1 /* 2 * Driver for the National Semiconductor DP83640 PHYTER 3 * 4 * Copyright (C) 2010 OMICRON electronics GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 22 23 #include <linux/crc32.h> 24 #include <linux/ethtool.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/mii.h> 28 #include <linux/module.h> 29 #include <linux/net_tstamp.h> 30 #include <linux/netdevice.h> 31 #include <linux/if_vlan.h> 32 #include <linux/phy.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/ptp_clock_kernel.h> 35 36 #include "dp83640_reg.h" 37 38 #define DP83640_PHY_ID 0x20005ce1 39 #define PAGESEL 0x13 40 #define MAX_RXTS 64 41 #define N_EXT_TS 6 42 #define N_PER_OUT 7 43 #define PSF_PTPVER 2 44 #define PSF_EVNT 0x4000 45 #define PSF_RX 0x2000 46 #define PSF_TX 0x1000 47 #define EXT_EVENT 1 48 #define CAL_EVENT 7 49 #define CAL_TRIGGER 1 50 #define DP83640_N_PINS 12 51 52 #define MII_DP83640_MICR 0x11 53 #define MII_DP83640_MISR 0x12 54 55 #define MII_DP83640_MICR_OE 0x1 56 #define MII_DP83640_MICR_IE 0x2 57 58 #define MII_DP83640_MISR_RHF_INT_EN 0x01 59 #define MII_DP83640_MISR_FHF_INT_EN 0x02 60 #define MII_DP83640_MISR_ANC_INT_EN 0x04 61 #define MII_DP83640_MISR_DUP_INT_EN 0x08 62 #define MII_DP83640_MISR_SPD_INT_EN 0x10 63 #define MII_DP83640_MISR_LINK_INT_EN 0x20 64 #define MII_DP83640_MISR_ED_INT_EN 0x40 65 #define MII_DP83640_MISR_LQ_INT_EN 0x80 66 67 /* phyter seems to miss the mark by 16 ns */ 68 #define ADJTIME_FIX 16 69 70 #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */ 71 72 #if defined(__BIG_ENDIAN) 73 #define ENDIAN_FLAG 0 74 #elif defined(__LITTLE_ENDIAN) 75 #define ENDIAN_FLAG PSF_ENDIAN 76 #endif 77 78 struct dp83640_skb_info { 79 int ptp_type; 80 unsigned long tmo; 81 }; 82 83 struct phy_rxts { 84 u16 ns_lo; /* ns[15:0] */ 85 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 86 u16 sec_lo; /* sec[15:0] */ 87 u16 sec_hi; /* sec[31:16] */ 88 u16 seqid; /* sequenceId[15:0] */ 89 u16 msgtype; /* messageType[3:0], hash[11:0] */ 90 }; 91 92 struct phy_txts { 93 u16 ns_lo; /* ns[15:0] */ 94 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 95 u16 sec_lo; /* sec[15:0] */ 96 u16 sec_hi; /* sec[31:16] */ 97 }; 98 99 struct rxts { 100 struct list_head list; 101 unsigned long tmo; 102 u64 ns; 103 u16 seqid; 104 u8 msgtype; 105 u16 hash; 106 }; 107 108 struct dp83640_clock; 109 110 struct dp83640_private { 111 struct list_head list; 112 struct dp83640_clock *clock; 113 struct phy_device *phydev; 114 struct delayed_work ts_work; 115 int hwts_tx_en; 116 int hwts_rx_en; 117 int layer; 118 int version; 119 /* remember state of cfg0 during calibration */ 120 int cfg0; 121 /* remember the last event time stamp */ 122 struct phy_txts edata; 123 /* list of rx timestamps */ 124 struct list_head rxts; 125 struct list_head rxpool; 126 struct rxts rx_pool_data[MAX_RXTS]; 127 /* protects above three fields from concurrent access */ 128 spinlock_t rx_lock; 129 /* queues of incoming and outgoing packets */ 130 struct sk_buff_head rx_queue; 131 struct sk_buff_head tx_queue; 132 }; 133 134 struct dp83640_clock { 135 /* keeps the instance in the 'phyter_clocks' list */ 136 struct list_head list; 137 /* we create one clock instance per MII bus */ 138 struct mii_bus *bus; 139 /* protects extended registers from concurrent access */ 140 struct mutex extreg_lock; 141 /* remembers which page was last selected */ 142 int page; 143 /* our advertised capabilities */ 144 struct ptp_clock_info caps; 145 /* protects the three fields below from concurrent access */ 146 struct mutex clock_lock; 147 /* the one phyter from which we shall read */ 148 struct dp83640_private *chosen; 149 /* list of the other attached phyters, not chosen */ 150 struct list_head phylist; 151 /* reference to our PTP hardware clock */ 152 struct ptp_clock *ptp_clock; 153 }; 154 155 /* globals */ 156 157 enum { 158 CALIBRATE_GPIO, 159 PEROUT_GPIO, 160 EXTTS0_GPIO, 161 EXTTS1_GPIO, 162 EXTTS2_GPIO, 163 EXTTS3_GPIO, 164 EXTTS4_GPIO, 165 EXTTS5_GPIO, 166 GPIO_TABLE_SIZE 167 }; 168 169 static int chosen_phy = -1; 170 static ushort gpio_tab[GPIO_TABLE_SIZE] = { 171 1, 2, 3, 4, 8, 9, 10, 11 172 }; 173 174 module_param(chosen_phy, int, 0444); 175 module_param_array(gpio_tab, ushort, NULL, 0444); 176 177 MODULE_PARM_DESC(chosen_phy, \ 178 "The address of the PHY to use for the ancillary clock features"); 179 MODULE_PARM_DESC(gpio_tab, \ 180 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); 181 182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd) 183 { 184 int i, index; 185 186 for (i = 0; i < DP83640_N_PINS; i++) { 187 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i); 188 pd[i].index = i; 189 } 190 191 for (i = 0; i < GPIO_TABLE_SIZE; i++) { 192 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) { 193 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]); 194 return; 195 } 196 } 197 198 index = gpio_tab[CALIBRATE_GPIO] - 1; 199 pd[index].func = PTP_PF_PHYSYNC; 200 pd[index].chan = 0; 201 202 index = gpio_tab[PEROUT_GPIO] - 1; 203 pd[index].func = PTP_PF_PEROUT; 204 pd[index].chan = 0; 205 206 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) { 207 index = gpio_tab[i] - 1; 208 pd[index].func = PTP_PF_EXTTS; 209 pd[index].chan = i - EXTTS0_GPIO; 210 } 211 } 212 213 /* a list of clocks and a mutex to protect it */ 214 static LIST_HEAD(phyter_clocks); 215 static DEFINE_MUTEX(phyter_clocks_lock); 216 217 static void rx_timestamp_work(struct work_struct *work); 218 219 /* extended register access functions */ 220 221 #define BROADCAST_ADDR 31 222 223 static inline int broadcast_write(struct phy_device *phydev, u32 regnum, 224 u16 val) 225 { 226 return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val); 227 } 228 229 /* Caller must hold extreg_lock. */ 230 static int ext_read(struct phy_device *phydev, int page, u32 regnum) 231 { 232 struct dp83640_private *dp83640 = phydev->priv; 233 int val; 234 235 if (dp83640->clock->page != page) { 236 broadcast_write(phydev, PAGESEL, page); 237 dp83640->clock->page = page; 238 } 239 val = phy_read(phydev, regnum); 240 241 return val; 242 } 243 244 /* Caller must hold extreg_lock. */ 245 static void ext_write(int broadcast, struct phy_device *phydev, 246 int page, u32 regnum, u16 val) 247 { 248 struct dp83640_private *dp83640 = phydev->priv; 249 250 if (dp83640->clock->page != page) { 251 broadcast_write(phydev, PAGESEL, page); 252 dp83640->clock->page = page; 253 } 254 if (broadcast) 255 broadcast_write(phydev, regnum, val); 256 else 257 phy_write(phydev, regnum, val); 258 } 259 260 /* Caller must hold extreg_lock. */ 261 static int tdr_write(int bc, struct phy_device *dev, 262 const struct timespec64 *ts, u16 cmd) 263 { 264 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ 265 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ 266 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ 267 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ 268 269 ext_write(bc, dev, PAGE4, PTP_CTL, cmd); 270 271 return 0; 272 } 273 274 /* convert phy timestamps into driver timestamps */ 275 276 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) 277 { 278 u32 sec; 279 280 sec = p->sec_lo; 281 sec |= p->sec_hi << 16; 282 283 rxts->ns = p->ns_lo; 284 rxts->ns |= (p->ns_hi & 0x3fff) << 16; 285 rxts->ns += ((u64)sec) * 1000000000ULL; 286 rxts->seqid = p->seqid; 287 rxts->msgtype = (p->msgtype >> 12) & 0xf; 288 rxts->hash = p->msgtype & 0x0fff; 289 rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 290 } 291 292 static u64 phy2txts(struct phy_txts *p) 293 { 294 u64 ns; 295 u32 sec; 296 297 sec = p->sec_lo; 298 sec |= p->sec_hi << 16; 299 300 ns = p->ns_lo; 301 ns |= (p->ns_hi & 0x3fff) << 16; 302 ns += ((u64)sec) * 1000000000ULL; 303 304 return ns; 305 } 306 307 static int periodic_output(struct dp83640_clock *clock, 308 struct ptp_clock_request *clkreq, bool on, 309 int trigger) 310 { 311 struct dp83640_private *dp83640 = clock->chosen; 312 struct phy_device *phydev = dp83640->phydev; 313 u32 sec, nsec, pwidth; 314 u16 gpio, ptp_trig, val; 315 316 if (on) { 317 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 318 trigger); 319 if (gpio < 1) 320 return -EINVAL; 321 } else { 322 gpio = 0; 323 } 324 325 ptp_trig = TRIG_WR | 326 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | 327 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | 328 TRIG_PER | 329 TRIG_PULSE; 330 331 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 332 333 if (!on) { 334 val |= TRIG_DIS; 335 mutex_lock(&clock->extreg_lock); 336 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 337 ext_write(0, phydev, PAGE4, PTP_CTL, val); 338 mutex_unlock(&clock->extreg_lock); 339 return 0; 340 } 341 342 sec = clkreq->perout.start.sec; 343 nsec = clkreq->perout.start.nsec; 344 pwidth = clkreq->perout.period.sec * 1000000000UL; 345 pwidth += clkreq->perout.period.nsec; 346 pwidth /= 2; 347 348 mutex_lock(&clock->extreg_lock); 349 350 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 351 352 /*load trigger*/ 353 val |= TRIG_LOAD; 354 ext_write(0, phydev, PAGE4, PTP_CTL, val); 355 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ 356 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ 357 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ 358 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ 359 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */ 360 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */ 361 /* Triggers 0 and 1 has programmable pulsewidth2 */ 362 if (trigger < 2) { 363 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); 364 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); 365 } 366 367 /*enable trigger*/ 368 val &= ~TRIG_LOAD; 369 val |= TRIG_EN; 370 ext_write(0, phydev, PAGE4, PTP_CTL, val); 371 372 mutex_unlock(&clock->extreg_lock); 373 return 0; 374 } 375 376 /* ptp clock methods */ 377 378 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 379 { 380 struct dp83640_clock *clock = 381 container_of(ptp, struct dp83640_clock, caps); 382 struct phy_device *phydev = clock->chosen->phydev; 383 u64 rate; 384 int neg_adj = 0; 385 u16 hi, lo; 386 387 if (scaled_ppm < 0) { 388 neg_adj = 1; 389 scaled_ppm = -scaled_ppm; 390 } 391 rate = scaled_ppm; 392 rate <<= 13; 393 rate = div_u64(rate, 15625); 394 395 hi = (rate >> 16) & PTP_RATE_HI_MASK; 396 if (neg_adj) 397 hi |= PTP_RATE_DIR; 398 399 lo = rate & 0xffff; 400 401 mutex_lock(&clock->extreg_lock); 402 403 ext_write(1, phydev, PAGE4, PTP_RATEH, hi); 404 ext_write(1, phydev, PAGE4, PTP_RATEL, lo); 405 406 mutex_unlock(&clock->extreg_lock); 407 408 return 0; 409 } 410 411 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) 412 { 413 struct dp83640_clock *clock = 414 container_of(ptp, struct dp83640_clock, caps); 415 struct phy_device *phydev = clock->chosen->phydev; 416 struct timespec64 ts; 417 int err; 418 419 delta += ADJTIME_FIX; 420 421 ts = ns_to_timespec64(delta); 422 423 mutex_lock(&clock->extreg_lock); 424 425 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); 426 427 mutex_unlock(&clock->extreg_lock); 428 429 return err; 430 } 431 432 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, 433 struct timespec64 *ts) 434 { 435 struct dp83640_clock *clock = 436 container_of(ptp, struct dp83640_clock, caps); 437 struct phy_device *phydev = clock->chosen->phydev; 438 unsigned int val[4]; 439 440 mutex_lock(&clock->extreg_lock); 441 442 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); 443 444 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ 445 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ 446 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ 447 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ 448 449 mutex_unlock(&clock->extreg_lock); 450 451 ts->tv_nsec = val[0] | (val[1] << 16); 452 ts->tv_sec = val[2] | (val[3] << 16); 453 454 return 0; 455 } 456 457 static int ptp_dp83640_settime(struct ptp_clock_info *ptp, 458 const struct timespec64 *ts) 459 { 460 struct dp83640_clock *clock = 461 container_of(ptp, struct dp83640_clock, caps); 462 struct phy_device *phydev = clock->chosen->phydev; 463 int err; 464 465 mutex_lock(&clock->extreg_lock); 466 467 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); 468 469 mutex_unlock(&clock->extreg_lock); 470 471 return err; 472 } 473 474 static int ptp_dp83640_enable(struct ptp_clock_info *ptp, 475 struct ptp_clock_request *rq, int on) 476 { 477 struct dp83640_clock *clock = 478 container_of(ptp, struct dp83640_clock, caps); 479 struct phy_device *phydev = clock->chosen->phydev; 480 unsigned int index; 481 u16 evnt, event_num, gpio_num; 482 483 switch (rq->type) { 484 case PTP_CLK_REQ_EXTTS: 485 index = rq->extts.index; 486 if (index >= N_EXT_TS) 487 return -EINVAL; 488 event_num = EXT_EVENT + index; 489 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 490 if (on) { 491 gpio_num = 1 + ptp_find_pin(clock->ptp_clock, 492 PTP_PF_EXTTS, index); 493 if (gpio_num < 1) 494 return -EINVAL; 495 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 496 if (rq->extts.flags & PTP_FALLING_EDGE) 497 evnt |= EVNT_FALL; 498 else 499 evnt |= EVNT_RISE; 500 } 501 mutex_lock(&clock->extreg_lock); 502 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); 503 mutex_unlock(&clock->extreg_lock); 504 return 0; 505 506 case PTP_CLK_REQ_PEROUT: 507 if (rq->perout.index >= N_PER_OUT) 508 return -EINVAL; 509 return periodic_output(clock, rq, on, rq->perout.index); 510 511 default: 512 break; 513 } 514 515 return -EOPNOTSUPP; 516 } 517 518 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin, 519 enum ptp_pin_function func, unsigned int chan) 520 { 521 struct dp83640_clock *clock = 522 container_of(ptp, struct dp83640_clock, caps); 523 524 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC && 525 !list_empty(&clock->phylist)) 526 return 1; 527 528 if (func == PTP_PF_PHYSYNC) 529 return 1; 530 531 return 0; 532 } 533 534 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; 535 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; 536 537 static void enable_status_frames(struct phy_device *phydev, bool on) 538 { 539 struct dp83640_private *dp83640 = phydev->priv; 540 struct dp83640_clock *clock = dp83640->clock; 541 u16 cfg0 = 0, ver; 542 543 if (on) 544 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; 545 546 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; 547 548 mutex_lock(&clock->extreg_lock); 549 550 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); 551 ext_write(0, phydev, PAGE6, PSF_CFG1, ver); 552 553 mutex_unlock(&clock->extreg_lock); 554 555 if (!phydev->attached_dev) { 556 phydev_warn(phydev, 557 "expected to find an attached netdevice\n"); 558 return; 559 } 560 561 if (on) { 562 if (dev_mc_add(phydev->attached_dev, status_frame_dst)) 563 phydev_warn(phydev, "failed to add mc address\n"); 564 } else { 565 if (dev_mc_del(phydev->attached_dev, status_frame_dst)) 566 phydev_warn(phydev, "failed to delete mc address\n"); 567 } 568 } 569 570 static bool is_status_frame(struct sk_buff *skb, int type) 571 { 572 struct ethhdr *h = eth_hdr(skb); 573 574 if (PTP_CLASS_V2_L2 == type && 575 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) 576 return true; 577 else 578 return false; 579 } 580 581 static int expired(struct rxts *rxts) 582 { 583 return time_after(jiffies, rxts->tmo); 584 } 585 586 /* Caller must hold rx_lock. */ 587 static void prune_rx_ts(struct dp83640_private *dp83640) 588 { 589 struct list_head *this, *next; 590 struct rxts *rxts; 591 592 list_for_each_safe(this, next, &dp83640->rxts) { 593 rxts = list_entry(this, struct rxts, list); 594 if (expired(rxts)) { 595 list_del_init(&rxts->list); 596 list_add(&rxts->list, &dp83640->rxpool); 597 } 598 } 599 } 600 601 /* synchronize the phyters so they act as one clock */ 602 603 static void enable_broadcast(struct phy_device *phydev, int init_page, int on) 604 { 605 int val; 606 phy_write(phydev, PAGESEL, 0); 607 val = phy_read(phydev, PHYCR2); 608 if (on) 609 val |= BC_WRITE; 610 else 611 val &= ~BC_WRITE; 612 phy_write(phydev, PHYCR2, val); 613 phy_write(phydev, PAGESEL, init_page); 614 } 615 616 static void recalibrate(struct dp83640_clock *clock) 617 { 618 s64 now, diff; 619 struct phy_txts event_ts; 620 struct timespec64 ts; 621 struct list_head *this; 622 struct dp83640_private *tmp; 623 struct phy_device *master = clock->chosen->phydev; 624 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; 625 626 trigger = CAL_TRIGGER; 627 cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0); 628 if (cal_gpio < 1) { 629 pr_err("PHY calibration pin not available - PHY is not calibrated."); 630 return; 631 } 632 633 mutex_lock(&clock->extreg_lock); 634 635 /* 636 * enable broadcast, disable status frames, enable ptp clock 637 */ 638 list_for_each(this, &clock->phylist) { 639 tmp = list_entry(this, struct dp83640_private, list); 640 enable_broadcast(tmp->phydev, clock->page, 1); 641 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); 642 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); 643 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); 644 } 645 enable_broadcast(master, clock->page, 1); 646 cfg0 = ext_read(master, PAGE5, PSF_CFG0); 647 ext_write(0, master, PAGE5, PSF_CFG0, 0); 648 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); 649 650 /* 651 * enable an event timestamp 652 */ 653 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; 654 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 655 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 656 657 list_for_each(this, &clock->phylist) { 658 tmp = list_entry(this, struct dp83640_private, list); 659 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); 660 } 661 ext_write(0, master, PAGE5, PTP_EVNT, evnt); 662 663 /* 664 * configure a trigger 665 */ 666 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; 667 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; 668 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; 669 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); 670 671 /* load trigger */ 672 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 673 val |= TRIG_LOAD; 674 ext_write(0, master, PAGE4, PTP_CTL, val); 675 676 /* enable trigger */ 677 val &= ~TRIG_LOAD; 678 val |= TRIG_EN; 679 ext_write(0, master, PAGE4, PTP_CTL, val); 680 681 /* disable trigger */ 682 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 683 val |= TRIG_DIS; 684 ext_write(0, master, PAGE4, PTP_CTL, val); 685 686 /* 687 * read out and correct offsets 688 */ 689 val = ext_read(master, PAGE4, PTP_STS); 690 phydev_info(master, "master PTP_STS 0x%04hx\n", val); 691 val = ext_read(master, PAGE4, PTP_ESTS); 692 phydev_info(master, "master PTP_ESTS 0x%04hx\n", val); 693 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); 694 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); 695 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); 696 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); 697 now = phy2txts(&event_ts); 698 699 list_for_each(this, &clock->phylist) { 700 tmp = list_entry(this, struct dp83640_private, list); 701 val = ext_read(tmp->phydev, PAGE4, PTP_STS); 702 phydev_info(tmp->phydev, "slave PTP_STS 0x%04hx\n", val); 703 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); 704 phydev_info(tmp->phydev, "slave PTP_ESTS 0x%04hx\n", val); 705 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 706 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 707 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 708 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 709 diff = now - (s64) phy2txts(&event_ts); 710 phydev_info(tmp->phydev, "slave offset %lld nanoseconds\n", 711 diff); 712 diff += ADJTIME_FIX; 713 ts = ns_to_timespec64(diff); 714 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); 715 } 716 717 /* 718 * restore status frames 719 */ 720 list_for_each(this, &clock->phylist) { 721 tmp = list_entry(this, struct dp83640_private, list); 722 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); 723 } 724 ext_write(0, master, PAGE5, PSF_CFG0, cfg0); 725 726 mutex_unlock(&clock->extreg_lock); 727 } 728 729 /* time stamping methods */ 730 731 static inline u16 exts_chan_to_edata(int ch) 732 { 733 return 1 << ((ch + EXT_EVENT) * 2); 734 } 735 736 static int decode_evnt(struct dp83640_private *dp83640, 737 void *data, int len, u16 ests) 738 { 739 struct phy_txts *phy_txts; 740 struct ptp_clock_event event; 741 int i, parsed; 742 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; 743 u16 ext_status = 0; 744 745 /* calculate length of the event timestamp status message */ 746 if (ests & MULT_EVNT) 747 parsed = (words + 2) * sizeof(u16); 748 else 749 parsed = (words + 1) * sizeof(u16); 750 751 /* check if enough data is available */ 752 if (len < parsed) 753 return len; 754 755 if (ests & MULT_EVNT) { 756 ext_status = *(u16 *) data; 757 data += sizeof(ext_status); 758 } 759 760 phy_txts = data; 761 762 switch (words) { 763 case 3: 764 dp83640->edata.sec_hi = phy_txts->sec_hi; 765 /* fall through */ 766 case 2: 767 dp83640->edata.sec_lo = phy_txts->sec_lo; 768 /* fall through */ 769 case 1: 770 dp83640->edata.ns_hi = phy_txts->ns_hi; 771 /* fall through */ 772 case 0: 773 dp83640->edata.ns_lo = phy_txts->ns_lo; 774 } 775 776 if (!ext_status) { 777 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; 778 ext_status = exts_chan_to_edata(i); 779 } 780 781 event.type = PTP_CLOCK_EXTTS; 782 event.timestamp = phy2txts(&dp83640->edata); 783 784 /* Compensate for input path and synchronization delays */ 785 event.timestamp -= 35; 786 787 for (i = 0; i < N_EXT_TS; i++) { 788 if (ext_status & exts_chan_to_edata(i)) { 789 event.index = i; 790 ptp_clock_event(dp83640->clock->ptp_clock, &event); 791 } 792 } 793 794 return parsed; 795 } 796 797 #define DP83640_PACKET_HASH_OFFSET 20 798 #define DP83640_PACKET_HASH_LEN 10 799 800 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) 801 { 802 u16 *seqid, hash; 803 unsigned int offset = 0; 804 u8 *msgtype, *data = skb_mac_header(skb); 805 806 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ 807 808 if (type & PTP_CLASS_VLAN) 809 offset += VLAN_HLEN; 810 811 switch (type & PTP_CLASS_PMASK) { 812 case PTP_CLASS_IPV4: 813 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 814 break; 815 case PTP_CLASS_IPV6: 816 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 817 break; 818 case PTP_CLASS_L2: 819 offset += ETH_HLEN; 820 break; 821 default: 822 return 0; 823 } 824 825 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) 826 return 0; 827 828 if (unlikely(type & PTP_CLASS_V1)) 829 msgtype = data + offset + OFF_PTP_CONTROL; 830 else 831 msgtype = data + offset; 832 if (rxts->msgtype != (*msgtype & 0xf)) 833 return 0; 834 835 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 836 if (rxts->seqid != ntohs(*seqid)) 837 return 0; 838 839 hash = ether_crc(DP83640_PACKET_HASH_LEN, 840 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20; 841 if (rxts->hash != hash) 842 return 0; 843 844 return 1; 845 } 846 847 static void decode_rxts(struct dp83640_private *dp83640, 848 struct phy_rxts *phy_rxts) 849 { 850 struct rxts *rxts; 851 struct skb_shared_hwtstamps *shhwtstamps = NULL; 852 struct sk_buff *skb; 853 unsigned long flags; 854 u8 overflow; 855 856 overflow = (phy_rxts->ns_hi >> 14) & 0x3; 857 if (overflow) 858 pr_debug("rx timestamp queue overflow, count %d\n", overflow); 859 860 spin_lock_irqsave(&dp83640->rx_lock, flags); 861 862 prune_rx_ts(dp83640); 863 864 if (list_empty(&dp83640->rxpool)) { 865 pr_debug("rx timestamp pool is empty\n"); 866 goto out; 867 } 868 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); 869 list_del_init(&rxts->list); 870 phy2rxts(phy_rxts, rxts); 871 872 spin_lock(&dp83640->rx_queue.lock); 873 skb_queue_walk(&dp83640->rx_queue, skb) { 874 struct dp83640_skb_info *skb_info; 875 876 skb_info = (struct dp83640_skb_info *)skb->cb; 877 if (match(skb, skb_info->ptp_type, rxts)) { 878 __skb_unlink(skb, &dp83640->rx_queue); 879 shhwtstamps = skb_hwtstamps(skb); 880 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 881 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 882 list_add(&rxts->list, &dp83640->rxpool); 883 break; 884 } 885 } 886 spin_unlock(&dp83640->rx_queue.lock); 887 888 if (!shhwtstamps) 889 list_add_tail(&rxts->list, &dp83640->rxts); 890 out: 891 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 892 893 if (shhwtstamps) 894 netif_rx_ni(skb); 895 } 896 897 static void decode_txts(struct dp83640_private *dp83640, 898 struct phy_txts *phy_txts) 899 { 900 struct skb_shared_hwtstamps shhwtstamps; 901 struct sk_buff *skb; 902 u64 ns; 903 u8 overflow; 904 905 /* We must already have the skb that triggered this. */ 906 907 skb = skb_dequeue(&dp83640->tx_queue); 908 909 if (!skb) { 910 pr_debug("have timestamp but tx_queue empty\n"); 911 return; 912 } 913 914 overflow = (phy_txts->ns_hi >> 14) & 0x3; 915 if (overflow) { 916 pr_debug("tx timestamp queue overflow, count %d\n", overflow); 917 while (skb) { 918 kfree_skb(skb); 919 skb = skb_dequeue(&dp83640->tx_queue); 920 } 921 return; 922 } 923 924 ns = phy2txts(phy_txts); 925 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 926 shhwtstamps.hwtstamp = ns_to_ktime(ns); 927 skb_complete_tx_timestamp(skb, &shhwtstamps); 928 } 929 930 static void decode_status_frame(struct dp83640_private *dp83640, 931 struct sk_buff *skb) 932 { 933 struct phy_rxts *phy_rxts; 934 struct phy_txts *phy_txts; 935 u8 *ptr; 936 int len, size; 937 u16 ests, type; 938 939 ptr = skb->data + 2; 940 941 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { 942 943 type = *(u16 *)ptr; 944 ests = type & 0x0fff; 945 type = type & 0xf000; 946 len -= sizeof(type); 947 ptr += sizeof(type); 948 949 if (PSF_RX == type && len >= sizeof(*phy_rxts)) { 950 951 phy_rxts = (struct phy_rxts *) ptr; 952 decode_rxts(dp83640, phy_rxts); 953 size = sizeof(*phy_rxts); 954 955 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { 956 957 phy_txts = (struct phy_txts *) ptr; 958 decode_txts(dp83640, phy_txts); 959 size = sizeof(*phy_txts); 960 961 } else if (PSF_EVNT == type) { 962 963 size = decode_evnt(dp83640, ptr, len, ests); 964 965 } else { 966 size = 0; 967 break; 968 } 969 ptr += size; 970 } 971 } 972 973 static int is_sync(struct sk_buff *skb, int type) 974 { 975 u8 *data = skb->data, *msgtype; 976 unsigned int offset = 0; 977 978 if (type & PTP_CLASS_VLAN) 979 offset += VLAN_HLEN; 980 981 switch (type & PTP_CLASS_PMASK) { 982 case PTP_CLASS_IPV4: 983 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 984 break; 985 case PTP_CLASS_IPV6: 986 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 987 break; 988 case PTP_CLASS_L2: 989 offset += ETH_HLEN; 990 break; 991 default: 992 return 0; 993 } 994 995 if (type & PTP_CLASS_V1) 996 offset += OFF_PTP_CONTROL; 997 998 if (skb->len < offset + 1) 999 return 0; 1000 1001 msgtype = data + offset; 1002 1003 return (*msgtype & 0xf) == 0; 1004 } 1005 1006 static void dp83640_free_clocks(void) 1007 { 1008 struct dp83640_clock *clock; 1009 struct list_head *this, *next; 1010 1011 mutex_lock(&phyter_clocks_lock); 1012 1013 list_for_each_safe(this, next, &phyter_clocks) { 1014 clock = list_entry(this, struct dp83640_clock, list); 1015 if (!list_empty(&clock->phylist)) { 1016 pr_warn("phy list non-empty while unloading\n"); 1017 BUG(); 1018 } 1019 list_del(&clock->list); 1020 mutex_destroy(&clock->extreg_lock); 1021 mutex_destroy(&clock->clock_lock); 1022 put_device(&clock->bus->dev); 1023 kfree(clock->caps.pin_config); 1024 kfree(clock); 1025 } 1026 1027 mutex_unlock(&phyter_clocks_lock); 1028 } 1029 1030 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) 1031 { 1032 INIT_LIST_HEAD(&clock->list); 1033 clock->bus = bus; 1034 mutex_init(&clock->extreg_lock); 1035 mutex_init(&clock->clock_lock); 1036 INIT_LIST_HEAD(&clock->phylist); 1037 clock->caps.owner = THIS_MODULE; 1038 sprintf(clock->caps.name, "dp83640 timer"); 1039 clock->caps.max_adj = 1953124; 1040 clock->caps.n_alarm = 0; 1041 clock->caps.n_ext_ts = N_EXT_TS; 1042 clock->caps.n_per_out = N_PER_OUT; 1043 clock->caps.n_pins = DP83640_N_PINS; 1044 clock->caps.pps = 0; 1045 clock->caps.adjfine = ptp_dp83640_adjfine; 1046 clock->caps.adjtime = ptp_dp83640_adjtime; 1047 clock->caps.gettime64 = ptp_dp83640_gettime; 1048 clock->caps.settime64 = ptp_dp83640_settime; 1049 clock->caps.enable = ptp_dp83640_enable; 1050 clock->caps.verify = ptp_dp83640_verify; 1051 /* 1052 * Convert the module param defaults into a dynamic pin configuration. 1053 */ 1054 dp83640_gpio_defaults(clock->caps.pin_config); 1055 /* 1056 * Get a reference to this bus instance. 1057 */ 1058 get_device(&bus->dev); 1059 } 1060 1061 static int choose_this_phy(struct dp83640_clock *clock, 1062 struct phy_device *phydev) 1063 { 1064 if (chosen_phy == -1 && !clock->chosen) 1065 return 1; 1066 1067 if (chosen_phy == phydev->mdio.addr) 1068 return 1; 1069 1070 return 0; 1071 } 1072 1073 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) 1074 { 1075 if (clock) 1076 mutex_lock(&clock->clock_lock); 1077 return clock; 1078 } 1079 1080 /* 1081 * Look up and lock a clock by bus instance. 1082 * If there is no clock for this bus, then create it first. 1083 */ 1084 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) 1085 { 1086 struct dp83640_clock *clock = NULL, *tmp; 1087 struct list_head *this; 1088 1089 mutex_lock(&phyter_clocks_lock); 1090 1091 list_for_each(this, &phyter_clocks) { 1092 tmp = list_entry(this, struct dp83640_clock, list); 1093 if (tmp->bus == bus) { 1094 clock = tmp; 1095 break; 1096 } 1097 } 1098 if (clock) 1099 goto out; 1100 1101 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); 1102 if (!clock) 1103 goto out; 1104 1105 clock->caps.pin_config = kcalloc(DP83640_N_PINS, 1106 sizeof(struct ptp_pin_desc), 1107 GFP_KERNEL); 1108 if (!clock->caps.pin_config) { 1109 kfree(clock); 1110 clock = NULL; 1111 goto out; 1112 } 1113 dp83640_clock_init(clock, bus); 1114 list_add_tail(&phyter_clocks, &clock->list); 1115 out: 1116 mutex_unlock(&phyter_clocks_lock); 1117 1118 return dp83640_clock_get(clock); 1119 } 1120 1121 static void dp83640_clock_put(struct dp83640_clock *clock) 1122 { 1123 mutex_unlock(&clock->clock_lock); 1124 } 1125 1126 static int dp83640_probe(struct phy_device *phydev) 1127 { 1128 struct dp83640_clock *clock; 1129 struct dp83640_private *dp83640; 1130 int err = -ENOMEM, i; 1131 1132 if (phydev->mdio.addr == BROADCAST_ADDR) 1133 return 0; 1134 1135 clock = dp83640_clock_get_bus(phydev->mdio.bus); 1136 if (!clock) 1137 goto no_clock; 1138 1139 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); 1140 if (!dp83640) 1141 goto no_memory; 1142 1143 dp83640->phydev = phydev; 1144 INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work); 1145 1146 INIT_LIST_HEAD(&dp83640->rxts); 1147 INIT_LIST_HEAD(&dp83640->rxpool); 1148 for (i = 0; i < MAX_RXTS; i++) 1149 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); 1150 1151 phydev->priv = dp83640; 1152 1153 spin_lock_init(&dp83640->rx_lock); 1154 skb_queue_head_init(&dp83640->rx_queue); 1155 skb_queue_head_init(&dp83640->tx_queue); 1156 1157 dp83640->clock = clock; 1158 1159 if (choose_this_phy(clock, phydev)) { 1160 clock->chosen = dp83640; 1161 clock->ptp_clock = ptp_clock_register(&clock->caps, 1162 &phydev->mdio.dev); 1163 if (IS_ERR(clock->ptp_clock)) { 1164 err = PTR_ERR(clock->ptp_clock); 1165 goto no_register; 1166 } 1167 } else 1168 list_add_tail(&dp83640->list, &clock->phylist); 1169 1170 dp83640_clock_put(clock); 1171 return 0; 1172 1173 no_register: 1174 clock->chosen = NULL; 1175 kfree(dp83640); 1176 no_memory: 1177 dp83640_clock_put(clock); 1178 no_clock: 1179 return err; 1180 } 1181 1182 static void dp83640_remove(struct phy_device *phydev) 1183 { 1184 struct dp83640_clock *clock; 1185 struct list_head *this, *next; 1186 struct dp83640_private *tmp, *dp83640 = phydev->priv; 1187 1188 if (phydev->mdio.addr == BROADCAST_ADDR) 1189 return; 1190 1191 enable_status_frames(phydev, false); 1192 cancel_delayed_work_sync(&dp83640->ts_work); 1193 1194 skb_queue_purge(&dp83640->rx_queue); 1195 skb_queue_purge(&dp83640->tx_queue); 1196 1197 clock = dp83640_clock_get(dp83640->clock); 1198 1199 if (dp83640 == clock->chosen) { 1200 ptp_clock_unregister(clock->ptp_clock); 1201 clock->chosen = NULL; 1202 } else { 1203 list_for_each_safe(this, next, &clock->phylist) { 1204 tmp = list_entry(this, struct dp83640_private, list); 1205 if (tmp == dp83640) { 1206 list_del_init(&tmp->list); 1207 break; 1208 } 1209 } 1210 } 1211 1212 dp83640_clock_put(clock); 1213 kfree(dp83640); 1214 } 1215 1216 static int dp83640_soft_reset(struct phy_device *phydev) 1217 { 1218 int ret; 1219 1220 ret = genphy_soft_reset(phydev); 1221 if (ret < 0) 1222 return ret; 1223 1224 /* From DP83640 datasheet: "Software driver code must wait 3 us 1225 * following a software reset before allowing further serial MII 1226 * operations with the DP83640." 1227 */ 1228 udelay(10); /* Taking udelay inaccuracy into account */ 1229 1230 return 0; 1231 } 1232 1233 static int dp83640_config_init(struct phy_device *phydev) 1234 { 1235 struct dp83640_private *dp83640 = phydev->priv; 1236 struct dp83640_clock *clock = dp83640->clock; 1237 1238 if (clock->chosen && !list_empty(&clock->phylist)) 1239 recalibrate(clock); 1240 else { 1241 mutex_lock(&clock->extreg_lock); 1242 enable_broadcast(phydev, clock->page, 1); 1243 mutex_unlock(&clock->extreg_lock); 1244 } 1245 1246 enable_status_frames(phydev, true); 1247 1248 mutex_lock(&clock->extreg_lock); 1249 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); 1250 mutex_unlock(&clock->extreg_lock); 1251 1252 return 0; 1253 } 1254 1255 static int dp83640_ack_interrupt(struct phy_device *phydev) 1256 { 1257 int err = phy_read(phydev, MII_DP83640_MISR); 1258 1259 if (err < 0) 1260 return err; 1261 1262 return 0; 1263 } 1264 1265 static int dp83640_config_intr(struct phy_device *phydev) 1266 { 1267 int micr; 1268 int misr; 1269 int err; 1270 1271 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 1272 misr = phy_read(phydev, MII_DP83640_MISR); 1273 if (misr < 0) 1274 return misr; 1275 misr |= 1276 (MII_DP83640_MISR_ANC_INT_EN | 1277 MII_DP83640_MISR_DUP_INT_EN | 1278 MII_DP83640_MISR_SPD_INT_EN | 1279 MII_DP83640_MISR_LINK_INT_EN); 1280 err = phy_write(phydev, MII_DP83640_MISR, misr); 1281 if (err < 0) 1282 return err; 1283 1284 micr = phy_read(phydev, MII_DP83640_MICR); 1285 if (micr < 0) 1286 return micr; 1287 micr |= 1288 (MII_DP83640_MICR_OE | 1289 MII_DP83640_MICR_IE); 1290 return phy_write(phydev, MII_DP83640_MICR, micr); 1291 } else { 1292 micr = phy_read(phydev, MII_DP83640_MICR); 1293 if (micr < 0) 1294 return micr; 1295 micr &= 1296 ~(MII_DP83640_MICR_OE | 1297 MII_DP83640_MICR_IE); 1298 err = phy_write(phydev, MII_DP83640_MICR, micr); 1299 if (err < 0) 1300 return err; 1301 1302 misr = phy_read(phydev, MII_DP83640_MISR); 1303 if (misr < 0) 1304 return misr; 1305 misr &= 1306 ~(MII_DP83640_MISR_ANC_INT_EN | 1307 MII_DP83640_MISR_DUP_INT_EN | 1308 MII_DP83640_MISR_SPD_INT_EN | 1309 MII_DP83640_MISR_LINK_INT_EN); 1310 return phy_write(phydev, MII_DP83640_MISR, misr); 1311 } 1312 } 1313 1314 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) 1315 { 1316 struct dp83640_private *dp83640 = phydev->priv; 1317 struct hwtstamp_config cfg; 1318 u16 txcfg0, rxcfg0; 1319 1320 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1321 return -EFAULT; 1322 1323 if (cfg.flags) /* reserved for future extensions */ 1324 return -EINVAL; 1325 1326 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) 1327 return -ERANGE; 1328 1329 dp83640->hwts_tx_en = cfg.tx_type; 1330 1331 switch (cfg.rx_filter) { 1332 case HWTSTAMP_FILTER_NONE: 1333 dp83640->hwts_rx_en = 0; 1334 dp83640->layer = 0; 1335 dp83640->version = 0; 1336 break; 1337 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1338 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1339 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1340 dp83640->hwts_rx_en = 1; 1341 dp83640->layer = PTP_CLASS_L4; 1342 dp83640->version = PTP_CLASS_V1; 1343 break; 1344 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1345 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1346 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1347 dp83640->hwts_rx_en = 1; 1348 dp83640->layer = PTP_CLASS_L4; 1349 dp83640->version = PTP_CLASS_V2; 1350 break; 1351 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1352 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1353 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1354 dp83640->hwts_rx_en = 1; 1355 dp83640->layer = PTP_CLASS_L2; 1356 dp83640->version = PTP_CLASS_V2; 1357 break; 1358 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1359 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1360 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1361 dp83640->hwts_rx_en = 1; 1362 dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 1363 dp83640->version = PTP_CLASS_V2; 1364 break; 1365 default: 1366 return -ERANGE; 1367 } 1368 1369 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1370 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1371 1372 if (dp83640->layer & PTP_CLASS_L2) { 1373 txcfg0 |= TX_L2_EN; 1374 rxcfg0 |= RX_L2_EN; 1375 } 1376 if (dp83640->layer & PTP_CLASS_L4) { 1377 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; 1378 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; 1379 } 1380 1381 if (dp83640->hwts_tx_en) 1382 txcfg0 |= TX_TS_EN; 1383 1384 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) 1385 txcfg0 |= SYNC_1STEP | CHK_1STEP; 1386 1387 if (dp83640->hwts_rx_en) 1388 rxcfg0 |= RX_TS_EN; 1389 1390 mutex_lock(&dp83640->clock->extreg_lock); 1391 1392 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0); 1393 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0); 1394 1395 mutex_unlock(&dp83640->clock->extreg_lock); 1396 1397 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1398 } 1399 1400 static void rx_timestamp_work(struct work_struct *work) 1401 { 1402 struct dp83640_private *dp83640 = 1403 container_of(work, struct dp83640_private, ts_work.work); 1404 struct sk_buff *skb; 1405 1406 /* Deliver expired packets. */ 1407 while ((skb = skb_dequeue(&dp83640->rx_queue))) { 1408 struct dp83640_skb_info *skb_info; 1409 1410 skb_info = (struct dp83640_skb_info *)skb->cb; 1411 if (!time_after(jiffies, skb_info->tmo)) { 1412 skb_queue_head(&dp83640->rx_queue, skb); 1413 break; 1414 } 1415 1416 netif_rx_ni(skb); 1417 } 1418 1419 if (!skb_queue_empty(&dp83640->rx_queue)) 1420 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1421 } 1422 1423 static bool dp83640_rxtstamp(struct phy_device *phydev, 1424 struct sk_buff *skb, int type) 1425 { 1426 struct dp83640_private *dp83640 = phydev->priv; 1427 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; 1428 struct list_head *this, *next; 1429 struct rxts *rxts; 1430 struct skb_shared_hwtstamps *shhwtstamps = NULL; 1431 unsigned long flags; 1432 1433 if (is_status_frame(skb, type)) { 1434 decode_status_frame(dp83640, skb); 1435 kfree_skb(skb); 1436 return true; 1437 } 1438 1439 if (!dp83640->hwts_rx_en) 1440 return false; 1441 1442 if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0) 1443 return false; 1444 1445 spin_lock_irqsave(&dp83640->rx_lock, flags); 1446 prune_rx_ts(dp83640); 1447 list_for_each_safe(this, next, &dp83640->rxts) { 1448 rxts = list_entry(this, struct rxts, list); 1449 if (match(skb, type, rxts)) { 1450 shhwtstamps = skb_hwtstamps(skb); 1451 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 1452 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 1453 list_del_init(&rxts->list); 1454 list_add(&rxts->list, &dp83640->rxpool); 1455 break; 1456 } 1457 } 1458 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1459 1460 if (!shhwtstamps) { 1461 skb_info->ptp_type = type; 1462 skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 1463 skb_queue_tail(&dp83640->rx_queue, skb); 1464 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1465 } else { 1466 netif_rx_ni(skb); 1467 } 1468 1469 return true; 1470 } 1471 1472 static void dp83640_txtstamp(struct phy_device *phydev, 1473 struct sk_buff *skb, int type) 1474 { 1475 struct dp83640_private *dp83640 = phydev->priv; 1476 1477 switch (dp83640->hwts_tx_en) { 1478 1479 case HWTSTAMP_TX_ONESTEP_SYNC: 1480 if (is_sync(skb, type)) { 1481 kfree_skb(skb); 1482 return; 1483 } 1484 /* fall through */ 1485 case HWTSTAMP_TX_ON: 1486 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1487 skb_queue_tail(&dp83640->tx_queue, skb); 1488 break; 1489 1490 case HWTSTAMP_TX_OFF: 1491 default: 1492 kfree_skb(skb); 1493 break; 1494 } 1495 } 1496 1497 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info) 1498 { 1499 struct dp83640_private *dp83640 = dev->priv; 1500 1501 info->so_timestamping = 1502 SOF_TIMESTAMPING_TX_HARDWARE | 1503 SOF_TIMESTAMPING_RX_HARDWARE | 1504 SOF_TIMESTAMPING_RAW_HARDWARE; 1505 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); 1506 info->tx_types = 1507 (1 << HWTSTAMP_TX_OFF) | 1508 (1 << HWTSTAMP_TX_ON) | 1509 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 1510 info->rx_filters = 1511 (1 << HWTSTAMP_FILTER_NONE) | 1512 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 1513 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 1514 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1515 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1516 return 0; 1517 } 1518 1519 static struct phy_driver dp83640_driver = { 1520 .phy_id = DP83640_PHY_ID, 1521 .phy_id_mask = 0xfffffff0, 1522 .name = "NatSemi DP83640", 1523 .features = PHY_BASIC_FEATURES, 1524 .flags = PHY_HAS_INTERRUPT, 1525 .probe = dp83640_probe, 1526 .remove = dp83640_remove, 1527 .soft_reset = dp83640_soft_reset, 1528 .config_init = dp83640_config_init, 1529 .ack_interrupt = dp83640_ack_interrupt, 1530 .config_intr = dp83640_config_intr, 1531 .ts_info = dp83640_ts_info, 1532 .hwtstamp = dp83640_hwtstamp, 1533 .rxtstamp = dp83640_rxtstamp, 1534 .txtstamp = dp83640_txtstamp, 1535 }; 1536 1537 static int __init dp83640_init(void) 1538 { 1539 return phy_driver_register(&dp83640_driver, THIS_MODULE); 1540 } 1541 1542 static void __exit dp83640_exit(void) 1543 { 1544 dp83640_free_clocks(); 1545 phy_driver_unregister(&dp83640_driver); 1546 } 1547 1548 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); 1549 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 1550 MODULE_LICENSE("GPL"); 1551 1552 module_init(dp83640_init); 1553 module_exit(dp83640_exit); 1554 1555 static struct mdio_device_id __maybe_unused dp83640_tbl[] = { 1556 { DP83640_PHY_ID, 0xfffffff0 }, 1557 { } 1558 }; 1559 1560 MODULE_DEVICE_TABLE(mdio, dp83640_tbl); 1561