xref: /openbmc/linux/drivers/net/macvtap.c (revision 77a87824)
1 #include <linux/etherdevice.h>
2 #include <linux/if_macvlan.h>
3 #include <linux/if_vlan.h>
4 #include <linux/interrupt.h>
5 #include <linux/nsproxy.h>
6 #include <linux/compat.h>
7 #include <linux/if_tun.h>
8 #include <linux/module.h>
9 #include <linux/skbuff.h>
10 #include <linux/cache.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/wait.h>
15 #include <linux/cdev.h>
16 #include <linux/idr.h>
17 #include <linux/fs.h>
18 #include <linux/uio.h>
19 
20 #include <net/net_namespace.h>
21 #include <net/rtnetlink.h>
22 #include <net/sock.h>
23 #include <linux/virtio_net.h>
24 #include <linux/skb_array.h>
25 
26 /*
27  * A macvtap queue is the central object of this driver, it connects
28  * an open character device to a macvlan interface. There can be
29  * multiple queues on one interface, which map back to queues
30  * implemented in hardware on the underlying device.
31  *
32  * macvtap_proto is used to allocate queues through the sock allocation
33  * mechanism.
34  *
35  */
36 struct macvtap_queue {
37 	struct sock sk;
38 	struct socket sock;
39 	struct socket_wq wq;
40 	int vnet_hdr_sz;
41 	struct macvlan_dev __rcu *vlan;
42 	struct file *file;
43 	unsigned int flags;
44 	u16 queue_index;
45 	bool enabled;
46 	struct list_head next;
47 	struct skb_array skb_array;
48 };
49 
50 #define MACVTAP_FEATURES (IFF_VNET_HDR | IFF_MULTI_QUEUE)
51 
52 #define MACVTAP_VNET_LE 0x80000000
53 #define MACVTAP_VNET_BE 0x40000000
54 
55 #ifdef CONFIG_TUN_VNET_CROSS_LE
56 static inline bool macvtap_legacy_is_little_endian(struct macvtap_queue *q)
57 {
58 	return q->flags & MACVTAP_VNET_BE ? false :
59 		virtio_legacy_is_little_endian();
60 }
61 
62 static long macvtap_get_vnet_be(struct macvtap_queue *q, int __user *sp)
63 {
64 	int s = !!(q->flags & MACVTAP_VNET_BE);
65 
66 	if (put_user(s, sp))
67 		return -EFAULT;
68 
69 	return 0;
70 }
71 
72 static long macvtap_set_vnet_be(struct macvtap_queue *q, int __user *sp)
73 {
74 	int s;
75 
76 	if (get_user(s, sp))
77 		return -EFAULT;
78 
79 	if (s)
80 		q->flags |= MACVTAP_VNET_BE;
81 	else
82 		q->flags &= ~MACVTAP_VNET_BE;
83 
84 	return 0;
85 }
86 #else
87 static inline bool macvtap_legacy_is_little_endian(struct macvtap_queue *q)
88 {
89 	return virtio_legacy_is_little_endian();
90 }
91 
92 static long macvtap_get_vnet_be(struct macvtap_queue *q, int __user *argp)
93 {
94 	return -EINVAL;
95 }
96 
97 static long macvtap_set_vnet_be(struct macvtap_queue *q, int __user *argp)
98 {
99 	return -EINVAL;
100 }
101 #endif /* CONFIG_TUN_VNET_CROSS_LE */
102 
103 static inline bool macvtap_is_little_endian(struct macvtap_queue *q)
104 {
105 	return q->flags & MACVTAP_VNET_LE ||
106 		macvtap_legacy_is_little_endian(q);
107 }
108 
109 static inline u16 macvtap16_to_cpu(struct macvtap_queue *q, __virtio16 val)
110 {
111 	return __virtio16_to_cpu(macvtap_is_little_endian(q), val);
112 }
113 
114 static inline __virtio16 cpu_to_macvtap16(struct macvtap_queue *q, u16 val)
115 {
116 	return __cpu_to_virtio16(macvtap_is_little_endian(q), val);
117 }
118 
119 static struct proto macvtap_proto = {
120 	.name = "macvtap",
121 	.owner = THIS_MODULE,
122 	.obj_size = sizeof (struct macvtap_queue),
123 };
124 
125 /*
126  * Variables for dealing with macvtaps device numbers.
127  */
128 static dev_t macvtap_major;
129 #define MACVTAP_NUM_DEVS (1U << MINORBITS)
130 static DEFINE_MUTEX(minor_lock);
131 static DEFINE_IDR(minor_idr);
132 
133 #define GOODCOPY_LEN 128
134 static const void *macvtap_net_namespace(struct device *d)
135 {
136 	struct net_device *dev = to_net_dev(d->parent);
137 	return dev_net(dev);
138 }
139 
140 static struct class macvtap_class = {
141 	.name = "macvtap",
142 	.owner = THIS_MODULE,
143 	.ns_type = &net_ns_type_operations,
144 	.namespace = macvtap_net_namespace,
145 };
146 static struct cdev macvtap_cdev;
147 
148 static const struct proto_ops macvtap_socket_ops;
149 
150 #define TUN_OFFLOADS (NETIF_F_HW_CSUM | NETIF_F_TSO_ECN | NETIF_F_TSO | \
151 		      NETIF_F_TSO6 | NETIF_F_UFO)
152 #define RX_OFFLOADS (NETIF_F_GRO | NETIF_F_LRO)
153 #define TAP_FEATURES (NETIF_F_GSO | NETIF_F_SG | NETIF_F_FRAGLIST)
154 
155 static struct macvlan_dev *macvtap_get_vlan_rcu(const struct net_device *dev)
156 {
157 	return rcu_dereference(dev->rx_handler_data);
158 }
159 
160 /*
161  * RCU usage:
162  * The macvtap_queue and the macvlan_dev are loosely coupled, the
163  * pointers from one to the other can only be read while rcu_read_lock
164  * or rtnl is held.
165  *
166  * Both the file and the macvlan_dev hold a reference on the macvtap_queue
167  * through sock_hold(&q->sk). When the macvlan_dev goes away first,
168  * q->vlan becomes inaccessible. When the files gets closed,
169  * macvtap_get_queue() fails.
170  *
171  * There may still be references to the struct sock inside of the
172  * queue from outbound SKBs, but these never reference back to the
173  * file or the dev. The data structure is freed through __sk_free
174  * when both our references and any pending SKBs are gone.
175  */
176 
177 static int macvtap_enable_queue(struct net_device *dev, struct file *file,
178 				struct macvtap_queue *q)
179 {
180 	struct macvlan_dev *vlan = netdev_priv(dev);
181 	int err = -EINVAL;
182 
183 	ASSERT_RTNL();
184 
185 	if (q->enabled)
186 		goto out;
187 
188 	err = 0;
189 	rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
190 	q->queue_index = vlan->numvtaps;
191 	q->enabled = true;
192 
193 	vlan->numvtaps++;
194 out:
195 	return err;
196 }
197 
198 /* Requires RTNL */
199 static int macvtap_set_queue(struct net_device *dev, struct file *file,
200 			     struct macvtap_queue *q)
201 {
202 	struct macvlan_dev *vlan = netdev_priv(dev);
203 
204 	if (vlan->numqueues == MAX_MACVTAP_QUEUES)
205 		return -EBUSY;
206 
207 	rcu_assign_pointer(q->vlan, vlan);
208 	rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
209 	sock_hold(&q->sk);
210 
211 	q->file = file;
212 	q->queue_index = vlan->numvtaps;
213 	q->enabled = true;
214 	file->private_data = q;
215 	list_add_tail(&q->next, &vlan->queue_list);
216 
217 	vlan->numvtaps++;
218 	vlan->numqueues++;
219 
220 	return 0;
221 }
222 
223 static int macvtap_disable_queue(struct macvtap_queue *q)
224 {
225 	struct macvlan_dev *vlan;
226 	struct macvtap_queue *nq;
227 
228 	ASSERT_RTNL();
229 	if (!q->enabled)
230 		return -EINVAL;
231 
232 	vlan = rtnl_dereference(q->vlan);
233 
234 	if (vlan) {
235 		int index = q->queue_index;
236 		BUG_ON(index >= vlan->numvtaps);
237 		nq = rtnl_dereference(vlan->taps[vlan->numvtaps - 1]);
238 		nq->queue_index = index;
239 
240 		rcu_assign_pointer(vlan->taps[index], nq);
241 		RCU_INIT_POINTER(vlan->taps[vlan->numvtaps - 1], NULL);
242 		q->enabled = false;
243 
244 		vlan->numvtaps--;
245 	}
246 
247 	return 0;
248 }
249 
250 /*
251  * The file owning the queue got closed, give up both
252  * the reference that the files holds as well as the
253  * one from the macvlan_dev if that still exists.
254  *
255  * Using the spinlock makes sure that we don't get
256  * to the queue again after destroying it.
257  */
258 static void macvtap_put_queue(struct macvtap_queue *q)
259 {
260 	struct macvlan_dev *vlan;
261 
262 	rtnl_lock();
263 	vlan = rtnl_dereference(q->vlan);
264 
265 	if (vlan) {
266 		if (q->enabled)
267 			BUG_ON(macvtap_disable_queue(q));
268 
269 		vlan->numqueues--;
270 		RCU_INIT_POINTER(q->vlan, NULL);
271 		sock_put(&q->sk);
272 		list_del_init(&q->next);
273 	}
274 
275 	rtnl_unlock();
276 
277 	synchronize_rcu();
278 	skb_array_cleanup(&q->skb_array);
279 	sock_put(&q->sk);
280 }
281 
282 /*
283  * Select a queue based on the rxq of the device on which this packet
284  * arrived. If the incoming device is not mq, calculate a flow hash
285  * to select a queue. If all fails, find the first available queue.
286  * Cache vlan->numvtaps since it can become zero during the execution
287  * of this function.
288  */
289 static struct macvtap_queue *macvtap_get_queue(struct net_device *dev,
290 					       struct sk_buff *skb)
291 {
292 	struct macvlan_dev *vlan = netdev_priv(dev);
293 	struct macvtap_queue *tap = NULL;
294 	/* Access to taps array is protected by rcu, but access to numvtaps
295 	 * isn't. Below we use it to lookup a queue, but treat it as a hint
296 	 * and validate that the result isn't NULL - in case we are
297 	 * racing against queue removal.
298 	 */
299 	int numvtaps = ACCESS_ONCE(vlan->numvtaps);
300 	__u32 rxq;
301 
302 	if (!numvtaps)
303 		goto out;
304 
305 	if (numvtaps == 1)
306 		goto single;
307 
308 	/* Check if we can use flow to select a queue */
309 	rxq = skb_get_hash(skb);
310 	if (rxq) {
311 		tap = rcu_dereference(vlan->taps[rxq % numvtaps]);
312 		goto out;
313 	}
314 
315 	if (likely(skb_rx_queue_recorded(skb))) {
316 		rxq = skb_get_rx_queue(skb);
317 
318 		while (unlikely(rxq >= numvtaps))
319 			rxq -= numvtaps;
320 
321 		tap = rcu_dereference(vlan->taps[rxq]);
322 		goto out;
323 	}
324 
325 single:
326 	tap = rcu_dereference(vlan->taps[0]);
327 out:
328 	return tap;
329 }
330 
331 /*
332  * The net_device is going away, give up the reference
333  * that it holds on all queues and safely set the pointer
334  * from the queues to NULL.
335  */
336 static void macvtap_del_queues(struct net_device *dev)
337 {
338 	struct macvlan_dev *vlan = netdev_priv(dev);
339 	struct macvtap_queue *q, *tmp;
340 
341 	ASSERT_RTNL();
342 	list_for_each_entry_safe(q, tmp, &vlan->queue_list, next) {
343 		list_del_init(&q->next);
344 		RCU_INIT_POINTER(q->vlan, NULL);
345 		if (q->enabled)
346 			vlan->numvtaps--;
347 		vlan->numqueues--;
348 		sock_put(&q->sk);
349 	}
350 	BUG_ON(vlan->numvtaps);
351 	BUG_ON(vlan->numqueues);
352 	/* guarantee that any future macvtap_set_queue will fail */
353 	vlan->numvtaps = MAX_MACVTAP_QUEUES;
354 }
355 
356 static rx_handler_result_t macvtap_handle_frame(struct sk_buff **pskb)
357 {
358 	struct sk_buff *skb = *pskb;
359 	struct net_device *dev = skb->dev;
360 	struct macvlan_dev *vlan;
361 	struct macvtap_queue *q;
362 	netdev_features_t features = TAP_FEATURES;
363 
364 	vlan = macvtap_get_vlan_rcu(dev);
365 	if (!vlan)
366 		return RX_HANDLER_PASS;
367 
368 	q = macvtap_get_queue(dev, skb);
369 	if (!q)
370 		return RX_HANDLER_PASS;
371 
372 	if (__skb_array_full(&q->skb_array))
373 		goto drop;
374 
375 	skb_push(skb, ETH_HLEN);
376 
377 	/* Apply the forward feature mask so that we perform segmentation
378 	 * according to users wishes.  This only works if VNET_HDR is
379 	 * enabled.
380 	 */
381 	if (q->flags & IFF_VNET_HDR)
382 		features |= vlan->tap_features;
383 	if (netif_needs_gso(skb, features)) {
384 		struct sk_buff *segs = __skb_gso_segment(skb, features, false);
385 
386 		if (IS_ERR(segs))
387 			goto drop;
388 
389 		if (!segs) {
390 			if (skb_array_produce(&q->skb_array, skb))
391 				goto drop;
392 			goto wake_up;
393 		}
394 
395 		consume_skb(skb);
396 		while (segs) {
397 			struct sk_buff *nskb = segs->next;
398 
399 			segs->next = NULL;
400 			if (skb_array_produce(&q->skb_array, segs)) {
401 				kfree_skb(segs);
402 				kfree_skb_list(nskb);
403 				break;
404 			}
405 			segs = nskb;
406 		}
407 	} else {
408 		/* If we receive a partial checksum and the tap side
409 		 * doesn't support checksum offload, compute the checksum.
410 		 * Note: it doesn't matter which checksum feature to
411 		 *        check, we either support them all or none.
412 		 */
413 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
414 		    !(features & NETIF_F_CSUM_MASK) &&
415 		    skb_checksum_help(skb))
416 			goto drop;
417 		if (skb_array_produce(&q->skb_array, skb))
418 			goto drop;
419 	}
420 
421 wake_up:
422 	wake_up_interruptible_poll(sk_sleep(&q->sk), POLLIN | POLLRDNORM | POLLRDBAND);
423 	return RX_HANDLER_CONSUMED;
424 
425 drop:
426 	/* Count errors/drops only here, thus don't care about args. */
427 	macvlan_count_rx(vlan, 0, 0, 0);
428 	kfree_skb(skb);
429 	return RX_HANDLER_CONSUMED;
430 }
431 
432 static int macvtap_get_minor(struct macvlan_dev *vlan)
433 {
434 	int retval = -ENOMEM;
435 
436 	mutex_lock(&minor_lock);
437 	retval = idr_alloc(&minor_idr, vlan, 1, MACVTAP_NUM_DEVS, GFP_KERNEL);
438 	if (retval >= 0) {
439 		vlan->minor = retval;
440 	} else if (retval == -ENOSPC) {
441 		printk(KERN_ERR "too many macvtap devices\n");
442 		retval = -EINVAL;
443 	}
444 	mutex_unlock(&minor_lock);
445 	return retval < 0 ? retval : 0;
446 }
447 
448 static void macvtap_free_minor(struct macvlan_dev *vlan)
449 {
450 	mutex_lock(&minor_lock);
451 	if (vlan->minor) {
452 		idr_remove(&minor_idr, vlan->minor);
453 		vlan->minor = 0;
454 	}
455 	mutex_unlock(&minor_lock);
456 }
457 
458 static struct net_device *dev_get_by_macvtap_minor(int minor)
459 {
460 	struct net_device *dev = NULL;
461 	struct macvlan_dev *vlan;
462 
463 	mutex_lock(&minor_lock);
464 	vlan = idr_find(&minor_idr, minor);
465 	if (vlan) {
466 		dev = vlan->dev;
467 		dev_hold(dev);
468 	}
469 	mutex_unlock(&minor_lock);
470 	return dev;
471 }
472 
473 static int macvtap_newlink(struct net *src_net,
474 			   struct net_device *dev,
475 			   struct nlattr *tb[],
476 			   struct nlattr *data[])
477 {
478 	struct macvlan_dev *vlan = netdev_priv(dev);
479 	int err;
480 
481 	INIT_LIST_HEAD(&vlan->queue_list);
482 
483 	/* Since macvlan supports all offloads by default, make
484 	 * tap support all offloads also.
485 	 */
486 	vlan->tap_features = TUN_OFFLOADS;
487 
488 	err = netdev_rx_handler_register(dev, macvtap_handle_frame, vlan);
489 	if (err)
490 		return err;
491 
492 	/* Don't put anything that may fail after macvlan_common_newlink
493 	 * because we can't undo what it does.
494 	 */
495 	return macvlan_common_newlink(src_net, dev, tb, data);
496 }
497 
498 static void macvtap_dellink(struct net_device *dev,
499 			    struct list_head *head)
500 {
501 	netdev_rx_handler_unregister(dev);
502 	macvtap_del_queues(dev);
503 	macvlan_dellink(dev, head);
504 }
505 
506 static void macvtap_setup(struct net_device *dev)
507 {
508 	macvlan_common_setup(dev);
509 	dev->tx_queue_len = TUN_READQ_SIZE;
510 }
511 
512 static struct rtnl_link_ops macvtap_link_ops __read_mostly = {
513 	.kind		= "macvtap",
514 	.setup		= macvtap_setup,
515 	.newlink	= macvtap_newlink,
516 	.dellink	= macvtap_dellink,
517 };
518 
519 
520 static void macvtap_sock_write_space(struct sock *sk)
521 {
522 	wait_queue_head_t *wqueue;
523 
524 	if (!sock_writeable(sk) ||
525 	    !test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags))
526 		return;
527 
528 	wqueue = sk_sleep(sk);
529 	if (wqueue && waitqueue_active(wqueue))
530 		wake_up_interruptible_poll(wqueue, POLLOUT | POLLWRNORM | POLLWRBAND);
531 }
532 
533 static void macvtap_sock_destruct(struct sock *sk)
534 {
535 	struct macvtap_queue *q = container_of(sk, struct macvtap_queue, sk);
536 	struct sk_buff *skb;
537 
538 	while ((skb = skb_array_consume(&q->skb_array)) != NULL)
539 		kfree_skb(skb);
540 }
541 
542 static int macvtap_open(struct inode *inode, struct file *file)
543 {
544 	struct net *net = current->nsproxy->net_ns;
545 	struct net_device *dev;
546 	struct macvtap_queue *q;
547 	int err = -ENODEV;
548 
549 	rtnl_lock();
550 	dev = dev_get_by_macvtap_minor(iminor(inode));
551 	if (!dev)
552 		goto err;
553 
554 	err = -ENOMEM;
555 	q = (struct macvtap_queue *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL,
556 					     &macvtap_proto, 0);
557 	if (!q)
558 		goto err;
559 
560 	RCU_INIT_POINTER(q->sock.wq, &q->wq);
561 	init_waitqueue_head(&q->wq.wait);
562 	q->sock.type = SOCK_RAW;
563 	q->sock.state = SS_CONNECTED;
564 	q->sock.file = file;
565 	q->sock.ops = &macvtap_socket_ops;
566 	sock_init_data(&q->sock, &q->sk);
567 	q->sk.sk_write_space = macvtap_sock_write_space;
568 	q->sk.sk_destruct = macvtap_sock_destruct;
569 	q->flags = IFF_VNET_HDR | IFF_NO_PI | IFF_TAP;
570 	q->vnet_hdr_sz = sizeof(struct virtio_net_hdr);
571 
572 	/*
573 	 * so far only KVM virtio_net uses macvtap, enable zero copy between
574 	 * guest kernel and host kernel when lower device supports zerocopy
575 	 *
576 	 * The macvlan supports zerocopy iff the lower device supports zero
577 	 * copy so we don't have to look at the lower device directly.
578 	 */
579 	if ((dev->features & NETIF_F_HIGHDMA) && (dev->features & NETIF_F_SG))
580 		sock_set_flag(&q->sk, SOCK_ZEROCOPY);
581 
582 	err = -ENOMEM;
583 	if (skb_array_init(&q->skb_array, dev->tx_queue_len, GFP_KERNEL))
584 		goto err_array;
585 
586 	err = macvtap_set_queue(dev, file, q);
587 	if (err)
588 		goto err_queue;
589 
590 	dev_put(dev);
591 
592 	rtnl_unlock();
593 	return err;
594 
595 err_queue:
596 	skb_array_cleanup(&q->skb_array);
597 err_array:
598 	sock_put(&q->sk);
599 err:
600 	if (dev)
601 		dev_put(dev);
602 
603 	rtnl_unlock();
604 	return err;
605 }
606 
607 static int macvtap_release(struct inode *inode, struct file *file)
608 {
609 	struct macvtap_queue *q = file->private_data;
610 	macvtap_put_queue(q);
611 	return 0;
612 }
613 
614 static unsigned int macvtap_poll(struct file *file, poll_table * wait)
615 {
616 	struct macvtap_queue *q = file->private_data;
617 	unsigned int mask = POLLERR;
618 
619 	if (!q)
620 		goto out;
621 
622 	mask = 0;
623 	poll_wait(file, &q->wq.wait, wait);
624 
625 	if (!skb_array_empty(&q->skb_array))
626 		mask |= POLLIN | POLLRDNORM;
627 
628 	if (sock_writeable(&q->sk) ||
629 	    (!test_and_set_bit(SOCKWQ_ASYNC_NOSPACE, &q->sock.flags) &&
630 	     sock_writeable(&q->sk)))
631 		mask |= POLLOUT | POLLWRNORM;
632 
633 out:
634 	return mask;
635 }
636 
637 static inline struct sk_buff *macvtap_alloc_skb(struct sock *sk, size_t prepad,
638 						size_t len, size_t linear,
639 						int noblock, int *err)
640 {
641 	struct sk_buff *skb;
642 
643 	/* Under a page?  Don't bother with paged skb. */
644 	if (prepad + len < PAGE_SIZE || !linear)
645 		linear = len;
646 
647 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
648 				   err, 0);
649 	if (!skb)
650 		return NULL;
651 
652 	skb_reserve(skb, prepad);
653 	skb_put(skb, linear);
654 	skb->data_len = len - linear;
655 	skb->len += len - linear;
656 
657 	return skb;
658 }
659 
660 /* Neighbour code has some assumptions on HH_DATA_MOD alignment */
661 #define MACVTAP_RESERVE HH_DATA_OFF(ETH_HLEN)
662 
663 /* Get packet from user space buffer */
664 static ssize_t macvtap_get_user(struct macvtap_queue *q, struct msghdr *m,
665 				struct iov_iter *from, int noblock)
666 {
667 	int good_linear = SKB_MAX_HEAD(MACVTAP_RESERVE);
668 	struct sk_buff *skb;
669 	struct macvlan_dev *vlan;
670 	unsigned long total_len = iov_iter_count(from);
671 	unsigned long len = total_len;
672 	int err;
673 	struct virtio_net_hdr vnet_hdr = { 0 };
674 	int vnet_hdr_len = 0;
675 	int copylen = 0;
676 	int depth;
677 	bool zerocopy = false;
678 	size_t linear;
679 	ssize_t n;
680 
681 	if (q->flags & IFF_VNET_HDR) {
682 		vnet_hdr_len = q->vnet_hdr_sz;
683 
684 		err = -EINVAL;
685 		if (len < vnet_hdr_len)
686 			goto err;
687 		len -= vnet_hdr_len;
688 
689 		err = -EFAULT;
690 		n = copy_from_iter(&vnet_hdr, sizeof(vnet_hdr), from);
691 		if (n != sizeof(vnet_hdr))
692 			goto err;
693 		iov_iter_advance(from, vnet_hdr_len - sizeof(vnet_hdr));
694 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
695 		     macvtap16_to_cpu(q, vnet_hdr.csum_start) +
696 		     macvtap16_to_cpu(q, vnet_hdr.csum_offset) + 2 >
697 			     macvtap16_to_cpu(q, vnet_hdr.hdr_len))
698 			vnet_hdr.hdr_len = cpu_to_macvtap16(q,
699 				 macvtap16_to_cpu(q, vnet_hdr.csum_start) +
700 				 macvtap16_to_cpu(q, vnet_hdr.csum_offset) + 2);
701 		err = -EINVAL;
702 		if (macvtap16_to_cpu(q, vnet_hdr.hdr_len) > len)
703 			goto err;
704 	}
705 
706 	err = -EINVAL;
707 	if (unlikely(len < ETH_HLEN))
708 		goto err;
709 
710 	if (m && m->msg_control && sock_flag(&q->sk, SOCK_ZEROCOPY)) {
711 		struct iov_iter i;
712 
713 		copylen = vnet_hdr.hdr_len ?
714 			macvtap16_to_cpu(q, vnet_hdr.hdr_len) : GOODCOPY_LEN;
715 		if (copylen > good_linear)
716 			copylen = good_linear;
717 		else if (copylen < ETH_HLEN)
718 			copylen = ETH_HLEN;
719 		linear = copylen;
720 		i = *from;
721 		iov_iter_advance(&i, copylen);
722 		if (iov_iter_npages(&i, INT_MAX) <= MAX_SKB_FRAGS)
723 			zerocopy = true;
724 	}
725 
726 	if (!zerocopy) {
727 		copylen = len;
728 		linear = macvtap16_to_cpu(q, vnet_hdr.hdr_len);
729 		if (linear > good_linear)
730 			linear = good_linear;
731 		else if (linear < ETH_HLEN)
732 			linear = ETH_HLEN;
733 	}
734 
735 	skb = macvtap_alloc_skb(&q->sk, MACVTAP_RESERVE, copylen,
736 				linear, noblock, &err);
737 	if (!skb)
738 		goto err;
739 
740 	if (zerocopy)
741 		err = zerocopy_sg_from_iter(skb, from);
742 	else {
743 		err = skb_copy_datagram_from_iter(skb, 0, from, len);
744 		if (!err && m && m->msg_control) {
745 			struct ubuf_info *uarg = m->msg_control;
746 			uarg->callback(uarg, false);
747 		}
748 	}
749 
750 	if (err)
751 		goto err_kfree;
752 
753 	skb_set_network_header(skb, ETH_HLEN);
754 	skb_reset_mac_header(skb);
755 	skb->protocol = eth_hdr(skb)->h_proto;
756 
757 	if (vnet_hdr_len) {
758 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr,
759 					    macvtap_is_little_endian(q));
760 		if (err)
761 			goto err_kfree;
762 	}
763 
764 	skb_probe_transport_header(skb, ETH_HLEN);
765 
766 	/* Move network header to the right position for VLAN tagged packets */
767 	if ((skb->protocol == htons(ETH_P_8021Q) ||
768 	     skb->protocol == htons(ETH_P_8021AD)) &&
769 	    __vlan_get_protocol(skb, skb->protocol, &depth) != 0)
770 		skb_set_network_header(skb, depth);
771 
772 	rcu_read_lock();
773 	vlan = rcu_dereference(q->vlan);
774 	/* copy skb_ubuf_info for callback when skb has no error */
775 	if (zerocopy) {
776 		skb_shinfo(skb)->destructor_arg = m->msg_control;
777 		skb_shinfo(skb)->tx_flags |= SKBTX_DEV_ZEROCOPY;
778 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
779 	}
780 	if (vlan) {
781 		skb->dev = vlan->dev;
782 		dev_queue_xmit(skb);
783 	} else {
784 		kfree_skb(skb);
785 	}
786 	rcu_read_unlock();
787 
788 	return total_len;
789 
790 err_kfree:
791 	kfree_skb(skb);
792 
793 err:
794 	rcu_read_lock();
795 	vlan = rcu_dereference(q->vlan);
796 	if (vlan)
797 		this_cpu_inc(vlan->pcpu_stats->tx_dropped);
798 	rcu_read_unlock();
799 
800 	return err;
801 }
802 
803 static ssize_t macvtap_write_iter(struct kiocb *iocb, struct iov_iter *from)
804 {
805 	struct file *file = iocb->ki_filp;
806 	struct macvtap_queue *q = file->private_data;
807 
808 	return macvtap_get_user(q, NULL, from, file->f_flags & O_NONBLOCK);
809 }
810 
811 /* Put packet to the user space buffer */
812 static ssize_t macvtap_put_user(struct macvtap_queue *q,
813 				const struct sk_buff *skb,
814 				struct iov_iter *iter)
815 {
816 	int ret;
817 	int vnet_hdr_len = 0;
818 	int vlan_offset = 0;
819 	int total;
820 
821 	if (q->flags & IFF_VNET_HDR) {
822 		struct virtio_net_hdr vnet_hdr;
823 		vnet_hdr_len = q->vnet_hdr_sz;
824 		if (iov_iter_count(iter) < vnet_hdr_len)
825 			return -EINVAL;
826 
827 		ret = virtio_net_hdr_from_skb(skb, &vnet_hdr,
828 					      macvtap_is_little_endian(q));
829 		if (ret)
830 			BUG();
831 
832 		if (copy_to_iter(&vnet_hdr, sizeof(vnet_hdr), iter) !=
833 		    sizeof(vnet_hdr))
834 			return -EFAULT;
835 
836 		iov_iter_advance(iter, vnet_hdr_len - sizeof(vnet_hdr));
837 	}
838 	total = vnet_hdr_len;
839 	total += skb->len;
840 
841 	if (skb_vlan_tag_present(skb)) {
842 		struct {
843 			__be16 h_vlan_proto;
844 			__be16 h_vlan_TCI;
845 		} veth;
846 		veth.h_vlan_proto = skb->vlan_proto;
847 		veth.h_vlan_TCI = htons(skb_vlan_tag_get(skb));
848 
849 		vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto);
850 		total += VLAN_HLEN;
851 
852 		ret = skb_copy_datagram_iter(skb, 0, iter, vlan_offset);
853 		if (ret || !iov_iter_count(iter))
854 			goto done;
855 
856 		ret = copy_to_iter(&veth, sizeof(veth), iter);
857 		if (ret != sizeof(veth) || !iov_iter_count(iter))
858 			goto done;
859 	}
860 
861 	ret = skb_copy_datagram_iter(skb, vlan_offset, iter,
862 				     skb->len - vlan_offset);
863 
864 done:
865 	return ret ? ret : total;
866 }
867 
868 static ssize_t macvtap_do_read(struct macvtap_queue *q,
869 			       struct iov_iter *to,
870 			       int noblock)
871 {
872 	DEFINE_WAIT(wait);
873 	struct sk_buff *skb;
874 	ssize_t ret = 0;
875 
876 	if (!iov_iter_count(to))
877 		return 0;
878 
879 	while (1) {
880 		if (!noblock)
881 			prepare_to_wait(sk_sleep(&q->sk), &wait,
882 					TASK_INTERRUPTIBLE);
883 
884 		/* Read frames from the queue */
885 		skb = skb_array_consume(&q->skb_array);
886 		if (skb)
887 			break;
888 		if (noblock) {
889 			ret = -EAGAIN;
890 			break;
891 		}
892 		if (signal_pending(current)) {
893 			ret = -ERESTARTSYS;
894 			break;
895 		}
896 		/* Nothing to read, let's sleep */
897 		schedule();
898 	}
899 	if (!noblock)
900 		finish_wait(sk_sleep(&q->sk), &wait);
901 
902 	if (skb) {
903 		ret = macvtap_put_user(q, skb, to);
904 		if (unlikely(ret < 0))
905 			kfree_skb(skb);
906 		else
907 			consume_skb(skb);
908 	}
909 	return ret;
910 }
911 
912 static ssize_t macvtap_read_iter(struct kiocb *iocb, struct iov_iter *to)
913 {
914 	struct file *file = iocb->ki_filp;
915 	struct macvtap_queue *q = file->private_data;
916 	ssize_t len = iov_iter_count(to), ret;
917 
918 	ret = macvtap_do_read(q, to, file->f_flags & O_NONBLOCK);
919 	ret = min_t(ssize_t, ret, len);
920 	if (ret > 0)
921 		iocb->ki_pos = ret;
922 	return ret;
923 }
924 
925 static struct macvlan_dev *macvtap_get_vlan(struct macvtap_queue *q)
926 {
927 	struct macvlan_dev *vlan;
928 
929 	ASSERT_RTNL();
930 	vlan = rtnl_dereference(q->vlan);
931 	if (vlan)
932 		dev_hold(vlan->dev);
933 
934 	return vlan;
935 }
936 
937 static void macvtap_put_vlan(struct macvlan_dev *vlan)
938 {
939 	dev_put(vlan->dev);
940 }
941 
942 static int macvtap_ioctl_set_queue(struct file *file, unsigned int flags)
943 {
944 	struct macvtap_queue *q = file->private_data;
945 	struct macvlan_dev *vlan;
946 	int ret;
947 
948 	vlan = macvtap_get_vlan(q);
949 	if (!vlan)
950 		return -EINVAL;
951 
952 	if (flags & IFF_ATTACH_QUEUE)
953 		ret = macvtap_enable_queue(vlan->dev, file, q);
954 	else if (flags & IFF_DETACH_QUEUE)
955 		ret = macvtap_disable_queue(q);
956 	else
957 		ret = -EINVAL;
958 
959 	macvtap_put_vlan(vlan);
960 	return ret;
961 }
962 
963 static int set_offload(struct macvtap_queue *q, unsigned long arg)
964 {
965 	struct macvlan_dev *vlan;
966 	netdev_features_t features;
967 	netdev_features_t feature_mask = 0;
968 
969 	vlan = rtnl_dereference(q->vlan);
970 	if (!vlan)
971 		return -ENOLINK;
972 
973 	features = vlan->dev->features;
974 
975 	if (arg & TUN_F_CSUM) {
976 		feature_mask = NETIF_F_HW_CSUM;
977 
978 		if (arg & (TUN_F_TSO4 | TUN_F_TSO6)) {
979 			if (arg & TUN_F_TSO_ECN)
980 				feature_mask |= NETIF_F_TSO_ECN;
981 			if (arg & TUN_F_TSO4)
982 				feature_mask |= NETIF_F_TSO;
983 			if (arg & TUN_F_TSO6)
984 				feature_mask |= NETIF_F_TSO6;
985 		}
986 
987 		if (arg & TUN_F_UFO)
988 			feature_mask |= NETIF_F_UFO;
989 	}
990 
991 	/* tun/tap driver inverts the usage for TSO offloads, where
992 	 * setting the TSO bit means that the userspace wants to
993 	 * accept TSO frames and turning it off means that user space
994 	 * does not support TSO.
995 	 * For macvtap, we have to invert it to mean the same thing.
996 	 * When user space turns off TSO, we turn off GSO/LRO so that
997 	 * user-space will not receive TSO frames.
998 	 */
999 	if (feature_mask & (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_UFO))
1000 		features |= RX_OFFLOADS;
1001 	else
1002 		features &= ~RX_OFFLOADS;
1003 
1004 	/* tap_features are the same as features on tun/tap and
1005 	 * reflect user expectations.
1006 	 */
1007 	vlan->tap_features = feature_mask;
1008 	vlan->set_features = features;
1009 	netdev_update_features(vlan->dev);
1010 
1011 	return 0;
1012 }
1013 
1014 /*
1015  * provide compatibility with generic tun/tap interface
1016  */
1017 static long macvtap_ioctl(struct file *file, unsigned int cmd,
1018 			  unsigned long arg)
1019 {
1020 	struct macvtap_queue *q = file->private_data;
1021 	struct macvlan_dev *vlan;
1022 	void __user *argp = (void __user *)arg;
1023 	struct ifreq __user *ifr = argp;
1024 	unsigned int __user *up = argp;
1025 	unsigned short u;
1026 	int __user *sp = argp;
1027 	struct sockaddr sa;
1028 	int s;
1029 	int ret;
1030 
1031 	switch (cmd) {
1032 	case TUNSETIFF:
1033 		/* ignore the name, just look at flags */
1034 		if (get_user(u, &ifr->ifr_flags))
1035 			return -EFAULT;
1036 
1037 		ret = 0;
1038 		if ((u & ~MACVTAP_FEATURES) != (IFF_NO_PI | IFF_TAP))
1039 			ret = -EINVAL;
1040 		else
1041 			q->flags = (q->flags & ~MACVTAP_FEATURES) | u;
1042 
1043 		return ret;
1044 
1045 	case TUNGETIFF:
1046 		rtnl_lock();
1047 		vlan = macvtap_get_vlan(q);
1048 		if (!vlan) {
1049 			rtnl_unlock();
1050 			return -ENOLINK;
1051 		}
1052 
1053 		ret = 0;
1054 		u = q->flags;
1055 		if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
1056 		    put_user(u, &ifr->ifr_flags))
1057 			ret = -EFAULT;
1058 		macvtap_put_vlan(vlan);
1059 		rtnl_unlock();
1060 		return ret;
1061 
1062 	case TUNSETQUEUE:
1063 		if (get_user(u, &ifr->ifr_flags))
1064 			return -EFAULT;
1065 		rtnl_lock();
1066 		ret = macvtap_ioctl_set_queue(file, u);
1067 		rtnl_unlock();
1068 		return ret;
1069 
1070 	case TUNGETFEATURES:
1071 		if (put_user(IFF_TAP | IFF_NO_PI | MACVTAP_FEATURES, up))
1072 			return -EFAULT;
1073 		return 0;
1074 
1075 	case TUNSETSNDBUF:
1076 		if (get_user(s, sp))
1077 			return -EFAULT;
1078 
1079 		q->sk.sk_sndbuf = s;
1080 		return 0;
1081 
1082 	case TUNGETVNETHDRSZ:
1083 		s = q->vnet_hdr_sz;
1084 		if (put_user(s, sp))
1085 			return -EFAULT;
1086 		return 0;
1087 
1088 	case TUNSETVNETHDRSZ:
1089 		if (get_user(s, sp))
1090 			return -EFAULT;
1091 		if (s < (int)sizeof(struct virtio_net_hdr))
1092 			return -EINVAL;
1093 
1094 		q->vnet_hdr_sz = s;
1095 		return 0;
1096 
1097 	case TUNGETVNETLE:
1098 		s = !!(q->flags & MACVTAP_VNET_LE);
1099 		if (put_user(s, sp))
1100 			return -EFAULT;
1101 		return 0;
1102 
1103 	case TUNSETVNETLE:
1104 		if (get_user(s, sp))
1105 			return -EFAULT;
1106 		if (s)
1107 			q->flags |= MACVTAP_VNET_LE;
1108 		else
1109 			q->flags &= ~MACVTAP_VNET_LE;
1110 		return 0;
1111 
1112 	case TUNGETVNETBE:
1113 		return macvtap_get_vnet_be(q, sp);
1114 
1115 	case TUNSETVNETBE:
1116 		return macvtap_set_vnet_be(q, sp);
1117 
1118 	case TUNSETOFFLOAD:
1119 		/* let the user check for future flags */
1120 		if (arg & ~(TUN_F_CSUM | TUN_F_TSO4 | TUN_F_TSO6 |
1121 			    TUN_F_TSO_ECN | TUN_F_UFO))
1122 			return -EINVAL;
1123 
1124 		rtnl_lock();
1125 		ret = set_offload(q, arg);
1126 		rtnl_unlock();
1127 		return ret;
1128 
1129 	case SIOCGIFHWADDR:
1130 		rtnl_lock();
1131 		vlan = macvtap_get_vlan(q);
1132 		if (!vlan) {
1133 			rtnl_unlock();
1134 			return -ENOLINK;
1135 		}
1136 		ret = 0;
1137 		u = vlan->dev->type;
1138 		if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
1139 		    copy_to_user(&ifr->ifr_hwaddr.sa_data, vlan->dev->dev_addr, ETH_ALEN) ||
1140 		    put_user(u, &ifr->ifr_hwaddr.sa_family))
1141 			ret = -EFAULT;
1142 		macvtap_put_vlan(vlan);
1143 		rtnl_unlock();
1144 		return ret;
1145 
1146 	case SIOCSIFHWADDR:
1147 		if (copy_from_user(&sa, &ifr->ifr_hwaddr, sizeof(sa)))
1148 			return -EFAULT;
1149 		rtnl_lock();
1150 		vlan = macvtap_get_vlan(q);
1151 		if (!vlan) {
1152 			rtnl_unlock();
1153 			return -ENOLINK;
1154 		}
1155 		ret = dev_set_mac_address(vlan->dev, &sa);
1156 		macvtap_put_vlan(vlan);
1157 		rtnl_unlock();
1158 		return ret;
1159 
1160 	default:
1161 		return -EINVAL;
1162 	}
1163 }
1164 
1165 #ifdef CONFIG_COMPAT
1166 static long macvtap_compat_ioctl(struct file *file, unsigned int cmd,
1167 				 unsigned long arg)
1168 {
1169 	return macvtap_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
1170 }
1171 #endif
1172 
1173 static const struct file_operations macvtap_fops = {
1174 	.owner		= THIS_MODULE,
1175 	.open		= macvtap_open,
1176 	.release	= macvtap_release,
1177 	.read_iter	= macvtap_read_iter,
1178 	.write_iter	= macvtap_write_iter,
1179 	.poll		= macvtap_poll,
1180 	.llseek		= no_llseek,
1181 	.unlocked_ioctl	= macvtap_ioctl,
1182 #ifdef CONFIG_COMPAT
1183 	.compat_ioctl	= macvtap_compat_ioctl,
1184 #endif
1185 };
1186 
1187 static int macvtap_sendmsg(struct socket *sock, struct msghdr *m,
1188 			   size_t total_len)
1189 {
1190 	struct macvtap_queue *q = container_of(sock, struct macvtap_queue, sock);
1191 	return macvtap_get_user(q, m, &m->msg_iter, m->msg_flags & MSG_DONTWAIT);
1192 }
1193 
1194 static int macvtap_recvmsg(struct socket *sock, struct msghdr *m,
1195 			   size_t total_len, int flags)
1196 {
1197 	struct macvtap_queue *q = container_of(sock, struct macvtap_queue, sock);
1198 	int ret;
1199 	if (flags & ~(MSG_DONTWAIT|MSG_TRUNC))
1200 		return -EINVAL;
1201 	ret = macvtap_do_read(q, &m->msg_iter, flags & MSG_DONTWAIT);
1202 	if (ret > total_len) {
1203 		m->msg_flags |= MSG_TRUNC;
1204 		ret = flags & MSG_TRUNC ? ret : total_len;
1205 	}
1206 	return ret;
1207 }
1208 
1209 static int macvtap_peek_len(struct socket *sock)
1210 {
1211 	struct macvtap_queue *q = container_of(sock, struct macvtap_queue,
1212 					       sock);
1213 	return skb_array_peek_len(&q->skb_array);
1214 }
1215 
1216 /* Ops structure to mimic raw sockets with tun */
1217 static const struct proto_ops macvtap_socket_ops = {
1218 	.sendmsg = macvtap_sendmsg,
1219 	.recvmsg = macvtap_recvmsg,
1220 	.peek_len = macvtap_peek_len,
1221 };
1222 
1223 /* Get an underlying socket object from tun file.  Returns error unless file is
1224  * attached to a device.  The returned object works like a packet socket, it
1225  * can be used for sock_sendmsg/sock_recvmsg.  The caller is responsible for
1226  * holding a reference to the file for as long as the socket is in use. */
1227 struct socket *macvtap_get_socket(struct file *file)
1228 {
1229 	struct macvtap_queue *q;
1230 	if (file->f_op != &macvtap_fops)
1231 		return ERR_PTR(-EINVAL);
1232 	q = file->private_data;
1233 	if (!q)
1234 		return ERR_PTR(-EBADFD);
1235 	return &q->sock;
1236 }
1237 EXPORT_SYMBOL_GPL(macvtap_get_socket);
1238 
1239 static int macvtap_queue_resize(struct macvlan_dev *vlan)
1240 {
1241 	struct net_device *dev = vlan->dev;
1242 	struct macvtap_queue *q;
1243 	struct skb_array **arrays;
1244 	int n = vlan->numqueues;
1245 	int ret, i = 0;
1246 
1247 	arrays = kmalloc(sizeof *arrays * n, GFP_KERNEL);
1248 	if (!arrays)
1249 		return -ENOMEM;
1250 
1251 	list_for_each_entry(q, &vlan->queue_list, next)
1252 		arrays[i++] = &q->skb_array;
1253 
1254 	ret = skb_array_resize_multiple(arrays, n,
1255 					dev->tx_queue_len, GFP_KERNEL);
1256 
1257 	kfree(arrays);
1258 	return ret;
1259 }
1260 
1261 static int macvtap_device_event(struct notifier_block *unused,
1262 				unsigned long event, void *ptr)
1263 {
1264 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1265 	struct macvlan_dev *vlan;
1266 	struct device *classdev;
1267 	dev_t devt;
1268 	int err;
1269 	char tap_name[IFNAMSIZ];
1270 
1271 	if (dev->rtnl_link_ops != &macvtap_link_ops)
1272 		return NOTIFY_DONE;
1273 
1274 	snprintf(tap_name, IFNAMSIZ, "tap%d", dev->ifindex);
1275 	vlan = netdev_priv(dev);
1276 
1277 	switch (event) {
1278 	case NETDEV_REGISTER:
1279 		/* Create the device node here after the network device has
1280 		 * been registered but before register_netdevice has
1281 		 * finished running.
1282 		 */
1283 		err = macvtap_get_minor(vlan);
1284 		if (err)
1285 			return notifier_from_errno(err);
1286 
1287 		devt = MKDEV(MAJOR(macvtap_major), vlan->minor);
1288 		classdev = device_create(&macvtap_class, &dev->dev, devt,
1289 					 dev, tap_name);
1290 		if (IS_ERR(classdev)) {
1291 			macvtap_free_minor(vlan);
1292 			return notifier_from_errno(PTR_ERR(classdev));
1293 		}
1294 		err = sysfs_create_link(&dev->dev.kobj, &classdev->kobj,
1295 					tap_name);
1296 		if (err)
1297 			return notifier_from_errno(err);
1298 		break;
1299 	case NETDEV_UNREGISTER:
1300 		/* vlan->minor == 0 if NETDEV_REGISTER above failed */
1301 		if (vlan->minor == 0)
1302 			break;
1303 		sysfs_remove_link(&dev->dev.kobj, tap_name);
1304 		devt = MKDEV(MAJOR(macvtap_major), vlan->minor);
1305 		device_destroy(&macvtap_class, devt);
1306 		macvtap_free_minor(vlan);
1307 		break;
1308 	case NETDEV_CHANGE_TX_QUEUE_LEN:
1309 		if (macvtap_queue_resize(vlan))
1310 			return NOTIFY_BAD;
1311 		break;
1312 	}
1313 
1314 	return NOTIFY_DONE;
1315 }
1316 
1317 static struct notifier_block macvtap_notifier_block __read_mostly = {
1318 	.notifier_call	= macvtap_device_event,
1319 };
1320 
1321 static int macvtap_init(void)
1322 {
1323 	int err;
1324 
1325 	err = alloc_chrdev_region(&macvtap_major, 0,
1326 				MACVTAP_NUM_DEVS, "macvtap");
1327 	if (err)
1328 		goto out1;
1329 
1330 	cdev_init(&macvtap_cdev, &macvtap_fops);
1331 	err = cdev_add(&macvtap_cdev, macvtap_major, MACVTAP_NUM_DEVS);
1332 	if (err)
1333 		goto out2;
1334 
1335 	err = class_register(&macvtap_class);
1336 	if (err)
1337 		goto out3;
1338 
1339 	err = register_netdevice_notifier(&macvtap_notifier_block);
1340 	if (err)
1341 		goto out4;
1342 
1343 	err = macvlan_link_register(&macvtap_link_ops);
1344 	if (err)
1345 		goto out5;
1346 
1347 	return 0;
1348 
1349 out5:
1350 	unregister_netdevice_notifier(&macvtap_notifier_block);
1351 out4:
1352 	class_unregister(&macvtap_class);
1353 out3:
1354 	cdev_del(&macvtap_cdev);
1355 out2:
1356 	unregister_chrdev_region(macvtap_major, MACVTAP_NUM_DEVS);
1357 out1:
1358 	return err;
1359 }
1360 module_init(macvtap_init);
1361 
1362 static void macvtap_exit(void)
1363 {
1364 	rtnl_link_unregister(&macvtap_link_ops);
1365 	unregister_netdevice_notifier(&macvtap_notifier_block);
1366 	class_unregister(&macvtap_class);
1367 	cdev_del(&macvtap_cdev);
1368 	unregister_chrdev_region(macvtap_major, MACVTAP_NUM_DEVS);
1369 	idr_destroy(&minor_idr);
1370 }
1371 module_exit(macvtap_exit);
1372 
1373 MODULE_ALIAS_RTNL_LINK("macvtap");
1374 MODULE_AUTHOR("Arnd Bergmann <arnd@arndb.de>");
1375 MODULE_LICENSE("GPL");
1376