1 /* 2 * Driver for the National Semiconductor DP83640 PHYTER 3 * 4 * Copyright (C) 2010 OMICRON electronics GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 #include <linux/ethtool.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mii.h> 24 #include <linux/module.h> 25 #include <linux/net_tstamp.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/ptp_classify.h> 29 #include <linux/ptp_clock_kernel.h> 30 31 #include "dp83640_reg.h" 32 33 #define DP83640_PHY_ID 0x20005ce1 34 #define PAGESEL 0x13 35 #define LAYER4 0x02 36 #define LAYER2 0x01 37 #define MAX_RXTS 64 38 #define N_EXT_TS 6 39 #define PSF_PTPVER 2 40 #define PSF_EVNT 0x4000 41 #define PSF_RX 0x2000 42 #define PSF_TX 0x1000 43 #define EXT_EVENT 1 44 #define CAL_EVENT 7 45 #define CAL_TRIGGER 7 46 #define PER_TRIGGER 6 47 48 /* phyter seems to miss the mark by 16 ns */ 49 #define ADJTIME_FIX 16 50 51 #if defined(__BIG_ENDIAN) 52 #define ENDIAN_FLAG 0 53 #elif defined(__LITTLE_ENDIAN) 54 #define ENDIAN_FLAG PSF_ENDIAN 55 #endif 56 57 #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb)) 58 59 struct phy_rxts { 60 u16 ns_lo; /* ns[15:0] */ 61 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 62 u16 sec_lo; /* sec[15:0] */ 63 u16 sec_hi; /* sec[31:16] */ 64 u16 seqid; /* sequenceId[15:0] */ 65 u16 msgtype; /* messageType[3:0], hash[11:0] */ 66 }; 67 68 struct phy_txts { 69 u16 ns_lo; /* ns[15:0] */ 70 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 71 u16 sec_lo; /* sec[15:0] */ 72 u16 sec_hi; /* sec[31:16] */ 73 }; 74 75 struct rxts { 76 struct list_head list; 77 unsigned long tmo; 78 u64 ns; 79 u16 seqid; 80 u8 msgtype; 81 u16 hash; 82 }; 83 84 struct dp83640_clock; 85 86 struct dp83640_private { 87 struct list_head list; 88 struct dp83640_clock *clock; 89 struct phy_device *phydev; 90 struct work_struct ts_work; 91 int hwts_tx_en; 92 int hwts_rx_en; 93 int layer; 94 int version; 95 /* remember state of cfg0 during calibration */ 96 int cfg0; 97 /* remember the last event time stamp */ 98 struct phy_txts edata; 99 /* list of rx timestamps */ 100 struct list_head rxts; 101 struct list_head rxpool; 102 struct rxts rx_pool_data[MAX_RXTS]; 103 /* protects above three fields from concurrent access */ 104 spinlock_t rx_lock; 105 /* queues of incoming and outgoing packets */ 106 struct sk_buff_head rx_queue; 107 struct sk_buff_head tx_queue; 108 }; 109 110 struct dp83640_clock { 111 /* keeps the instance in the 'phyter_clocks' list */ 112 struct list_head list; 113 /* we create one clock instance per MII bus */ 114 struct mii_bus *bus; 115 /* protects extended registers from concurrent access */ 116 struct mutex extreg_lock; 117 /* remembers which page was last selected */ 118 int page; 119 /* our advertised capabilities */ 120 struct ptp_clock_info caps; 121 /* protects the three fields below from concurrent access */ 122 struct mutex clock_lock; 123 /* the one phyter from which we shall read */ 124 struct dp83640_private *chosen; 125 /* list of the other attached phyters, not chosen */ 126 struct list_head phylist; 127 /* reference to our PTP hardware clock */ 128 struct ptp_clock *ptp_clock; 129 }; 130 131 /* globals */ 132 133 enum { 134 CALIBRATE_GPIO, 135 PEROUT_GPIO, 136 EXTTS0_GPIO, 137 EXTTS1_GPIO, 138 EXTTS2_GPIO, 139 EXTTS3_GPIO, 140 EXTTS4_GPIO, 141 EXTTS5_GPIO, 142 GPIO_TABLE_SIZE 143 }; 144 145 static int chosen_phy = -1; 146 static ushort gpio_tab[GPIO_TABLE_SIZE] = { 147 1, 2, 3, 4, 8, 9, 10, 11 148 }; 149 150 module_param(chosen_phy, int, 0444); 151 module_param_array(gpio_tab, ushort, NULL, 0444); 152 153 MODULE_PARM_DESC(chosen_phy, \ 154 "The address of the PHY to use for the ancillary clock features"); 155 MODULE_PARM_DESC(gpio_tab, \ 156 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); 157 158 /* a list of clocks and a mutex to protect it */ 159 static LIST_HEAD(phyter_clocks); 160 static DEFINE_MUTEX(phyter_clocks_lock); 161 162 static void rx_timestamp_work(struct work_struct *work); 163 164 /* extended register access functions */ 165 166 #define BROADCAST_ADDR 31 167 168 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val) 169 { 170 return mdiobus_write(bus, BROADCAST_ADDR, regnum, val); 171 } 172 173 /* Caller must hold extreg_lock. */ 174 static int ext_read(struct phy_device *phydev, int page, u32 regnum) 175 { 176 struct dp83640_private *dp83640 = phydev->priv; 177 int val; 178 179 if (dp83640->clock->page != page) { 180 broadcast_write(phydev->bus, PAGESEL, page); 181 dp83640->clock->page = page; 182 } 183 val = phy_read(phydev, regnum); 184 185 return val; 186 } 187 188 /* Caller must hold extreg_lock. */ 189 static void ext_write(int broadcast, struct phy_device *phydev, 190 int page, u32 regnum, u16 val) 191 { 192 struct dp83640_private *dp83640 = phydev->priv; 193 194 if (dp83640->clock->page != page) { 195 broadcast_write(phydev->bus, PAGESEL, page); 196 dp83640->clock->page = page; 197 } 198 if (broadcast) 199 broadcast_write(phydev->bus, regnum, val); 200 else 201 phy_write(phydev, regnum, val); 202 } 203 204 /* Caller must hold extreg_lock. */ 205 static int tdr_write(int bc, struct phy_device *dev, 206 const struct timespec *ts, u16 cmd) 207 { 208 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ 209 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ 210 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ 211 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ 212 213 ext_write(bc, dev, PAGE4, PTP_CTL, cmd); 214 215 return 0; 216 } 217 218 /* convert phy timestamps into driver timestamps */ 219 220 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) 221 { 222 u32 sec; 223 224 sec = p->sec_lo; 225 sec |= p->sec_hi << 16; 226 227 rxts->ns = p->ns_lo; 228 rxts->ns |= (p->ns_hi & 0x3fff) << 16; 229 rxts->ns += ((u64)sec) * 1000000000ULL; 230 rxts->seqid = p->seqid; 231 rxts->msgtype = (p->msgtype >> 12) & 0xf; 232 rxts->hash = p->msgtype & 0x0fff; 233 rxts->tmo = jiffies + 2; 234 } 235 236 static u64 phy2txts(struct phy_txts *p) 237 { 238 u64 ns; 239 u32 sec; 240 241 sec = p->sec_lo; 242 sec |= p->sec_hi << 16; 243 244 ns = p->ns_lo; 245 ns |= (p->ns_hi & 0x3fff) << 16; 246 ns += ((u64)sec) * 1000000000ULL; 247 248 return ns; 249 } 250 251 static void periodic_output(struct dp83640_clock *clock, 252 struct ptp_clock_request *clkreq, bool on) 253 { 254 struct dp83640_private *dp83640 = clock->chosen; 255 struct phy_device *phydev = dp83640->phydev; 256 u32 sec, nsec, period; 257 u16 gpio, ptp_trig, trigger, val; 258 259 gpio = on ? gpio_tab[PEROUT_GPIO] : 0; 260 trigger = PER_TRIGGER; 261 262 ptp_trig = TRIG_WR | 263 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | 264 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | 265 TRIG_PER | 266 TRIG_PULSE; 267 268 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 269 270 if (!on) { 271 val |= TRIG_DIS; 272 mutex_lock(&clock->extreg_lock); 273 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 274 ext_write(0, phydev, PAGE4, PTP_CTL, val); 275 mutex_unlock(&clock->extreg_lock); 276 return; 277 } 278 279 sec = clkreq->perout.start.sec; 280 nsec = clkreq->perout.start.nsec; 281 period = clkreq->perout.period.sec * 1000000000UL; 282 period += clkreq->perout.period.nsec; 283 284 mutex_lock(&clock->extreg_lock); 285 286 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 287 288 /*load trigger*/ 289 val |= TRIG_LOAD; 290 ext_write(0, phydev, PAGE4, PTP_CTL, val); 291 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ 292 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ 293 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ 294 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ 295 ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */ 296 ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16); /* ns[31:16] */ 297 298 /*enable trigger*/ 299 val &= ~TRIG_LOAD; 300 val |= TRIG_EN; 301 ext_write(0, phydev, PAGE4, PTP_CTL, val); 302 303 mutex_unlock(&clock->extreg_lock); 304 } 305 306 /* ptp clock methods */ 307 308 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 309 { 310 struct dp83640_clock *clock = 311 container_of(ptp, struct dp83640_clock, caps); 312 struct phy_device *phydev = clock->chosen->phydev; 313 u64 rate; 314 int neg_adj = 0; 315 u16 hi, lo; 316 317 if (ppb < 0) { 318 neg_adj = 1; 319 ppb = -ppb; 320 } 321 rate = ppb; 322 rate <<= 26; 323 rate = div_u64(rate, 1953125); 324 325 hi = (rate >> 16) & PTP_RATE_HI_MASK; 326 if (neg_adj) 327 hi |= PTP_RATE_DIR; 328 329 lo = rate & 0xffff; 330 331 mutex_lock(&clock->extreg_lock); 332 333 ext_write(1, phydev, PAGE4, PTP_RATEH, hi); 334 ext_write(1, phydev, PAGE4, PTP_RATEL, lo); 335 336 mutex_unlock(&clock->extreg_lock); 337 338 return 0; 339 } 340 341 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) 342 { 343 struct dp83640_clock *clock = 344 container_of(ptp, struct dp83640_clock, caps); 345 struct phy_device *phydev = clock->chosen->phydev; 346 struct timespec ts; 347 int err; 348 349 delta += ADJTIME_FIX; 350 351 ts = ns_to_timespec(delta); 352 353 mutex_lock(&clock->extreg_lock); 354 355 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); 356 357 mutex_unlock(&clock->extreg_lock); 358 359 return err; 360 } 361 362 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts) 363 { 364 struct dp83640_clock *clock = 365 container_of(ptp, struct dp83640_clock, caps); 366 struct phy_device *phydev = clock->chosen->phydev; 367 unsigned int val[4]; 368 369 mutex_lock(&clock->extreg_lock); 370 371 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); 372 373 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ 374 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ 375 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ 376 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ 377 378 mutex_unlock(&clock->extreg_lock); 379 380 ts->tv_nsec = val[0] | (val[1] << 16); 381 ts->tv_sec = val[2] | (val[3] << 16); 382 383 return 0; 384 } 385 386 static int ptp_dp83640_settime(struct ptp_clock_info *ptp, 387 const struct timespec *ts) 388 { 389 struct dp83640_clock *clock = 390 container_of(ptp, struct dp83640_clock, caps); 391 struct phy_device *phydev = clock->chosen->phydev; 392 int err; 393 394 mutex_lock(&clock->extreg_lock); 395 396 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); 397 398 mutex_unlock(&clock->extreg_lock); 399 400 return err; 401 } 402 403 static int ptp_dp83640_enable(struct ptp_clock_info *ptp, 404 struct ptp_clock_request *rq, int on) 405 { 406 struct dp83640_clock *clock = 407 container_of(ptp, struct dp83640_clock, caps); 408 struct phy_device *phydev = clock->chosen->phydev; 409 int index; 410 u16 evnt, event_num, gpio_num; 411 412 switch (rq->type) { 413 case PTP_CLK_REQ_EXTTS: 414 index = rq->extts.index; 415 if (index < 0 || index >= N_EXT_TS) 416 return -EINVAL; 417 event_num = EXT_EVENT + index; 418 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 419 if (on) { 420 gpio_num = gpio_tab[EXTTS0_GPIO + index]; 421 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 422 evnt |= EVNT_RISE; 423 } 424 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); 425 return 0; 426 427 case PTP_CLK_REQ_PEROUT: 428 if (rq->perout.index != 0) 429 return -EINVAL; 430 periodic_output(clock, rq, on); 431 return 0; 432 433 default: 434 break; 435 } 436 437 return -EOPNOTSUPP; 438 } 439 440 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; 441 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; 442 443 static void enable_status_frames(struct phy_device *phydev, bool on) 444 { 445 u16 cfg0 = 0, ver; 446 447 if (on) 448 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; 449 450 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; 451 452 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); 453 ext_write(0, phydev, PAGE6, PSF_CFG1, ver); 454 455 if (!phydev->attached_dev) { 456 pr_warning("dp83640: expected to find an attached netdevice\n"); 457 return; 458 } 459 460 if (on) { 461 if (dev_mc_add(phydev->attached_dev, status_frame_dst)) 462 pr_warning("dp83640: failed to add mc address\n"); 463 } else { 464 if (dev_mc_del(phydev->attached_dev, status_frame_dst)) 465 pr_warning("dp83640: failed to delete mc address\n"); 466 } 467 } 468 469 static bool is_status_frame(struct sk_buff *skb, int type) 470 { 471 struct ethhdr *h = eth_hdr(skb); 472 473 if (PTP_CLASS_V2_L2 == type && 474 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) 475 return true; 476 else 477 return false; 478 } 479 480 static int expired(struct rxts *rxts) 481 { 482 return time_after(jiffies, rxts->tmo); 483 } 484 485 /* Caller must hold rx_lock. */ 486 static void prune_rx_ts(struct dp83640_private *dp83640) 487 { 488 struct list_head *this, *next; 489 struct rxts *rxts; 490 491 list_for_each_safe(this, next, &dp83640->rxts) { 492 rxts = list_entry(this, struct rxts, list); 493 if (expired(rxts)) { 494 list_del_init(&rxts->list); 495 list_add(&rxts->list, &dp83640->rxpool); 496 } 497 } 498 } 499 500 /* synchronize the phyters so they act as one clock */ 501 502 static void enable_broadcast(struct phy_device *phydev, int init_page, int on) 503 { 504 int val; 505 phy_write(phydev, PAGESEL, 0); 506 val = phy_read(phydev, PHYCR2); 507 if (on) 508 val |= BC_WRITE; 509 else 510 val &= ~BC_WRITE; 511 phy_write(phydev, PHYCR2, val); 512 phy_write(phydev, PAGESEL, init_page); 513 } 514 515 static void recalibrate(struct dp83640_clock *clock) 516 { 517 s64 now, diff; 518 struct phy_txts event_ts; 519 struct timespec ts; 520 struct list_head *this; 521 struct dp83640_private *tmp; 522 struct phy_device *master = clock->chosen->phydev; 523 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; 524 525 trigger = CAL_TRIGGER; 526 cal_gpio = gpio_tab[CALIBRATE_GPIO]; 527 528 mutex_lock(&clock->extreg_lock); 529 530 /* 531 * enable broadcast, disable status frames, enable ptp clock 532 */ 533 list_for_each(this, &clock->phylist) { 534 tmp = list_entry(this, struct dp83640_private, list); 535 enable_broadcast(tmp->phydev, clock->page, 1); 536 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); 537 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); 538 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); 539 } 540 enable_broadcast(master, clock->page, 1); 541 cfg0 = ext_read(master, PAGE5, PSF_CFG0); 542 ext_write(0, master, PAGE5, PSF_CFG0, 0); 543 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); 544 545 /* 546 * enable an event timestamp 547 */ 548 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; 549 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 550 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 551 552 list_for_each(this, &clock->phylist) { 553 tmp = list_entry(this, struct dp83640_private, list); 554 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); 555 } 556 ext_write(0, master, PAGE5, PTP_EVNT, evnt); 557 558 /* 559 * configure a trigger 560 */ 561 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; 562 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; 563 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; 564 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); 565 566 /* load trigger */ 567 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 568 val |= TRIG_LOAD; 569 ext_write(0, master, PAGE4, PTP_CTL, val); 570 571 /* enable trigger */ 572 val &= ~TRIG_LOAD; 573 val |= TRIG_EN; 574 ext_write(0, master, PAGE4, PTP_CTL, val); 575 576 /* disable trigger */ 577 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 578 val |= TRIG_DIS; 579 ext_write(0, master, PAGE4, PTP_CTL, val); 580 581 /* 582 * read out and correct offsets 583 */ 584 val = ext_read(master, PAGE4, PTP_STS); 585 pr_info("master PTP_STS 0x%04hx", val); 586 val = ext_read(master, PAGE4, PTP_ESTS); 587 pr_info("master PTP_ESTS 0x%04hx", val); 588 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); 589 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); 590 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); 591 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); 592 now = phy2txts(&event_ts); 593 594 list_for_each(this, &clock->phylist) { 595 tmp = list_entry(this, struct dp83640_private, list); 596 val = ext_read(tmp->phydev, PAGE4, PTP_STS); 597 pr_info("slave PTP_STS 0x%04hx", val); 598 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); 599 pr_info("slave PTP_ESTS 0x%04hx", val); 600 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 601 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 602 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 603 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 604 diff = now - (s64) phy2txts(&event_ts); 605 pr_info("slave offset %lld nanoseconds\n", diff); 606 diff += ADJTIME_FIX; 607 ts = ns_to_timespec(diff); 608 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); 609 } 610 611 /* 612 * restore status frames 613 */ 614 list_for_each(this, &clock->phylist) { 615 tmp = list_entry(this, struct dp83640_private, list); 616 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); 617 } 618 ext_write(0, master, PAGE5, PSF_CFG0, cfg0); 619 620 mutex_unlock(&clock->extreg_lock); 621 } 622 623 /* time stamping methods */ 624 625 static inline u16 exts_chan_to_edata(int ch) 626 { 627 return 1 << ((ch + EXT_EVENT) * 2); 628 } 629 630 static int decode_evnt(struct dp83640_private *dp83640, 631 void *data, u16 ests) 632 { 633 struct phy_txts *phy_txts; 634 struct ptp_clock_event event; 635 int i, parsed; 636 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; 637 u16 ext_status = 0; 638 639 if (ests & MULT_EVNT) { 640 ext_status = *(u16 *) data; 641 data += sizeof(ext_status); 642 } 643 644 phy_txts = data; 645 646 switch (words) { /* fall through in every case */ 647 case 3: 648 dp83640->edata.sec_hi = phy_txts->sec_hi; 649 case 2: 650 dp83640->edata.sec_lo = phy_txts->sec_lo; 651 case 1: 652 dp83640->edata.ns_hi = phy_txts->ns_hi; 653 case 0: 654 dp83640->edata.ns_lo = phy_txts->ns_lo; 655 } 656 657 if (ext_status) { 658 parsed = words + 2; 659 } else { 660 parsed = words + 1; 661 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; 662 ext_status = exts_chan_to_edata(i); 663 } 664 665 event.type = PTP_CLOCK_EXTTS; 666 event.timestamp = phy2txts(&dp83640->edata); 667 668 for (i = 0; i < N_EXT_TS; i++) { 669 if (ext_status & exts_chan_to_edata(i)) { 670 event.index = i; 671 ptp_clock_event(dp83640->clock->ptp_clock, &event); 672 } 673 } 674 675 return parsed * sizeof(u16); 676 } 677 678 static void decode_rxts(struct dp83640_private *dp83640, 679 struct phy_rxts *phy_rxts) 680 { 681 struct rxts *rxts; 682 unsigned long flags; 683 684 spin_lock_irqsave(&dp83640->rx_lock, flags); 685 686 prune_rx_ts(dp83640); 687 688 if (list_empty(&dp83640->rxpool)) { 689 pr_debug("dp83640: rx timestamp pool is empty\n"); 690 goto out; 691 } 692 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); 693 list_del_init(&rxts->list); 694 phy2rxts(phy_rxts, rxts); 695 list_add_tail(&rxts->list, &dp83640->rxts); 696 out: 697 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 698 } 699 700 static void decode_txts(struct dp83640_private *dp83640, 701 struct phy_txts *phy_txts) 702 { 703 struct skb_shared_hwtstamps shhwtstamps; 704 struct sk_buff *skb; 705 u64 ns; 706 707 /* We must already have the skb that triggered this. */ 708 709 skb = skb_dequeue(&dp83640->tx_queue); 710 711 if (!skb) { 712 pr_debug("dp83640: have timestamp but tx_queue empty\n"); 713 return; 714 } 715 ns = phy2txts(phy_txts); 716 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 717 shhwtstamps.hwtstamp = ns_to_ktime(ns); 718 skb_complete_tx_timestamp(skb, &shhwtstamps); 719 } 720 721 static void decode_status_frame(struct dp83640_private *dp83640, 722 struct sk_buff *skb) 723 { 724 struct phy_rxts *phy_rxts; 725 struct phy_txts *phy_txts; 726 u8 *ptr; 727 int len, size; 728 u16 ests, type; 729 730 ptr = skb->data + 2; 731 732 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { 733 734 type = *(u16 *)ptr; 735 ests = type & 0x0fff; 736 type = type & 0xf000; 737 len -= sizeof(type); 738 ptr += sizeof(type); 739 740 if (PSF_RX == type && len >= sizeof(*phy_rxts)) { 741 742 phy_rxts = (struct phy_rxts *) ptr; 743 decode_rxts(dp83640, phy_rxts); 744 size = sizeof(*phy_rxts); 745 746 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { 747 748 phy_txts = (struct phy_txts *) ptr; 749 decode_txts(dp83640, phy_txts); 750 size = sizeof(*phy_txts); 751 752 } else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) { 753 754 size = decode_evnt(dp83640, ptr, ests); 755 756 } else { 757 size = 0; 758 break; 759 } 760 ptr += size; 761 } 762 } 763 764 static int is_sync(struct sk_buff *skb, int type) 765 { 766 u8 *data = skb->data, *msgtype; 767 unsigned int offset = 0; 768 769 switch (type) { 770 case PTP_CLASS_V1_IPV4: 771 case PTP_CLASS_V2_IPV4: 772 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; 773 break; 774 case PTP_CLASS_V1_IPV6: 775 case PTP_CLASS_V2_IPV6: 776 offset = OFF_PTP6; 777 break; 778 case PTP_CLASS_V2_L2: 779 offset = ETH_HLEN; 780 break; 781 case PTP_CLASS_V2_VLAN: 782 offset = ETH_HLEN + VLAN_HLEN; 783 break; 784 default: 785 return 0; 786 } 787 788 if (type & PTP_CLASS_V1) 789 offset += OFF_PTP_CONTROL; 790 791 if (skb->len < offset + 1) 792 return 0; 793 794 msgtype = data + offset; 795 796 return (*msgtype & 0xf) == 0; 797 } 798 799 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) 800 { 801 u16 *seqid; 802 unsigned int offset; 803 u8 *msgtype, *data = skb_mac_header(skb); 804 805 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ 806 807 switch (type) { 808 case PTP_CLASS_V1_IPV4: 809 case PTP_CLASS_V2_IPV4: 810 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; 811 break; 812 case PTP_CLASS_V1_IPV6: 813 case PTP_CLASS_V2_IPV6: 814 offset = OFF_PTP6; 815 break; 816 case PTP_CLASS_V2_L2: 817 offset = ETH_HLEN; 818 break; 819 case PTP_CLASS_V2_VLAN: 820 offset = ETH_HLEN + VLAN_HLEN; 821 break; 822 default: 823 return 0; 824 } 825 826 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) 827 return 0; 828 829 if (unlikely(type & PTP_CLASS_V1)) 830 msgtype = data + offset + OFF_PTP_CONTROL; 831 else 832 msgtype = data + offset; 833 834 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 835 836 return (rxts->msgtype == (*msgtype & 0xf) && 837 rxts->seqid == ntohs(*seqid)); 838 } 839 840 static void dp83640_free_clocks(void) 841 { 842 struct dp83640_clock *clock; 843 struct list_head *this, *next; 844 845 mutex_lock(&phyter_clocks_lock); 846 847 list_for_each_safe(this, next, &phyter_clocks) { 848 clock = list_entry(this, struct dp83640_clock, list); 849 if (!list_empty(&clock->phylist)) { 850 pr_warning("phy list non-empty while unloading"); 851 BUG(); 852 } 853 list_del(&clock->list); 854 mutex_destroy(&clock->extreg_lock); 855 mutex_destroy(&clock->clock_lock); 856 put_device(&clock->bus->dev); 857 kfree(clock); 858 } 859 860 mutex_unlock(&phyter_clocks_lock); 861 } 862 863 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) 864 { 865 INIT_LIST_HEAD(&clock->list); 866 clock->bus = bus; 867 mutex_init(&clock->extreg_lock); 868 mutex_init(&clock->clock_lock); 869 INIT_LIST_HEAD(&clock->phylist); 870 clock->caps.owner = THIS_MODULE; 871 sprintf(clock->caps.name, "dp83640 timer"); 872 clock->caps.max_adj = 1953124; 873 clock->caps.n_alarm = 0; 874 clock->caps.n_ext_ts = N_EXT_TS; 875 clock->caps.n_per_out = 1; 876 clock->caps.pps = 0; 877 clock->caps.adjfreq = ptp_dp83640_adjfreq; 878 clock->caps.adjtime = ptp_dp83640_adjtime; 879 clock->caps.gettime = ptp_dp83640_gettime; 880 clock->caps.settime = ptp_dp83640_settime; 881 clock->caps.enable = ptp_dp83640_enable; 882 /* 883 * Get a reference to this bus instance. 884 */ 885 get_device(&bus->dev); 886 } 887 888 static int choose_this_phy(struct dp83640_clock *clock, 889 struct phy_device *phydev) 890 { 891 if (chosen_phy == -1 && !clock->chosen) 892 return 1; 893 894 if (chosen_phy == phydev->addr) 895 return 1; 896 897 return 0; 898 } 899 900 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) 901 { 902 if (clock) 903 mutex_lock(&clock->clock_lock); 904 return clock; 905 } 906 907 /* 908 * Look up and lock a clock by bus instance. 909 * If there is no clock for this bus, then create it first. 910 */ 911 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) 912 { 913 struct dp83640_clock *clock = NULL, *tmp; 914 struct list_head *this; 915 916 mutex_lock(&phyter_clocks_lock); 917 918 list_for_each(this, &phyter_clocks) { 919 tmp = list_entry(this, struct dp83640_clock, list); 920 if (tmp->bus == bus) { 921 clock = tmp; 922 break; 923 } 924 } 925 if (clock) 926 goto out; 927 928 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); 929 if (!clock) 930 goto out; 931 932 dp83640_clock_init(clock, bus); 933 list_add_tail(&phyter_clocks, &clock->list); 934 out: 935 mutex_unlock(&phyter_clocks_lock); 936 937 return dp83640_clock_get(clock); 938 } 939 940 static void dp83640_clock_put(struct dp83640_clock *clock) 941 { 942 mutex_unlock(&clock->clock_lock); 943 } 944 945 static int dp83640_probe(struct phy_device *phydev) 946 { 947 struct dp83640_clock *clock; 948 struct dp83640_private *dp83640; 949 int err = -ENOMEM, i; 950 951 if (phydev->addr == BROADCAST_ADDR) 952 return 0; 953 954 clock = dp83640_clock_get_bus(phydev->bus); 955 if (!clock) 956 goto no_clock; 957 958 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); 959 if (!dp83640) 960 goto no_memory; 961 962 dp83640->phydev = phydev; 963 INIT_WORK(&dp83640->ts_work, rx_timestamp_work); 964 965 INIT_LIST_HEAD(&dp83640->rxts); 966 INIT_LIST_HEAD(&dp83640->rxpool); 967 for (i = 0; i < MAX_RXTS; i++) 968 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); 969 970 phydev->priv = dp83640; 971 972 spin_lock_init(&dp83640->rx_lock); 973 skb_queue_head_init(&dp83640->rx_queue); 974 skb_queue_head_init(&dp83640->tx_queue); 975 976 dp83640->clock = clock; 977 978 if (choose_this_phy(clock, phydev)) { 979 clock->chosen = dp83640; 980 clock->ptp_clock = ptp_clock_register(&clock->caps); 981 if (IS_ERR(clock->ptp_clock)) { 982 err = PTR_ERR(clock->ptp_clock); 983 goto no_register; 984 } 985 } else 986 list_add_tail(&dp83640->list, &clock->phylist); 987 988 if (clock->chosen && !list_empty(&clock->phylist)) 989 recalibrate(clock); 990 else 991 enable_broadcast(dp83640->phydev, clock->page, 1); 992 993 dp83640_clock_put(clock); 994 return 0; 995 996 no_register: 997 clock->chosen = NULL; 998 kfree(dp83640); 999 no_memory: 1000 dp83640_clock_put(clock); 1001 no_clock: 1002 return err; 1003 } 1004 1005 static void dp83640_remove(struct phy_device *phydev) 1006 { 1007 struct dp83640_clock *clock; 1008 struct list_head *this, *next; 1009 struct dp83640_private *tmp, *dp83640 = phydev->priv; 1010 struct sk_buff *skb; 1011 1012 if (phydev->addr == BROADCAST_ADDR) 1013 return; 1014 1015 enable_status_frames(phydev, false); 1016 cancel_work_sync(&dp83640->ts_work); 1017 1018 while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) 1019 kfree_skb(skb); 1020 1021 while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL) 1022 skb_complete_tx_timestamp(skb, NULL); 1023 1024 clock = dp83640_clock_get(dp83640->clock); 1025 1026 if (dp83640 == clock->chosen) { 1027 ptp_clock_unregister(clock->ptp_clock); 1028 clock->chosen = NULL; 1029 } else { 1030 list_for_each_safe(this, next, &clock->phylist) { 1031 tmp = list_entry(this, struct dp83640_private, list); 1032 if (tmp == dp83640) { 1033 list_del_init(&tmp->list); 1034 break; 1035 } 1036 } 1037 } 1038 1039 dp83640_clock_put(clock); 1040 kfree(dp83640); 1041 } 1042 1043 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) 1044 { 1045 struct dp83640_private *dp83640 = phydev->priv; 1046 struct hwtstamp_config cfg; 1047 u16 txcfg0, rxcfg0; 1048 1049 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1050 return -EFAULT; 1051 1052 if (cfg.flags) /* reserved for future extensions */ 1053 return -EINVAL; 1054 1055 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) 1056 return -ERANGE; 1057 1058 dp83640->hwts_tx_en = cfg.tx_type; 1059 1060 switch (cfg.rx_filter) { 1061 case HWTSTAMP_FILTER_NONE: 1062 dp83640->hwts_rx_en = 0; 1063 dp83640->layer = 0; 1064 dp83640->version = 0; 1065 break; 1066 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1067 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1068 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1069 dp83640->hwts_rx_en = 1; 1070 dp83640->layer = LAYER4; 1071 dp83640->version = 1; 1072 break; 1073 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1074 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1075 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1076 dp83640->hwts_rx_en = 1; 1077 dp83640->layer = LAYER4; 1078 dp83640->version = 2; 1079 break; 1080 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1081 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1082 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1083 dp83640->hwts_rx_en = 1; 1084 dp83640->layer = LAYER2; 1085 dp83640->version = 2; 1086 break; 1087 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1088 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1089 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1090 dp83640->hwts_rx_en = 1; 1091 dp83640->layer = LAYER4|LAYER2; 1092 dp83640->version = 2; 1093 break; 1094 default: 1095 return -ERANGE; 1096 } 1097 1098 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1099 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1100 1101 if (dp83640->layer & LAYER2) { 1102 txcfg0 |= TX_L2_EN; 1103 rxcfg0 |= RX_L2_EN; 1104 } 1105 if (dp83640->layer & LAYER4) { 1106 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; 1107 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; 1108 } 1109 1110 if (dp83640->hwts_tx_en) 1111 txcfg0 |= TX_TS_EN; 1112 1113 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) 1114 txcfg0 |= SYNC_1STEP | CHK_1STEP; 1115 1116 if (dp83640->hwts_rx_en) 1117 rxcfg0 |= RX_TS_EN; 1118 1119 mutex_lock(&dp83640->clock->extreg_lock); 1120 1121 if (dp83640->hwts_tx_en || dp83640->hwts_rx_en) { 1122 enable_status_frames(phydev, true); 1123 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); 1124 } 1125 1126 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0); 1127 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0); 1128 1129 mutex_unlock(&dp83640->clock->extreg_lock); 1130 1131 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1132 } 1133 1134 static void rx_timestamp_work(struct work_struct *work) 1135 { 1136 struct dp83640_private *dp83640 = 1137 container_of(work, struct dp83640_private, ts_work); 1138 struct list_head *this, *next; 1139 struct rxts *rxts; 1140 struct skb_shared_hwtstamps *shhwtstamps; 1141 struct sk_buff *skb; 1142 unsigned int type; 1143 unsigned long flags; 1144 1145 /* Deliver each deferred packet, with or without a time stamp. */ 1146 1147 while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) { 1148 type = SKB_PTP_TYPE(skb); 1149 spin_lock_irqsave(&dp83640->rx_lock, flags); 1150 list_for_each_safe(this, next, &dp83640->rxts) { 1151 rxts = list_entry(this, struct rxts, list); 1152 if (match(skb, type, rxts)) { 1153 shhwtstamps = skb_hwtstamps(skb); 1154 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 1155 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 1156 list_del_init(&rxts->list); 1157 list_add(&rxts->list, &dp83640->rxpool); 1158 break; 1159 } 1160 } 1161 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1162 netif_rx(skb); 1163 } 1164 1165 /* Clear out expired time stamps. */ 1166 1167 spin_lock_irqsave(&dp83640->rx_lock, flags); 1168 prune_rx_ts(dp83640); 1169 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1170 } 1171 1172 static bool dp83640_rxtstamp(struct phy_device *phydev, 1173 struct sk_buff *skb, int type) 1174 { 1175 struct dp83640_private *dp83640 = phydev->priv; 1176 1177 if (!dp83640->hwts_rx_en) 1178 return false; 1179 1180 if (is_status_frame(skb, type)) { 1181 decode_status_frame(dp83640, skb); 1182 kfree_skb(skb); 1183 return true; 1184 } 1185 1186 SKB_PTP_TYPE(skb) = type; 1187 skb_queue_tail(&dp83640->rx_queue, skb); 1188 schedule_work(&dp83640->ts_work); 1189 1190 return true; 1191 } 1192 1193 static void dp83640_txtstamp(struct phy_device *phydev, 1194 struct sk_buff *skb, int type) 1195 { 1196 struct dp83640_private *dp83640 = phydev->priv; 1197 1198 switch (dp83640->hwts_tx_en) { 1199 1200 case HWTSTAMP_TX_ONESTEP_SYNC: 1201 if (is_sync(skb, type)) { 1202 skb_complete_tx_timestamp(skb, NULL); 1203 return; 1204 } 1205 /* fall through */ 1206 case HWTSTAMP_TX_ON: 1207 skb_queue_tail(&dp83640->tx_queue, skb); 1208 schedule_work(&dp83640->ts_work); 1209 break; 1210 1211 case HWTSTAMP_TX_OFF: 1212 default: 1213 skb_complete_tx_timestamp(skb, NULL); 1214 break; 1215 } 1216 } 1217 1218 static struct phy_driver dp83640_driver = { 1219 .phy_id = DP83640_PHY_ID, 1220 .phy_id_mask = 0xfffffff0, 1221 .name = "NatSemi DP83640", 1222 .features = PHY_BASIC_FEATURES, 1223 .flags = 0, 1224 .probe = dp83640_probe, 1225 .remove = dp83640_remove, 1226 .config_aneg = genphy_config_aneg, 1227 .read_status = genphy_read_status, 1228 .hwtstamp = dp83640_hwtstamp, 1229 .rxtstamp = dp83640_rxtstamp, 1230 .txtstamp = dp83640_txtstamp, 1231 .driver = {.owner = THIS_MODULE,} 1232 }; 1233 1234 static int __init dp83640_init(void) 1235 { 1236 return phy_driver_register(&dp83640_driver); 1237 } 1238 1239 static void __exit dp83640_exit(void) 1240 { 1241 dp83640_free_clocks(); 1242 phy_driver_unregister(&dp83640_driver); 1243 } 1244 1245 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); 1246 MODULE_AUTHOR("Richard Cochran <richard.cochran@omicron.at>"); 1247 MODULE_LICENSE("GPL"); 1248 1249 module_init(dp83640_init); 1250 module_exit(dp83640_exit); 1251 1252 static struct mdio_device_id __maybe_unused dp83640_tbl[] = { 1253 { DP83640_PHY_ID, 0xfffffff0 }, 1254 { } 1255 }; 1256 1257 MODULE_DEVICE_TABLE(mdio, dp83640_tbl); 1258