct rxts rx_pool_data[MAX_RXTS];
121 	/* protects above three fields from concurrent access */
122 	spinlock_t rx_lock;
123 	/* queues of incoming and outgoing packets */
124 	struct sk_buff_head rx_queue;
125 	struct sk_buff_head tx_queue;
126 };
127 
128 struct dp83640_clock {
129 	/* keeps the instance in the 'phyter_clocks' list */
130 	struct list_head list;
131 	/* we create one clock instance per MII bus */
132 	struct mii_bus *bus;
133 	/* protects extended registers from concurrent access */
134 	struct mutex extreg_lock;
135 	/* remembers which page was last selected */
136 	int page;
137 	/* our advertised capabilities */
138 	struct ptp_clock_info caps;
139 	/* protects the three fields below from concurrent access */
140 	struct mutex clock_lock;
141 	/* the one phyter from which we shall read */
142 	struct dp83640_private *chosen;
143 	/* list of the other attached phyters, not chosen */
144 	struct list_head phylist;
145 	/* reference to our PTP hardware clock */
146 	struct ptp_clock *ptp_clock;
147 };
148 
149 /* globals */
150 
151 enum {
152 	CALIBRATE_GPIO,
153 	PEROUT_GPIO,
154 	EXTTS0_GPIO,
155 	EXTTS1_GPIO,
156 	EXTTS2_GPIO,
157 	EXTTS3_GPIO,
158 	EXTTS4_GPIO,
159 	EXTTS5_GPIO,
160 	GPIO_TABLE_SIZE
161 };
162 
163 static int chosen_phy = -1;
164 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
165 	1, 2, 3, 4, 8, 9, 10, 11
166 };
167 
168 module_param(chosen_phy, int, 0444);
169 module_param_array(gpio_tab, ushort, NULL, 0444);
170 
171 MODULE_PARM_DESC(chosen_phy, \
172 	"The address of the PHY to use for the ancillary clock features");
173 MODULE_PARM_DESC(gpio_tab, \
174 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
175 
176 /* a list of clocks and a mutex to protect it */
177 static LIST_HEAD(phyter_clocks);
178 static DEFINE_MUTEX(phyter_clocks_lock);
179 
180 static void rx_timestamp_work(struct work_struct *work);
181 
182 /* extended register access functions */
183 
184 #define BROADCAST_ADDR 31
185 
186 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
187 {
188 	return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
189 }
190 
191 /* Caller must hold extreg_lock. */
192 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
193 {
194 	struct dp83640_private *dp83640 = phydev->priv;
195 	int val;
196 
197 	if (dp83640->clock->page != page) {
198 		broadcast_write(phydev->bus, PAGESEL, page);
199 		dp83640->clock->page = page;
200 	}
201 	val = phy_read(phydev, regnum);
202 
203 	return val;
204 }
205 
206 /* Caller must hold extreg_lock. */
207 static void ext_write(int broadcast, struct phy_device *phydev,
208 		      int page, u32 regnum, u16 val)
209 {
210 	struct dp83640_private *dp83640 = phydev->priv;
211 
212 	if (dp83640->clock->page != page) {
213 		broadcast_write(phydev->bus, PAGESEL, page);
214 		dp83640->clock->page = page;
215 	}
216 	if (broadcast)
217 		broadcast_write(phydev->bus, regnum, val);
218 	else
219 		phy_write(phydev, regnum, val);
220 }
221 
222 /* Caller must hold extreg_lock. */
223 static int tdr_write(int bc, struct phy_device *dev,
224 		     const struct timespec *ts, u16 cmd)
225 {
226 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
227 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
228 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
229 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
230 
231 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
232 
233 	return 0;
234 }
235 
236 /* convert phy timestamps into driver timestamps */
237 
238 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
239 {
240 	u32 sec;
241 
242 	sec = p->sec_lo;
243 	sec |= p->sec_hi << 16;
244 
245 	rxts->ns = p->ns_lo;
246 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
247 	rxts->ns += ((u64)sec) * 1000000000ULL;
248 	rxts->seqid = p->seqid;
249 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
250 	rxts->hash = p->msgtype & 0x0fff;
251 	rxts->tmo = jiffies + 2;
252 }
253 
254 static u64 phy2txts(struct phy_txts *p)
255 {
256 	u64 ns;
257 	u32 sec;
258 
259 	sec = p->sec_lo;
260 	sec |= p->sec_hi << 16;
261 
262 	ns = p->ns_lo;
263 	ns |= (p->ns_hi & 0x3fff) << 16;
264 	ns += ((u64)sec) * 1000000000ULL;
265 
266 	return ns;
267 }
268 
269 static void periodic_output(struct dp83640_clock *clock,
270 			    struct ptp_clock_request *clkreq, bool on)
271 {
272 	struct dp83640_private *dp83640 = clock->chosen;
273 	struct phy_device *phydev = dp83640->phydev;
274 	u32 sec, nsec, period;
275 	u16 gpio, ptp_trig, trigger, val;
276 
277 	gpio = on ? gpio_tab[PEROUT_GPIO] : 0;
278 	trigger = PER_TRIGGER;
279 
280 	ptp_trig = TRIG_WR |
281 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
282 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
283 		TRIG_PER |
284 		TRIG_PULSE;
285 
286 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
287 
288 	if (!on) {
289 		val |= TRIG_DIS;
290 		mutex_lock(&clock->extreg_lock);
291 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
292 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
293 		mutex_unlock(&clock->extreg_lock);
294 		return;
295 	}
296 
297 	sec = clkreq->perout.start.sec;
298 	nsec = clkreq->perout.start.nsec;
299 	period = clkreq->perout.period.sec * 1000000000UL;
300 	period += clkreq->perout.period.nsec;
301 
302 	mutex_lock(&clock->extreg_lock);
303 
304 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
305 
306 	/*load trigger*/
307 	val |= TRIG_LOAD;
308 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
309 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
310 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
311 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
312 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
313 	ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */
314 	ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16);    /* ns[31:16] */
315 
316 	/*enable trigger*/
317 	val &= ~TRIG_LOAD;
318 	val |= TRIG_EN;
319 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
320 
321 	mutex_unlock(&clock->extreg_lock);
322 }
323 
324 /* ptp clock methods */
325 
326 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
327 {
328 	struct dp83640_clock *clock =
329 		container_of(ptp, struct dp83640_clock, caps);
330 	struct phy_device *phydev = clock->chosen->phydev;
331 	u64 rate;
332 	int neg_adj = 0;
333 	u16 hi, lo;
334 
335 	if (ppb < 0) {
336 		neg_adj = 1;
337 		ppb = -ppb;
338 	}
339 	rate = ppb;
340 	rate <<= 26;
341 	rate = div_u64(rate, 1953125);
342 
343 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
344 	if (neg_adj)
345 		hi |= PTP_RATE_DIR;
346 
347 	lo = rate & 0xffff;
348 
349 	mutex_lock(&clock->extreg_lock);
350 
351 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
352 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
353 
354 	mutex_unlock(&clock->extreg_lock);
355 
356 	return 0;
357 }
358 
359 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
360 {
361 	struct dp83640_clock *clock =
362 		container_of(ptp, struct dp83640_clock, caps);
363 	struct phy_device *phydev = clock->chosen->phydev;
364 	struct timespec ts;
365 	int err;
366 
367 	delta += ADJTIME_FIX;
368 
369 	ts = ns_to_timespec(delta);
370 
371 	mutex_lock(&clock->extreg_lock);
372 
373 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
374 
375 	mutex_unlock(&clock->extreg_lock);
376 
377 	return err;
378 }
379 
380 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
381 {
382 	struct dp83640_clock *clock =
383 		container_of(ptp, struct dp83640_clock, caps);
384 	struct phy_device *phydev = clock->chosen->phydev;
385 	unsigned int val[4];
386 
387 	mutex_lock(&clock->extreg_lock);
388 
389 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
390 
391 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
392 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
393 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
394 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
395 
396 	mutex_unlock(&clock->extreg_lock);
397 
398 	ts->tv_nsec = val[0] | (val[1] << 16);
399 	ts->tv_sec  = val[2] | (val[3] << 16);
400 
401 	return 0;
402 }
403 
404 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
405 			       const struct timespec *ts)
406 {
407 	struct dp83640_clock *clock =
408 		container_of(ptp, struct dp83640_clock, caps);
409 	struct phy_device *phydev = clock->chosen->phydev;
410 	int err;
411 
412 	mutex_lock(&clock->extreg_lock);
413 
414 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
415 
416 	mutex_unlock(&clock->extreg_lock);
417 
418 	return err;
419 }
420 
421 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
422 			      struct ptp_clock_request *rq, int on)
423 {
424 	struct dp83640_clock *clock =
425 		container_of(ptp, struct dp83640_clock, caps);
426 	struct phy_device *phydev = clock->chosen->phydev;
427 	int index;
428 	u16 evnt, event_num, gpio_num;
429 
430 	switch (rq->type) {
431 	case PTP_CLK_REQ_EXTTS:
432 		index = rq->extts.index;
433 		if (index < 0 || index >= N_EXT_TS)
434 			return -EINVAL;
435 		event_num = EXT_EVENT + index;
436 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
437 		if (on) {
438 			gpio_num = gpio_tab[EXTTS0_GPIO + index];
439 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
440 			if (rq->extts.flags & PTP_FALLING_EDGE)
441 				evnt |= EVNT_FALL;
442 			else
443 				evnt |= EVNT_RISE;
444 		}
445 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
446 		return 0;
447 
448 	case PTP_CLK_REQ_PEROUT:
449 		if (rq->perout.index != 0)
450 			return -EINVAL;
451 		periodic_output(clock, rq, on);
452 		return 0;
453 
454 	default:
455 		break;
456 	}
457 
458 	return -EOPNOTSUPP;
459 }
460 
461 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
462 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
463 
464 static void enable_status_frames(struct phy_device *phydev, bool on)
465 {
466 	u16 cfg0 = 0, ver;
467 
468 	if (on)
469 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
470 
471 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
472 
473 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
474 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
475 
476 	if (!phydev->attached_dev) {
477 		pr_warn("expected to find an attached netdevice\n");
478 		return;
479 	}
480 
481 	if (on) {
482 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
483 			pr_warn("failed to add mc address\n");
484 	} else {
485 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
486 			pr_warn("failed to delete mc address\n");
487 	}
488 }
489 
490 static bool is_status_frame(struct sk_buff *skb, int type)
491 {
492 	struct ethhdr *h = eth_hdr(skb);
493 
494 	if (PTP_CLASS_V2_L2 == type &&
495 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
496 		return true;
497 	else
498 		return false;
499 }
500 
501 static int expired(struct rxts *rxts)
502 {
503 	return time_after(jiffies, rxts->tmo);
504 }
505 
506 /* Caller must hold rx_lock. */
507 static void prune_rx_ts(struct dp83640_private *dp83640)
508 {
509 	struct list_head *this, *next;
510 	struct rxts *rxts;
511 
512 	list_for_each_safe(this, next, &dp83640->rxts) {
513 		rxts = list_entry(this, struct rxts, list);
514 		if (expired(rxts)) {
515 			list_del_init(&rxts->list);
516 			list_add(&rxts->list, &dp83640->rxpool);
517 		}
518 	}
519 }
520 
521 /* synchronize the phyters so they act as one clock */
522 
523 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
524 {
525 	int val;
526 	phy_write(phydev, PAGESEL, 0);
527 	val = phy_read(phydev, PHYCR2);
528 	if (on)
529 		val |= BC_WRITE;
530 	else
531 		val &= ~BC_WRITE;
532 	phy_write(phydev, PHYCR2, val);
533 	phy_write(phydev, PAGESEL, init_page);
534 }
535 
536 static void recalibrate(struct dp83640_clock *clock)
537 {
538 	s64 now, diff;
539 	struct phy_txts event_ts;
540 	struct timespec ts;
541 	struct list_head *this;
542 	struct dp83640_private *tmp;
543 	struct phy_device *master = clock->chosen->phydev;
544 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
545 
546 	trigger = CAL_TRIGGER;
547 	cal_gpio = gpio_tab[CALIBRATE_GPIO];
548 
549 	mutex_lock(&clock->extreg_lock);
550 
551 	/*
552 	 * enable broadcast, disable status frames, enable ptp clock
553 	 */
554 	list_for_each(this, &clock->phylist) {
555 		tmp = list_entry(this, struct dp83640_private, list);
556 		enable_broadcast(tmp->phydev, clock->page, 1);
557 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
558 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
559 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
560 	}
561 	enable_broadcast(master, clock->page, 1);
562 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
563 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
564 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
565 
566 	/*
567 	 * enable an event timestamp
568 	 */
569 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
570 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
571 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
572 
573 	list_for_each(this, &clock->phylist) {
574 		tmp = list_entry(this, struct dp83640_private, list);
575 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
576 	}
577 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
578 
579 	/*
580 	 * configure a trigger
581 	 */
582 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
583 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
584 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
585 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
586 
587 	/* load trigger */
588 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
589 	val |= TRIG_LOAD;
590 	ext_write(0, master, PAGE4, PTP_CTL, val);
591 
592 	/* enable trigger */
593 	val &= ~TRIG_LOAD;
594 	val |= TRIG_EN;
595 	ext_write(0, master, PAGE4, PTP_CTL, val);
596 
597 	/* disable trigger */
598 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
599 	val |= TRIG_DIS;
600 	ext_write(0, master, PAGE4, PTP_CTL, val);
601 
602 	/*
603 	 * read out and correct offsets
604 	 */
605 	val = ext_read(master, PAGE4, PTP_STS);
606 	pr_info("master PTP_STS  0x%04hx\n", val);
607 	val = ext_read(master, PAGE4, PTP_ESTS);
608 	pr_info("master PTP_ESTS 0x%04hx\n", val);
609 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
610 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
611 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
612 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
613 	now = phy2txts(&event_ts);
614 
615 	list_for_each(this, &clock->phylist) {
616 		tmp = list_entry(this, struct dp83640_private, list);
617 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
618 		pr_info("slave  PTP_STS  0x%04hx\n", val);
619 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
620 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
621 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
622 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
623 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
624 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
625 		diff = now - (s64) phy2txts(&event_ts);
626 		pr_info("slave offset %lld nanoseconds\n", diff);
627 		diff += ADJTIME_FIX;
628 		ts = ns_to_timespec(diff);
629 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
630 	}
631 
632 	/*
633 	 * restore status frames
634 	 */
635 	list_for_each(this, &clock->phylist) {
636 		tmp = list_entry(this, struct dp83640_private, list);
637 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
638 	}
639 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
640 
641 	mutex_unlock(&clock->extreg_lock);
642 }
643 
644 /* time stamping methods */
645 
646 static inline u16 exts_chan_to_edata(int ch)
647 {
648 	return 1 << ((ch + EXT_EVENT) * 2);
649 }
650 
651 static int decode_evnt(struct dp83640_private *dp83640,
652 		       void *data, u16 ests)
653 {
654 	struct phy_txts *phy_txts;
655 	struct ptp_clock_event event;
656 	int i, parsed;
657 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
658 	u16 ext_status = 0;
659 
660 	if (ests & MULT_EVNT) {
661 		ext_status = *(u16 *) data;
662 		data += sizeof(ext_status);
663 	}
664 
665 	phy_txts = data;
666 
667 	switch (words) { /* fall through in every case */
668 	case 3:
669 		dp83640->edata.sec_hi = phy_txts->sec_hi;
670 	case 2:
671 		dp83640->edata.sec_lo = phy_txts->sec_lo;
672 	case 1:
673 		dp83640->edata.ns_hi = phy_txts->ns_hi;
674 	case 0:
675 		dp83640->edata.ns_lo = phy_txts->ns_lo;
676 	}
677 
678 	if (ext_status) {
679 		parsed = words + 2;
680 	} else {
681 		parsed = words + 1;
682 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
683 		ext_status = exts_chan_to_edata(i);
684 	}
685 
686 	event.type = PTP_CLOCK_EXTTS;
687 	event.timestamp = phy2txts(&dp83640->edata);
688 
689 	for (i = 0; i < N_EXT_TS; i++) {
690 		if (ext_status & exts_chan_to_edata(i)) {
691 			event.index = i;
692 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
693 		}
694 	}
695 
696 	return parsed * sizeof(u16);
697 }
698 
699 static void decode_rxts(struct dp83640_private *dp83640,
700 			struct phy_rxts *phy_rxts)
701 {
702 	struct rxts *rxts;
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&dp83640->rx_lock, flags);
706 
707 	prune_rx_ts(dp83640);
708 
709 	if (list_empty(&dp83640->rxpool)) {
710 		pr_debug("rx timestamp pool is empty\n");
711 		goto out;
712 	}
713 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
714 	list_del_init(&rxts->list);
715 	phy2rxts(phy_rxts, rxts);
716 	list_add_tail(&rxts->list, &dp83640->rxts);
717 out:
718 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
719 }
720 
721 static void decode_txts(struct dp83640_private *dp83640,
722 			struct phy_txts *phy_txts)
723 {
724 	struct skb_shared_hwtstamps shhwtstamps;
725 	struct sk_buff *skb;
726 	u64 ns;
727 
728 	/* We must already have the skb that triggered this. */
729 
730 	skb = skb_dequeue(&dp83640->tx_queue);
731 
732 	if (!skb) {
733 		pr_debug("have timestamp but tx_queue empty\n");
734 		return;
735 	}
736 	ns = phy2txts(phy_txts);
737 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
738 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
739 	skb_complete_tx_timestamp(skb, &shhwtstamps);
740 }
741 
742 static void decode_status_frame(struct dp83640_private *dp83640,
743 				struct sk_buff *skb)
744 {
745 	struct phy_rxts *phy_rxts;
746 	struct phy_txts *phy_txts;
747 	u8 *ptr;
748 	int len, size;
749 	u16 ests, type;
750 
751 	ptr = skb->data + 2;
752 
753 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
754 
755 		type = *(u16 *)ptr;
756 		ests = type & 0x0fff;
757 		type = type & 0xf000;
758 		len -= sizeof(type);
759 		ptr += sizeof(type);
760 
761 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
762 
763 			phy_rxts = (struct phy_rxts *) ptr;
764 			decode_rxts(dp83640, phy_rxts);
765 			size = sizeof(*phy_rxts);
766 
767 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
768 
769 			phy_txts = (struct phy_txts *) ptr;
770 			decode_txts(dp83640, phy_txts);
771 			size = sizeof(*phy_txts);
772 
773 		} else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
774 
775 			size = decode_evnt(dp83640, ptr, ests);
776 
777 		} else {
778 			size = 0;
779 			break;
780 		}
781 		ptr += size;
782 	}
783 }
784 
785 static int is_sync(struct sk_buff *skb, int type)
786 {
787 	u8 *data = skb->data, *msgtype;
788 	unsigned int offset = 0;
789 
790 	switch (type) {
791 	case PTP_CLASS_V1_IPV4:
792 	case PTP_CLASS_V2_IPV4:
793 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
794 		break;
795 	case PTP_CLASS_V1_IPV6:
796 	case PTP_CLASS_V2_IPV6:
797 		offset = OFF_PTP6;
798 		break;
799 	case PTP_CLASS_V2_L2:
800 		offset = ETH_HLEN;
801 		break;
802 	case PTP_CLASS_V2_VLAN:
803 		offset = ETH_HLEN + VLAN_HLEN;
804 		break;
805 	default:
806 		return 0;
807 	}
808 
809 	if (type & PTP_CLASS_V1)
810 		offset += OFF_PTP_CONTROL;
811 
812 	if (skb->len < offset + 1)
813 		return 0;
814 
815 	msgtype = data + offset;
816 
817 	return (*msgtype & 0xf) == 0;
818 }
819 
820 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
821 {
822 	u16 *seqid;
823 	unsigned int offset;
824 	u8 *msgtype, *data = skb_mac_header(skb);
825 
826 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
827 
828 	switch (type) {
829 	case PTP_CLASS_V1_IPV4:
830 	case PTP_CLASS_V2_IPV4:
831 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
832 		break;
833 	case PTP_CLASS_V1_IPV6:
834 	case PTP_CLASS_V2_IPV6:
835 		offset = OFF_PTP6;
836 		break;
837 	case PTP_CLASS_V2_L2:
838 		offset = ETH_HLEN;
839 		break;
840 	case PTP_CLASS_V2_VLAN:
841 		offset = ETH_HLEN + VLAN_HLEN;
842 		break;
843 	default:
844 		return 0;
845 	}
846 
847 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
848 		return 0;
849 
850 	if (unlikely(type & PTP_CLASS_V1))
851 		msgtype = data + offset + OFF_PTP_CONTROL;
852 	else
853 		msgtype = data + offset;
854 
855 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
856 
857 	return rxts->msgtype == (*msgtype & 0xf) &&
858 		rxts->seqid   == ntohs(*seqid);
859 }
860 
861 static void dp83640_free_clocks(void)
862 {
863 	struct dp83640_clock *clock;
864 	struct list_head *this, *next;
865 
866 	mutex_lock(&phyter_clocks_lock);
867 
868 	list_for_each_safe(this, next, &phyter_clocks) {
869 		clock = list_entry(this, struct dp83640_clock, list);
870 		if (!list_empty(&clock->phylist)) {
871 			pr_warn("phy list non-empty while unloading\n");
872 			BUG();
873 		}
874 		list_del(&clock->list);
875 		mutex_destroy(&clock->extreg_lock);
876 		mutex_destroy(&clock->clock_lock);
877 		put_device(&clock->bus->dev);
878 		kfree(clock);
879 	}
880 
881 	mutex_unlock(&phyter_clocks_lock);
882 }
883 
884 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
885 {
886 	INIT_LIST_HEAD(&clock->list);
887 	clock->bus = bus;
888 	mutex_init(&clock->extreg_lock);
889 	mutex_init(&clock->clock_lock);
890 	INIT_LIST_HEAD(&clock->phylist);
891 	clock->caps.owner = THIS_MODULE;
892 	sprintf(clock->caps.name, "dp83640 timer");
893 	clock->caps.max_adj	= 1953124;
894 	clock->caps.n_alarm	= 0;
895 	clock->caps.n_ext_ts	= N_EXT_TS;
896 	clock->caps.n_per_out	= 1;
897 	clock->caps.pps		= 0;
898 	clock->caps.adjfreq	= ptp_dp83640_adjfreq;
899 	clock->caps.adjtime	= ptp_dp83640_adjtime;
900 	clock->caps.gettime	= ptp_dp83640_gettime;
901 	clock->caps.settime	= ptp_dp83640_settime;
902 	clock->caps.enable	= ptp_dp83640_enable;
903 	/*
904 	 * Get a reference to this bus instance.
905 	 */
906 	get_device(&bus->dev);
907 }
908 
909 static int choose_this_phy(struct dp83640_clock *clock,
910 			   struct phy_device *phydev)
911 {
912 	if (chosen_phy == -1 && !clock->chosen)
913 		return 1;
914 
915 	if (chosen_phy == phydev->addr)
916 		return 1;
917 
918 	return 0;
919 }
920 
921 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
922 {
923 	if (clock)
924 		mutex_lock(&clock->clock_lock);
925 	return clock;
926 }
927 
928 /*
929  * Look up and lock a clock by bus instance.
930  * If there is no clock for this bus, then create it first.
931  */
932 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
933 {
934 	struct dp83640_clock *clock = NULL, *tmp;
935 	struct list_head *this;
936 
937 	mutex_lock(&phyter_clocks_lock);
938 
939 	list_for_each(this, &phyter_clocks) {
940 		tmp = list_entry(this, struct dp83640_clock, list);
941 		if (tmp->bus == bus) {
942 			clock = tmp;
943 			break;
944 		}
945 	}
946 	if (clock)
947 		goto out;
948 
949 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
950 	if (!clock)
951 		goto out;
952 
953 	dp83640_clock_init(clock, bus);
954 	list_add_tail(&phyter_clocks, &clock->list);
955 out:
956 	mutex_unlock(&phyter_clocks_lock);
957 
958 	return dp83640_clock_get(clock);
959 }
960 
961 static void dp83640_clock_put(struct dp83640_clock *clock)
962 {
963 	mutex_unlock(&clock->clock_lock);
964 }
965 
966 static int dp83640_probe(struct phy_device *phydev)
967 {
968 	struct dp83640_clock *clock;
969 	struct dp83640_private *dp83640;
970 	int err = -ENOMEM, i;
971 
972 	if (phydev->addr == BROADCAST_ADDR)
973 		return 0;
974 
975 	clock = dp83640_clock_get_bus(phydev->bus);
976 	if (!clock)
977 		goto no_clock;
978 
979 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
980 	if (!dp83640)
981 		goto no_memory;
982 
983 	dp83640->phydev = phydev;
984 	INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
985 
986 	INIT_LIST_HEAD(&dp83640->rxts);
987 	INIT_LIST_HEAD(&dp83640->rxpool);
988 	for (i = 0; i < MAX_RXTS; i++)
989 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
990 
991 	phydev->priv = dp83640;
992 
993 	spin_lock_init(&dp83640->rx_lock);
994 	skb_queue_head_init(&dp83640->rx_queue);
995 	skb_queue_head_init(&dp83640->tx_queue);
996 
997 	dp83640->clock = clock;
998 
999 	if (choose_this_phy(clock, phydev)) {
1000 		clock->chosen = dp83640;
1001 		clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
1002 		if (IS_ERR(clock->ptp_clock)) {
1003 			err = PTR_ERR(clock->ptp_clock);
1004 			goto no_register;
1005 		}
1006 	} else
1007 		list_add_tail(&dp83640->list, &clock->phylist);
1008 
1009 	dp83640_clock_put(clock);
1010 	return 0;
1011 
1012 no_register:
1013 	clock->chosen = NULL;
1014 	kfree(dp83640);
1015 no_memory:
1016 	dp83640_clock_put(clock);
1017 no_clock:
1018 	return err;
1019 }
1020 
1021 static void dp83640_remove(struct phy_device *phydev)
1022 {
1023 	struct dp83640_clock *clock;
1024 	struct list_head *this, *next;
1025 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1026 	struct sk_buff *skb;
1027 
1028 	if (phydev->addr == BROADCAST_ADDR)
1029 		return;
1030 
1031 	enable_status_frames(phydev, false);
1032 	cancel_work_sync(&dp83640->ts_work);
1033 
1034 	while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
1035 		kfree_skb(skb);
1036 
1037 	while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
1038 		skb_complete_tx_timestamp(skb, NULL);
1039 
1040 	clock = dp83640_clock_get(dp83640->clock);
1041 
1042 	if (dp83640 == clock->chosen) {
1043 		ptp_clock_unregister(clock->ptp_clock);
1044 		clock->chosen = NULL;
1045 	} else {
1046 		list_for_each_safe(this, next, &clock->phylist) {
1047 			tmp = list_entry(this, struct dp83640_private, list);
1048 			if (tmp == dp83640) {
1049 				list_del_init(&tmp->list);
1050 				break;
1051 			}
1052 		}
1053 	}
1054 
1055 	dp83640_clock_put(clock);
1056 	kfree(dp83640);
1057 }
1058 
1059 static int dp83640_config_init(struct phy_device *phydev)
1060 {
1061 	struct dp83640_private *dp83640 = phydev->priv;
1062 	struct dp83640_clock *clock = dp83640->clock;
1063 
1064 	if (clock->chosen && !list_empty(&clock->phylist))
1065 		recalibrate(clock);
1066 	else
1067 		enable_broadcast(phydev, clock->page, 1);
1068 
1069 	enable_status_frames(phydev, true);
1070 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1071 	return 0;
1072 }
1073 
1074 static int dp83640_ack_interrupt(struct phy_device *phydev)
1075 {
1076 	int err = phy_read(phydev, MII_DP83640_MISR);
1077 
1078 	if (err < 0)
1079 		return err;
1080 
1081 	return 0;
1082 }
1083 
1084 static int dp83640_config_intr(struct phy_device *phydev)
1085 {
1086 	int micr;
1087 	int misr;
1088 	int err;
1089 
1090 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1091 		misr = phy_read(phydev, MII_DP83640_MISR);
1092 		if (misr < 0)
1093 			return misr;
1094 		misr |=
1095 			(MII_DP83640_MISR_ANC_INT_EN |
1096 			MII_DP83640_MISR_DUP_INT_EN |
1097 			MII_DP83640_MISR_SPD_INT_EN |
1098 			MII_DP83640_MISR_LINK_INT_EN);
1099 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1100 		if (err < 0)
1101 			return err;
1102 
1103 		micr = phy_read(phydev, MII_DP83640_MICR);
1104 		if (micr < 0)
1105 			return micr;
1106 		micr |=
1107 			(MII_DP83640_MICR_OE |
1108 			MII_DP83640_MICR_IE);
1109 		return phy_write(phydev, MII_DP83640_MICR, micr);
1110 	} else {
1111 		micr = phy_read(phydev, MII_DP83640_MICR);
1112 		if (micr < 0)
1113 			return micr;
1114 		micr &=
1115 			~(MII_DP83640_MICR_OE |
1116 			MII_DP83640_MICR_IE);
1117 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1118 		if (err < 0)
1119 			return err;
1120 
1121 		misr = phy_read(phydev, MII_DP83640_MISR);
1122 		if (misr < 0)
1123 			return misr;
1124 		misr &=
1125 			~(MII_DP83640_MISR_ANC_INT_EN |
1126 			MII_DP83640_MISR_DUP_INT_EN |
1127 			MII_DP83640_MISR_SPD_INT_EN |
1128 			MII_DP83640_MISR_LINK_INT_EN);
1129 		return phy_write(phydev, MII_DP83640_MISR, misr);
1130 	}
1131 }
1132 
1133 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1134 {
1135 	struct dp83640_private *dp83640 = phydev->priv;
1136 	struct hwtstamp_config cfg;
1137 	u16 txcfg0, rxcfg0;
1138 
1139 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1140 		return -EFAULT;
1141 
1142 	if (cfg.flags) /* reserved for future extensions */
1143 		return -EINVAL;
1144 
1145 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1146 		return -ERANGE;
1147 
1148 	dp83640->hwts_tx_en = cfg.tx_type;
1149 
1150 	switch (cfg.rx_filter) {
1151 	case HWTSTAMP_FILTER_NONE:
1152 		dp83640->hwts_rx_en = 0;
1153 		dp83640->layer = 0;
1154 		dp83640->version = 0;
1155 		break;
1156 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1157 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1158 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1159 		dp83640->hwts_rx_en = 1;
1160 		dp83640->layer = LAYER4;
1161 		dp83640->version = 1;
1162 		break;
1163 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1164 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1165 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1166 		dp83640->hwts_rx_en = 1;
1167 		dp83640->layer = LAYER4;
1168 		dp83640->version = 2;
1169 		break;
1170 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1171 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1172 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1173 		dp83640->hwts_rx_en = 1;
1174 		dp83640->layer = LAYER2;
1175 		dp83640->version = 2;
1176 		break;
1177 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1178 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1179 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1180 		dp83640->hwts_rx_en = 1;
1181 		dp83640->layer = LAYER4|LAYER2;
1182 		dp83640->version = 2;
1183 		break;
1184 	default:
1185 		return -ERANGE;
1186 	}
1187 
1188 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1189 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1190 
1191 	if (dp83640->layer & LAYER2) {
1192 		txcfg0 |= TX_L2_EN;
1193 		rxcfg0 |= RX_L2_EN;
1194 	}
1195 	if (dp83640->layer & LAYER4) {
1196 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1197 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1198 	}
1199 
1200 	if (dp83640->hwts_tx_en)
1201 		txcfg0 |= TX_TS_EN;
1202 
1203 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1204 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1205 
1206 	if (dp83640->hwts_rx_en)
1207 		rxcfg0 |= RX_TS_EN;
1208 
1209 	mutex_lock(&dp83640->clock->extreg_lock);
1210 
1211 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1212 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1213 
1214 	mutex_unlock(&dp83640->clock->extreg_lock);
1215 
1216 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1217 }
1218 
1219 static void rx_timestamp_work(struct work_struct *work)
1220 {
1221 	struct dp83640_private *dp83640 =
1222 		container_of(work, struct dp83640_private, ts_work);
1223 	struct list_head *this, *next;
1224 	struct rxts *rxts;
1225 	struct skb_shared_hwtstamps *shhwtstamps;
1226 	struct sk_buff *skb;
1227 	unsigned int type;
1228 	unsigned long flags;
1229 
1230 	/* Deliver each deferred packet, with or without a time stamp. */
1231 
1232 	while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
1233 		type = SKB_PTP_TYPE(skb);
1234 		spin_lock_irqsave(&dp83640->rx_lock, flags);
1235 		list_for_each_safe(this, next, &dp83640->rxts) {
1236 			rxts = list_entry(this, struct rxts, list);
1237 			if (match(skb, type, rxts)) {
1238 				shhwtstamps = skb_hwtstamps(skb);
1239 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1240 				shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1241 				list_del_init(&rxts->list);
1242 				list_add(&rxts->list, &dp83640->rxpool);
1243 				break;
1244 			}
1245 		}
1246 		spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1247 		netif_rx_ni(skb);
1248 	}
1249 
1250 	/* Clear out expired time stamps. */
1251 
1252 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1253 	prune_rx_ts(dp83640);
1254 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1255 }
1256 
1257 static bool dp83640_rxtstamp(struct phy_device *phydev,
1258 			     struct sk_buff *skb, int type)
1259 {
1260 	struct dp83640_private *dp83640 = phydev->priv;
1261 
1262 	if (!dp83640->hwts_rx_en)
1263 		return false;
1264 
1265 	if (is_status_frame(skb, type)) {
1266 		decode_status_frame(dp83640, skb);
1267 		kfree_skb(skb);
1268 		return true;
1269 	}
1270 
1271 	SKB_PTP_TYPE(skb) = type;
1272 	skb_queue_tail(&dp83640->rx_queue, skb);
1273 	schedule_work(&dp83640->ts_work);
1274 
1275 	return true;
1276 }
1277 
1278 static void dp83640_txtstamp(struct phy_device *phydev,
1279 			     struct sk_buff *skb, int type)
1280 {
1281 	struct dp83640_private *dp83640 = phydev->priv;
1282 
1283 	switch (dp83640->hwts_tx_en) {
1284 
1285 	case HWTSTAMP_TX_ONESTEP_SYNC:
1286 		if (is_sync(skb, type)) {
1287 			skb_complete_tx_timestamp(skb, NULL);
1288 			return;
1289 		}
1290 		/* fall through */
1291 	case HWTSTAMP_TX_ON:
1292 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1293 		skb_queue_tail(&dp83640->tx_queue, skb);
1294 		schedule_work(&dp83640->ts_work);
1295 		break;
1296 
1297 	case HWTSTAMP_TX_OFF:
1298 	default:
1299 		skb_complete_tx_timestamp(skb, NULL);
1300 		break;
1301 	}
1302 }
1303 
1304 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1305 {
1306 	struct dp83640_private *dp83640 = dev->priv;
1307 
1308 	info->so_timestamping =
1309 		SOF_TIMESTAMPING_TX_HARDWARE |
1310 		SOF_TIMESTAMPING_RX_HARDWARE |
1311 		SOF_TIMESTAMPING_RAW_HARDWARE;
1312 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1313 	info->tx_types =
1314 		(1 << HWTSTAMP_TX_OFF) |
1315 		(1 << HWTSTAMP_TX_ON) |
1316 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1317 	info->rx_filters =
1318 		(1 << HWTSTAMP_FILTER_NONE) |
1319 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1320 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1321 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1322 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1323 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1324 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1325 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1326 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1327 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1328 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1329 		(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1330 		(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1331 	return 0;
1332 }
1333 
1334 static struct phy_driver dp83640_driver = {
1335 	.phy_id		= DP83640_PHY_ID,
1336 	.phy_id_mask	= 0xfffffff0,
1337 	.name		= "NatSemi DP83640",
1338 	.features	= PHY_BASIC_FEATURES,
1339 	.flags		= PHY_HAS_INTERRUPT,
1340 	.probe		= dp83640_probe,
1341 	.remove		= dp83640_remove,
1342 	.config_init	= dp83640_config_init,
1343 	.config_aneg	= genphy_config_aneg,
1344 	.read_status	= genphy_read_status,
1345 	.ack_interrupt  = dp83640_ack_interrupt,
1346 	.config_intr    = dp83640_config_intr,
1347 	.ts_info	= dp83640_ts_info,
1348 	.hwtstamp	= dp83640_hwtstamp,
1349 	.rxtstamp	= dp83640_rxtstamp,
1350 	.txtstamp	= dp83640_txtstamp,
1351 	.driver		= {.owner = THIS_MODULE,}
1352 };
1353 
1354 static int __init dp83640_init(void)
1355 {
1356 	return phy_driver_register(&dp83640_driver);
1357 }
1358 
1359 static void __exit dp83640_exit(void)
1360 {
1361 	dp83640_free_clocks();
1362 	phy_driver_unregister(&dp83640_driver);
1363 }
1364 
1365 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1366 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.at>");
1367 MODULE_LICENSE("GPL");
1368 
1369 module_init(dp83640_init);
1370 module_exit(dp83640_exit);
1371 
1372 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1373 	{ DP83640_PHY_ID, 0xfffffff0 },
1374 	{ }
1375 };
1376 
1377 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1378