xref: /openbmc/linux/drivers/net/phy/dp83640.c (revision 6b5fc336)
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/phy.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/ptp_clock_kernel.h>
35 
36 #include "dp83640_reg.h"
37 
38 #define DP83640_PHY_ID	0x20005ce1
39 #define PAGESEL		0x13
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define N_PER_OUT	7
43 #define PSF_PTPVER	2
44 #define PSF_EVNT	0x4000
45 #define PSF_RX		0x2000
46 #define PSF_TX		0x1000
47 #define EXT_EVENT	1
48 #define CAL_EVENT	7
49 #define CAL_TRIGGER	1
50 #define DP83640_N_PINS	12
51 
52 #define MII_DP83640_MICR 0x11
53 #define MII_DP83640_MISR 0x12
54 
55 #define MII_DP83640_MICR_OE 0x1
56 #define MII_DP83640_MICR_IE 0x2
57 
58 #define MII_DP83640_MISR_RHF_INT_EN 0x01
59 #define MII_DP83640_MISR_FHF_INT_EN 0x02
60 #define MII_DP83640_MISR_ANC_INT_EN 0x04
61 #define MII_DP83640_MISR_DUP_INT_EN 0x08
62 #define MII_DP83640_MISR_SPD_INT_EN 0x10
63 #define MII_DP83640_MISR_LINK_INT_EN 0x20
64 #define MII_DP83640_MISR_ED_INT_EN 0x40
65 #define MII_DP83640_MISR_LQ_INT_EN 0x80
66 
67 /* phyter seems to miss the mark by 16 ns */
68 #define ADJTIME_FIX	16
69 
70 #define SKB_TIMESTAMP_TIMEOUT	2 /* jiffies */
71 
72 #if defined(__BIG_ENDIAN)
73 #define ENDIAN_FLAG	0
74 #elif defined(__LITTLE_ENDIAN)
75 #define ENDIAN_FLAG	PSF_ENDIAN
76 #endif
77 
78 struct dp83640_skb_info {
79 	int ptp_type;
80 	unsigned long tmo;
81 };
82 
83 struct phy_rxts {
84 	u16 ns_lo;   /* ns[15:0] */
85 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
86 	u16 sec_lo;  /* sec[15:0] */
87 	u16 sec_hi;  /* sec[31:16] */
88 	u16 seqid;   /* sequenceId[15:0] */
89 	u16 msgtype; /* messageType[3:0], hash[11:0] */
90 };
91 
92 struct phy_txts {
93 	u16 ns_lo;   /* ns[15:0] */
94 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
95 	u16 sec_lo;  /* sec[15:0] */
96 	u16 sec_hi;  /* sec[31:16] */
97 };
98 
99 struct rxts {
100 	struct list_head list;
101 	unsigned long tmo;
102 	u64 ns;
103 	u16 seqid;
104 	u8  msgtype;
105 	u16 hash;
106 };
107 
108 struct dp83640_clock;
109 
110 struct dp83640_private {
111 	struct list_head list;
112 	struct dp83640_clock *clock;
113 	struct phy_device *phydev;
114 	struct delayed_work ts_work;
115 	int hwts_tx_en;
116 	int hwts_rx_en;
117 	int layer;
118 	int version;
119 	/* remember state of cfg0 during calibration */
120 	int cfg0;
121 	/* remember the last event time stamp */
122 	struct phy_txts edata;
123 	/* list of rx timestamps */
124 	struct list_head rxts;
125 	struct list_head rxpool;
126 	struct rxts rx_pool_data[MAX_RXTS];
127 	/* protects above three fields from concurrent access */
128 	spinlock_t rx_lock;
129 	/* queues of incoming and outgoing packets */
130 	struct sk_buff_head rx_queue;
131 	struct sk_buff_head tx_queue;
132 };
133 
134 struct dp83640_clock {
135 	/* keeps the instance in the 'phyter_clocks' list */
136 	struct list_head list;
137 	/* we create one clock instance per MII bus */
138 	struct mii_bus *bus;
139 	/* protects extended registers from concurrent access */
140 	struct mutex extreg_lock;
141 	/* remembers which page was last selected */
142 	int page;
143 	/* our advertised capabilities */
144 	struct ptp_clock_info caps;
145 	/* protects the three fields below from concurrent access */
146 	struct mutex clock_lock;
147 	/* the one phyter from which we shall read */
148 	struct dp83640_private *chosen;
149 	/* list of the other attached phyters, not chosen */
150 	struct list_head phylist;
151 	/* reference to our PTP hardware clock */
152 	struct ptp_clock *ptp_clock;
153 };
154 
155 /* globals */
156 
157 enum {
158 	CALIBRATE_GPIO,
159 	PEROUT_GPIO,
160 	EXTTS0_GPIO,
161 	EXTTS1_GPIO,
162 	EXTTS2_GPIO,
163 	EXTTS3_GPIO,
164 	EXTTS4_GPIO,
165 	EXTTS5_GPIO,
166 	GPIO_TABLE_SIZE
167 };
168 
169 static int chosen_phy = -1;
170 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
171 	1, 2, 3, 4, 8, 9, 10, 11
172 };
173 
174 module_param(chosen_phy, int, 0444);
175 module_param_array(gpio_tab, ushort, NULL, 0444);
176 
177 MODULE_PARM_DESC(chosen_phy, \
178 	"The address of the PHY to use for the ancillary clock features");
179 MODULE_PARM_DESC(gpio_tab, \
180 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
181 
182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
183 {
184 	int i, index;
185 
186 	for (i = 0; i < DP83640_N_PINS; i++) {
187 		snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
188 		pd[i].index = i;
189 	}
190 
191 	for (i = 0; i < GPIO_TABLE_SIZE; i++) {
192 		if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
193 			pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
194 			return;
195 		}
196 	}
197 
198 	index = gpio_tab[CALIBRATE_GPIO] - 1;
199 	pd[index].func = PTP_PF_PHYSYNC;
200 	pd[index].chan = 0;
201 
202 	index = gpio_tab[PEROUT_GPIO] - 1;
203 	pd[index].func = PTP_PF_PEROUT;
204 	pd[index].chan = 0;
205 
206 	for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
207 		index = gpio_tab[i] - 1;
208 		pd[index].func = PTP_PF_EXTTS;
209 		pd[index].chan = i - EXTTS0_GPIO;
210 	}
211 }
212 
213 /* a list of clocks and a mutex to protect it */
214 static LIST_HEAD(phyter_clocks);
215 static DEFINE_MUTEX(phyter_clocks_lock);
216 
217 static void rx_timestamp_work(struct work_struct *work);
218 
219 /* extended register access functions */
220 
221 #define BROADCAST_ADDR 31
222 
223 static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
224 				  u16 val)
225 {
226 	return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
227 }
228 
229 /* Caller must hold extreg_lock. */
230 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
231 {
232 	struct dp83640_private *dp83640 = phydev->priv;
233 	int val;
234 
235 	if (dp83640->clock->page != page) {
236 		broadcast_write(phydev, PAGESEL, page);
237 		dp83640->clock->page = page;
238 	}
239 	val = phy_read(phydev, regnum);
240 
241 	return val;
242 }
243 
244 /* Caller must hold extreg_lock. */
245 static void ext_write(int broadcast, struct phy_device *phydev,
246 		      int page, u32 regnum, u16 val)
247 {
248 	struct dp83640_private *dp83640 = phydev->priv;
249 
250 	if (dp83640->clock->page != page) {
251 		broadcast_write(phydev, PAGESEL, page);
252 		dp83640->clock->page = page;
253 	}
254 	if (broadcast)
255 		broadcast_write(phydev, regnum, val);
256 	else
257 		phy_write(phydev, regnum, val);
258 }
259 
260 /* Caller must hold extreg_lock. */
261 static int tdr_write(int bc, struct phy_device *dev,
262 		     const struct timespec64 *ts, u16 cmd)
263 {
264 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
265 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
266 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
267 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
268 
269 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
270 
271 	return 0;
272 }
273 
274 /* convert phy timestamps into driver timestamps */
275 
276 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
277 {
278 	u32 sec;
279 
280 	sec = p->sec_lo;
281 	sec |= p->sec_hi << 16;
282 
283 	rxts->ns = p->ns_lo;
284 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
285 	rxts->ns += ((u64)sec) * 1000000000ULL;
286 	rxts->seqid = p->seqid;
287 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
288 	rxts->hash = p->msgtype & 0x0fff;
289 	rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
290 }
291 
292 static u64 phy2txts(struct phy_txts *p)
293 {
294 	u64 ns;
295 	u32 sec;
296 
297 	sec = p->sec_lo;
298 	sec |= p->sec_hi << 16;
299 
300 	ns = p->ns_lo;
301 	ns |= (p->ns_hi & 0x3fff) << 16;
302 	ns += ((u64)sec) * 1000000000ULL;
303 
304 	return ns;
305 }
306 
307 static int periodic_output(struct dp83640_clock *clock,
308 			   struct ptp_clock_request *clkreq, bool on,
309 			   int trigger)
310 {
311 	struct dp83640_private *dp83640 = clock->chosen;
312 	struct phy_device *phydev = dp83640->phydev;
313 	u32 sec, nsec, pwidth;
314 	u16 gpio, ptp_trig, val;
315 
316 	if (on) {
317 		gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
318 					trigger);
319 		if (gpio < 1)
320 			return -EINVAL;
321 	} else {
322 		gpio = 0;
323 	}
324 
325 	ptp_trig = TRIG_WR |
326 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
327 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
328 		TRIG_PER |
329 		TRIG_PULSE;
330 
331 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
332 
333 	if (!on) {
334 		val |= TRIG_DIS;
335 		mutex_lock(&clock->extreg_lock);
336 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
337 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
338 		mutex_unlock(&clock->extreg_lock);
339 		return 0;
340 	}
341 
342 	sec = clkreq->perout.start.sec;
343 	nsec = clkreq->perout.start.nsec;
344 	pwidth = clkreq->perout.period.sec * 1000000000UL;
345 	pwidth += clkreq->perout.period.nsec;
346 	pwidth /= 2;
347 
348 	mutex_lock(&clock->extreg_lock);
349 
350 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
351 
352 	/*load trigger*/
353 	val |= TRIG_LOAD;
354 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
355 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
356 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
357 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
358 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
359 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
360 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);    /* ns[31:16] */
361 	/* Triggers 0 and 1 has programmable pulsewidth2 */
362 	if (trigger < 2) {
363 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
364 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
365 	}
366 
367 	/*enable trigger*/
368 	val &= ~TRIG_LOAD;
369 	val |= TRIG_EN;
370 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
371 
372 	mutex_unlock(&clock->extreg_lock);
373 	return 0;
374 }
375 
376 /* ptp clock methods */
377 
378 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
379 {
380 	struct dp83640_clock *clock =
381 		container_of(ptp, struct dp83640_clock, caps);
382 	struct phy_device *phydev = clock->chosen->phydev;
383 	u64 rate;
384 	int neg_adj = 0;
385 	u16 hi, lo;
386 
387 	if (scaled_ppm < 0) {
388 		neg_adj = 1;
389 		scaled_ppm = -scaled_ppm;
390 	}
391 	rate = scaled_ppm;
392 	rate <<= 13;
393 	rate = div_u64(rate, 15625);
394 
395 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
396 	if (neg_adj)
397 		hi |= PTP_RATE_DIR;
398 
399 	lo = rate & 0xffff;
400 
401 	mutex_lock(&clock->extreg_lock);
402 
403 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
404 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
405 
406 	mutex_unlock(&clock->extreg_lock);
407 
408 	return 0;
409 }
410 
411 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
412 {
413 	struct dp83640_clock *clock =
414 		container_of(ptp, struct dp83640_clock, caps);
415 	struct phy_device *phydev = clock->chosen->phydev;
416 	struct timespec64 ts;
417 	int err;
418 
419 	delta += ADJTIME_FIX;
420 
421 	ts = ns_to_timespec64(delta);
422 
423 	mutex_lock(&clock->extreg_lock);
424 
425 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
426 
427 	mutex_unlock(&clock->extreg_lock);
428 
429 	return err;
430 }
431 
432 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
433 			       struct timespec64 *ts)
434 {
435 	struct dp83640_clock *clock =
436 		container_of(ptp, struct dp83640_clock, caps);
437 	struct phy_device *phydev = clock->chosen->phydev;
438 	unsigned int val[4];
439 
440 	mutex_lock(&clock->extreg_lock);
441 
442 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
443 
444 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
445 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
446 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
447 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
448 
449 	mutex_unlock(&clock->extreg_lock);
450 
451 	ts->tv_nsec = val[0] | (val[1] << 16);
452 	ts->tv_sec  = val[2] | (val[3] << 16);
453 
454 	return 0;
455 }
456 
457 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
458 			       const struct timespec64 *ts)
459 {
460 	struct dp83640_clock *clock =
461 		container_of(ptp, struct dp83640_clock, caps);
462 	struct phy_device *phydev = clock->chosen->phydev;
463 	int err;
464 
465 	mutex_lock(&clock->extreg_lock);
466 
467 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
468 
469 	mutex_unlock(&clock->extreg_lock);
470 
471 	return err;
472 }
473 
474 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
475 			      struct ptp_clock_request *rq, int on)
476 {
477 	struct dp83640_clock *clock =
478 		container_of(ptp, struct dp83640_clock, caps);
479 	struct phy_device *phydev = clock->chosen->phydev;
480 	unsigned int index;
481 	u16 evnt, event_num, gpio_num;
482 
483 	switch (rq->type) {
484 	case PTP_CLK_REQ_EXTTS:
485 		index = rq->extts.index;
486 		if (index >= N_EXT_TS)
487 			return -EINVAL;
488 		event_num = EXT_EVENT + index;
489 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
490 		if (on) {
491 			gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
492 						    PTP_PF_EXTTS, index);
493 			if (gpio_num < 1)
494 				return -EINVAL;
495 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
496 			if (rq->extts.flags & PTP_FALLING_EDGE)
497 				evnt |= EVNT_FALL;
498 			else
499 				evnt |= EVNT_RISE;
500 		}
501 		mutex_lock(&clock->extreg_lock);
502 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
503 		mutex_unlock(&clock->extreg_lock);
504 		return 0;
505 
506 	case PTP_CLK_REQ_PEROUT:
507 		if (rq->perout.index >= N_PER_OUT)
508 			return -EINVAL;
509 		return periodic_output(clock, rq, on, rq->perout.index);
510 
511 	default:
512 		break;
513 	}
514 
515 	return -EOPNOTSUPP;
516 }
517 
518 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
519 			      enum ptp_pin_function func, unsigned int chan)
520 {
521 	struct dp83640_clock *clock =
522 		container_of(ptp, struct dp83640_clock, caps);
523 
524 	if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
525 	    !list_empty(&clock->phylist))
526 		return 1;
527 
528 	if (func == PTP_PF_PHYSYNC)
529 		return 1;
530 
531 	return 0;
532 }
533 
534 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
535 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
536 
537 static void enable_status_frames(struct phy_device *phydev, bool on)
538 {
539 	struct dp83640_private *dp83640 = phydev->priv;
540 	struct dp83640_clock *clock = dp83640->clock;
541 	u16 cfg0 = 0, ver;
542 
543 	if (on)
544 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
545 
546 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
547 
548 	mutex_lock(&clock->extreg_lock);
549 
550 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
551 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
552 
553 	mutex_unlock(&clock->extreg_lock);
554 
555 	if (!phydev->attached_dev) {
556 		pr_warn("expected to find an attached netdevice\n");
557 		return;
558 	}
559 
560 	if (on) {
561 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
562 			pr_warn("failed to add mc address\n");
563 	} else {
564 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
565 			pr_warn("failed to delete mc address\n");
566 	}
567 }
568 
569 static bool is_status_frame(struct sk_buff *skb, int type)
570 {
571 	struct ethhdr *h = eth_hdr(skb);
572 
573 	if (PTP_CLASS_V2_L2 == type &&
574 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
575 		return true;
576 	else
577 		return false;
578 }
579 
580 static int expired(struct rxts *rxts)
581 {
582 	return time_after(jiffies, rxts->tmo);
583 }
584 
585 /* Caller must hold rx_lock. */
586 static void prune_rx_ts(struct dp83640_private *dp83640)
587 {
588 	struct list_head *this, *next;
589 	struct rxts *rxts;
590 
591 	list_for_each_safe(this, next, &dp83640->rxts) {
592 		rxts = list_entry(this, struct rxts, list);
593 		if (expired(rxts)) {
594 			list_del_init(&rxts->list);
595 			list_add(&rxts->list, &dp83640->rxpool);
596 		}
597 	}
598 }
599 
600 /* synchronize the phyters so they act as one clock */
601 
602 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
603 {
604 	int val;
605 	phy_write(phydev, PAGESEL, 0);
606 	val = phy_read(phydev, PHYCR2);
607 	if (on)
608 		val |= BC_WRITE;
609 	else
610 		val &= ~BC_WRITE;
611 	phy_write(phydev, PHYCR2, val);
612 	phy_write(phydev, PAGESEL, init_page);
613 }
614 
615 static void recalibrate(struct dp83640_clock *clock)
616 {
617 	s64 now, diff;
618 	struct phy_txts event_ts;
619 	struct timespec64 ts;
620 	struct list_head *this;
621 	struct dp83640_private *tmp;
622 	struct phy_device *master = clock->chosen->phydev;
623 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
624 
625 	trigger = CAL_TRIGGER;
626 	cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
627 	if (cal_gpio < 1) {
628 		pr_err("PHY calibration pin not available - PHY is not calibrated.");
629 		return;
630 	}
631 
632 	mutex_lock(&clock->extreg_lock);
633 
634 	/*
635 	 * enable broadcast, disable status frames, enable ptp clock
636 	 */
637 	list_for_each(this, &clock->phylist) {
638 		tmp = list_entry(this, struct dp83640_private, list);
639 		enable_broadcast(tmp->phydev, clock->page, 1);
640 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
641 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
642 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
643 	}
644 	enable_broadcast(master, clock->page, 1);
645 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
646 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
647 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
648 
649 	/*
650 	 * enable an event timestamp
651 	 */
652 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
653 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
654 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
655 
656 	list_for_each(this, &clock->phylist) {
657 		tmp = list_entry(this, struct dp83640_private, list);
658 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
659 	}
660 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
661 
662 	/*
663 	 * configure a trigger
664 	 */
665 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
666 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
667 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
668 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
669 
670 	/* load trigger */
671 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
672 	val |= TRIG_LOAD;
673 	ext_write(0, master, PAGE4, PTP_CTL, val);
674 
675 	/* enable trigger */
676 	val &= ~TRIG_LOAD;
677 	val |= TRIG_EN;
678 	ext_write(0, master, PAGE4, PTP_CTL, val);
679 
680 	/* disable trigger */
681 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
682 	val |= TRIG_DIS;
683 	ext_write(0, master, PAGE4, PTP_CTL, val);
684 
685 	/*
686 	 * read out and correct offsets
687 	 */
688 	val = ext_read(master, PAGE4, PTP_STS);
689 	pr_info("master PTP_STS  0x%04hx\n", val);
690 	val = ext_read(master, PAGE4, PTP_ESTS);
691 	pr_info("master PTP_ESTS 0x%04hx\n", val);
692 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
693 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
694 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
695 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
696 	now = phy2txts(&event_ts);
697 
698 	list_for_each(this, &clock->phylist) {
699 		tmp = list_entry(this, struct dp83640_private, list);
700 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
701 		pr_info("slave  PTP_STS  0x%04hx\n", val);
702 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
703 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
704 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
705 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
707 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
708 		diff = now - (s64) phy2txts(&event_ts);
709 		pr_info("slave offset %lld nanoseconds\n", diff);
710 		diff += ADJTIME_FIX;
711 		ts = ns_to_timespec64(diff);
712 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
713 	}
714 
715 	/*
716 	 * restore status frames
717 	 */
718 	list_for_each(this, &clock->phylist) {
719 		tmp = list_entry(this, struct dp83640_private, list);
720 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
721 	}
722 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
723 
724 	mutex_unlock(&clock->extreg_lock);
725 }
726 
727 /* time stamping methods */
728 
729 static inline u16 exts_chan_to_edata(int ch)
730 {
731 	return 1 << ((ch + EXT_EVENT) * 2);
732 }
733 
734 static int decode_evnt(struct dp83640_private *dp83640,
735 		       void *data, int len, u16 ests)
736 {
737 	struct phy_txts *phy_txts;
738 	struct ptp_clock_event event;
739 	int i, parsed;
740 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
741 	u16 ext_status = 0;
742 
743 	/* calculate length of the event timestamp status message */
744 	if (ests & MULT_EVNT)
745 		parsed = (words + 2) * sizeof(u16);
746 	else
747 		parsed = (words + 1) * sizeof(u16);
748 
749 	/* check if enough data is available */
750 	if (len < parsed)
751 		return len;
752 
753 	if (ests & MULT_EVNT) {
754 		ext_status = *(u16 *) data;
755 		data += sizeof(ext_status);
756 	}
757 
758 	phy_txts = data;
759 
760 	switch (words) { /* fall through in every case */
761 	case 3:
762 		dp83640->edata.sec_hi = phy_txts->sec_hi;
763 	case 2:
764 		dp83640->edata.sec_lo = phy_txts->sec_lo;
765 	case 1:
766 		dp83640->edata.ns_hi = phy_txts->ns_hi;
767 	case 0:
768 		dp83640->edata.ns_lo = phy_txts->ns_lo;
769 	}
770 
771 	if (!ext_status) {
772 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
773 		ext_status = exts_chan_to_edata(i);
774 	}
775 
776 	event.type = PTP_CLOCK_EXTTS;
777 	event.timestamp = phy2txts(&dp83640->edata);
778 
779 	/* Compensate for input path and synchronization delays */
780 	event.timestamp -= 35;
781 
782 	for (i = 0; i < N_EXT_TS; i++) {
783 		if (ext_status & exts_chan_to_edata(i)) {
784 			event.index = i;
785 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
786 		}
787 	}
788 
789 	return parsed;
790 }
791 
792 #define DP83640_PACKET_HASH_OFFSET	20
793 #define DP83640_PACKET_HASH_LEN		10
794 
795 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
796 {
797 	u16 *seqid, hash;
798 	unsigned int offset = 0;
799 	u8 *msgtype, *data = skb_mac_header(skb);
800 
801 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
802 
803 	if (type & PTP_CLASS_VLAN)
804 		offset += VLAN_HLEN;
805 
806 	switch (type & PTP_CLASS_PMASK) {
807 	case PTP_CLASS_IPV4:
808 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
809 		break;
810 	case PTP_CLASS_IPV6:
811 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
812 		break;
813 	case PTP_CLASS_L2:
814 		offset += ETH_HLEN;
815 		break;
816 	default:
817 		return 0;
818 	}
819 
820 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
821 		return 0;
822 
823 	if (unlikely(type & PTP_CLASS_V1))
824 		msgtype = data + offset + OFF_PTP_CONTROL;
825 	else
826 		msgtype = data + offset;
827 	if (rxts->msgtype != (*msgtype & 0xf))
828 		return 0;
829 
830 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
831 	if (rxts->seqid != ntohs(*seqid))
832 		return 0;
833 
834 	hash = ether_crc(DP83640_PACKET_HASH_LEN,
835 			 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
836 	if (rxts->hash != hash)
837 		return 0;
838 
839 	return 1;
840 }
841 
842 static void decode_rxts(struct dp83640_private *dp83640,
843 			struct phy_rxts *phy_rxts)
844 {
845 	struct rxts *rxts;
846 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
847 	struct sk_buff *skb;
848 	unsigned long flags;
849 	u8 overflow;
850 
851 	overflow = (phy_rxts->ns_hi >> 14) & 0x3;
852 	if (overflow)
853 		pr_debug("rx timestamp queue overflow, count %d\n", overflow);
854 
855 	spin_lock_irqsave(&dp83640->rx_lock, flags);
856 
857 	prune_rx_ts(dp83640);
858 
859 	if (list_empty(&dp83640->rxpool)) {
860 		pr_debug("rx timestamp pool is empty\n");
861 		goto out;
862 	}
863 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
864 	list_del_init(&rxts->list);
865 	phy2rxts(phy_rxts, rxts);
866 
867 	spin_lock(&dp83640->rx_queue.lock);
868 	skb_queue_walk(&dp83640->rx_queue, skb) {
869 		struct dp83640_skb_info *skb_info;
870 
871 		skb_info = (struct dp83640_skb_info *)skb->cb;
872 		if (match(skb, skb_info->ptp_type, rxts)) {
873 			__skb_unlink(skb, &dp83640->rx_queue);
874 			shhwtstamps = skb_hwtstamps(skb);
875 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
876 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
877 			netif_rx_ni(skb);
878 			list_add(&rxts->list, &dp83640->rxpool);
879 			break;
880 		}
881 	}
882 	spin_unlock(&dp83640->rx_queue.lock);
883 
884 	if (!shhwtstamps)
885 		list_add_tail(&rxts->list, &dp83640->rxts);
886 out:
887 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
888 }
889 
890 static void decode_txts(struct dp83640_private *dp83640,
891 			struct phy_txts *phy_txts)
892 {
893 	struct skb_shared_hwtstamps shhwtstamps;
894 	struct sk_buff *skb;
895 	u64 ns;
896 	u8 overflow;
897 
898 	/* We must already have the skb that triggered this. */
899 
900 	skb = skb_dequeue(&dp83640->tx_queue);
901 
902 	if (!skb) {
903 		pr_debug("have timestamp but tx_queue empty\n");
904 		return;
905 	}
906 
907 	overflow = (phy_txts->ns_hi >> 14) & 0x3;
908 	if (overflow) {
909 		pr_debug("tx timestamp queue overflow, count %d\n", overflow);
910 		while (skb) {
911 			kfree_skb(skb);
912 			skb = skb_dequeue(&dp83640->tx_queue);
913 		}
914 		return;
915 	}
916 
917 	ns = phy2txts(phy_txts);
918 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
919 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
920 	skb_complete_tx_timestamp(skb, &shhwtstamps);
921 }
922 
923 static void decode_status_frame(struct dp83640_private *dp83640,
924 				struct sk_buff *skb)
925 {
926 	struct phy_rxts *phy_rxts;
927 	struct phy_txts *phy_txts;
928 	u8 *ptr;
929 	int len, size;
930 	u16 ests, type;
931 
932 	ptr = skb->data + 2;
933 
934 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
935 
936 		type = *(u16 *)ptr;
937 		ests = type & 0x0fff;
938 		type = type & 0xf000;
939 		len -= sizeof(type);
940 		ptr += sizeof(type);
941 
942 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
943 
944 			phy_rxts = (struct phy_rxts *) ptr;
945 			decode_rxts(dp83640, phy_rxts);
946 			size = sizeof(*phy_rxts);
947 
948 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
949 
950 			phy_txts = (struct phy_txts *) ptr;
951 			decode_txts(dp83640, phy_txts);
952 			size = sizeof(*phy_txts);
953 
954 		} else if (PSF_EVNT == type) {
955 
956 			size = decode_evnt(dp83640, ptr, len, ests);
957 
958 		} else {
959 			size = 0;
960 			break;
961 		}
962 		ptr += size;
963 	}
964 }
965 
966 static int is_sync(struct sk_buff *skb, int type)
967 {
968 	u8 *data = skb->data, *msgtype;
969 	unsigned int offset = 0;
970 
971 	if (type & PTP_CLASS_VLAN)
972 		offset += VLAN_HLEN;
973 
974 	switch (type & PTP_CLASS_PMASK) {
975 	case PTP_CLASS_IPV4:
976 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
977 		break;
978 	case PTP_CLASS_IPV6:
979 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
980 		break;
981 	case PTP_CLASS_L2:
982 		offset += ETH_HLEN;
983 		break;
984 	default:
985 		return 0;
986 	}
987 
988 	if (type & PTP_CLASS_V1)
989 		offset += OFF_PTP_CONTROL;
990 
991 	if (skb->len < offset + 1)
992 		return 0;
993 
994 	msgtype = data + offset;
995 
996 	return (*msgtype & 0xf) == 0;
997 }
998 
999 static void dp83640_free_clocks(void)
1000 {
1001 	struct dp83640_clock *clock;
1002 	struct list_head *this, *next;
1003 
1004 	mutex_lock(&phyter_clocks_lock);
1005 
1006 	list_for_each_safe(this, next, &phyter_clocks) {
1007 		clock = list_entry(this, struct dp83640_clock, list);
1008 		if (!list_empty(&clock->phylist)) {
1009 			pr_warn("phy list non-empty while unloading\n");
1010 			BUG();
1011 		}
1012 		list_del(&clock->list);
1013 		mutex_destroy(&clock->extreg_lock);
1014 		mutex_destroy(&clock->clock_lock);
1015 		put_device(&clock->bus->dev);
1016 		kfree(clock->caps.pin_config);
1017 		kfree(clock);
1018 	}
1019 
1020 	mutex_unlock(&phyter_clocks_lock);
1021 }
1022 
1023 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1024 {
1025 	INIT_LIST_HEAD(&clock->list);
1026 	clock->bus = bus;
1027 	mutex_init(&clock->extreg_lock);
1028 	mutex_init(&clock->clock_lock);
1029 	INIT_LIST_HEAD(&clock->phylist);
1030 	clock->caps.owner = THIS_MODULE;
1031 	sprintf(clock->caps.name, "dp83640 timer");
1032 	clock->caps.max_adj	= 1953124;
1033 	clock->caps.n_alarm	= 0;
1034 	clock->caps.n_ext_ts	= N_EXT_TS;
1035 	clock->caps.n_per_out	= N_PER_OUT;
1036 	clock->caps.n_pins	= DP83640_N_PINS;
1037 	clock->caps.pps		= 0;
1038 	clock->caps.adjfine	= ptp_dp83640_adjfine;
1039 	clock->caps.adjtime	= ptp_dp83640_adjtime;
1040 	clock->caps.gettime64	= ptp_dp83640_gettime;
1041 	clock->caps.settime64	= ptp_dp83640_settime;
1042 	clock->caps.enable	= ptp_dp83640_enable;
1043 	clock->caps.verify	= ptp_dp83640_verify;
1044 	/*
1045 	 * Convert the module param defaults into a dynamic pin configuration.
1046 	 */
1047 	dp83640_gpio_defaults(clock->caps.pin_config);
1048 	/*
1049 	 * Get a reference to this bus instance.
1050 	 */
1051 	get_device(&bus->dev);
1052 }
1053 
1054 static int choose_this_phy(struct dp83640_clock *clock,
1055 			   struct phy_device *phydev)
1056 {
1057 	if (chosen_phy == -1 && !clock->chosen)
1058 		return 1;
1059 
1060 	if (chosen_phy == phydev->mdio.addr)
1061 		return 1;
1062 
1063 	return 0;
1064 }
1065 
1066 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1067 {
1068 	if (clock)
1069 		mutex_lock(&clock->clock_lock);
1070 	return clock;
1071 }
1072 
1073 /*
1074  * Look up and lock a clock by bus instance.
1075  * If there is no clock for this bus, then create it first.
1076  */
1077 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1078 {
1079 	struct dp83640_clock *clock = NULL, *tmp;
1080 	struct list_head *this;
1081 
1082 	mutex_lock(&phyter_clocks_lock);
1083 
1084 	list_for_each(this, &phyter_clocks) {
1085 		tmp = list_entry(this, struct dp83640_clock, list);
1086 		if (tmp->bus == bus) {
1087 			clock = tmp;
1088 			break;
1089 		}
1090 	}
1091 	if (clock)
1092 		goto out;
1093 
1094 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1095 	if (!clock)
1096 		goto out;
1097 
1098 	clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
1099 					 DP83640_N_PINS, GFP_KERNEL);
1100 	if (!clock->caps.pin_config) {
1101 		kfree(clock);
1102 		clock = NULL;
1103 		goto out;
1104 	}
1105 	dp83640_clock_init(clock, bus);
1106 	list_add_tail(&phyter_clocks, &clock->list);
1107 out:
1108 	mutex_unlock(&phyter_clocks_lock);
1109 
1110 	return dp83640_clock_get(clock);
1111 }
1112 
1113 static void dp83640_clock_put(struct dp83640_clock *clock)
1114 {
1115 	mutex_unlock(&clock->clock_lock);
1116 }
1117 
1118 static int dp83640_probe(struct phy_device *phydev)
1119 {
1120 	struct dp83640_clock *clock;
1121 	struct dp83640_private *dp83640;
1122 	int err = -ENOMEM, i;
1123 
1124 	if (phydev->mdio.addr == BROADCAST_ADDR)
1125 		return 0;
1126 
1127 	clock = dp83640_clock_get_bus(phydev->mdio.bus);
1128 	if (!clock)
1129 		goto no_clock;
1130 
1131 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1132 	if (!dp83640)
1133 		goto no_memory;
1134 
1135 	dp83640->phydev = phydev;
1136 	INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
1137 
1138 	INIT_LIST_HEAD(&dp83640->rxts);
1139 	INIT_LIST_HEAD(&dp83640->rxpool);
1140 	for (i = 0; i < MAX_RXTS; i++)
1141 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1142 
1143 	phydev->priv = dp83640;
1144 
1145 	spin_lock_init(&dp83640->rx_lock);
1146 	skb_queue_head_init(&dp83640->rx_queue);
1147 	skb_queue_head_init(&dp83640->tx_queue);
1148 
1149 	dp83640->clock = clock;
1150 
1151 	if (choose_this_phy(clock, phydev)) {
1152 		clock->chosen = dp83640;
1153 		clock->ptp_clock = ptp_clock_register(&clock->caps,
1154 						      &phydev->mdio.dev);
1155 		if (IS_ERR(clock->ptp_clock)) {
1156 			err = PTR_ERR(clock->ptp_clock);
1157 			goto no_register;
1158 		}
1159 	} else
1160 		list_add_tail(&dp83640->list, &clock->phylist);
1161 
1162 	dp83640_clock_put(clock);
1163 	return 0;
1164 
1165 no_register:
1166 	clock->chosen = NULL;
1167 	kfree(dp83640);
1168 no_memory:
1169 	dp83640_clock_put(clock);
1170 no_clock:
1171 	return err;
1172 }
1173 
1174 static void dp83640_remove(struct phy_device *phydev)
1175 {
1176 	struct dp83640_clock *clock;
1177 	struct list_head *this, *next;
1178 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1179 
1180 	if (phydev->mdio.addr == BROADCAST_ADDR)
1181 		return;
1182 
1183 	enable_status_frames(phydev, false);
1184 	cancel_delayed_work_sync(&dp83640->ts_work);
1185 
1186 	skb_queue_purge(&dp83640->rx_queue);
1187 	skb_queue_purge(&dp83640->tx_queue);
1188 
1189 	clock = dp83640_clock_get(dp83640->clock);
1190 
1191 	if (dp83640 == clock->chosen) {
1192 		ptp_clock_unregister(clock->ptp_clock);
1193 		clock->chosen = NULL;
1194 	} else {
1195 		list_for_each_safe(this, next, &clock->phylist) {
1196 			tmp = list_entry(this, struct dp83640_private, list);
1197 			if (tmp == dp83640) {
1198 				list_del_init(&tmp->list);
1199 				break;
1200 			}
1201 		}
1202 	}
1203 
1204 	dp83640_clock_put(clock);
1205 	kfree(dp83640);
1206 }
1207 
1208 static int dp83640_config_init(struct phy_device *phydev)
1209 {
1210 	struct dp83640_private *dp83640 = phydev->priv;
1211 	struct dp83640_clock *clock = dp83640->clock;
1212 
1213 	if (clock->chosen && !list_empty(&clock->phylist))
1214 		recalibrate(clock);
1215 	else {
1216 		mutex_lock(&clock->extreg_lock);
1217 		enable_broadcast(phydev, clock->page, 1);
1218 		mutex_unlock(&clock->extreg_lock);
1219 	}
1220 
1221 	enable_status_frames(phydev, true);
1222 
1223 	mutex_lock(&clock->extreg_lock);
1224 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1225 	mutex_unlock(&clock->extreg_lock);
1226 
1227 	return 0;
1228 }
1229 
1230 static int dp83640_ack_interrupt(struct phy_device *phydev)
1231 {
1232 	int err = phy_read(phydev, MII_DP83640_MISR);
1233 
1234 	if (err < 0)
1235 		return err;
1236 
1237 	return 0;
1238 }
1239 
1240 static int dp83640_config_intr(struct phy_device *phydev)
1241 {
1242 	int micr;
1243 	int misr;
1244 	int err;
1245 
1246 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1247 		misr = phy_read(phydev, MII_DP83640_MISR);
1248 		if (misr < 0)
1249 			return misr;
1250 		misr |=
1251 			(MII_DP83640_MISR_ANC_INT_EN |
1252 			MII_DP83640_MISR_DUP_INT_EN |
1253 			MII_DP83640_MISR_SPD_INT_EN |
1254 			MII_DP83640_MISR_LINK_INT_EN);
1255 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1256 		if (err < 0)
1257 			return err;
1258 
1259 		micr = phy_read(phydev, MII_DP83640_MICR);
1260 		if (micr < 0)
1261 			return micr;
1262 		micr |=
1263 			(MII_DP83640_MICR_OE |
1264 			MII_DP83640_MICR_IE);
1265 		return phy_write(phydev, MII_DP83640_MICR, micr);
1266 	} else {
1267 		micr = phy_read(phydev, MII_DP83640_MICR);
1268 		if (micr < 0)
1269 			return micr;
1270 		micr &=
1271 			~(MII_DP83640_MICR_OE |
1272 			MII_DP83640_MICR_IE);
1273 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1274 		if (err < 0)
1275 			return err;
1276 
1277 		misr = phy_read(phydev, MII_DP83640_MISR);
1278 		if (misr < 0)
1279 			return misr;
1280 		misr &=
1281 			~(MII_DP83640_MISR_ANC_INT_EN |
1282 			MII_DP83640_MISR_DUP_INT_EN |
1283 			MII_DP83640_MISR_SPD_INT_EN |
1284 			MII_DP83640_MISR_LINK_INT_EN);
1285 		return phy_write(phydev, MII_DP83640_MISR, misr);
1286 	}
1287 }
1288 
1289 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1290 {
1291 	struct dp83640_private *dp83640 = phydev->priv;
1292 	struct hwtstamp_config cfg;
1293 	u16 txcfg0, rxcfg0;
1294 
1295 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1296 		return -EFAULT;
1297 
1298 	if (cfg.flags) /* reserved for future extensions */
1299 		return -EINVAL;
1300 
1301 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1302 		return -ERANGE;
1303 
1304 	dp83640->hwts_tx_en = cfg.tx_type;
1305 
1306 	switch (cfg.rx_filter) {
1307 	case HWTSTAMP_FILTER_NONE:
1308 		dp83640->hwts_rx_en = 0;
1309 		dp83640->layer = 0;
1310 		dp83640->version = 0;
1311 		break;
1312 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1313 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1314 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1315 		dp83640->hwts_rx_en = 1;
1316 		dp83640->layer = PTP_CLASS_L4;
1317 		dp83640->version = PTP_CLASS_V1;
1318 		break;
1319 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1320 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1321 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1322 		dp83640->hwts_rx_en = 1;
1323 		dp83640->layer = PTP_CLASS_L4;
1324 		dp83640->version = PTP_CLASS_V2;
1325 		break;
1326 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1327 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1328 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1329 		dp83640->hwts_rx_en = 1;
1330 		dp83640->layer = PTP_CLASS_L2;
1331 		dp83640->version = PTP_CLASS_V2;
1332 		break;
1333 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1334 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1335 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1336 		dp83640->hwts_rx_en = 1;
1337 		dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
1338 		dp83640->version = PTP_CLASS_V2;
1339 		break;
1340 	default:
1341 		return -ERANGE;
1342 	}
1343 
1344 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1345 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1346 
1347 	if (dp83640->layer & PTP_CLASS_L2) {
1348 		txcfg0 |= TX_L2_EN;
1349 		rxcfg0 |= RX_L2_EN;
1350 	}
1351 	if (dp83640->layer & PTP_CLASS_L4) {
1352 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1353 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1354 	}
1355 
1356 	if (dp83640->hwts_tx_en)
1357 		txcfg0 |= TX_TS_EN;
1358 
1359 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1360 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1361 
1362 	if (dp83640->hwts_rx_en)
1363 		rxcfg0 |= RX_TS_EN;
1364 
1365 	mutex_lock(&dp83640->clock->extreg_lock);
1366 
1367 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1368 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1369 
1370 	mutex_unlock(&dp83640->clock->extreg_lock);
1371 
1372 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1373 }
1374 
1375 static void rx_timestamp_work(struct work_struct *work)
1376 {
1377 	struct dp83640_private *dp83640 =
1378 		container_of(work, struct dp83640_private, ts_work.work);
1379 	struct sk_buff *skb;
1380 
1381 	/* Deliver expired packets. */
1382 	while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1383 		struct dp83640_skb_info *skb_info;
1384 
1385 		skb_info = (struct dp83640_skb_info *)skb->cb;
1386 		if (!time_after(jiffies, skb_info->tmo)) {
1387 			skb_queue_head(&dp83640->rx_queue, skb);
1388 			break;
1389 		}
1390 
1391 		netif_rx_ni(skb);
1392 	}
1393 
1394 	if (!skb_queue_empty(&dp83640->rx_queue))
1395 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1396 }
1397 
1398 static bool dp83640_rxtstamp(struct phy_device *phydev,
1399 			     struct sk_buff *skb, int type)
1400 {
1401 	struct dp83640_private *dp83640 = phydev->priv;
1402 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1403 	struct list_head *this, *next;
1404 	struct rxts *rxts;
1405 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
1406 	unsigned long flags;
1407 
1408 	if (is_status_frame(skb, type)) {
1409 		decode_status_frame(dp83640, skb);
1410 		kfree_skb(skb);
1411 		return true;
1412 	}
1413 
1414 	if (!dp83640->hwts_rx_en)
1415 		return false;
1416 
1417 	if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
1418 		return false;
1419 
1420 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1421 	prune_rx_ts(dp83640);
1422 	list_for_each_safe(this, next, &dp83640->rxts) {
1423 		rxts = list_entry(this, struct rxts, list);
1424 		if (match(skb, type, rxts)) {
1425 			shhwtstamps = skb_hwtstamps(skb);
1426 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1427 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1428 			netif_rx_ni(skb);
1429 			list_del_init(&rxts->list);
1430 			list_add(&rxts->list, &dp83640->rxpool);
1431 			break;
1432 		}
1433 	}
1434 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1435 
1436 	if (!shhwtstamps) {
1437 		skb_info->ptp_type = type;
1438 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1439 		skb_queue_tail(&dp83640->rx_queue, skb);
1440 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1441 	}
1442 
1443 	return true;
1444 }
1445 
1446 static void dp83640_txtstamp(struct phy_device *phydev,
1447 			     struct sk_buff *skb, int type)
1448 {
1449 	struct dp83640_private *dp83640 = phydev->priv;
1450 
1451 	switch (dp83640->hwts_tx_en) {
1452 
1453 	case HWTSTAMP_TX_ONESTEP_SYNC:
1454 		if (is_sync(skb, type)) {
1455 			kfree_skb(skb);
1456 			return;
1457 		}
1458 		/* fall through */
1459 	case HWTSTAMP_TX_ON:
1460 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1461 		skb_queue_tail(&dp83640->tx_queue, skb);
1462 		break;
1463 
1464 	case HWTSTAMP_TX_OFF:
1465 	default:
1466 		kfree_skb(skb);
1467 		break;
1468 	}
1469 }
1470 
1471 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1472 {
1473 	struct dp83640_private *dp83640 = dev->priv;
1474 
1475 	info->so_timestamping =
1476 		SOF_TIMESTAMPING_TX_HARDWARE |
1477 		SOF_TIMESTAMPING_RX_HARDWARE |
1478 		SOF_TIMESTAMPING_RAW_HARDWARE;
1479 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1480 	info->tx_types =
1481 		(1 << HWTSTAMP_TX_OFF) |
1482 		(1 << HWTSTAMP_TX_ON) |
1483 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1484 	info->rx_filters =
1485 		(1 << HWTSTAMP_FILTER_NONE) |
1486 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1487 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1488 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1489 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1490 	return 0;
1491 }
1492 
1493 static struct phy_driver dp83640_driver = {
1494 	.phy_id		= DP83640_PHY_ID,
1495 	.phy_id_mask	= 0xfffffff0,
1496 	.name		= "NatSemi DP83640",
1497 	.features	= PHY_BASIC_FEATURES,
1498 	.flags		= PHY_HAS_INTERRUPT,
1499 	.probe		= dp83640_probe,
1500 	.remove		= dp83640_remove,
1501 	.config_init	= dp83640_config_init,
1502 	.config_aneg	= genphy_config_aneg,
1503 	.read_status	= genphy_read_status,
1504 	.ack_interrupt  = dp83640_ack_interrupt,
1505 	.config_intr    = dp83640_config_intr,
1506 	.ts_info	= dp83640_ts_info,
1507 	.hwtstamp	= dp83640_hwtstamp,
1508 	.rxtstamp	= dp83640_rxtstamp,
1509 	.txtstamp	= dp83640_txtstamp,
1510 };
1511 
1512 static int __init dp83640_init(void)
1513 {
1514 	return phy_driver_register(&dp83640_driver, THIS_MODULE);
1515 }
1516 
1517 static void __exit dp83640_exit(void)
1518 {
1519 	dp83640_free_clocks();
1520 	phy_driver_unregister(&dp83640_driver);
1521 }
1522 
1523 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1524 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1525 MODULE_LICENSE("GPL");
1526 
1527 module_init(dp83640_init);
1528 module_exit(dp83640_exit);
1529 
1530 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1531 	{ DP83640_PHY_ID, 0xfffffff0 },
1532 	{ }
1533 };
1534 
1535 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1536