xref: /openbmc/linux/drivers/net/phy/dp83640.c (revision 8b030a57)
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/phy.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/ptp_clock_kernel.h>
35 
36 #include "dp83640_reg.h"
37 
38 #define DP83640_PHY_ID	0x20005ce1
39 #define PAGESEL		0x13
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define N_PER_OUT	7
43 #define PSF_PTPVER	2
44 #define PSF_EVNT	0x4000
45 #define PSF_RX		0x2000
46 #define PSF_TX		0x1000
47 #define EXT_EVENT	1
48 #define CAL_EVENT	7
49 #define CAL_TRIGGER	1
50 #define DP83640_N_PINS	12
51 
52 #define MII_DP83640_MICR 0x11
53 #define MII_DP83640_MISR 0x12
54 
55 #define MII_DP83640_MICR_OE 0x1
56 #define MII_DP83640_MICR_IE 0x2
57 
58 #define MII_DP83640_MISR_RHF_INT_EN 0x01
59 #define MII_DP83640_MISR_FHF_INT_EN 0x02
60 #define MII_DP83640_MISR_ANC_INT_EN 0x04
61 #define MII_DP83640_MISR_DUP_INT_EN 0x08
62 #define MII_DP83640_MISR_SPD_INT_EN 0x10
63 #define MII_DP83640_MISR_LINK_INT_EN 0x20
64 #define MII_DP83640_MISR_ED_INT_EN 0x40
65 #define MII_DP83640_MISR_LQ_INT_EN 0x80
66 
67 /* phyter seems to miss the mark by 16 ns */
68 #define ADJTIME_FIX	16
69 
70 #define SKB_TIMESTAMP_TIMEOUT	2 /* jiffies */
71 
72 #if defined(__BIG_ENDIAN)
73 #define ENDIAN_FLAG	0
74 #elif defined(__LITTLE_ENDIAN)
75 #define ENDIAN_FLAG	PSF_ENDIAN
76 #endif
77 
78 struct dp83640_skb_info {
79 	int ptp_type;
80 	unsigned long tmo;
81 };
82 
83 struct phy_rxts {
84 	u16 ns_lo;   /* ns[15:0] */
85 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
86 	u16 sec_lo;  /* sec[15:0] */
87 	u16 sec_hi;  /* sec[31:16] */
88 	u16 seqid;   /* sequenceId[15:0] */
89 	u16 msgtype; /* messageType[3:0], hash[11:0] */
90 };
91 
92 struct phy_txts {
93 	u16 ns_lo;   /* ns[15:0] */
94 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
95 	u16 sec_lo;  /* sec[15:0] */
96 	u16 sec_hi;  /* sec[31:16] */
97 };
98 
99 struct rxts {
100 	struct list_head list;
101 	unsigned long tmo;
102 	u64 ns;
103 	u16 seqid;
104 	u8  msgtype;
105 	u16 hash;
106 };
107 
108 struct dp83640_clock;
109 
110 struct dp83640_private {
111 	struct list_head list;
112 	struct dp83640_clock *clock;
113 	struct phy_device *phydev;
114 	struct delayed_work ts_work;
115 	int hwts_tx_en;
116 	int hwts_rx_en;
117 	int layer;
118 	int version;
119 	/* remember state of cfg0 during calibration */
120 	int cfg0;
121 	/* remember the last event time stamp */
122 	struct phy_txts edata;
123 	/* list of rx timestamps */
124 	struct list_head rxts;
125 	struct list_head rxpool;
126 	struct rxts rx_pool_data[MAX_RXTS];
127 	/* protects above three fields from concurrent access */
128 	spinlock_t rx_lock;
129 	/* queues of incoming and outgoing packets */
130 	struct sk_buff_head rx_queue;
131 	struct sk_buff_head tx_queue;
132 };
133 
134 struct dp83640_clock {
135 	/* keeps the instance in the 'phyter_clocks' list */
136 	struct list_head list;
137 	/* we create one clock instance per MII bus */
138 	struct mii_bus *bus;
139 	/* protects extended registers from concurrent access */
140 	struct mutex extreg_lock;
141 	/* remembers which page was last selected */
142 	int page;
143 	/* our advertised capabilities */
144 	struct ptp_clock_info caps;
145 	/* protects the three fields below from concurrent access */
146 	struct mutex clock_lock;
147 	/* the one phyter from which we shall read */
148 	struct dp83640_private *chosen;
149 	/* list of the other attached phyters, not chosen */
150 	struct list_head phylist;
151 	/* reference to our PTP hardware clock */
152 	struct ptp_clock *ptp_clock;
153 };
154 
155 /* globals */
156 
157 enum {
158 	CALIBRATE_GPIO,
159 	PEROUT_GPIO,
160 	EXTTS0_GPIO,
161 	EXTTS1_GPIO,
162 	EXTTS2_GPIO,
163 	EXTTS3_GPIO,
164 	EXTTS4_GPIO,
165 	EXTTS5_GPIO,
166 	GPIO_TABLE_SIZE
167 };
168 
169 static int chosen_phy = -1;
170 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
171 	1, 2, 3, 4, 8, 9, 10, 11
172 };
173 
174 module_param(chosen_phy, int, 0444);
175 module_param_array(gpio_tab, ushort, NULL, 0444);
176 
177 MODULE_PARM_DESC(chosen_phy, \
178 	"The address of the PHY to use for the ancillary clock features");
179 MODULE_PARM_DESC(gpio_tab, \
180 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
181 
182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
183 {
184 	int i, index;
185 
186 	for (i = 0; i < DP83640_N_PINS; i++) {
187 		snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
188 		pd[i].index = i;
189 	}
190 
191 	for (i = 0; i < GPIO_TABLE_SIZE; i++) {
192 		if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
193 			pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
194 			return;
195 		}
196 	}
197 
198 	index = gpio_tab[CALIBRATE_GPIO] - 1;
199 	pd[index].func = PTP_PF_PHYSYNC;
200 	pd[index].chan = 0;
201 
202 	index = gpio_tab[PEROUT_GPIO] - 1;
203 	pd[index].func = PTP_PF_PEROUT;
204 	pd[index].chan = 0;
205 
206 	for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
207 		index = gpio_tab[i] - 1;
208 		pd[index].func = PTP_PF_EXTTS;
209 		pd[index].chan = i - EXTTS0_GPIO;
210 	}
211 }
212 
213 /* a list of clocks and a mutex to protect it */
214 static LIST_HEAD(phyter_clocks);
215 static DEFINE_MUTEX(phyter_clocks_lock);
216 
217 static void rx_timestamp_work(struct work_struct *work);
218 
219 /* extended register access functions */
220 
221 #define BROADCAST_ADDR 31
222 
223 static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
224 				  u16 val)
225 {
226 	return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
227 }
228 
229 /* Caller must hold extreg_lock. */
230 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
231 {
232 	struct dp83640_private *dp83640 = phydev->priv;
233 	int val;
234 
235 	if (dp83640->clock->page != page) {
236 		broadcast_write(phydev, PAGESEL, page);
237 		dp83640->clock->page = page;
238 	}
239 	val = phy_read(phydev, regnum);
240 
241 	return val;
242 }
243 
244 /* Caller must hold extreg_lock. */
245 static void ext_write(int broadcast, struct phy_device *phydev,
246 		      int page, u32 regnum, u16 val)
247 {
248 	struct dp83640_private *dp83640 = phydev->priv;
249 
250 	if (dp83640->clock->page != page) {
251 		broadcast_write(phydev, PAGESEL, page);
252 		dp83640->clock->page = page;
253 	}
254 	if (broadcast)
255 		broadcast_write(phydev, regnum, val);
256 	else
257 		phy_write(phydev, regnum, val);
258 }
259 
260 /* Caller must hold extreg_lock. */
261 static int tdr_write(int bc, struct phy_device *dev,
262 		     const struct timespec64 *ts, u16 cmd)
263 {
264 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
265 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
266 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
267 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
268 
269 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
270 
271 	return 0;
272 }
273 
274 /* convert phy timestamps into driver timestamps */
275 
276 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
277 {
278 	u32 sec;
279 
280 	sec = p->sec_lo;
281 	sec |= p->sec_hi << 16;
282 
283 	rxts->ns = p->ns_lo;
284 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
285 	rxts->ns += ((u64)sec) * 1000000000ULL;
286 	rxts->seqid = p->seqid;
287 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
288 	rxts->hash = p->msgtype & 0x0fff;
289 	rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
290 }
291 
292 static u64 phy2txts(struct phy_txts *p)
293 {
294 	u64 ns;
295 	u32 sec;
296 
297 	sec = p->sec_lo;
298 	sec |= p->sec_hi << 16;
299 
300 	ns = p->ns_lo;
301 	ns |= (p->ns_hi & 0x3fff) << 16;
302 	ns += ((u64)sec) * 1000000000ULL;
303 
304 	return ns;
305 }
306 
307 static int periodic_output(struct dp83640_clock *clock,
308 			   struct ptp_clock_request *clkreq, bool on,
309 			   int trigger)
310 {
311 	struct dp83640_private *dp83640 = clock->chosen;
312 	struct phy_device *phydev = dp83640->phydev;
313 	u32 sec, nsec, pwidth;
314 	u16 gpio, ptp_trig, val;
315 
316 	if (on) {
317 		gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
318 					trigger);
319 		if (gpio < 1)
320 			return -EINVAL;
321 	} else {
322 		gpio = 0;
323 	}
324 
325 	ptp_trig = TRIG_WR |
326 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
327 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
328 		TRIG_PER |
329 		TRIG_PULSE;
330 
331 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
332 
333 	if (!on) {
334 		val |= TRIG_DIS;
335 		mutex_lock(&clock->extreg_lock);
336 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
337 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
338 		mutex_unlock(&clock->extreg_lock);
339 		return 0;
340 	}
341 
342 	sec = clkreq->perout.start.sec;
343 	nsec = clkreq->perout.start.nsec;
344 	pwidth = clkreq->perout.period.sec * 1000000000UL;
345 	pwidth += clkreq->perout.period.nsec;
346 	pwidth /= 2;
347 
348 	mutex_lock(&clock->extreg_lock);
349 
350 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
351 
352 	/*load trigger*/
353 	val |= TRIG_LOAD;
354 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
355 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
356 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
357 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
358 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
359 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
360 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);    /* ns[31:16] */
361 	/* Triggers 0 and 1 has programmable pulsewidth2 */
362 	if (trigger < 2) {
363 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
364 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
365 	}
366 
367 	/*enable trigger*/
368 	val &= ~TRIG_LOAD;
369 	val |= TRIG_EN;
370 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
371 
372 	mutex_unlock(&clock->extreg_lock);
373 	return 0;
374 }
375 
376 /* ptp clock methods */
377 
378 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
379 {
380 	struct dp83640_clock *clock =
381 		container_of(ptp, struct dp83640_clock, caps);
382 	struct phy_device *phydev = clock->chosen->phydev;
383 	u64 rate;
384 	int neg_adj = 0;
385 	u16 hi, lo;
386 
387 	if (scaled_ppm < 0) {
388 		neg_adj = 1;
389 		scaled_ppm = -scaled_ppm;
390 	}
391 	rate = scaled_ppm;
392 	rate <<= 13;
393 	rate = div_u64(rate, 15625);
394 
395 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
396 	if (neg_adj)
397 		hi |= PTP_RATE_DIR;
398 
399 	lo = rate & 0xffff;
400 
401 	mutex_lock(&clock->extreg_lock);
402 
403 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
404 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
405 
406 	mutex_unlock(&clock->extreg_lock);
407 
408 	return 0;
409 }
410 
411 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
412 {
413 	struct dp83640_clock *clock =
414 		container_of(ptp, struct dp83640_clock, caps);
415 	struct phy_device *phydev = clock->chosen->phydev;
416 	struct timespec64 ts;
417 	int err;
418 
419 	delta += ADJTIME_FIX;
420 
421 	ts = ns_to_timespec64(delta);
422 
423 	mutex_lock(&clock->extreg_lock);
424 
425 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
426 
427 	mutex_unlock(&clock->extreg_lock);
428 
429 	return err;
430 }
431 
432 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
433 			       struct timespec64 *ts)
434 {
435 	struct dp83640_clock *clock =
436 		container_of(ptp, struct dp83640_clock, caps);
437 	struct phy_device *phydev = clock->chosen->phydev;
438 	unsigned int val[4];
439 
440 	mutex_lock(&clock->extreg_lock);
441 
442 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
443 
444 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
445 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
446 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
447 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
448 
449 	mutex_unlock(&clock->extreg_lock);
450 
451 	ts->tv_nsec = val[0] | (val[1] << 16);
452 	ts->tv_sec  = val[2] | (val[3] << 16);
453 
454 	return 0;
455 }
456 
457 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
458 			       const struct timespec64 *ts)
459 {
460 	struct dp83640_clock *clock =
461 		container_of(ptp, struct dp83640_clock, caps);
462 	struct phy_device *phydev = clock->chosen->phydev;
463 	int err;
464 
465 	mutex_lock(&clock->extreg_lock);
466 
467 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
468 
469 	mutex_unlock(&clock->extreg_lock);
470 
471 	return err;
472 }
473 
474 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
475 			      struct ptp_clock_request *rq, int on)
476 {
477 	struct dp83640_clock *clock =
478 		container_of(ptp, struct dp83640_clock, caps);
479 	struct phy_device *phydev = clock->chosen->phydev;
480 	unsigned int index;
481 	u16 evnt, event_num, gpio_num;
482 
483 	switch (rq->type) {
484 	case PTP_CLK_REQ_EXTTS:
485 		index = rq->extts.index;
486 		if (index >= N_EXT_TS)
487 			return -EINVAL;
488 		event_num = EXT_EVENT + index;
489 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
490 		if (on) {
491 			gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
492 						    PTP_PF_EXTTS, index);
493 			if (gpio_num < 1)
494 				return -EINVAL;
495 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
496 			if (rq->extts.flags & PTP_FALLING_EDGE)
497 				evnt |= EVNT_FALL;
498 			else
499 				evnt |= EVNT_RISE;
500 		}
501 		mutex_lock(&clock->extreg_lock);
502 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
503 		mutex_unlock(&clock->extreg_lock);
504 		return 0;
505 
506 	case PTP_CLK_REQ_PEROUT:
507 		if (rq->perout.index >= N_PER_OUT)
508 			return -EINVAL;
509 		return periodic_output(clock, rq, on, rq->perout.index);
510 
511 	default:
512 		break;
513 	}
514 
515 	return -EOPNOTSUPP;
516 }
517 
518 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
519 			      enum ptp_pin_function func, unsigned int chan)
520 {
521 	struct dp83640_clock *clock =
522 		container_of(ptp, struct dp83640_clock, caps);
523 
524 	if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
525 	    !list_empty(&clock->phylist))
526 		return 1;
527 
528 	if (func == PTP_PF_PHYSYNC)
529 		return 1;
530 
531 	return 0;
532 }
533 
534 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
535 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
536 
537 static void enable_status_frames(struct phy_device *phydev, bool on)
538 {
539 	struct dp83640_private *dp83640 = phydev->priv;
540 	struct dp83640_clock *clock = dp83640->clock;
541 	u16 cfg0 = 0, ver;
542 
543 	if (on)
544 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
545 
546 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
547 
548 	mutex_lock(&clock->extreg_lock);
549 
550 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
551 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
552 
553 	mutex_unlock(&clock->extreg_lock);
554 
555 	if (!phydev->attached_dev) {
556 		phydev_warn(phydev,
557 			    "expected to find an attached netdevice\n");
558 		return;
559 	}
560 
561 	if (on) {
562 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
563 			phydev_warn(phydev, "failed to add mc address\n");
564 	} else {
565 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
566 			phydev_warn(phydev, "failed to delete mc address\n");
567 	}
568 }
569 
570 static bool is_status_frame(struct sk_buff *skb, int type)
571 {
572 	struct ethhdr *h = eth_hdr(skb);
573 
574 	if (PTP_CLASS_V2_L2 == type &&
575 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
576 		return true;
577 	else
578 		return false;
579 }
580 
581 static int expired(struct rxts *rxts)
582 {
583 	return time_after(jiffies, rxts->tmo);
584 }
585 
586 /* Caller must hold rx_lock. */
587 static void prune_rx_ts(struct dp83640_private *dp83640)
588 {
589 	struct list_head *this, *next;
590 	struct rxts *rxts;
591 
592 	list_for_each_safe(this, next, &dp83640->rxts) {
593 		rxts = list_entry(this, struct rxts, list);
594 		if (expired(rxts)) {
595 			list_del_init(&rxts->list);
596 			list_add(&rxts->list, &dp83640->rxpool);
597 		}
598 	}
599 }
600 
601 /* synchronize the phyters so they act as one clock */
602 
603 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
604 {
605 	int val;
606 	phy_write(phydev, PAGESEL, 0);
607 	val = phy_read(phydev, PHYCR2);
608 	if (on)
609 		val |= BC_WRITE;
610 	else
611 		val &= ~BC_WRITE;
612 	phy_write(phydev, PHYCR2, val);
613 	phy_write(phydev, PAGESEL, init_page);
614 }
615 
616 static void recalibrate(struct dp83640_clock *clock)
617 {
618 	s64 now, diff;
619 	struct phy_txts event_ts;
620 	struct timespec64 ts;
621 	struct list_head *this;
622 	struct dp83640_private *tmp;
623 	struct phy_device *master = clock->chosen->phydev;
624 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
625 
626 	trigger = CAL_TRIGGER;
627 	cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
628 	if (cal_gpio < 1) {
629 		pr_err("PHY calibration pin not available - PHY is not calibrated.");
630 		return;
631 	}
632 
633 	mutex_lock(&clock->extreg_lock);
634 
635 	/*
636 	 * enable broadcast, disable status frames, enable ptp clock
637 	 */
638 	list_for_each(this, &clock->phylist) {
639 		tmp = list_entry(this, struct dp83640_private, list);
640 		enable_broadcast(tmp->phydev, clock->page, 1);
641 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
642 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
643 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
644 	}
645 	enable_broadcast(master, clock->page, 1);
646 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
647 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
648 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
649 
650 	/*
651 	 * enable an event timestamp
652 	 */
653 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
654 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
655 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
656 
657 	list_for_each(this, &clock->phylist) {
658 		tmp = list_entry(this, struct dp83640_private, list);
659 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
660 	}
661 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
662 
663 	/*
664 	 * configure a trigger
665 	 */
666 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
667 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
668 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
669 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
670 
671 	/* load trigger */
672 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
673 	val |= TRIG_LOAD;
674 	ext_write(0, master, PAGE4, PTP_CTL, val);
675 
676 	/* enable trigger */
677 	val &= ~TRIG_LOAD;
678 	val |= TRIG_EN;
679 	ext_write(0, master, PAGE4, PTP_CTL, val);
680 
681 	/* disable trigger */
682 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
683 	val |= TRIG_DIS;
684 	ext_write(0, master, PAGE4, PTP_CTL, val);
685 
686 	/*
687 	 * read out and correct offsets
688 	 */
689 	val = ext_read(master, PAGE4, PTP_STS);
690 	phydev_info(master, "master PTP_STS  0x%04hx\n", val);
691 	val = ext_read(master, PAGE4, PTP_ESTS);
692 	phydev_info(master, "master PTP_ESTS 0x%04hx\n", val);
693 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
694 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
695 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
696 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
697 	now = phy2txts(&event_ts);
698 
699 	list_for_each(this, &clock->phylist) {
700 		tmp = list_entry(this, struct dp83640_private, list);
701 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
702 		phydev_info(tmp->phydev, "slave  PTP_STS  0x%04hx\n", val);
703 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
704 		phydev_info(tmp->phydev, "slave  PTP_ESTS 0x%04hx\n", val);
705 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
707 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
708 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
709 		diff = now - (s64) phy2txts(&event_ts);
710 		phydev_info(tmp->phydev, "slave offset %lld nanoseconds\n",
711 			    diff);
712 		diff += ADJTIME_FIX;
713 		ts = ns_to_timespec64(diff);
714 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
715 	}
716 
717 	/*
718 	 * restore status frames
719 	 */
720 	list_for_each(this, &clock->phylist) {
721 		tmp = list_entry(this, struct dp83640_private, list);
722 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
723 	}
724 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
725 
726 	mutex_unlock(&clock->extreg_lock);
727 }
728 
729 /* time stamping methods */
730 
731 static inline u16 exts_chan_to_edata(int ch)
732 {
733 	return 1 << ((ch + EXT_EVENT) * 2);
734 }
735 
736 static int decode_evnt(struct dp83640_private *dp83640,
737 		       void *data, int len, u16 ests)
738 {
739 	struct phy_txts *phy_txts;
740 	struct ptp_clock_event event;
741 	int i, parsed;
742 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
743 	u16 ext_status = 0;
744 
745 	/* calculate length of the event timestamp status message */
746 	if (ests & MULT_EVNT)
747 		parsed = (words + 2) * sizeof(u16);
748 	else
749 		parsed = (words + 1) * sizeof(u16);
750 
751 	/* check if enough data is available */
752 	if (len < parsed)
753 		return len;
754 
755 	if (ests & MULT_EVNT) {
756 		ext_status = *(u16 *) data;
757 		data += sizeof(ext_status);
758 	}
759 
760 	phy_txts = data;
761 
762 	switch (words) {
763 	case 3:
764 		dp83640->edata.sec_hi = phy_txts->sec_hi;
765 		/* fall through */
766 	case 2:
767 		dp83640->edata.sec_lo = phy_txts->sec_lo;
768 		/* fall through */
769 	case 1:
770 		dp83640->edata.ns_hi = phy_txts->ns_hi;
771 		/* fall through */
772 	case 0:
773 		dp83640->edata.ns_lo = phy_txts->ns_lo;
774 	}
775 
776 	if (!ext_status) {
777 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
778 		ext_status = exts_chan_to_edata(i);
779 	}
780 
781 	event.type = PTP_CLOCK_EXTTS;
782 	event.timestamp = phy2txts(&dp83640->edata);
783 
784 	/* Compensate for input path and synchronization delays */
785 	event.timestamp -= 35;
786 
787 	for (i = 0; i < N_EXT_TS; i++) {
788 		if (ext_status & exts_chan_to_edata(i)) {
789 			event.index = i;
790 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
791 		}
792 	}
793 
794 	return parsed;
795 }
796 
797 #define DP83640_PACKET_HASH_OFFSET	20
798 #define DP83640_PACKET_HASH_LEN		10
799 
800 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
801 {
802 	u16 *seqid, hash;
803 	unsigned int offset = 0;
804 	u8 *msgtype, *data = skb_mac_header(skb);
805 
806 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
807 
808 	if (type & PTP_CLASS_VLAN)
809 		offset += VLAN_HLEN;
810 
811 	switch (type & PTP_CLASS_PMASK) {
812 	case PTP_CLASS_IPV4:
813 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
814 		break;
815 	case PTP_CLASS_IPV6:
816 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
817 		break;
818 	case PTP_CLASS_L2:
819 		offset += ETH_HLEN;
820 		break;
821 	default:
822 		return 0;
823 	}
824 
825 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
826 		return 0;
827 
828 	if (unlikely(type & PTP_CLASS_V1))
829 		msgtype = data + offset + OFF_PTP_CONTROL;
830 	else
831 		msgtype = data + offset;
832 	if (rxts->msgtype != (*msgtype & 0xf))
833 		return 0;
834 
835 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
836 	if (rxts->seqid != ntohs(*seqid))
837 		return 0;
838 
839 	hash = ether_crc(DP83640_PACKET_HASH_LEN,
840 			 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
841 	if (rxts->hash != hash)
842 		return 0;
843 
844 	return 1;
845 }
846 
847 static void decode_rxts(struct dp83640_private *dp83640,
848 			struct phy_rxts *phy_rxts)
849 {
850 	struct rxts *rxts;
851 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
852 	struct sk_buff *skb;
853 	unsigned long flags;
854 	u8 overflow;
855 
856 	overflow = (phy_rxts->ns_hi >> 14) & 0x3;
857 	if (overflow)
858 		pr_debug("rx timestamp queue overflow, count %d\n", overflow);
859 
860 	spin_lock_irqsave(&dp83640->rx_lock, flags);
861 
862 	prune_rx_ts(dp83640);
863 
864 	if (list_empty(&dp83640->rxpool)) {
865 		pr_debug("rx timestamp pool is empty\n");
866 		goto out;
867 	}
868 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
869 	list_del_init(&rxts->list);
870 	phy2rxts(phy_rxts, rxts);
871 
872 	spin_lock(&dp83640->rx_queue.lock);
873 	skb_queue_walk(&dp83640->rx_queue, skb) {
874 		struct dp83640_skb_info *skb_info;
875 
876 		skb_info = (struct dp83640_skb_info *)skb->cb;
877 		if (match(skb, skb_info->ptp_type, rxts)) {
878 			__skb_unlink(skb, &dp83640->rx_queue);
879 			shhwtstamps = skb_hwtstamps(skb);
880 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
881 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
882 			list_add(&rxts->list, &dp83640->rxpool);
883 			break;
884 		}
885 	}
886 	spin_unlock(&dp83640->rx_queue.lock);
887 
888 	if (!shhwtstamps)
889 		list_add_tail(&rxts->list, &dp83640->rxts);
890 out:
891 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
892 
893 	if (shhwtstamps)
894 		netif_rx_ni(skb);
895 }
896 
897 static void decode_txts(struct dp83640_private *dp83640,
898 			struct phy_txts *phy_txts)
899 {
900 	struct skb_shared_hwtstamps shhwtstamps;
901 	struct dp83640_skb_info *skb_info;
902 	struct sk_buff *skb;
903 	u8 overflow;
904 	u64 ns;
905 
906 	/* We must already have the skb that triggered this. */
907 again:
908 	skb = skb_dequeue(&dp83640->tx_queue);
909 	if (!skb) {
910 		pr_debug("have timestamp but tx_queue empty\n");
911 		return;
912 	}
913 
914 	overflow = (phy_txts->ns_hi >> 14) & 0x3;
915 	if (overflow) {
916 		pr_debug("tx timestamp queue overflow, count %d\n", overflow);
917 		while (skb) {
918 			kfree_skb(skb);
919 			skb = skb_dequeue(&dp83640->tx_queue);
920 		}
921 		return;
922 	}
923 	skb_info = (struct dp83640_skb_info *)skb->cb;
924 	if (time_after(jiffies, skb_info->tmo)) {
925 		kfree_skb(skb);
926 		goto again;
927 	}
928 
929 	ns = phy2txts(phy_txts);
930 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
931 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
932 	skb_complete_tx_timestamp(skb, &shhwtstamps);
933 }
934 
935 static void decode_status_frame(struct dp83640_private *dp83640,
936 				struct sk_buff *skb)
937 {
938 	struct phy_rxts *phy_rxts;
939 	struct phy_txts *phy_txts;
940 	u8 *ptr;
941 	int len, size;
942 	u16 ests, type;
943 
944 	ptr = skb->data + 2;
945 
946 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
947 
948 		type = *(u16 *)ptr;
949 		ests = type & 0x0fff;
950 		type = type & 0xf000;
951 		len -= sizeof(type);
952 		ptr += sizeof(type);
953 
954 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
955 
956 			phy_rxts = (struct phy_rxts *) ptr;
957 			decode_rxts(dp83640, phy_rxts);
958 			size = sizeof(*phy_rxts);
959 
960 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
961 
962 			phy_txts = (struct phy_txts *) ptr;
963 			decode_txts(dp83640, phy_txts);
964 			size = sizeof(*phy_txts);
965 
966 		} else if (PSF_EVNT == type) {
967 
968 			size = decode_evnt(dp83640, ptr, len, ests);
969 
970 		} else {
971 			size = 0;
972 			break;
973 		}
974 		ptr += size;
975 	}
976 }
977 
978 static int is_sync(struct sk_buff *skb, int type)
979 {
980 	u8 *data = skb->data, *msgtype;
981 	unsigned int offset = 0;
982 
983 	if (type & PTP_CLASS_VLAN)
984 		offset += VLAN_HLEN;
985 
986 	switch (type & PTP_CLASS_PMASK) {
987 	case PTP_CLASS_IPV4:
988 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
989 		break;
990 	case PTP_CLASS_IPV6:
991 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
992 		break;
993 	case PTP_CLASS_L2:
994 		offset += ETH_HLEN;
995 		break;
996 	default:
997 		return 0;
998 	}
999 
1000 	if (type & PTP_CLASS_V1)
1001 		offset += OFF_PTP_CONTROL;
1002 
1003 	if (skb->len < offset + 1)
1004 		return 0;
1005 
1006 	msgtype = data + offset;
1007 
1008 	return (*msgtype & 0xf) == 0;
1009 }
1010 
1011 static void dp83640_free_clocks(void)
1012 {
1013 	struct dp83640_clock *clock;
1014 	struct list_head *this, *next;
1015 
1016 	mutex_lock(&phyter_clocks_lock);
1017 
1018 	list_for_each_safe(this, next, &phyter_clocks) {
1019 		clock = list_entry(this, struct dp83640_clock, list);
1020 		if (!list_empty(&clock->phylist)) {
1021 			pr_warn("phy list non-empty while unloading\n");
1022 			BUG();
1023 		}
1024 		list_del(&clock->list);
1025 		mutex_destroy(&clock->extreg_lock);
1026 		mutex_destroy(&clock->clock_lock);
1027 		put_device(&clock->bus->dev);
1028 		kfree(clock->caps.pin_config);
1029 		kfree(clock);
1030 	}
1031 
1032 	mutex_unlock(&phyter_clocks_lock);
1033 }
1034 
1035 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1036 {
1037 	INIT_LIST_HEAD(&clock->list);
1038 	clock->bus = bus;
1039 	mutex_init(&clock->extreg_lock);
1040 	mutex_init(&clock->clock_lock);
1041 	INIT_LIST_HEAD(&clock->phylist);
1042 	clock->caps.owner = THIS_MODULE;
1043 	sprintf(clock->caps.name, "dp83640 timer");
1044 	clock->caps.max_adj	= 1953124;
1045 	clock->caps.n_alarm	= 0;
1046 	clock->caps.n_ext_ts	= N_EXT_TS;
1047 	clock->caps.n_per_out	= N_PER_OUT;
1048 	clock->caps.n_pins	= DP83640_N_PINS;
1049 	clock->caps.pps		= 0;
1050 	clock->caps.adjfine	= ptp_dp83640_adjfine;
1051 	clock->caps.adjtime	= ptp_dp83640_adjtime;
1052 	clock->caps.gettime64	= ptp_dp83640_gettime;
1053 	clock->caps.settime64	= ptp_dp83640_settime;
1054 	clock->caps.enable	= ptp_dp83640_enable;
1055 	clock->caps.verify	= ptp_dp83640_verify;
1056 	/*
1057 	 * Convert the module param defaults into a dynamic pin configuration.
1058 	 */
1059 	dp83640_gpio_defaults(clock->caps.pin_config);
1060 	/*
1061 	 * Get a reference to this bus instance.
1062 	 */
1063 	get_device(&bus->dev);
1064 }
1065 
1066 static int choose_this_phy(struct dp83640_clock *clock,
1067 			   struct phy_device *phydev)
1068 {
1069 	if (chosen_phy == -1 && !clock->chosen)
1070 		return 1;
1071 
1072 	if (chosen_phy == phydev->mdio.addr)
1073 		return 1;
1074 
1075 	return 0;
1076 }
1077 
1078 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1079 {
1080 	if (clock)
1081 		mutex_lock(&clock->clock_lock);
1082 	return clock;
1083 }
1084 
1085 /*
1086  * Look up and lock a clock by bus instance.
1087  * If there is no clock for this bus, then create it first.
1088  */
1089 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1090 {
1091 	struct dp83640_clock *clock = NULL, *tmp;
1092 	struct list_head *this;
1093 
1094 	mutex_lock(&phyter_clocks_lock);
1095 
1096 	list_for_each(this, &phyter_clocks) {
1097 		tmp = list_entry(this, struct dp83640_clock, list);
1098 		if (tmp->bus == bus) {
1099 			clock = tmp;
1100 			break;
1101 		}
1102 	}
1103 	if (clock)
1104 		goto out;
1105 
1106 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1107 	if (!clock)
1108 		goto out;
1109 
1110 	clock->caps.pin_config = kcalloc(DP83640_N_PINS,
1111 					 sizeof(struct ptp_pin_desc),
1112 					 GFP_KERNEL);
1113 	if (!clock->caps.pin_config) {
1114 		kfree(clock);
1115 		clock = NULL;
1116 		goto out;
1117 	}
1118 	dp83640_clock_init(clock, bus);
1119 	list_add_tail(&phyter_clocks, &clock->list);
1120 out:
1121 	mutex_unlock(&phyter_clocks_lock);
1122 
1123 	return dp83640_clock_get(clock);
1124 }
1125 
1126 static void dp83640_clock_put(struct dp83640_clock *clock)
1127 {
1128 	mutex_unlock(&clock->clock_lock);
1129 }
1130 
1131 static int dp83640_probe(struct phy_device *phydev)
1132 {
1133 	struct dp83640_clock *clock;
1134 	struct dp83640_private *dp83640;
1135 	int err = -ENOMEM, i;
1136 
1137 	if (phydev->mdio.addr == BROADCAST_ADDR)
1138 		return 0;
1139 
1140 	clock = dp83640_clock_get_bus(phydev->mdio.bus);
1141 	if (!clock)
1142 		goto no_clock;
1143 
1144 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1145 	if (!dp83640)
1146 		goto no_memory;
1147 
1148 	dp83640->phydev = phydev;
1149 	INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
1150 
1151 	INIT_LIST_HEAD(&dp83640->rxts);
1152 	INIT_LIST_HEAD(&dp83640->rxpool);
1153 	for (i = 0; i < MAX_RXTS; i++)
1154 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1155 
1156 	phydev->priv = dp83640;
1157 
1158 	spin_lock_init(&dp83640->rx_lock);
1159 	skb_queue_head_init(&dp83640->rx_queue);
1160 	skb_queue_head_init(&dp83640->tx_queue);
1161 
1162 	dp83640->clock = clock;
1163 
1164 	if (choose_this_phy(clock, phydev)) {
1165 		clock->chosen = dp83640;
1166 		clock->ptp_clock = ptp_clock_register(&clock->caps,
1167 						      &phydev->mdio.dev);
1168 		if (IS_ERR(clock->ptp_clock)) {
1169 			err = PTR_ERR(clock->ptp_clock);
1170 			goto no_register;
1171 		}
1172 	} else
1173 		list_add_tail(&dp83640->list, &clock->phylist);
1174 
1175 	dp83640_clock_put(clock);
1176 	return 0;
1177 
1178 no_register:
1179 	clock->chosen = NULL;
1180 	kfree(dp83640);
1181 no_memory:
1182 	dp83640_clock_put(clock);
1183 no_clock:
1184 	return err;
1185 }
1186 
1187 static void dp83640_remove(struct phy_device *phydev)
1188 {
1189 	struct dp83640_clock *clock;
1190 	struct list_head *this, *next;
1191 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1192 
1193 	if (phydev->mdio.addr == BROADCAST_ADDR)
1194 		return;
1195 
1196 	enable_status_frames(phydev, false);
1197 	cancel_delayed_work_sync(&dp83640->ts_work);
1198 
1199 	skb_queue_purge(&dp83640->rx_queue);
1200 	skb_queue_purge(&dp83640->tx_queue);
1201 
1202 	clock = dp83640_clock_get(dp83640->clock);
1203 
1204 	if (dp83640 == clock->chosen) {
1205 		ptp_clock_unregister(clock->ptp_clock);
1206 		clock->chosen = NULL;
1207 	} else {
1208 		list_for_each_safe(this, next, &clock->phylist) {
1209 			tmp = list_entry(this, struct dp83640_private, list);
1210 			if (tmp == dp83640) {
1211 				list_del_init(&tmp->list);
1212 				break;
1213 			}
1214 		}
1215 	}
1216 
1217 	dp83640_clock_put(clock);
1218 	kfree(dp83640);
1219 }
1220 
1221 static int dp83640_soft_reset(struct phy_device *phydev)
1222 {
1223 	int ret;
1224 
1225 	ret = genphy_soft_reset(phydev);
1226 	if (ret < 0)
1227 		return ret;
1228 
1229 	/* From DP83640 datasheet: "Software driver code must wait 3 us
1230 	 * following a software reset before allowing further serial MII
1231 	 * operations with the DP83640."
1232 	 */
1233 	udelay(10);		/* Taking udelay inaccuracy into account */
1234 
1235 	return 0;
1236 }
1237 
1238 static int dp83640_config_init(struct phy_device *phydev)
1239 {
1240 	struct dp83640_private *dp83640 = phydev->priv;
1241 	struct dp83640_clock *clock = dp83640->clock;
1242 
1243 	if (clock->chosen && !list_empty(&clock->phylist))
1244 		recalibrate(clock);
1245 	else {
1246 		mutex_lock(&clock->extreg_lock);
1247 		enable_broadcast(phydev, clock->page, 1);
1248 		mutex_unlock(&clock->extreg_lock);
1249 	}
1250 
1251 	enable_status_frames(phydev, true);
1252 
1253 	mutex_lock(&clock->extreg_lock);
1254 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1255 	mutex_unlock(&clock->extreg_lock);
1256 
1257 	return 0;
1258 }
1259 
1260 static int dp83640_ack_interrupt(struct phy_device *phydev)
1261 {
1262 	int err = phy_read(phydev, MII_DP83640_MISR);
1263 
1264 	if (err < 0)
1265 		return err;
1266 
1267 	return 0;
1268 }
1269 
1270 static int dp83640_config_intr(struct phy_device *phydev)
1271 {
1272 	int micr;
1273 	int misr;
1274 	int err;
1275 
1276 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1277 		misr = phy_read(phydev, MII_DP83640_MISR);
1278 		if (misr < 0)
1279 			return misr;
1280 		misr |=
1281 			(MII_DP83640_MISR_ANC_INT_EN |
1282 			MII_DP83640_MISR_DUP_INT_EN |
1283 			MII_DP83640_MISR_SPD_INT_EN |
1284 			MII_DP83640_MISR_LINK_INT_EN);
1285 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1286 		if (err < 0)
1287 			return err;
1288 
1289 		micr = phy_read(phydev, MII_DP83640_MICR);
1290 		if (micr < 0)
1291 			return micr;
1292 		micr |=
1293 			(MII_DP83640_MICR_OE |
1294 			MII_DP83640_MICR_IE);
1295 		return phy_write(phydev, MII_DP83640_MICR, micr);
1296 	} else {
1297 		micr = phy_read(phydev, MII_DP83640_MICR);
1298 		if (micr < 0)
1299 			return micr;
1300 		micr &=
1301 			~(MII_DP83640_MICR_OE |
1302 			MII_DP83640_MICR_IE);
1303 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1304 		if (err < 0)
1305 			return err;
1306 
1307 		misr = phy_read(phydev, MII_DP83640_MISR);
1308 		if (misr < 0)
1309 			return misr;
1310 		misr &=
1311 			~(MII_DP83640_MISR_ANC_INT_EN |
1312 			MII_DP83640_MISR_DUP_INT_EN |
1313 			MII_DP83640_MISR_SPD_INT_EN |
1314 			MII_DP83640_MISR_LINK_INT_EN);
1315 		return phy_write(phydev, MII_DP83640_MISR, misr);
1316 	}
1317 }
1318 
1319 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1320 {
1321 	struct dp83640_private *dp83640 = phydev->priv;
1322 	struct hwtstamp_config cfg;
1323 	u16 txcfg0, rxcfg0;
1324 
1325 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1326 		return -EFAULT;
1327 
1328 	if (cfg.flags) /* reserved for future extensions */
1329 		return -EINVAL;
1330 
1331 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1332 		return -ERANGE;
1333 
1334 	dp83640->hwts_tx_en = cfg.tx_type;
1335 
1336 	switch (cfg.rx_filter) {
1337 	case HWTSTAMP_FILTER_NONE:
1338 		dp83640->hwts_rx_en = 0;
1339 		dp83640->layer = 0;
1340 		dp83640->version = 0;
1341 		break;
1342 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1343 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1344 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1345 		dp83640->hwts_rx_en = 1;
1346 		dp83640->layer = PTP_CLASS_L4;
1347 		dp83640->version = PTP_CLASS_V1;
1348 		break;
1349 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1350 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1351 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1352 		dp83640->hwts_rx_en = 1;
1353 		dp83640->layer = PTP_CLASS_L4;
1354 		dp83640->version = PTP_CLASS_V2;
1355 		break;
1356 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1357 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1358 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1359 		dp83640->hwts_rx_en = 1;
1360 		dp83640->layer = PTP_CLASS_L2;
1361 		dp83640->version = PTP_CLASS_V2;
1362 		break;
1363 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1364 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1365 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1366 		dp83640->hwts_rx_en = 1;
1367 		dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
1368 		dp83640->version = PTP_CLASS_V2;
1369 		break;
1370 	default:
1371 		return -ERANGE;
1372 	}
1373 
1374 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1375 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1376 
1377 	if (dp83640->layer & PTP_CLASS_L2) {
1378 		txcfg0 |= TX_L2_EN;
1379 		rxcfg0 |= RX_L2_EN;
1380 	}
1381 	if (dp83640->layer & PTP_CLASS_L4) {
1382 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1383 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1384 	}
1385 
1386 	if (dp83640->hwts_tx_en)
1387 		txcfg0 |= TX_TS_EN;
1388 
1389 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1390 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1391 
1392 	if (dp83640->hwts_rx_en)
1393 		rxcfg0 |= RX_TS_EN;
1394 
1395 	mutex_lock(&dp83640->clock->extreg_lock);
1396 
1397 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1398 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1399 
1400 	mutex_unlock(&dp83640->clock->extreg_lock);
1401 
1402 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1403 }
1404 
1405 static void rx_timestamp_work(struct work_struct *work)
1406 {
1407 	struct dp83640_private *dp83640 =
1408 		container_of(work, struct dp83640_private, ts_work.work);
1409 	struct sk_buff *skb;
1410 
1411 	/* Deliver expired packets. */
1412 	while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1413 		struct dp83640_skb_info *skb_info;
1414 
1415 		skb_info = (struct dp83640_skb_info *)skb->cb;
1416 		if (!time_after(jiffies, skb_info->tmo)) {
1417 			skb_queue_head(&dp83640->rx_queue, skb);
1418 			break;
1419 		}
1420 
1421 		netif_rx_ni(skb);
1422 	}
1423 
1424 	if (!skb_queue_empty(&dp83640->rx_queue))
1425 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1426 }
1427 
1428 static bool dp83640_rxtstamp(struct phy_device *phydev,
1429 			     struct sk_buff *skb, int type)
1430 {
1431 	struct dp83640_private *dp83640 = phydev->priv;
1432 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1433 	struct list_head *this, *next;
1434 	struct rxts *rxts;
1435 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
1436 	unsigned long flags;
1437 
1438 	if (is_status_frame(skb, type)) {
1439 		decode_status_frame(dp83640, skb);
1440 		kfree_skb(skb);
1441 		return true;
1442 	}
1443 
1444 	if (!dp83640->hwts_rx_en)
1445 		return false;
1446 
1447 	if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
1448 		return false;
1449 
1450 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1451 	prune_rx_ts(dp83640);
1452 	list_for_each_safe(this, next, &dp83640->rxts) {
1453 		rxts = list_entry(this, struct rxts, list);
1454 		if (match(skb, type, rxts)) {
1455 			shhwtstamps = skb_hwtstamps(skb);
1456 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1457 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1458 			list_del_init(&rxts->list);
1459 			list_add(&rxts->list, &dp83640->rxpool);
1460 			break;
1461 		}
1462 	}
1463 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1464 
1465 	if (!shhwtstamps) {
1466 		skb_info->ptp_type = type;
1467 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1468 		skb_queue_tail(&dp83640->rx_queue, skb);
1469 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1470 	} else {
1471 		netif_rx_ni(skb);
1472 	}
1473 
1474 	return true;
1475 }
1476 
1477 static void dp83640_txtstamp(struct phy_device *phydev,
1478 			     struct sk_buff *skb, int type)
1479 {
1480 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1481 	struct dp83640_private *dp83640 = phydev->priv;
1482 
1483 	switch (dp83640->hwts_tx_en) {
1484 
1485 	case HWTSTAMP_TX_ONESTEP_SYNC:
1486 		if (is_sync(skb, type)) {
1487 			kfree_skb(skb);
1488 			return;
1489 		}
1490 		/* fall through */
1491 	case HWTSTAMP_TX_ON:
1492 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1493 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1494 		skb_queue_tail(&dp83640->tx_queue, skb);
1495 		break;
1496 
1497 	case HWTSTAMP_TX_OFF:
1498 	default:
1499 		kfree_skb(skb);
1500 		break;
1501 	}
1502 }
1503 
1504 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1505 {
1506 	struct dp83640_private *dp83640 = dev->priv;
1507 
1508 	info->so_timestamping =
1509 		SOF_TIMESTAMPING_TX_HARDWARE |
1510 		SOF_TIMESTAMPING_RX_HARDWARE |
1511 		SOF_TIMESTAMPING_RAW_HARDWARE;
1512 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1513 	info->tx_types =
1514 		(1 << HWTSTAMP_TX_OFF) |
1515 		(1 << HWTSTAMP_TX_ON) |
1516 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1517 	info->rx_filters =
1518 		(1 << HWTSTAMP_FILTER_NONE) |
1519 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1520 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1521 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1522 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1523 	return 0;
1524 }
1525 
1526 static struct phy_driver dp83640_driver = {
1527 	.phy_id		= DP83640_PHY_ID,
1528 	.phy_id_mask	= 0xfffffff0,
1529 	.name		= "NatSemi DP83640",
1530 	.features	= PHY_BASIC_FEATURES,
1531 	.probe		= dp83640_probe,
1532 	.remove		= dp83640_remove,
1533 	.soft_reset	= dp83640_soft_reset,
1534 	.config_init	= dp83640_config_init,
1535 	.ack_interrupt  = dp83640_ack_interrupt,
1536 	.config_intr    = dp83640_config_intr,
1537 	.ts_info	= dp83640_ts_info,
1538 	.hwtstamp	= dp83640_hwtstamp,
1539 	.rxtstamp	= dp83640_rxtstamp,
1540 	.txtstamp	= dp83640_txtstamp,
1541 };
1542 
1543 static int __init dp83640_init(void)
1544 {
1545 	return phy_driver_register(&dp83640_driver, THIS_MODULE);
1546 }
1547 
1548 static void __exit dp83640_exit(void)
1549 {
1550 	dp83640_free_clocks();
1551 	phy_driver_unregister(&dp83640_driver);
1552 }
1553 
1554 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1555 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1556 MODULE_LICENSE("GPL");
1557 
1558 module_init(dp83640_init);
1559 module_exit(dp83640_exit);
1560 
1561 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1562 	{ DP83640_PHY_ID, 0xfffffff0 },
1563 	{ }
1564 };
1565 
1566 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1567