1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for the National Semiconductor DP83640 PHYTER 4 * 5 * Copyright (C) 2010 OMICRON electronics GmbH 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/crc32.h> 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/list.h> 14 #include <linux/mii.h> 15 #include <linux/module.h> 16 #include <linux/net_tstamp.h> 17 #include <linux/netdevice.h> 18 #include <linux/if_vlan.h> 19 #include <linux/phy.h> 20 #include <linux/ptp_classify.h> 21 #include <linux/ptp_clock_kernel.h> 22 23 #include "dp83640_reg.h" 24 25 #define DP83640_PHY_ID 0x20005ce1 26 #define PAGESEL 0x13 27 #define MAX_RXTS 64 28 #define N_EXT_TS 6 29 #define N_PER_OUT 7 30 #define PSF_PTPVER 2 31 #define PSF_EVNT 0x4000 32 #define PSF_RX 0x2000 33 #define PSF_TX 0x1000 34 #define EXT_EVENT 1 35 #define CAL_EVENT 7 36 #define CAL_TRIGGER 1 37 #define DP83640_N_PINS 12 38 39 #define MII_DP83640_MICR 0x11 40 #define MII_DP83640_MISR 0x12 41 42 #define MII_DP83640_MICR_OE 0x1 43 #define MII_DP83640_MICR_IE 0x2 44 45 #define MII_DP83640_MISR_RHF_INT_EN 0x01 46 #define MII_DP83640_MISR_FHF_INT_EN 0x02 47 #define MII_DP83640_MISR_ANC_INT_EN 0x04 48 #define MII_DP83640_MISR_DUP_INT_EN 0x08 49 #define MII_DP83640_MISR_SPD_INT_EN 0x10 50 #define MII_DP83640_MISR_LINK_INT_EN 0x20 51 #define MII_DP83640_MISR_ED_INT_EN 0x40 52 #define MII_DP83640_MISR_LQ_INT_EN 0x80 53 54 /* phyter seems to miss the mark by 16 ns */ 55 #define ADJTIME_FIX 16 56 57 #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */ 58 59 #if defined(__BIG_ENDIAN) 60 #define ENDIAN_FLAG 0 61 #elif defined(__LITTLE_ENDIAN) 62 #define ENDIAN_FLAG PSF_ENDIAN 63 #endif 64 65 struct dp83640_skb_info { 66 int ptp_type; 67 unsigned long tmo; 68 }; 69 70 struct phy_rxts { 71 u16 ns_lo; /* ns[15:0] */ 72 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 73 u16 sec_lo; /* sec[15:0] */ 74 u16 sec_hi; /* sec[31:16] */ 75 u16 seqid; /* sequenceId[15:0] */ 76 u16 msgtype; /* messageType[3:0], hash[11:0] */ 77 }; 78 79 struct phy_txts { 80 u16 ns_lo; /* ns[15:0] */ 81 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 82 u16 sec_lo; /* sec[15:0] */ 83 u16 sec_hi; /* sec[31:16] */ 84 }; 85 86 struct rxts { 87 struct list_head list; 88 unsigned long tmo; 89 u64 ns; 90 u16 seqid; 91 u8 msgtype; 92 u16 hash; 93 }; 94 95 struct dp83640_clock; 96 97 struct dp83640_private { 98 struct list_head list; 99 struct dp83640_clock *clock; 100 struct phy_device *phydev; 101 struct delayed_work ts_work; 102 int hwts_tx_en; 103 int hwts_rx_en; 104 int layer; 105 int version; 106 /* remember state of cfg0 during calibration */ 107 int cfg0; 108 /* remember the last event time stamp */ 109 struct phy_txts edata; 110 /* list of rx timestamps */ 111 struct list_head rxts; 112 struct list_head rxpool; 113 struct rxts rx_pool_data[MAX_RXTS]; 114 /* protects above three fields from concurrent access */ 115 spinlock_t rx_lock; 116 /* queues of incoming and outgoing packets */ 117 struct sk_buff_head rx_queue; 118 struct sk_buff_head tx_queue; 119 }; 120 121 struct dp83640_clock { 122 /* keeps the instance in the 'phyter_clocks' list */ 123 struct list_head list; 124 /* we create one clock instance per MII bus */ 125 struct mii_bus *bus; 126 /* protects extended registers from concurrent access */ 127 struct mutex extreg_lock; 128 /* remembers which page was last selected */ 129 int page; 130 /* our advertised capabilities */ 131 struct ptp_clock_info caps; 132 /* protects the three fields below from concurrent access */ 133 struct mutex clock_lock; 134 /* the one phyter from which we shall read */ 135 struct dp83640_private *chosen; 136 /* list of the other attached phyters, not chosen */ 137 struct list_head phylist; 138 /* reference to our PTP hardware clock */ 139 struct ptp_clock *ptp_clock; 140 }; 141 142 /* globals */ 143 144 enum { 145 CALIBRATE_GPIO, 146 PEROUT_GPIO, 147 EXTTS0_GPIO, 148 EXTTS1_GPIO, 149 EXTTS2_GPIO, 150 EXTTS3_GPIO, 151 EXTTS4_GPIO, 152 EXTTS5_GPIO, 153 GPIO_TABLE_SIZE 154 }; 155 156 static int chosen_phy = -1; 157 static ushort gpio_tab[GPIO_TABLE_SIZE] = { 158 1, 2, 3, 4, 8, 9, 10, 11 159 }; 160 161 module_param(chosen_phy, int, 0444); 162 module_param_array(gpio_tab, ushort, NULL, 0444); 163 164 MODULE_PARM_DESC(chosen_phy, \ 165 "The address of the PHY to use for the ancillary clock features"); 166 MODULE_PARM_DESC(gpio_tab, \ 167 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); 168 169 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd) 170 { 171 int i, index; 172 173 for (i = 0; i < DP83640_N_PINS; i++) { 174 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i); 175 pd[i].index = i; 176 } 177 178 for (i = 0; i < GPIO_TABLE_SIZE; i++) { 179 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) { 180 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]); 181 return; 182 } 183 } 184 185 index = gpio_tab[CALIBRATE_GPIO] - 1; 186 pd[index].func = PTP_PF_PHYSYNC; 187 pd[index].chan = 0; 188 189 index = gpio_tab[PEROUT_GPIO] - 1; 190 pd[index].func = PTP_PF_PEROUT; 191 pd[index].chan = 0; 192 193 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) { 194 index = gpio_tab[i] - 1; 195 pd[index].func = PTP_PF_EXTTS; 196 pd[index].chan = i - EXTTS0_GPIO; 197 } 198 } 199 200 /* a list of clocks and a mutex to protect it */ 201 static LIST_HEAD(phyter_clocks); 202 static DEFINE_MUTEX(phyter_clocks_lock); 203 204 static void rx_timestamp_work(struct work_struct *work); 205 206 /* extended register access functions */ 207 208 #define BROADCAST_ADDR 31 209 210 static inline int broadcast_write(struct phy_device *phydev, u32 regnum, 211 u16 val) 212 { 213 return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val); 214 } 215 216 /* Caller must hold extreg_lock. */ 217 static int ext_read(struct phy_device *phydev, int page, u32 regnum) 218 { 219 struct dp83640_private *dp83640 = phydev->priv; 220 int val; 221 222 if (dp83640->clock->page != page) { 223 broadcast_write(phydev, PAGESEL, page); 224 dp83640->clock->page = page; 225 } 226 val = phy_read(phydev, regnum); 227 228 return val; 229 } 230 231 /* Caller must hold extreg_lock. */ 232 static void ext_write(int broadcast, struct phy_device *phydev, 233 int page, u32 regnum, u16 val) 234 { 235 struct dp83640_private *dp83640 = phydev->priv; 236 237 if (dp83640->clock->page != page) { 238 broadcast_write(phydev, PAGESEL, page); 239 dp83640->clock->page = page; 240 } 241 if (broadcast) 242 broadcast_write(phydev, regnum, val); 243 else 244 phy_write(phydev, regnum, val); 245 } 246 247 /* Caller must hold extreg_lock. */ 248 static int tdr_write(int bc, struct phy_device *dev, 249 const struct timespec64 *ts, u16 cmd) 250 { 251 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ 252 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ 253 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ 254 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ 255 256 ext_write(bc, dev, PAGE4, PTP_CTL, cmd); 257 258 return 0; 259 } 260 261 /* convert phy timestamps into driver timestamps */ 262 263 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) 264 { 265 u32 sec; 266 267 sec = p->sec_lo; 268 sec |= p->sec_hi << 16; 269 270 rxts->ns = p->ns_lo; 271 rxts->ns |= (p->ns_hi & 0x3fff) << 16; 272 rxts->ns += ((u64)sec) * 1000000000ULL; 273 rxts->seqid = p->seqid; 274 rxts->msgtype = (p->msgtype >> 12) & 0xf; 275 rxts->hash = p->msgtype & 0x0fff; 276 rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 277 } 278 279 static u64 phy2txts(struct phy_txts *p) 280 { 281 u64 ns; 282 u32 sec; 283 284 sec = p->sec_lo; 285 sec |= p->sec_hi << 16; 286 287 ns = p->ns_lo; 288 ns |= (p->ns_hi & 0x3fff) << 16; 289 ns += ((u64)sec) * 1000000000ULL; 290 291 return ns; 292 } 293 294 static int periodic_output(struct dp83640_clock *clock, 295 struct ptp_clock_request *clkreq, bool on, 296 int trigger) 297 { 298 struct dp83640_private *dp83640 = clock->chosen; 299 struct phy_device *phydev = dp83640->phydev; 300 u32 sec, nsec, pwidth; 301 u16 gpio, ptp_trig, val; 302 303 if (on) { 304 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 305 trigger); 306 if (gpio < 1) 307 return -EINVAL; 308 } else { 309 gpio = 0; 310 } 311 312 ptp_trig = TRIG_WR | 313 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | 314 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | 315 TRIG_PER | 316 TRIG_PULSE; 317 318 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 319 320 if (!on) { 321 val |= TRIG_DIS; 322 mutex_lock(&clock->extreg_lock); 323 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 324 ext_write(0, phydev, PAGE4, PTP_CTL, val); 325 mutex_unlock(&clock->extreg_lock); 326 return 0; 327 } 328 329 sec = clkreq->perout.start.sec; 330 nsec = clkreq->perout.start.nsec; 331 pwidth = clkreq->perout.period.sec * 1000000000UL; 332 pwidth += clkreq->perout.period.nsec; 333 pwidth /= 2; 334 335 mutex_lock(&clock->extreg_lock); 336 337 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 338 339 /*load trigger*/ 340 val |= TRIG_LOAD; 341 ext_write(0, phydev, PAGE4, PTP_CTL, val); 342 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ 343 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ 344 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ 345 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ 346 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */ 347 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */ 348 /* Triggers 0 and 1 has programmable pulsewidth2 */ 349 if (trigger < 2) { 350 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); 351 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); 352 } 353 354 /*enable trigger*/ 355 val &= ~TRIG_LOAD; 356 val |= TRIG_EN; 357 ext_write(0, phydev, PAGE4, PTP_CTL, val); 358 359 mutex_unlock(&clock->extreg_lock); 360 return 0; 361 } 362 363 /* ptp clock methods */ 364 365 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 366 { 367 struct dp83640_clock *clock = 368 container_of(ptp, struct dp83640_clock, caps); 369 struct phy_device *phydev = clock->chosen->phydev; 370 u64 rate; 371 int neg_adj = 0; 372 u16 hi, lo; 373 374 if (scaled_ppm < 0) { 375 neg_adj = 1; 376 scaled_ppm = -scaled_ppm; 377 } 378 rate = scaled_ppm; 379 rate <<= 13; 380 rate = div_u64(rate, 15625); 381 382 hi = (rate >> 16) & PTP_RATE_HI_MASK; 383 if (neg_adj) 384 hi |= PTP_RATE_DIR; 385 386 lo = rate & 0xffff; 387 388 mutex_lock(&clock->extreg_lock); 389 390 ext_write(1, phydev, PAGE4, PTP_RATEH, hi); 391 ext_write(1, phydev, PAGE4, PTP_RATEL, lo); 392 393 mutex_unlock(&clock->extreg_lock); 394 395 return 0; 396 } 397 398 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) 399 { 400 struct dp83640_clock *clock = 401 container_of(ptp, struct dp83640_clock, caps); 402 struct phy_device *phydev = clock->chosen->phydev; 403 struct timespec64 ts; 404 int err; 405 406 delta += ADJTIME_FIX; 407 408 ts = ns_to_timespec64(delta); 409 410 mutex_lock(&clock->extreg_lock); 411 412 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); 413 414 mutex_unlock(&clock->extreg_lock); 415 416 return err; 417 } 418 419 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, 420 struct timespec64 *ts) 421 { 422 struct dp83640_clock *clock = 423 container_of(ptp, struct dp83640_clock, caps); 424 struct phy_device *phydev = clock->chosen->phydev; 425 unsigned int val[4]; 426 427 mutex_lock(&clock->extreg_lock); 428 429 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); 430 431 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ 432 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ 433 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ 434 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ 435 436 mutex_unlock(&clock->extreg_lock); 437 438 ts->tv_nsec = val[0] | (val[1] << 16); 439 ts->tv_sec = val[2] | (val[3] << 16); 440 441 return 0; 442 } 443 444 static int ptp_dp83640_settime(struct ptp_clock_info *ptp, 445 const struct timespec64 *ts) 446 { 447 struct dp83640_clock *clock = 448 container_of(ptp, struct dp83640_clock, caps); 449 struct phy_device *phydev = clock->chosen->phydev; 450 int err; 451 452 mutex_lock(&clock->extreg_lock); 453 454 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); 455 456 mutex_unlock(&clock->extreg_lock); 457 458 return err; 459 } 460 461 static int ptp_dp83640_enable(struct ptp_clock_info *ptp, 462 struct ptp_clock_request *rq, int on) 463 { 464 struct dp83640_clock *clock = 465 container_of(ptp, struct dp83640_clock, caps); 466 struct phy_device *phydev = clock->chosen->phydev; 467 unsigned int index; 468 u16 evnt, event_num, gpio_num; 469 470 switch (rq->type) { 471 case PTP_CLK_REQ_EXTTS: 472 index = rq->extts.index; 473 if (index >= N_EXT_TS) 474 return -EINVAL; 475 event_num = EXT_EVENT + index; 476 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 477 if (on) { 478 gpio_num = 1 + ptp_find_pin(clock->ptp_clock, 479 PTP_PF_EXTTS, index); 480 if (gpio_num < 1) 481 return -EINVAL; 482 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 483 if (rq->extts.flags & PTP_FALLING_EDGE) 484 evnt |= EVNT_FALL; 485 else 486 evnt |= EVNT_RISE; 487 } 488 mutex_lock(&clock->extreg_lock); 489 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); 490 mutex_unlock(&clock->extreg_lock); 491 return 0; 492 493 case PTP_CLK_REQ_PEROUT: 494 if (rq->perout.index >= N_PER_OUT) 495 return -EINVAL; 496 return periodic_output(clock, rq, on, rq->perout.index); 497 498 default: 499 break; 500 } 501 502 return -EOPNOTSUPP; 503 } 504 505 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin, 506 enum ptp_pin_function func, unsigned int chan) 507 { 508 struct dp83640_clock *clock = 509 container_of(ptp, struct dp83640_clock, caps); 510 511 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC && 512 !list_empty(&clock->phylist)) 513 return 1; 514 515 if (func == PTP_PF_PHYSYNC) 516 return 1; 517 518 return 0; 519 } 520 521 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; 522 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; 523 524 static void enable_status_frames(struct phy_device *phydev, bool on) 525 { 526 struct dp83640_private *dp83640 = phydev->priv; 527 struct dp83640_clock *clock = dp83640->clock; 528 u16 cfg0 = 0, ver; 529 530 if (on) 531 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; 532 533 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; 534 535 mutex_lock(&clock->extreg_lock); 536 537 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); 538 ext_write(0, phydev, PAGE6, PSF_CFG1, ver); 539 540 mutex_unlock(&clock->extreg_lock); 541 542 if (!phydev->attached_dev) { 543 phydev_warn(phydev, 544 "expected to find an attached netdevice\n"); 545 return; 546 } 547 548 if (on) { 549 if (dev_mc_add(phydev->attached_dev, status_frame_dst)) 550 phydev_warn(phydev, "failed to add mc address\n"); 551 } else { 552 if (dev_mc_del(phydev->attached_dev, status_frame_dst)) 553 phydev_warn(phydev, "failed to delete mc address\n"); 554 } 555 } 556 557 static bool is_status_frame(struct sk_buff *skb, int type) 558 { 559 struct ethhdr *h = eth_hdr(skb); 560 561 if (PTP_CLASS_V2_L2 == type && 562 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) 563 return true; 564 else 565 return false; 566 } 567 568 static int expired(struct rxts *rxts) 569 { 570 return time_after(jiffies, rxts->tmo); 571 } 572 573 /* Caller must hold rx_lock. */ 574 static void prune_rx_ts(struct dp83640_private *dp83640) 575 { 576 struct list_head *this, *next; 577 struct rxts *rxts; 578 579 list_for_each_safe(this, next, &dp83640->rxts) { 580 rxts = list_entry(this, struct rxts, list); 581 if (expired(rxts)) { 582 list_del_init(&rxts->list); 583 list_add(&rxts->list, &dp83640->rxpool); 584 } 585 } 586 } 587 588 /* synchronize the phyters so they act as one clock */ 589 590 static void enable_broadcast(struct phy_device *phydev, int init_page, int on) 591 { 592 int val; 593 phy_write(phydev, PAGESEL, 0); 594 val = phy_read(phydev, PHYCR2); 595 if (on) 596 val |= BC_WRITE; 597 else 598 val &= ~BC_WRITE; 599 phy_write(phydev, PHYCR2, val); 600 phy_write(phydev, PAGESEL, init_page); 601 } 602 603 static void recalibrate(struct dp83640_clock *clock) 604 { 605 s64 now, diff; 606 struct phy_txts event_ts; 607 struct timespec64 ts; 608 struct list_head *this; 609 struct dp83640_private *tmp; 610 struct phy_device *master = clock->chosen->phydev; 611 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; 612 613 trigger = CAL_TRIGGER; 614 cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0); 615 if (cal_gpio < 1) { 616 pr_err("PHY calibration pin not available - PHY is not calibrated."); 617 return; 618 } 619 620 mutex_lock(&clock->extreg_lock); 621 622 /* 623 * enable broadcast, disable status frames, enable ptp clock 624 */ 625 list_for_each(this, &clock->phylist) { 626 tmp = list_entry(this, struct dp83640_private, list); 627 enable_broadcast(tmp->phydev, clock->page, 1); 628 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); 629 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); 630 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); 631 } 632 enable_broadcast(master, clock->page, 1); 633 cfg0 = ext_read(master, PAGE5, PSF_CFG0); 634 ext_write(0, master, PAGE5, PSF_CFG0, 0); 635 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); 636 637 /* 638 * enable an event timestamp 639 */ 640 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; 641 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 642 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 643 644 list_for_each(this, &clock->phylist) { 645 tmp = list_entry(this, struct dp83640_private, list); 646 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); 647 } 648 ext_write(0, master, PAGE5, PTP_EVNT, evnt); 649 650 /* 651 * configure a trigger 652 */ 653 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; 654 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; 655 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; 656 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); 657 658 /* load trigger */ 659 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 660 val |= TRIG_LOAD; 661 ext_write(0, master, PAGE4, PTP_CTL, val); 662 663 /* enable trigger */ 664 val &= ~TRIG_LOAD; 665 val |= TRIG_EN; 666 ext_write(0, master, PAGE4, PTP_CTL, val); 667 668 /* disable trigger */ 669 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 670 val |= TRIG_DIS; 671 ext_write(0, master, PAGE4, PTP_CTL, val); 672 673 /* 674 * read out and correct offsets 675 */ 676 val = ext_read(master, PAGE4, PTP_STS); 677 phydev_info(master, "master PTP_STS 0x%04hx\n", val); 678 val = ext_read(master, PAGE4, PTP_ESTS); 679 phydev_info(master, "master PTP_ESTS 0x%04hx\n", val); 680 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); 681 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); 682 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); 683 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); 684 now = phy2txts(&event_ts); 685 686 list_for_each(this, &clock->phylist) { 687 tmp = list_entry(this, struct dp83640_private, list); 688 val = ext_read(tmp->phydev, PAGE4, PTP_STS); 689 phydev_info(tmp->phydev, "slave PTP_STS 0x%04hx\n", val); 690 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); 691 phydev_info(tmp->phydev, "slave PTP_ESTS 0x%04hx\n", val); 692 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 693 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 694 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 695 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 696 diff = now - (s64) phy2txts(&event_ts); 697 phydev_info(tmp->phydev, "slave offset %lld nanoseconds\n", 698 diff); 699 diff += ADJTIME_FIX; 700 ts = ns_to_timespec64(diff); 701 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); 702 } 703 704 /* 705 * restore status frames 706 */ 707 list_for_each(this, &clock->phylist) { 708 tmp = list_entry(this, struct dp83640_private, list); 709 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); 710 } 711 ext_write(0, master, PAGE5, PSF_CFG0, cfg0); 712 713 mutex_unlock(&clock->extreg_lock); 714 } 715 716 /* time stamping methods */ 717 718 static inline u16 exts_chan_to_edata(int ch) 719 { 720 return 1 << ((ch + EXT_EVENT) * 2); 721 } 722 723 static int decode_evnt(struct dp83640_private *dp83640, 724 void *data, int len, u16 ests) 725 { 726 struct phy_txts *phy_txts; 727 struct ptp_clock_event event; 728 int i, parsed; 729 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; 730 u16 ext_status = 0; 731 732 /* calculate length of the event timestamp status message */ 733 if (ests & MULT_EVNT) 734 parsed = (words + 2) * sizeof(u16); 735 else 736 parsed = (words + 1) * sizeof(u16); 737 738 /* check if enough data is available */ 739 if (len < parsed) 740 return len; 741 742 if (ests & MULT_EVNT) { 743 ext_status = *(u16 *) data; 744 data += sizeof(ext_status); 745 } 746 747 phy_txts = data; 748 749 switch (words) { 750 case 3: 751 dp83640->edata.sec_hi = phy_txts->sec_hi; 752 /* fall through */ 753 case 2: 754 dp83640->edata.sec_lo = phy_txts->sec_lo; 755 /* fall through */ 756 case 1: 757 dp83640->edata.ns_hi = phy_txts->ns_hi; 758 /* fall through */ 759 case 0: 760 dp83640->edata.ns_lo = phy_txts->ns_lo; 761 } 762 763 if (!ext_status) { 764 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; 765 ext_status = exts_chan_to_edata(i); 766 } 767 768 event.type = PTP_CLOCK_EXTTS; 769 event.timestamp = phy2txts(&dp83640->edata); 770 771 /* Compensate for input path and synchronization delays */ 772 event.timestamp -= 35; 773 774 for (i = 0; i < N_EXT_TS; i++) { 775 if (ext_status & exts_chan_to_edata(i)) { 776 event.index = i; 777 ptp_clock_event(dp83640->clock->ptp_clock, &event); 778 } 779 } 780 781 return parsed; 782 } 783 784 #define DP83640_PACKET_HASH_OFFSET 20 785 #define DP83640_PACKET_HASH_LEN 10 786 787 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) 788 { 789 u16 *seqid, hash; 790 unsigned int offset = 0; 791 u8 *msgtype, *data = skb_mac_header(skb); 792 793 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ 794 795 if (type & PTP_CLASS_VLAN) 796 offset += VLAN_HLEN; 797 798 switch (type & PTP_CLASS_PMASK) { 799 case PTP_CLASS_IPV4: 800 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 801 break; 802 case PTP_CLASS_IPV6: 803 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 804 break; 805 case PTP_CLASS_L2: 806 offset += ETH_HLEN; 807 break; 808 default: 809 return 0; 810 } 811 812 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) 813 return 0; 814 815 if (unlikely(type & PTP_CLASS_V1)) 816 msgtype = data + offset + OFF_PTP_CONTROL; 817 else 818 msgtype = data + offset; 819 if (rxts->msgtype != (*msgtype & 0xf)) 820 return 0; 821 822 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 823 if (rxts->seqid != ntohs(*seqid)) 824 return 0; 825 826 hash = ether_crc(DP83640_PACKET_HASH_LEN, 827 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20; 828 if (rxts->hash != hash) 829 return 0; 830 831 return 1; 832 } 833 834 static void decode_rxts(struct dp83640_private *dp83640, 835 struct phy_rxts *phy_rxts) 836 { 837 struct rxts *rxts; 838 struct skb_shared_hwtstamps *shhwtstamps = NULL; 839 struct sk_buff *skb; 840 unsigned long flags; 841 u8 overflow; 842 843 overflow = (phy_rxts->ns_hi >> 14) & 0x3; 844 if (overflow) 845 pr_debug("rx timestamp queue overflow, count %d\n", overflow); 846 847 spin_lock_irqsave(&dp83640->rx_lock, flags); 848 849 prune_rx_ts(dp83640); 850 851 if (list_empty(&dp83640->rxpool)) { 852 pr_debug("rx timestamp pool is empty\n"); 853 goto out; 854 } 855 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); 856 list_del_init(&rxts->list); 857 phy2rxts(phy_rxts, rxts); 858 859 spin_lock(&dp83640->rx_queue.lock); 860 skb_queue_walk(&dp83640->rx_queue, skb) { 861 struct dp83640_skb_info *skb_info; 862 863 skb_info = (struct dp83640_skb_info *)skb->cb; 864 if (match(skb, skb_info->ptp_type, rxts)) { 865 __skb_unlink(skb, &dp83640->rx_queue); 866 shhwtstamps = skb_hwtstamps(skb); 867 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 868 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 869 list_add(&rxts->list, &dp83640->rxpool); 870 break; 871 } 872 } 873 spin_unlock(&dp83640->rx_queue.lock); 874 875 if (!shhwtstamps) 876 list_add_tail(&rxts->list, &dp83640->rxts); 877 out: 878 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 879 880 if (shhwtstamps) 881 netif_rx_ni(skb); 882 } 883 884 static void decode_txts(struct dp83640_private *dp83640, 885 struct phy_txts *phy_txts) 886 { 887 struct skb_shared_hwtstamps shhwtstamps; 888 struct sk_buff *skb; 889 u64 ns; 890 u8 overflow; 891 892 /* We must already have the skb that triggered this. */ 893 894 skb = skb_dequeue(&dp83640->tx_queue); 895 896 if (!skb) { 897 pr_debug("have timestamp but tx_queue empty\n"); 898 return; 899 } 900 901 overflow = (phy_txts->ns_hi >> 14) & 0x3; 902 if (overflow) { 903 pr_debug("tx timestamp queue overflow, count %d\n", overflow); 904 while (skb) { 905 kfree_skb(skb); 906 skb = skb_dequeue(&dp83640->tx_queue); 907 } 908 return; 909 } 910 911 ns = phy2txts(phy_txts); 912 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 913 shhwtstamps.hwtstamp = ns_to_ktime(ns); 914 skb_complete_tx_timestamp(skb, &shhwtstamps); 915 } 916 917 static void decode_status_frame(struct dp83640_private *dp83640, 918 struct sk_buff *skb) 919 { 920 struct phy_rxts *phy_rxts; 921 struct phy_txts *phy_txts; 922 u8 *ptr; 923 int len, size; 924 u16 ests, type; 925 926 ptr = skb->data + 2; 927 928 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { 929 930 type = *(u16 *)ptr; 931 ests = type & 0x0fff; 932 type = type & 0xf000; 933 len -= sizeof(type); 934 ptr += sizeof(type); 935 936 if (PSF_RX == type && len >= sizeof(*phy_rxts)) { 937 938 phy_rxts = (struct phy_rxts *) ptr; 939 decode_rxts(dp83640, phy_rxts); 940 size = sizeof(*phy_rxts); 941 942 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { 943 944 phy_txts = (struct phy_txts *) ptr; 945 decode_txts(dp83640, phy_txts); 946 size = sizeof(*phy_txts); 947 948 } else if (PSF_EVNT == type) { 949 950 size = decode_evnt(dp83640, ptr, len, ests); 951 952 } else { 953 size = 0; 954 break; 955 } 956 ptr += size; 957 } 958 } 959 960 static int is_sync(struct sk_buff *skb, int type) 961 { 962 u8 *data = skb->data, *msgtype; 963 unsigned int offset = 0; 964 965 if (type & PTP_CLASS_VLAN) 966 offset += VLAN_HLEN; 967 968 switch (type & PTP_CLASS_PMASK) { 969 case PTP_CLASS_IPV4: 970 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 971 break; 972 case PTP_CLASS_IPV6: 973 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 974 break; 975 case PTP_CLASS_L2: 976 offset += ETH_HLEN; 977 break; 978 default: 979 return 0; 980 } 981 982 if (type & PTP_CLASS_V1) 983 offset += OFF_PTP_CONTROL; 984 985 if (skb->len < offset + 1) 986 return 0; 987 988 msgtype = data + offset; 989 990 return (*msgtype & 0xf) == 0; 991 } 992 993 static void dp83640_free_clocks(void) 994 { 995 struct dp83640_clock *clock; 996 struct list_head *this, *next; 997 998 mutex_lock(&phyter_clocks_lock); 999 1000 list_for_each_safe(this, next, &phyter_clocks) { 1001 clock = list_entry(this, struct dp83640_clock, list); 1002 if (!list_empty(&clock->phylist)) { 1003 pr_warn("phy list non-empty while unloading\n"); 1004 BUG(); 1005 } 1006 list_del(&clock->list); 1007 mutex_destroy(&clock->extreg_lock); 1008 mutex_destroy(&clock->clock_lock); 1009 put_device(&clock->bus->dev); 1010 kfree(clock->caps.pin_config); 1011 kfree(clock); 1012 } 1013 1014 mutex_unlock(&phyter_clocks_lock); 1015 } 1016 1017 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) 1018 { 1019 INIT_LIST_HEAD(&clock->list); 1020 clock->bus = bus; 1021 mutex_init(&clock->extreg_lock); 1022 mutex_init(&clock->clock_lock); 1023 INIT_LIST_HEAD(&clock->phylist); 1024 clock->caps.owner = THIS_MODULE; 1025 sprintf(clock->caps.name, "dp83640 timer"); 1026 clock->caps.max_adj = 1953124; 1027 clock->caps.n_alarm = 0; 1028 clock->caps.n_ext_ts = N_EXT_TS; 1029 clock->caps.n_per_out = N_PER_OUT; 1030 clock->caps.n_pins = DP83640_N_PINS; 1031 clock->caps.pps = 0; 1032 clock->caps.adjfine = ptp_dp83640_adjfine; 1033 clock->caps.adjtime = ptp_dp83640_adjtime; 1034 clock->caps.gettime64 = ptp_dp83640_gettime; 1035 clock->caps.settime64 = ptp_dp83640_settime; 1036 clock->caps.enable = ptp_dp83640_enable; 1037 clock->caps.verify = ptp_dp83640_verify; 1038 /* 1039 * Convert the module param defaults into a dynamic pin configuration. 1040 */ 1041 dp83640_gpio_defaults(clock->caps.pin_config); 1042 /* 1043 * Get a reference to this bus instance. 1044 */ 1045 get_device(&bus->dev); 1046 } 1047 1048 static int choose_this_phy(struct dp83640_clock *clock, 1049 struct phy_device *phydev) 1050 { 1051 if (chosen_phy == -1 && !clock->chosen) 1052 return 1; 1053 1054 if (chosen_phy == phydev->mdio.addr) 1055 return 1; 1056 1057 return 0; 1058 } 1059 1060 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) 1061 { 1062 if (clock) 1063 mutex_lock(&clock->clock_lock); 1064 return clock; 1065 } 1066 1067 /* 1068 * Look up and lock a clock by bus instance. 1069 * If there is no clock for this bus, then create it first. 1070 */ 1071 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) 1072 { 1073 struct dp83640_clock *clock = NULL, *tmp; 1074 struct list_head *this; 1075 1076 mutex_lock(&phyter_clocks_lock); 1077 1078 list_for_each(this, &phyter_clocks) { 1079 tmp = list_entry(this, struct dp83640_clock, list); 1080 if (tmp->bus == bus) { 1081 clock = tmp; 1082 break; 1083 } 1084 } 1085 if (clock) 1086 goto out; 1087 1088 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); 1089 if (!clock) 1090 goto out; 1091 1092 clock->caps.pin_config = kcalloc(DP83640_N_PINS, 1093 sizeof(struct ptp_pin_desc), 1094 GFP_KERNEL); 1095 if (!clock->caps.pin_config) { 1096 kfree(clock); 1097 clock = NULL; 1098 goto out; 1099 } 1100 dp83640_clock_init(clock, bus); 1101 list_add_tail(&phyter_clocks, &clock->list); 1102 out: 1103 mutex_unlock(&phyter_clocks_lock); 1104 1105 return dp83640_clock_get(clock); 1106 } 1107 1108 static void dp83640_clock_put(struct dp83640_clock *clock) 1109 { 1110 mutex_unlock(&clock->clock_lock); 1111 } 1112 1113 static int dp83640_probe(struct phy_device *phydev) 1114 { 1115 struct dp83640_clock *clock; 1116 struct dp83640_private *dp83640; 1117 int err = -ENOMEM, i; 1118 1119 if (phydev->mdio.addr == BROADCAST_ADDR) 1120 return 0; 1121 1122 clock = dp83640_clock_get_bus(phydev->mdio.bus); 1123 if (!clock) 1124 goto no_clock; 1125 1126 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); 1127 if (!dp83640) 1128 goto no_memory; 1129 1130 dp83640->phydev = phydev; 1131 INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work); 1132 1133 INIT_LIST_HEAD(&dp83640->rxts); 1134 INIT_LIST_HEAD(&dp83640->rxpool); 1135 for (i = 0; i < MAX_RXTS; i++) 1136 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); 1137 1138 phydev->priv = dp83640; 1139 1140 spin_lock_init(&dp83640->rx_lock); 1141 skb_queue_head_init(&dp83640->rx_queue); 1142 skb_queue_head_init(&dp83640->tx_queue); 1143 1144 dp83640->clock = clock; 1145 1146 if (choose_this_phy(clock, phydev)) { 1147 clock->chosen = dp83640; 1148 clock->ptp_clock = ptp_clock_register(&clock->caps, 1149 &phydev->mdio.dev); 1150 if (IS_ERR(clock->ptp_clock)) { 1151 err = PTR_ERR(clock->ptp_clock); 1152 goto no_register; 1153 } 1154 } else 1155 list_add_tail(&dp83640->list, &clock->phylist); 1156 1157 dp83640_clock_put(clock); 1158 return 0; 1159 1160 no_register: 1161 clock->chosen = NULL; 1162 kfree(dp83640); 1163 no_memory: 1164 dp83640_clock_put(clock); 1165 no_clock: 1166 return err; 1167 } 1168 1169 static void dp83640_remove(struct phy_device *phydev) 1170 { 1171 struct dp83640_clock *clock; 1172 struct list_head *this, *next; 1173 struct dp83640_private *tmp, *dp83640 = phydev->priv; 1174 1175 if (phydev->mdio.addr == BROADCAST_ADDR) 1176 return; 1177 1178 enable_status_frames(phydev, false); 1179 cancel_delayed_work_sync(&dp83640->ts_work); 1180 1181 skb_queue_purge(&dp83640->rx_queue); 1182 skb_queue_purge(&dp83640->tx_queue); 1183 1184 clock = dp83640_clock_get(dp83640->clock); 1185 1186 if (dp83640 == clock->chosen) { 1187 ptp_clock_unregister(clock->ptp_clock); 1188 clock->chosen = NULL; 1189 } else { 1190 list_for_each_safe(this, next, &clock->phylist) { 1191 tmp = list_entry(this, struct dp83640_private, list); 1192 if (tmp == dp83640) { 1193 list_del_init(&tmp->list); 1194 break; 1195 } 1196 } 1197 } 1198 1199 dp83640_clock_put(clock); 1200 kfree(dp83640); 1201 } 1202 1203 static int dp83640_soft_reset(struct phy_device *phydev) 1204 { 1205 int ret; 1206 1207 ret = genphy_soft_reset(phydev); 1208 if (ret < 0) 1209 return ret; 1210 1211 /* From DP83640 datasheet: "Software driver code must wait 3 us 1212 * following a software reset before allowing further serial MII 1213 * operations with the DP83640." 1214 */ 1215 udelay(10); /* Taking udelay inaccuracy into account */ 1216 1217 return 0; 1218 } 1219 1220 static int dp83640_config_init(struct phy_device *phydev) 1221 { 1222 struct dp83640_private *dp83640 = phydev->priv; 1223 struct dp83640_clock *clock = dp83640->clock; 1224 1225 if (clock->chosen && !list_empty(&clock->phylist)) 1226 recalibrate(clock); 1227 else { 1228 mutex_lock(&clock->extreg_lock); 1229 enable_broadcast(phydev, clock->page, 1); 1230 mutex_unlock(&clock->extreg_lock); 1231 } 1232 1233 enable_status_frames(phydev, true); 1234 1235 mutex_lock(&clock->extreg_lock); 1236 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); 1237 mutex_unlock(&clock->extreg_lock); 1238 1239 return 0; 1240 } 1241 1242 static int dp83640_ack_interrupt(struct phy_device *phydev) 1243 { 1244 int err = phy_read(phydev, MII_DP83640_MISR); 1245 1246 if (err < 0) 1247 return err; 1248 1249 return 0; 1250 } 1251 1252 static int dp83640_config_intr(struct phy_device *phydev) 1253 { 1254 int micr; 1255 int misr; 1256 int err; 1257 1258 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 1259 misr = phy_read(phydev, MII_DP83640_MISR); 1260 if (misr < 0) 1261 return misr; 1262 misr |= 1263 (MII_DP83640_MISR_ANC_INT_EN | 1264 MII_DP83640_MISR_DUP_INT_EN | 1265 MII_DP83640_MISR_SPD_INT_EN | 1266 MII_DP83640_MISR_LINK_INT_EN); 1267 err = phy_write(phydev, MII_DP83640_MISR, misr); 1268 if (err < 0) 1269 return err; 1270 1271 micr = phy_read(phydev, MII_DP83640_MICR); 1272 if (micr < 0) 1273 return micr; 1274 micr |= 1275 (MII_DP83640_MICR_OE | 1276 MII_DP83640_MICR_IE); 1277 return phy_write(phydev, MII_DP83640_MICR, micr); 1278 } else { 1279 micr = phy_read(phydev, MII_DP83640_MICR); 1280 if (micr < 0) 1281 return micr; 1282 micr &= 1283 ~(MII_DP83640_MICR_OE | 1284 MII_DP83640_MICR_IE); 1285 err = phy_write(phydev, MII_DP83640_MICR, micr); 1286 if (err < 0) 1287 return err; 1288 1289 misr = phy_read(phydev, MII_DP83640_MISR); 1290 if (misr < 0) 1291 return misr; 1292 misr &= 1293 ~(MII_DP83640_MISR_ANC_INT_EN | 1294 MII_DP83640_MISR_DUP_INT_EN | 1295 MII_DP83640_MISR_SPD_INT_EN | 1296 MII_DP83640_MISR_LINK_INT_EN); 1297 return phy_write(phydev, MII_DP83640_MISR, misr); 1298 } 1299 } 1300 1301 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) 1302 { 1303 struct dp83640_private *dp83640 = phydev->priv; 1304 struct hwtstamp_config cfg; 1305 u16 txcfg0, rxcfg0; 1306 1307 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1308 return -EFAULT; 1309 1310 if (cfg.flags) /* reserved for future extensions */ 1311 return -EINVAL; 1312 1313 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) 1314 return -ERANGE; 1315 1316 dp83640->hwts_tx_en = cfg.tx_type; 1317 1318 switch (cfg.rx_filter) { 1319 case HWTSTAMP_FILTER_NONE: 1320 dp83640->hwts_rx_en = 0; 1321 dp83640->layer = 0; 1322 dp83640->version = 0; 1323 break; 1324 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1325 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1326 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1327 dp83640->hwts_rx_en = 1; 1328 dp83640->layer = PTP_CLASS_L4; 1329 dp83640->version = PTP_CLASS_V1; 1330 break; 1331 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1332 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1333 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1334 dp83640->hwts_rx_en = 1; 1335 dp83640->layer = PTP_CLASS_L4; 1336 dp83640->version = PTP_CLASS_V2; 1337 break; 1338 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1339 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1340 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1341 dp83640->hwts_rx_en = 1; 1342 dp83640->layer = PTP_CLASS_L2; 1343 dp83640->version = PTP_CLASS_V2; 1344 break; 1345 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1346 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1347 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1348 dp83640->hwts_rx_en = 1; 1349 dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 1350 dp83640->version = PTP_CLASS_V2; 1351 break; 1352 default: 1353 return -ERANGE; 1354 } 1355 1356 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1357 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1358 1359 if (dp83640->layer & PTP_CLASS_L2) { 1360 txcfg0 |= TX_L2_EN; 1361 rxcfg0 |= RX_L2_EN; 1362 } 1363 if (dp83640->layer & PTP_CLASS_L4) { 1364 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; 1365 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; 1366 } 1367 1368 if (dp83640->hwts_tx_en) 1369 txcfg0 |= TX_TS_EN; 1370 1371 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) 1372 txcfg0 |= SYNC_1STEP | CHK_1STEP; 1373 1374 if (dp83640->hwts_rx_en) 1375 rxcfg0 |= RX_TS_EN; 1376 1377 mutex_lock(&dp83640->clock->extreg_lock); 1378 1379 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0); 1380 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0); 1381 1382 mutex_unlock(&dp83640->clock->extreg_lock); 1383 1384 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1385 } 1386 1387 static void rx_timestamp_work(struct work_struct *work) 1388 { 1389 struct dp83640_private *dp83640 = 1390 container_of(work, struct dp83640_private, ts_work.work); 1391 struct sk_buff *skb; 1392 1393 /* Deliver expired packets. */ 1394 while ((skb = skb_dequeue(&dp83640->rx_queue))) { 1395 struct dp83640_skb_info *skb_info; 1396 1397 skb_info = (struct dp83640_skb_info *)skb->cb; 1398 if (!time_after(jiffies, skb_info->tmo)) { 1399 skb_queue_head(&dp83640->rx_queue, skb); 1400 break; 1401 } 1402 1403 netif_rx_ni(skb); 1404 } 1405 1406 if (!skb_queue_empty(&dp83640->rx_queue)) 1407 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1408 } 1409 1410 static bool dp83640_rxtstamp(struct phy_device *phydev, 1411 struct sk_buff *skb, int type) 1412 { 1413 struct dp83640_private *dp83640 = phydev->priv; 1414 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; 1415 struct list_head *this, *next; 1416 struct rxts *rxts; 1417 struct skb_shared_hwtstamps *shhwtstamps = NULL; 1418 unsigned long flags; 1419 1420 if (is_status_frame(skb, type)) { 1421 decode_status_frame(dp83640, skb); 1422 kfree_skb(skb); 1423 return true; 1424 } 1425 1426 if (!dp83640->hwts_rx_en) 1427 return false; 1428 1429 if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0) 1430 return false; 1431 1432 spin_lock_irqsave(&dp83640->rx_lock, flags); 1433 prune_rx_ts(dp83640); 1434 list_for_each_safe(this, next, &dp83640->rxts) { 1435 rxts = list_entry(this, struct rxts, list); 1436 if (match(skb, type, rxts)) { 1437 shhwtstamps = skb_hwtstamps(skb); 1438 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 1439 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 1440 list_del_init(&rxts->list); 1441 list_add(&rxts->list, &dp83640->rxpool); 1442 break; 1443 } 1444 } 1445 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1446 1447 if (!shhwtstamps) { 1448 skb_info->ptp_type = type; 1449 skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 1450 skb_queue_tail(&dp83640->rx_queue, skb); 1451 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1452 } else { 1453 netif_rx_ni(skb); 1454 } 1455 1456 return true; 1457 } 1458 1459 static void dp83640_txtstamp(struct phy_device *phydev, 1460 struct sk_buff *skb, int type) 1461 { 1462 struct dp83640_private *dp83640 = phydev->priv; 1463 1464 switch (dp83640->hwts_tx_en) { 1465 1466 case HWTSTAMP_TX_ONESTEP_SYNC: 1467 if (is_sync(skb, type)) { 1468 kfree_skb(skb); 1469 return; 1470 } 1471 /* fall through */ 1472 case HWTSTAMP_TX_ON: 1473 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1474 skb_queue_tail(&dp83640->tx_queue, skb); 1475 break; 1476 1477 case HWTSTAMP_TX_OFF: 1478 default: 1479 kfree_skb(skb); 1480 break; 1481 } 1482 } 1483 1484 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info) 1485 { 1486 struct dp83640_private *dp83640 = dev->priv; 1487 1488 info->so_timestamping = 1489 SOF_TIMESTAMPING_TX_HARDWARE | 1490 SOF_TIMESTAMPING_RX_HARDWARE | 1491 SOF_TIMESTAMPING_RAW_HARDWARE; 1492 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); 1493 info->tx_types = 1494 (1 << HWTSTAMP_TX_OFF) | 1495 (1 << HWTSTAMP_TX_ON) | 1496 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 1497 info->rx_filters = 1498 (1 << HWTSTAMP_FILTER_NONE) | 1499 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 1500 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 1501 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1502 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1503 return 0; 1504 } 1505 1506 static struct phy_driver dp83640_driver = { 1507 .phy_id = DP83640_PHY_ID, 1508 .phy_id_mask = 0xfffffff0, 1509 .name = "NatSemi DP83640", 1510 .features = PHY_BASIC_FEATURES, 1511 .probe = dp83640_probe, 1512 .remove = dp83640_remove, 1513 .soft_reset = dp83640_soft_reset, 1514 .config_init = dp83640_config_init, 1515 .ack_interrupt = dp83640_ack_interrupt, 1516 .config_intr = dp83640_config_intr, 1517 .ts_info = dp83640_ts_info, 1518 .hwtstamp = dp83640_hwtstamp, 1519 .rxtstamp = dp83640_rxtstamp, 1520 .txtstamp = dp83640_txtstamp, 1521 }; 1522 1523 static int __init dp83640_init(void) 1524 { 1525 return phy_driver_register(&dp83640_driver, THIS_MODULE); 1526 } 1527 1528 static void __exit dp83640_exit(void) 1529 { 1530 dp83640_free_clocks(); 1531 phy_driver_unregister(&dp83640_driver); 1532 } 1533 1534 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); 1535 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 1536 MODULE_LICENSE("GPL"); 1537 1538 module_init(dp83640_init); 1539 module_exit(dp83640_exit); 1540 1541 static struct mdio_device_id __maybe_unused dp83640_tbl[] = { 1542 { DP83640_PHY_ID, 0xfffffff0 }, 1543 { } 1544 }; 1545 1546 MODULE_DEVICE_TABLE(mdio, dp83640_tbl); 1547