xref: /openbmc/linux/drivers/net/ipa/ipa_power.c (revision 2584e54502e1c77ce143d5874520f36240395e6f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2022 Linaro Ltd.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/device.h>
9 #include <linux/interconnect.h>
10 #include <linux/pm.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/bitops.h>
13 
14 #include "linux/soc/qcom/qcom_aoss.h"
15 
16 #include "ipa.h"
17 #include "ipa_power.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_modem.h"
20 #include "ipa_data.h"
21 
22 /**
23  * DOC: IPA Power Management
24  *
25  * The IPA hardware is enabled when the IPA core clock and all the
26  * interconnects (buses) it depends on are enabled.  Runtime power
27  * management is used to determine whether the core clock and
28  * interconnects are enabled, and if not in use to be suspended
29  * automatically.
30  *
31  * The core clock currently runs at a fixed clock rate when enabled,
32  * an all interconnects use a fixed average and peak bandwidth.
33  */
34 
35 #define IPA_AUTOSUSPEND_DELAY	500	/* milliseconds */
36 
37 /**
38  * enum ipa_power_flag - IPA power flags
39  * @IPA_POWER_FLAG_RESUMED:	Whether resume from suspend has been signaled
40  * @IPA_POWER_FLAG_SYSTEM:	Hardware is system (not runtime) suspended
41  * @IPA_POWER_FLAG_STOPPED:	Modem TX is disabled by ipa_start_xmit()
42  * @IPA_POWER_FLAG_STARTED:	Modem TX was enabled by ipa_runtime_resume()
43  * @IPA_POWER_FLAG_COUNT:	Number of defined power flags
44  */
45 enum ipa_power_flag {
46 	IPA_POWER_FLAG_RESUMED,
47 	IPA_POWER_FLAG_SYSTEM,
48 	IPA_POWER_FLAG_STOPPED,
49 	IPA_POWER_FLAG_STARTED,
50 	IPA_POWER_FLAG_COUNT,		/* Last; not a flag */
51 };
52 
53 /**
54  * struct ipa_power - IPA power management information
55  * @dev:		IPA device pointer
56  * @core:		IPA core clock
57  * @qmp:		QMP handle for AOSS communication
58  * @spinlock:		Protects modem TX queue enable/disable
59  * @flags:		Boolean state flags
60  * @interconnect_count:	Number of elements in interconnect[]
61  * @interconnect:	Interconnect array
62  */
63 struct ipa_power {
64 	struct device *dev;
65 	struct clk *core;
66 	struct qmp *qmp;
67 	spinlock_t spinlock;	/* used with STOPPED/STARTED power flags */
68 	DECLARE_BITMAP(flags, IPA_POWER_FLAG_COUNT);
69 	u32 interconnect_count;
70 	struct icc_bulk_data interconnect[];
71 };
72 
73 /* Initialize interconnects required for IPA operation */
74 static int ipa_interconnect_init(struct ipa_power *power,
75 				 const struct ipa_interconnect_data *data)
76 {
77 	struct icc_bulk_data *interconnect;
78 	int ret;
79 	u32 i;
80 
81 	/* Initialize our interconnect data array for bulk operations */
82 	interconnect = &power->interconnect[0];
83 	for (i = 0; i < power->interconnect_count; i++) {
84 		/* interconnect->path is filled in by of_icc_bulk_get() */
85 		interconnect->name = data->name;
86 		interconnect->avg_bw = data->average_bandwidth;
87 		interconnect->peak_bw = data->peak_bandwidth;
88 		data++;
89 		interconnect++;
90 	}
91 
92 	ret = of_icc_bulk_get(power->dev, power->interconnect_count,
93 			      power->interconnect);
94 	if (ret)
95 		return ret;
96 
97 	/* All interconnects are initially disabled */
98 	icc_bulk_disable(power->interconnect_count, power->interconnect);
99 
100 	/* Set the bandwidth values to be used when enabled */
101 	ret = icc_bulk_set_bw(power->interconnect_count, power->interconnect);
102 	if (ret)
103 		icc_bulk_put(power->interconnect_count, power->interconnect);
104 
105 	return ret;
106 }
107 
108 /* Inverse of ipa_interconnect_init() */
109 static void ipa_interconnect_exit(struct ipa_power *power)
110 {
111 	icc_bulk_put(power->interconnect_count, power->interconnect);
112 }
113 
114 /* Enable IPA power, enabling interconnects and the core clock */
115 static int ipa_power_enable(struct ipa *ipa)
116 {
117 	struct ipa_power *power = ipa->power;
118 	int ret;
119 
120 	ret = icc_bulk_enable(power->interconnect_count, power->interconnect);
121 	if (ret)
122 		return ret;
123 
124 	ret = clk_prepare_enable(power->core);
125 	if (ret) {
126 		dev_err(power->dev, "error %d enabling core clock\n", ret);
127 		icc_bulk_disable(power->interconnect_count,
128 				 power->interconnect);
129 	}
130 
131 	return ret;
132 }
133 
134 /* Inverse of ipa_power_enable() */
135 static void ipa_power_disable(struct ipa *ipa)
136 {
137 	struct ipa_power *power = ipa->power;
138 
139 	clk_disable_unprepare(power->core);
140 
141 	icc_bulk_disable(power->interconnect_count, power->interconnect);
142 }
143 
144 static int ipa_runtime_suspend(struct device *dev)
145 {
146 	struct ipa *ipa = dev_get_drvdata(dev);
147 
148 	/* Endpoints aren't usable until setup is complete */
149 	if (ipa->setup_complete) {
150 		__clear_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags);
151 		ipa_endpoint_suspend(ipa);
152 		gsi_suspend(&ipa->gsi);
153 	}
154 
155 	ipa_power_disable(ipa);
156 
157 	return 0;
158 }
159 
160 static int ipa_runtime_resume(struct device *dev)
161 {
162 	struct ipa *ipa = dev_get_drvdata(dev);
163 	int ret;
164 
165 	ret = ipa_power_enable(ipa);
166 	if (WARN_ON(ret < 0))
167 		return ret;
168 
169 	/* Endpoints aren't usable until setup is complete */
170 	if (ipa->setup_complete) {
171 		gsi_resume(&ipa->gsi);
172 		ipa_endpoint_resume(ipa);
173 	}
174 
175 	return 0;
176 }
177 
178 static int ipa_suspend(struct device *dev)
179 {
180 	struct ipa *ipa = dev_get_drvdata(dev);
181 
182 	__set_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);
183 
184 	/* Increment the disable depth to ensure that the IRQ won't
185 	 * be re-enabled until the matching _enable call in
186 	 * ipa_resume(). We do this to ensure that the interrupt
187 	 * handler won't run whilst PM runtime is disabled.
188 	 *
189 	 * Note that disabling the IRQ is NOT the same as disabling
190 	 * irq wake. If wakeup is enabled for the IPA then the IRQ
191 	 * will still cause the system to wake up, see irq_set_irq_wake().
192 	 */
193 	ipa_interrupt_irq_disable(ipa);
194 
195 	return pm_runtime_force_suspend(dev);
196 }
197 
198 static int ipa_resume(struct device *dev)
199 {
200 	struct ipa *ipa = dev_get_drvdata(dev);
201 	int ret;
202 
203 	ret = pm_runtime_force_resume(dev);
204 
205 	__clear_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);
206 
207 	/* Now that PM runtime is enabled again it's safe
208 	 * to turn the IRQ back on and process any data
209 	 * that was received during suspend.
210 	 */
211 	ipa_interrupt_irq_enable(ipa);
212 
213 	return ret;
214 }
215 
216 /* Return the current IPA core clock rate */
217 u32 ipa_core_clock_rate(struct ipa *ipa)
218 {
219 	return ipa->power ? (u32)clk_get_rate(ipa->power->core) : 0;
220 }
221 
222 void ipa_power_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
223 {
224 	/* To handle an IPA interrupt we will have resumed the hardware
225 	 * just to handle the interrupt, so we're done.  If we are in a
226 	 * system suspend, trigger a system resume.
227 	 */
228 	if (!__test_and_set_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags))
229 		if (test_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags))
230 			pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
231 
232 	/* Acknowledge/clear the suspend interrupt on all endpoints */
233 	ipa_interrupt_suspend_clear_all(ipa->interrupt);
234 }
235 
236 /* The next few functions coordinate stopping and starting the modem
237  * network device transmit queue.
238  *
239  * Transmit can be running concurrent with power resume, and there's a
240  * chance the resume completes before the transmit path stops the queue,
241  * leaving the queue in a stopped state.  The next two functions are used
242  * to avoid this: ipa_power_modem_queue_stop() is used by ipa_start_xmit()
243  * to conditionally stop the TX queue; and ipa_power_modem_queue_start()
244  * is used by ipa_runtime_resume() to conditionally restart it.
245  *
246  * Two flags and a spinlock are used.  If the queue is stopped, the STOPPED
247  * power flag is set.  And if the queue is started, the STARTED flag is set.
248  * The queue is only started on resume if the STOPPED flag is set.  And the
249  * queue is only started in ipa_start_xmit() if the STARTED flag is *not*
250  * set.  As a result, the queue remains operational if the two activites
251  * happen concurrently regardless of the order they complete.  The spinlock
252  * ensures the flag and TX queue operations are done atomically.
253  *
254  * The first function stops the modem netdev transmit queue, but only if
255  * the STARTED flag is *not* set.  That flag is cleared if it was set.
256  * If the queue is stopped, the STOPPED flag is set.  This is called only
257  * from the power ->runtime_resume operation.
258  */
259 void ipa_power_modem_queue_stop(struct ipa *ipa)
260 {
261 	struct ipa_power *power = ipa->power;
262 	unsigned long flags;
263 
264 	spin_lock_irqsave(&power->spinlock, flags);
265 
266 	if (!__test_and_clear_bit(IPA_POWER_FLAG_STARTED, power->flags)) {
267 		netif_stop_queue(ipa->modem_netdev);
268 		__set_bit(IPA_POWER_FLAG_STOPPED, power->flags);
269 	}
270 
271 	spin_unlock_irqrestore(&power->spinlock, flags);
272 }
273 
274 /* This function starts the modem netdev transmit queue, but only if the
275  * STOPPED flag is set.  That flag is cleared if it was set.  If the queue
276  * was restarted, the STARTED flag is set; this allows ipa_start_xmit()
277  * to skip stopping the queue in the event of a race.
278  */
279 void ipa_power_modem_queue_wake(struct ipa *ipa)
280 {
281 	struct ipa_power *power = ipa->power;
282 	unsigned long flags;
283 
284 	spin_lock_irqsave(&power->spinlock, flags);
285 
286 	if (__test_and_clear_bit(IPA_POWER_FLAG_STOPPED, power->flags)) {
287 		__set_bit(IPA_POWER_FLAG_STARTED, power->flags);
288 		netif_wake_queue(ipa->modem_netdev);
289 	}
290 
291 	spin_unlock_irqrestore(&power->spinlock, flags);
292 }
293 
294 /* This function clears the STARTED flag once the TX queue is operating */
295 void ipa_power_modem_queue_active(struct ipa *ipa)
296 {
297 	clear_bit(IPA_POWER_FLAG_STARTED, ipa->power->flags);
298 }
299 
300 static int ipa_power_retention_init(struct ipa_power *power)
301 {
302 	struct qmp *qmp = qmp_get(power->dev);
303 
304 	if (IS_ERR(qmp)) {
305 		if (PTR_ERR(qmp) == -EPROBE_DEFER)
306 			return -EPROBE_DEFER;
307 
308 		/* We assume any other error means it's not defined/needed */
309 		qmp = NULL;
310 	}
311 	power->qmp = qmp;
312 
313 	return 0;
314 }
315 
316 static void ipa_power_retention_exit(struct ipa_power *power)
317 {
318 	qmp_put(power->qmp);
319 	power->qmp = NULL;
320 }
321 
322 /* Control register retention on power collapse */
323 void ipa_power_retention(struct ipa *ipa, bool enable)
324 {
325 	static const char fmt[] = "{ class: bcm, res: ipa_pc, val: %c }";
326 	struct ipa_power *power = ipa->power;
327 	int ret;
328 
329 	if (!power->qmp)
330 		return;		/* Not needed on this platform */
331 
332 	ret = qmp_send(power->qmp, fmt, enable ? '1' : '0');
333 	if (ret)
334 		dev_err(power->dev, "error %d sending QMP %sable request\n",
335 			ret, enable ? "en" : "dis");
336 }
337 
338 int ipa_power_setup(struct ipa *ipa)
339 {
340 	int ret;
341 
342 	ipa_interrupt_enable(ipa, IPA_IRQ_TX_SUSPEND);
343 
344 	ret = device_init_wakeup(&ipa->pdev->dev, true);
345 	if (ret)
346 		ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND);
347 
348 	return ret;
349 }
350 
351 void ipa_power_teardown(struct ipa *ipa)
352 {
353 	(void)device_init_wakeup(&ipa->pdev->dev, false);
354 	ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND);
355 }
356 
357 /* Initialize IPA power management */
358 struct ipa_power *
359 ipa_power_init(struct device *dev, const struct ipa_power_data *data)
360 {
361 	struct ipa_power *power;
362 	struct clk *clk;
363 	size_t size;
364 	int ret;
365 
366 	clk = clk_get(dev, "core");
367 	if (IS_ERR(clk)) {
368 		dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n");
369 
370 		return ERR_CAST(clk);
371 	}
372 
373 	ret = clk_set_rate(clk, data->core_clock_rate);
374 	if (ret) {
375 		dev_err(dev, "error %d setting core clock rate to %u\n",
376 			ret, data->core_clock_rate);
377 		goto err_clk_put;
378 	}
379 
380 	size = struct_size(power, interconnect, data->interconnect_count);
381 	power = kzalloc(size, GFP_KERNEL);
382 	if (!power) {
383 		ret = -ENOMEM;
384 		goto err_clk_put;
385 	}
386 	power->dev = dev;
387 	power->core = clk;
388 	spin_lock_init(&power->spinlock);
389 	power->interconnect_count = data->interconnect_count;
390 
391 	ret = ipa_interconnect_init(power, data->interconnect_data);
392 	if (ret)
393 		goto err_kfree;
394 
395 	ret = ipa_power_retention_init(power);
396 	if (ret)
397 		goto err_interconnect_exit;
398 
399 	pm_runtime_set_autosuspend_delay(dev, IPA_AUTOSUSPEND_DELAY);
400 	pm_runtime_use_autosuspend(dev);
401 	pm_runtime_enable(dev);
402 
403 	return power;
404 
405 err_interconnect_exit:
406 	ipa_interconnect_exit(power);
407 err_kfree:
408 	kfree(power);
409 err_clk_put:
410 	clk_put(clk);
411 
412 	return ERR_PTR(ret);
413 }
414 
415 /* Inverse of ipa_power_init() */
416 void ipa_power_exit(struct ipa_power *power)
417 {
418 	struct device *dev = power->dev;
419 	struct clk *clk = power->core;
420 
421 	pm_runtime_disable(dev);
422 	pm_runtime_dont_use_autosuspend(dev);
423 	ipa_power_retention_exit(power);
424 	ipa_interconnect_exit(power);
425 	kfree(power);
426 	clk_put(clk);
427 }
428 
429 const struct dev_pm_ops ipa_pm_ops = {
430 	.suspend		= ipa_suspend,
431 	.resume			= ipa_resume,
432 	.runtime_suspend	= ipa_runtime_suspend,
433 	.runtime_resume		= ipa_runtime_resume,
434 };
435