xref: /openbmc/linux/drivers/net/phy/dp83640.c (revision 05bcf503)
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/ptp_classify.h>
32 #include <linux/ptp_clock_kernel.h>
33 
34 #include "dp83640_reg.h"
35 
36 #define DP83640_PHY_ID	0x20005ce1
37 #define PAGESEL		0x13
38 #define LAYER4		0x02
39 #define LAYER2		0x01
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define PSF_PTPVER	2
43 #define PSF_EVNT	0x4000
44 #define PSF_RX		0x2000
45 #define PSF_TX		0x1000
46 #define EXT_EVENT	1
47 #define CAL_EVENT	7
48 #define CAL_TRIGGER	7
49 #define PER_TRIGGER	6
50 
51 /* phyter seems to miss the mark by 16 ns */
52 #define ADJTIME_FIX	16
53 
54 #if defined(__BIG_ENDIAN)
55 #define ENDIAN_FLAG	0
56 #elif defined(__LITTLE_ENDIAN)
57 #define ENDIAN_FLAG	PSF_ENDIAN
58 #endif
59 
60 #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
61 
62 struct phy_rxts {
63 	u16 ns_lo;   /* ns[15:0] */
64 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
65 	u16 sec_lo;  /* sec[15:0] */
66 	u16 sec_hi;  /* sec[31:16] */
67 	u16 seqid;   /* sequenceId[15:0] */
68 	u16 msgtype; /* messageType[3:0], hash[11:0] */
69 };
70 
71 struct phy_txts {
72 	u16 ns_lo;   /* ns[15:0] */
73 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
74 	u16 sec_lo;  /* sec[15:0] */
75 	u16 sec_hi;  /* sec[31:16] */
76 };
77 
78 struct rxts {
79 	struct list_head list;
80 	unsigned long tmo;
81 	u64 ns;
82 	u16 seqid;
83 	u8  msgtype;
84 	u16 hash;
85 };
86 
87 struct dp83640_clock;
88 
89 struct dp83640_private {
90 	struct list_head list;
91 	struct dp83640_clock *clock;
92 	struct phy_device *phydev;
93 	struct work_struct ts_work;
94 	int hwts_tx_en;
95 	int hwts_rx_en;
96 	int layer;
97 	int version;
98 	/* remember state of cfg0 during calibration */
99 	int cfg0;
100 	/* remember the last event time stamp */
101 	struct phy_txts edata;
102 	/* list of rx timestamps */
103 	struct list_head rxts;
104 	struct list_head rxpool;
105 	struct rxts rx_pool_data[MAX_RXTS];
106 	/* protects above three fields from concurrent access */
107 	spinlock_t rx_lock;
108 	/* queues of incoming and outgoing packets */
109 	struct sk_buff_head rx_queue;
110 	struct sk_buff_head tx_queue;
111 };
112 
113 struct dp83640_clock {
114 	/* keeps the instance in the 'phyter_clocks' list */
115 	struct list_head list;
116 	/* we create one clock instance per MII bus */
117 	struct mii_bus *bus;
118 	/* protects extended registers from concurrent access */
119 	struct mutex extreg_lock;
120 	/* remembers which page was last selected */
121 	int page;
122 	/* our advertised capabilities */
123 	struct ptp_clock_info caps;
124 	/* protects the three fields below from concurrent access */
125 	struct mutex clock_lock;
126 	/* the one phyter from which we shall read */
127 	struct dp83640_private *chosen;
128 	/* list of the other attached phyters, not chosen */
129 	struct list_head phylist;
130 	/* reference to our PTP hardware clock */
131 	struct ptp_clock *ptp_clock;
132 };
133 
134 /* globals */
135 
136 enum {
137 	CALIBRATE_GPIO,
138 	PEROUT_GPIO,
139 	EXTTS0_GPIO,
140 	EXTTS1_GPIO,
141 	EXTTS2_GPIO,
142 	EXTTS3_GPIO,
143 	EXTTS4_GPIO,
144 	EXTTS5_GPIO,
145 	GPIO_TABLE_SIZE
146 };
147 
148 static int chosen_phy = -1;
149 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
150 	1, 2, 3, 4, 8, 9, 10, 11
151 };
152 
153 module_param(chosen_phy, int, 0444);
154 module_param_array(gpio_tab, ushort, NULL, 0444);
155 
156 MODULE_PARM_DESC(chosen_phy, \
157 	"The address of the PHY to use for the ancillary clock features");
158 MODULE_PARM_DESC(gpio_tab, \
159 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
160 
161 /* a list of clocks and a mutex to protect it */
162 static LIST_HEAD(phyter_clocks);
163 static DEFINE_MUTEX(phyter_clocks_lock);
164 
165 static void rx_timestamp_work(struct work_struct *work);
166 
167 /* extended register access functions */
168 
169 #define BROADCAST_ADDR 31
170 
171 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
172 {
173 	return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
174 }
175 
176 /* Caller must hold extreg_lock. */
177 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
178 {
179 	struct dp83640_private *dp83640 = phydev->priv;
180 	int val;
181 
182 	if (dp83640->clock->page != page) {
183 		broadcast_write(phydev->bus, PAGESEL, page);
184 		dp83640->clock->page = page;
185 	}
186 	val = phy_read(phydev, regnum);
187 
188 	return val;
189 }
190 
191 /* Caller must hold extreg_lock. */
192 static void ext_write(int broadcast, struct phy_device *phydev,
193 		      int page, u32 regnum, u16 val)
194 {
195 	struct dp83640_private *dp83640 = phydev->priv;
196 
197 	if (dp83640->clock->page != page) {
198 		broadcast_write(phydev->bus, PAGESEL, page);
199 		dp83640->clock->page = page;
200 	}
201 	if (broadcast)
202 		broadcast_write(phydev->bus, regnum, val);
203 	else
204 		phy_write(phydev, regnum, val);
205 }
206 
207 /* Caller must hold extreg_lock. */
208 static int tdr_write(int bc, struct phy_device *dev,
209 		     const struct timespec *ts, u16 cmd)
210 {
211 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
212 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
213 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
214 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
215 
216 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
217 
218 	return 0;
219 }
220 
221 /* convert phy timestamps into driver timestamps */
222 
223 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
224 {
225 	u32 sec;
226 
227 	sec = p->sec_lo;
228 	sec |= p->sec_hi << 16;
229 
230 	rxts->ns = p->ns_lo;
231 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
232 	rxts->ns += ((u64)sec) * 1000000000ULL;
233 	rxts->seqid = p->seqid;
234 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
235 	rxts->hash = p->msgtype & 0x0fff;
236 	rxts->tmo = jiffies + 2;
237 }
238 
239 static u64 phy2txts(struct phy_txts *p)
240 {
241 	u64 ns;
242 	u32 sec;
243 
244 	sec = p->sec_lo;
245 	sec |= p->sec_hi << 16;
246 
247 	ns = p->ns_lo;
248 	ns |= (p->ns_hi & 0x3fff) << 16;
249 	ns += ((u64)sec) * 1000000000ULL;
250 
251 	return ns;
252 }
253 
254 static void periodic_output(struct dp83640_clock *clock,
255 			    struct ptp_clock_request *clkreq, bool on)
256 {
257 	struct dp83640_private *dp83640 = clock->chosen;
258 	struct phy_device *phydev = dp83640->phydev;
259 	u32 sec, nsec, period;
260 	u16 gpio, ptp_trig, trigger, val;
261 
262 	gpio = on ? gpio_tab[PEROUT_GPIO] : 0;
263 	trigger = PER_TRIGGER;
264 
265 	ptp_trig = TRIG_WR |
266 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
267 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
268 		TRIG_PER |
269 		TRIG_PULSE;
270 
271 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
272 
273 	if (!on) {
274 		val |= TRIG_DIS;
275 		mutex_lock(&clock->extreg_lock);
276 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
277 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
278 		mutex_unlock(&clock->extreg_lock);
279 		return;
280 	}
281 
282 	sec = clkreq->perout.start.sec;
283 	nsec = clkreq->perout.start.nsec;
284 	period = clkreq->perout.period.sec * 1000000000UL;
285 	period += clkreq->perout.period.nsec;
286 
287 	mutex_lock(&clock->extreg_lock);
288 
289 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
290 
291 	/*load trigger*/
292 	val |= TRIG_LOAD;
293 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
294 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
295 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
296 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
297 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
298 	ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */
299 	ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16);    /* ns[31:16] */
300 
301 	/*enable trigger*/
302 	val &= ~TRIG_LOAD;
303 	val |= TRIG_EN;
304 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
305 
306 	mutex_unlock(&clock->extreg_lock);
307 }
308 
309 /* ptp clock methods */
310 
311 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
312 {
313 	struct dp83640_clock *clock =
314 		container_of(ptp, struct dp83640_clock, caps);
315 	struct phy_device *phydev = clock->chosen->phydev;
316 	u64 rate;
317 	int neg_adj = 0;
318 	u16 hi, lo;
319 
320 	if (ppb < 0) {
321 		neg_adj = 1;
322 		ppb = -ppb;
323 	}
324 	rate = ppb;
325 	rate <<= 26;
326 	rate = div_u64(rate, 1953125);
327 
328 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
329 	if (neg_adj)
330 		hi |= PTP_RATE_DIR;
331 
332 	lo = rate & 0xffff;
333 
334 	mutex_lock(&clock->extreg_lock);
335 
336 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
337 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
338 
339 	mutex_unlock(&clock->extreg_lock);
340 
341 	return 0;
342 }
343 
344 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
345 {
346 	struct dp83640_clock *clock =
347 		container_of(ptp, struct dp83640_clock, caps);
348 	struct phy_device *phydev = clock->chosen->phydev;
349 	struct timespec ts;
350 	int err;
351 
352 	delta += ADJTIME_FIX;
353 
354 	ts = ns_to_timespec(delta);
355 
356 	mutex_lock(&clock->extreg_lock);
357 
358 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
359 
360 	mutex_unlock(&clock->extreg_lock);
361 
362 	return err;
363 }
364 
365 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
366 {
367 	struct dp83640_clock *clock =
368 		container_of(ptp, struct dp83640_clock, caps);
369 	struct phy_device *phydev = clock->chosen->phydev;
370 	unsigned int val[4];
371 
372 	mutex_lock(&clock->extreg_lock);
373 
374 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
375 
376 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
377 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
378 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
379 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
380 
381 	mutex_unlock(&clock->extreg_lock);
382 
383 	ts->tv_nsec = val[0] | (val[1] << 16);
384 	ts->tv_sec  = val[2] | (val[3] << 16);
385 
386 	return 0;
387 }
388 
389 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
390 			       const struct timespec *ts)
391 {
392 	struct dp83640_clock *clock =
393 		container_of(ptp, struct dp83640_clock, caps);
394 	struct phy_device *phydev = clock->chosen->phydev;
395 	int err;
396 
397 	mutex_lock(&clock->extreg_lock);
398 
399 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
400 
401 	mutex_unlock(&clock->extreg_lock);
402 
403 	return err;
404 }
405 
406 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
407 			      struct ptp_clock_request *rq, int on)
408 {
409 	struct dp83640_clock *clock =
410 		container_of(ptp, struct dp83640_clock, caps);
411 	struct phy_device *phydev = clock->chosen->phydev;
412 	int index;
413 	u16 evnt, event_num, gpio_num;
414 
415 	switch (rq->type) {
416 	case PTP_CLK_REQ_EXTTS:
417 		index = rq->extts.index;
418 		if (index < 0 || index >= N_EXT_TS)
419 			return -EINVAL;
420 		event_num = EXT_EVENT + index;
421 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
422 		if (on) {
423 			gpio_num = gpio_tab[EXTTS0_GPIO + index];
424 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
425 			evnt |= EVNT_RISE;
426 		}
427 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
428 		return 0;
429 
430 	case PTP_CLK_REQ_PEROUT:
431 		if (rq->perout.index != 0)
432 			return -EINVAL;
433 		periodic_output(clock, rq, on);
434 		return 0;
435 
436 	default:
437 		break;
438 	}
439 
440 	return -EOPNOTSUPP;
441 }
442 
443 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
444 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
445 
446 static void enable_status_frames(struct phy_device *phydev, bool on)
447 {
448 	u16 cfg0 = 0, ver;
449 
450 	if (on)
451 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
452 
453 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
454 
455 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
456 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
457 
458 	if (!phydev->attached_dev) {
459 		pr_warn("expected to find an attached netdevice\n");
460 		return;
461 	}
462 
463 	if (on) {
464 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
465 			pr_warn("failed to add mc address\n");
466 	} else {
467 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
468 			pr_warn("failed to delete mc address\n");
469 	}
470 }
471 
472 static bool is_status_frame(struct sk_buff *skb, int type)
473 {
474 	struct ethhdr *h = eth_hdr(skb);
475 
476 	if (PTP_CLASS_V2_L2 == type &&
477 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
478 		return true;
479 	else
480 		return false;
481 }
482 
483 static int expired(struct rxts *rxts)
484 {
485 	return time_after(jiffies, rxts->tmo);
486 }
487 
488 /* Caller must hold rx_lock. */
489 static void prune_rx_ts(struct dp83640_private *dp83640)
490 {
491 	struct list_head *this, *next;
492 	struct rxts *rxts;
493 
494 	list_for_each_safe(this, next, &dp83640->rxts) {
495 		rxts = list_entry(this, struct rxts, list);
496 		if (expired(rxts)) {
497 			list_del_init(&rxts->list);
498 			list_add(&rxts->list, &dp83640->rxpool);
499 		}
500 	}
501 }
502 
503 /* synchronize the phyters so they act as one clock */
504 
505 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
506 {
507 	int val;
508 	phy_write(phydev, PAGESEL, 0);
509 	val = phy_read(phydev, PHYCR2);
510 	if (on)
511 		val |= BC_WRITE;
512 	else
513 		val &= ~BC_WRITE;
514 	phy_write(phydev, PHYCR2, val);
515 	phy_write(phydev, PAGESEL, init_page);
516 }
517 
518 static void recalibrate(struct dp83640_clock *clock)
519 {
520 	s64 now, diff;
521 	struct phy_txts event_ts;
522 	struct timespec ts;
523 	struct list_head *this;
524 	struct dp83640_private *tmp;
525 	struct phy_device *master = clock->chosen->phydev;
526 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
527 
528 	trigger = CAL_TRIGGER;
529 	cal_gpio = gpio_tab[CALIBRATE_GPIO];
530 
531 	mutex_lock(&clock->extreg_lock);
532 
533 	/*
534 	 * enable broadcast, disable status frames, enable ptp clock
535 	 */
536 	list_for_each(this, &clock->phylist) {
537 		tmp = list_entry(this, struct dp83640_private, list);
538 		enable_broadcast(tmp->phydev, clock->page, 1);
539 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
540 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
541 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
542 	}
543 	enable_broadcast(master, clock->page, 1);
544 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
545 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
546 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
547 
548 	/*
549 	 * enable an event timestamp
550 	 */
551 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
552 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
553 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
554 
555 	list_for_each(this, &clock->phylist) {
556 		tmp = list_entry(this, struct dp83640_private, list);
557 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
558 	}
559 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
560 
561 	/*
562 	 * configure a trigger
563 	 */
564 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
565 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
566 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
567 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
568 
569 	/* load trigger */
570 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
571 	val |= TRIG_LOAD;
572 	ext_write(0, master, PAGE4, PTP_CTL, val);
573 
574 	/* enable trigger */
575 	val &= ~TRIG_LOAD;
576 	val |= TRIG_EN;
577 	ext_write(0, master, PAGE4, PTP_CTL, val);
578 
579 	/* disable trigger */
580 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
581 	val |= TRIG_DIS;
582 	ext_write(0, master, PAGE4, PTP_CTL, val);
583 
584 	/*
585 	 * read out and correct offsets
586 	 */
587 	val = ext_read(master, PAGE4, PTP_STS);
588 	pr_info("master PTP_STS  0x%04hx\n", val);
589 	val = ext_read(master, PAGE4, PTP_ESTS);
590 	pr_info("master PTP_ESTS 0x%04hx\n", val);
591 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
592 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
593 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
594 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
595 	now = phy2txts(&event_ts);
596 
597 	list_for_each(this, &clock->phylist) {
598 		tmp = list_entry(this, struct dp83640_private, list);
599 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
600 		pr_info("slave  PTP_STS  0x%04hx\n", val);
601 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
602 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
603 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
604 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
605 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
606 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
607 		diff = now - (s64) phy2txts(&event_ts);
608 		pr_info("slave offset %lld nanoseconds\n", diff);
609 		diff += ADJTIME_FIX;
610 		ts = ns_to_timespec(diff);
611 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
612 	}
613 
614 	/*
615 	 * restore status frames
616 	 */
617 	list_for_each(this, &clock->phylist) {
618 		tmp = list_entry(this, struct dp83640_private, list);
619 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
620 	}
621 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
622 
623 	mutex_unlock(&clock->extreg_lock);
624 }
625 
626 /* time stamping methods */
627 
628 static inline u16 exts_chan_to_edata(int ch)
629 {
630 	return 1 << ((ch + EXT_EVENT) * 2);
631 }
632 
633 static int decode_evnt(struct dp83640_private *dp83640,
634 		       void *data, u16 ests)
635 {
636 	struct phy_txts *phy_txts;
637 	struct ptp_clock_event event;
638 	int i, parsed;
639 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
640 	u16 ext_status = 0;
641 
642 	if (ests & MULT_EVNT) {
643 		ext_status = *(u16 *) data;
644 		data += sizeof(ext_status);
645 	}
646 
647 	phy_txts = data;
648 
649 	switch (words) { /* fall through in every case */
650 	case 3:
651 		dp83640->edata.sec_hi = phy_txts->sec_hi;
652 	case 2:
653 		dp83640->edata.sec_lo = phy_txts->sec_lo;
654 	case 1:
655 		dp83640->edata.ns_hi = phy_txts->ns_hi;
656 	case 0:
657 		dp83640->edata.ns_lo = phy_txts->ns_lo;
658 	}
659 
660 	if (ext_status) {
661 		parsed = words + 2;
662 	} else {
663 		parsed = words + 1;
664 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
665 		ext_status = exts_chan_to_edata(i);
666 	}
667 
668 	event.type = PTP_CLOCK_EXTTS;
669 	event.timestamp = phy2txts(&dp83640->edata);
670 
671 	for (i = 0; i < N_EXT_TS; i++) {
672 		if (ext_status & exts_chan_to_edata(i)) {
673 			event.index = i;
674 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
675 		}
676 	}
677 
678 	return parsed * sizeof(u16);
679 }
680 
681 static void decode_rxts(struct dp83640_private *dp83640,
682 			struct phy_rxts *phy_rxts)
683 {
684 	struct rxts *rxts;
685 	unsigned long flags;
686 
687 	spin_lock_irqsave(&dp83640->rx_lock, flags);
688 
689 	prune_rx_ts(dp83640);
690 
691 	if (list_empty(&dp83640->rxpool)) {
692 		pr_debug("rx timestamp pool is empty\n");
693 		goto out;
694 	}
695 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
696 	list_del_init(&rxts->list);
697 	phy2rxts(phy_rxts, rxts);
698 	list_add_tail(&rxts->list, &dp83640->rxts);
699 out:
700 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
701 }
702 
703 static void decode_txts(struct dp83640_private *dp83640,
704 			struct phy_txts *phy_txts)
705 {
706 	struct skb_shared_hwtstamps shhwtstamps;
707 	struct sk_buff *skb;
708 	u64 ns;
709 
710 	/* We must already have the skb that triggered this. */
711 
712 	skb = skb_dequeue(&dp83640->tx_queue);
713 
714 	if (!skb) {
715 		pr_debug("have timestamp but tx_queue empty\n");
716 		return;
717 	}
718 	ns = phy2txts(phy_txts);
719 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
720 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
721 	skb_complete_tx_timestamp(skb, &shhwtstamps);
722 }
723 
724 static void decode_status_frame(struct dp83640_private *dp83640,
725 				struct sk_buff *skb)
726 {
727 	struct phy_rxts *phy_rxts;
728 	struct phy_txts *phy_txts;
729 	u8 *ptr;
730 	int len, size;
731 	u16 ests, type;
732 
733 	ptr = skb->data + 2;
734 
735 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
736 
737 		type = *(u16 *)ptr;
738 		ests = type & 0x0fff;
739 		type = type & 0xf000;
740 		len -= sizeof(type);
741 		ptr += sizeof(type);
742 
743 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
744 
745 			phy_rxts = (struct phy_rxts *) ptr;
746 			decode_rxts(dp83640, phy_rxts);
747 			size = sizeof(*phy_rxts);
748 
749 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
750 
751 			phy_txts = (struct phy_txts *) ptr;
752 			decode_txts(dp83640, phy_txts);
753 			size = sizeof(*phy_txts);
754 
755 		} else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
756 
757 			size = decode_evnt(dp83640, ptr, ests);
758 
759 		} else {
760 			size = 0;
761 			break;
762 		}
763 		ptr += size;
764 	}
765 }
766 
767 static int is_sync(struct sk_buff *skb, int type)
768 {
769 	u8 *data = skb->data, *msgtype;
770 	unsigned int offset = 0;
771 
772 	switch (type) {
773 	case PTP_CLASS_V1_IPV4:
774 	case PTP_CLASS_V2_IPV4:
775 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
776 		break;
777 	case PTP_CLASS_V1_IPV6:
778 	case PTP_CLASS_V2_IPV6:
779 		offset = OFF_PTP6;
780 		break;
781 	case PTP_CLASS_V2_L2:
782 		offset = ETH_HLEN;
783 		break;
784 	case PTP_CLASS_V2_VLAN:
785 		offset = ETH_HLEN + VLAN_HLEN;
786 		break;
787 	default:
788 		return 0;
789 	}
790 
791 	if (type & PTP_CLASS_V1)
792 		offset += OFF_PTP_CONTROL;
793 
794 	if (skb->len < offset + 1)
795 		return 0;
796 
797 	msgtype = data + offset;
798 
799 	return (*msgtype & 0xf) == 0;
800 }
801 
802 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
803 {
804 	u16 *seqid;
805 	unsigned int offset;
806 	u8 *msgtype, *data = skb_mac_header(skb);
807 
808 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
809 
810 	switch (type) {
811 	case PTP_CLASS_V1_IPV4:
812 	case PTP_CLASS_V2_IPV4:
813 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
814 		break;
815 	case PTP_CLASS_V1_IPV6:
816 	case PTP_CLASS_V2_IPV6:
817 		offset = OFF_PTP6;
818 		break;
819 	case PTP_CLASS_V2_L2:
820 		offset = ETH_HLEN;
821 		break;
822 	case PTP_CLASS_V2_VLAN:
823 		offset = ETH_HLEN + VLAN_HLEN;
824 		break;
825 	default:
826 		return 0;
827 	}
828 
829 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
830 		return 0;
831 
832 	if (unlikely(type & PTP_CLASS_V1))
833 		msgtype = data + offset + OFF_PTP_CONTROL;
834 	else
835 		msgtype = data + offset;
836 
837 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
838 
839 	return (rxts->msgtype == (*msgtype & 0xf) &&
840 		rxts->seqid   == ntohs(*seqid));
841 }
842 
843 static void dp83640_free_clocks(void)
844 {
845 	struct dp83640_clock *clock;
846 	struct list_head *this, *next;
847 
848 	mutex_lock(&phyter_clocks_lock);
849 
850 	list_for_each_safe(this, next, &phyter_clocks) {
851 		clock = list_entry(this, struct dp83640_clock, list);
852 		if (!list_empty(&clock->phylist)) {
853 			pr_warn("phy list non-empty while unloading\n");
854 			BUG();
855 		}
856 		list_del(&clock->list);
857 		mutex_destroy(&clock->extreg_lock);
858 		mutex_destroy(&clock->clock_lock);
859 		put_device(&clock->bus->dev);
860 		kfree(clock);
861 	}
862 
863 	mutex_unlock(&phyter_clocks_lock);
864 }
865 
866 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
867 {
868 	INIT_LIST_HEAD(&clock->list);
869 	clock->bus = bus;
870 	mutex_init(&clock->extreg_lock);
871 	mutex_init(&clock->clock_lock);
872 	INIT_LIST_HEAD(&clock->phylist);
873 	clock->caps.owner = THIS_MODULE;
874 	sprintf(clock->caps.name, "dp83640 timer");
875 	clock->caps.max_adj	= 1953124;
876 	clock->caps.n_alarm	= 0;
877 	clock->caps.n_ext_ts	= N_EXT_TS;
878 	clock->caps.n_per_out	= 1;
879 	clock->caps.pps		= 0;
880 	clock->caps.adjfreq	= ptp_dp83640_adjfreq;
881 	clock->caps.adjtime	= ptp_dp83640_adjtime;
882 	clock->caps.gettime	= ptp_dp83640_gettime;
883 	clock->caps.settime	= ptp_dp83640_settime;
884 	clock->caps.enable	= ptp_dp83640_enable;
885 	/*
886 	 * Get a reference to this bus instance.
887 	 */
888 	get_device(&bus->dev);
889 }
890 
891 static int choose_this_phy(struct dp83640_clock *clock,
892 			   struct phy_device *phydev)
893 {
894 	if (chosen_phy == -1 && !clock->chosen)
895 		return 1;
896 
897 	if (chosen_phy == phydev->addr)
898 		return 1;
899 
900 	return 0;
901 }
902 
903 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
904 {
905 	if (clock)
906 		mutex_lock(&clock->clock_lock);
907 	return clock;
908 }
909 
910 /*
911  * Look up and lock a clock by bus instance.
912  * If there is no clock for this bus, then create it first.
913  */
914 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
915 {
916 	struct dp83640_clock *clock = NULL, *tmp;
917 	struct list_head *this;
918 
919 	mutex_lock(&phyter_clocks_lock);
920 
921 	list_for_each(this, &phyter_clocks) {
922 		tmp = list_entry(this, struct dp83640_clock, list);
923 		if (tmp->bus == bus) {
924 			clock = tmp;
925 			break;
926 		}
927 	}
928 	if (clock)
929 		goto out;
930 
931 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
932 	if (!clock)
933 		goto out;
934 
935 	dp83640_clock_init(clock, bus);
936 	list_add_tail(&phyter_clocks, &clock->list);
937 out:
938 	mutex_unlock(&phyter_clocks_lock);
939 
940 	return dp83640_clock_get(clock);
941 }
942 
943 static void dp83640_clock_put(struct dp83640_clock *clock)
944 {
945 	mutex_unlock(&clock->clock_lock);
946 }
947 
948 static int dp83640_probe(struct phy_device *phydev)
949 {
950 	struct dp83640_clock *clock;
951 	struct dp83640_private *dp83640;
952 	int err = -ENOMEM, i;
953 
954 	if (phydev->addr == BROADCAST_ADDR)
955 		return 0;
956 
957 	clock = dp83640_clock_get_bus(phydev->bus);
958 	if (!clock)
959 		goto no_clock;
960 
961 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
962 	if (!dp83640)
963 		goto no_memory;
964 
965 	dp83640->phydev = phydev;
966 	INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
967 
968 	INIT_LIST_HEAD(&dp83640->rxts);
969 	INIT_LIST_HEAD(&dp83640->rxpool);
970 	for (i = 0; i < MAX_RXTS; i++)
971 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
972 
973 	phydev->priv = dp83640;
974 
975 	spin_lock_init(&dp83640->rx_lock);
976 	skb_queue_head_init(&dp83640->rx_queue);
977 	skb_queue_head_init(&dp83640->tx_queue);
978 
979 	dp83640->clock = clock;
980 
981 	if (choose_this_phy(clock, phydev)) {
982 		clock->chosen = dp83640;
983 		clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
984 		if (IS_ERR(clock->ptp_clock)) {
985 			err = PTR_ERR(clock->ptp_clock);
986 			goto no_register;
987 		}
988 	} else
989 		list_add_tail(&dp83640->list, &clock->phylist);
990 
991 	if (clock->chosen && !list_empty(&clock->phylist))
992 		recalibrate(clock);
993 	else
994 		enable_broadcast(dp83640->phydev, clock->page, 1);
995 
996 	dp83640_clock_put(clock);
997 	return 0;
998 
999 no_register:
1000 	clock->chosen = NULL;
1001 	kfree(dp83640);
1002 no_memory:
1003 	dp83640_clock_put(clock);
1004 no_clock:
1005 	return err;
1006 }
1007 
1008 static void dp83640_remove(struct phy_device *phydev)
1009 {
1010 	struct dp83640_clock *clock;
1011 	struct list_head *this, *next;
1012 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1013 	struct sk_buff *skb;
1014 
1015 	if (phydev->addr == BROADCAST_ADDR)
1016 		return;
1017 
1018 	enable_status_frames(phydev, false);
1019 	cancel_work_sync(&dp83640->ts_work);
1020 
1021 	while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
1022 		kfree_skb(skb);
1023 
1024 	while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
1025 		skb_complete_tx_timestamp(skb, NULL);
1026 
1027 	clock = dp83640_clock_get(dp83640->clock);
1028 
1029 	if (dp83640 == clock->chosen) {
1030 		ptp_clock_unregister(clock->ptp_clock);
1031 		clock->chosen = NULL;
1032 	} else {
1033 		list_for_each_safe(this, next, &clock->phylist) {
1034 			tmp = list_entry(this, struct dp83640_private, list);
1035 			if (tmp == dp83640) {
1036 				list_del_init(&tmp->list);
1037 				break;
1038 			}
1039 		}
1040 	}
1041 
1042 	dp83640_clock_put(clock);
1043 	kfree(dp83640);
1044 }
1045 
1046 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1047 {
1048 	struct dp83640_private *dp83640 = phydev->priv;
1049 	struct hwtstamp_config cfg;
1050 	u16 txcfg0, rxcfg0;
1051 
1052 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1053 		return -EFAULT;
1054 
1055 	if (cfg.flags) /* reserved for future extensions */
1056 		return -EINVAL;
1057 
1058 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1059 		return -ERANGE;
1060 
1061 	dp83640->hwts_tx_en = cfg.tx_type;
1062 
1063 	switch (cfg.rx_filter) {
1064 	case HWTSTAMP_FILTER_NONE:
1065 		dp83640->hwts_rx_en = 0;
1066 		dp83640->layer = 0;
1067 		dp83640->version = 0;
1068 		break;
1069 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1070 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1071 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1072 		dp83640->hwts_rx_en = 1;
1073 		dp83640->layer = LAYER4;
1074 		dp83640->version = 1;
1075 		break;
1076 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1077 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1078 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1079 		dp83640->hwts_rx_en = 1;
1080 		dp83640->layer = LAYER4;
1081 		dp83640->version = 2;
1082 		break;
1083 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1084 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1085 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1086 		dp83640->hwts_rx_en = 1;
1087 		dp83640->layer = LAYER2;
1088 		dp83640->version = 2;
1089 		break;
1090 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1091 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1092 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1093 		dp83640->hwts_rx_en = 1;
1094 		dp83640->layer = LAYER4|LAYER2;
1095 		dp83640->version = 2;
1096 		break;
1097 	default:
1098 		return -ERANGE;
1099 	}
1100 
1101 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1102 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1103 
1104 	if (dp83640->layer & LAYER2) {
1105 		txcfg0 |= TX_L2_EN;
1106 		rxcfg0 |= RX_L2_EN;
1107 	}
1108 	if (dp83640->layer & LAYER4) {
1109 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1110 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1111 	}
1112 
1113 	if (dp83640->hwts_tx_en)
1114 		txcfg0 |= TX_TS_EN;
1115 
1116 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1117 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1118 
1119 	if (dp83640->hwts_rx_en)
1120 		rxcfg0 |= RX_TS_EN;
1121 
1122 	mutex_lock(&dp83640->clock->extreg_lock);
1123 
1124 	if (dp83640->hwts_tx_en || dp83640->hwts_rx_en) {
1125 		enable_status_frames(phydev, true);
1126 		ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1127 	}
1128 
1129 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1130 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1131 
1132 	mutex_unlock(&dp83640->clock->extreg_lock);
1133 
1134 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1135 }
1136 
1137 static void rx_timestamp_work(struct work_struct *work)
1138 {
1139 	struct dp83640_private *dp83640 =
1140 		container_of(work, struct dp83640_private, ts_work);
1141 	struct list_head *this, *next;
1142 	struct rxts *rxts;
1143 	struct skb_shared_hwtstamps *shhwtstamps;
1144 	struct sk_buff *skb;
1145 	unsigned int type;
1146 	unsigned long flags;
1147 
1148 	/* Deliver each deferred packet, with or without a time stamp. */
1149 
1150 	while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
1151 		type = SKB_PTP_TYPE(skb);
1152 		spin_lock_irqsave(&dp83640->rx_lock, flags);
1153 		list_for_each_safe(this, next, &dp83640->rxts) {
1154 			rxts = list_entry(this, struct rxts, list);
1155 			if (match(skb, type, rxts)) {
1156 				shhwtstamps = skb_hwtstamps(skb);
1157 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1158 				shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1159 				list_del_init(&rxts->list);
1160 				list_add(&rxts->list, &dp83640->rxpool);
1161 				break;
1162 			}
1163 		}
1164 		spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1165 		netif_rx_ni(skb);
1166 	}
1167 
1168 	/* Clear out expired time stamps. */
1169 
1170 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1171 	prune_rx_ts(dp83640);
1172 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1173 }
1174 
1175 static bool dp83640_rxtstamp(struct phy_device *phydev,
1176 			     struct sk_buff *skb, int type)
1177 {
1178 	struct dp83640_private *dp83640 = phydev->priv;
1179 
1180 	if (!dp83640->hwts_rx_en)
1181 		return false;
1182 
1183 	if (is_status_frame(skb, type)) {
1184 		decode_status_frame(dp83640, skb);
1185 		kfree_skb(skb);
1186 		return true;
1187 	}
1188 
1189 	SKB_PTP_TYPE(skb) = type;
1190 	skb_queue_tail(&dp83640->rx_queue, skb);
1191 	schedule_work(&dp83640->ts_work);
1192 
1193 	return true;
1194 }
1195 
1196 static void dp83640_txtstamp(struct phy_device *phydev,
1197 			     struct sk_buff *skb, int type)
1198 {
1199 	struct dp83640_private *dp83640 = phydev->priv;
1200 
1201 	switch (dp83640->hwts_tx_en) {
1202 
1203 	case HWTSTAMP_TX_ONESTEP_SYNC:
1204 		if (is_sync(skb, type)) {
1205 			skb_complete_tx_timestamp(skb, NULL);
1206 			return;
1207 		}
1208 		/* fall through */
1209 	case HWTSTAMP_TX_ON:
1210 		skb_queue_tail(&dp83640->tx_queue, skb);
1211 		schedule_work(&dp83640->ts_work);
1212 		break;
1213 
1214 	case HWTSTAMP_TX_OFF:
1215 	default:
1216 		skb_complete_tx_timestamp(skb, NULL);
1217 		break;
1218 	}
1219 }
1220 
1221 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1222 {
1223 	struct dp83640_private *dp83640 = dev->priv;
1224 
1225 	info->so_timestamping =
1226 		SOF_TIMESTAMPING_TX_HARDWARE |
1227 		SOF_TIMESTAMPING_RX_HARDWARE |
1228 		SOF_TIMESTAMPING_RAW_HARDWARE;
1229 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1230 	info->tx_types =
1231 		(1 << HWTSTAMP_TX_OFF) |
1232 		(1 << HWTSTAMP_TX_ON) |
1233 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1234 	info->rx_filters =
1235 		(1 << HWTSTAMP_FILTER_NONE) |
1236 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1237 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1238 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1239 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1240 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1241 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1242 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1243 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1244 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1245 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1246 		(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1247 		(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1248 	return 0;
1249 }
1250 
1251 static struct phy_driver dp83640_driver = {
1252 	.phy_id		= DP83640_PHY_ID,
1253 	.phy_id_mask	= 0xfffffff0,
1254 	.name		= "NatSemi DP83640",
1255 	.features	= PHY_BASIC_FEATURES,
1256 	.flags		= 0,
1257 	.probe		= dp83640_probe,
1258 	.remove		= dp83640_remove,
1259 	.config_aneg	= genphy_config_aneg,
1260 	.read_status	= genphy_read_status,
1261 	.ts_info	= dp83640_ts_info,
1262 	.hwtstamp	= dp83640_hwtstamp,
1263 	.rxtstamp	= dp83640_rxtstamp,
1264 	.txtstamp	= dp83640_txtstamp,
1265 	.driver		= {.owner = THIS_MODULE,}
1266 };
1267 
1268 static int __init dp83640_init(void)
1269 {
1270 	return phy_driver_register(&dp83640_driver);
1271 }
1272 
1273 static void __exit dp83640_exit(void)
1274 {
1275 	dp83640_free_clocks();
1276 	phy_driver_unregister(&dp83640_driver);
1277 }
1278 
1279 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1280 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.at>");
1281 MODULE_LICENSE("GPL");
1282 
1283 module_init(dp83640_init);
1284 module_exit(dp83640_exit);
1285 
1286 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1287 	{ DP83640_PHY_ID, 0xfffffff0 },
1288 	{ }
1289 };
1290 
1291 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1292