1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2022 Linaro Ltd.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/device.h>
9 #include <linux/interconnect.h>
10 #include <linux/pm.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/bitops.h>
13
14 #include "linux/soc/qcom/qcom_aoss.h"
15
16 #include "ipa.h"
17 #include "ipa_power.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_modem.h"
20 #include "ipa_data.h"
21
22 /**
23 * DOC: IPA Power Management
24 *
25 * The IPA hardware is enabled when the IPA core clock and all the
26 * interconnects (buses) it depends on are enabled. Runtime power
27 * management is used to determine whether the core clock and
28 * interconnects are enabled, and if not in use to be suspended
29 * automatically.
30 *
31 * The core clock currently runs at a fixed clock rate when enabled,
32 * an all interconnects use a fixed average and peak bandwidth.
33 */
34
35 #define IPA_AUTOSUSPEND_DELAY 500 /* milliseconds */
36
37 /**
38 * enum ipa_power_flag - IPA power flags
39 * @IPA_POWER_FLAG_RESUMED: Whether resume from suspend has been signaled
40 * @IPA_POWER_FLAG_SYSTEM: Hardware is system (not runtime) suspended
41 * @IPA_POWER_FLAG_STOPPED: Modem TX is disabled by ipa_start_xmit()
42 * @IPA_POWER_FLAG_STARTED: Modem TX was enabled by ipa_runtime_resume()
43 * @IPA_POWER_FLAG_COUNT: Number of defined power flags
44 */
45 enum ipa_power_flag {
46 IPA_POWER_FLAG_RESUMED,
47 IPA_POWER_FLAG_SYSTEM,
48 IPA_POWER_FLAG_STOPPED,
49 IPA_POWER_FLAG_STARTED,
50 IPA_POWER_FLAG_COUNT, /* Last; not a flag */
51 };
52
53 /**
54 * struct ipa_power - IPA power management information
55 * @dev: IPA device pointer
56 * @core: IPA core clock
57 * @qmp: QMP handle for AOSS communication
58 * @spinlock: Protects modem TX queue enable/disable
59 * @flags: Boolean state flags
60 * @interconnect_count: Number of elements in interconnect[]
61 * @interconnect: Interconnect array
62 */
63 struct ipa_power {
64 struct device *dev;
65 struct clk *core;
66 struct qmp *qmp;
67 spinlock_t spinlock; /* used with STOPPED/STARTED power flags */
68 DECLARE_BITMAP(flags, IPA_POWER_FLAG_COUNT);
69 u32 interconnect_count;
70 struct icc_bulk_data interconnect[];
71 };
72
73 /* Initialize interconnects required for IPA operation */
ipa_interconnect_init(struct ipa_power * power,const struct ipa_interconnect_data * data)74 static int ipa_interconnect_init(struct ipa_power *power,
75 const struct ipa_interconnect_data *data)
76 {
77 struct icc_bulk_data *interconnect;
78 int ret;
79 u32 i;
80
81 /* Initialize our interconnect data array for bulk operations */
82 interconnect = &power->interconnect[0];
83 for (i = 0; i < power->interconnect_count; i++) {
84 /* interconnect->path is filled in by of_icc_bulk_get() */
85 interconnect->name = data->name;
86 interconnect->avg_bw = data->average_bandwidth;
87 interconnect->peak_bw = data->peak_bandwidth;
88 data++;
89 interconnect++;
90 }
91
92 ret = of_icc_bulk_get(power->dev, power->interconnect_count,
93 power->interconnect);
94 if (ret)
95 return ret;
96
97 /* All interconnects are initially disabled */
98 icc_bulk_disable(power->interconnect_count, power->interconnect);
99
100 /* Set the bandwidth values to be used when enabled */
101 ret = icc_bulk_set_bw(power->interconnect_count, power->interconnect);
102 if (ret)
103 icc_bulk_put(power->interconnect_count, power->interconnect);
104
105 return ret;
106 }
107
108 /* Inverse of ipa_interconnect_init() */
ipa_interconnect_exit(struct ipa_power * power)109 static void ipa_interconnect_exit(struct ipa_power *power)
110 {
111 icc_bulk_put(power->interconnect_count, power->interconnect);
112 }
113
114 /* Enable IPA power, enabling interconnects and the core clock */
ipa_power_enable(struct ipa * ipa)115 static int ipa_power_enable(struct ipa *ipa)
116 {
117 struct ipa_power *power = ipa->power;
118 int ret;
119
120 ret = icc_bulk_enable(power->interconnect_count, power->interconnect);
121 if (ret)
122 return ret;
123
124 ret = clk_prepare_enable(power->core);
125 if (ret) {
126 dev_err(power->dev, "error %d enabling core clock\n", ret);
127 icc_bulk_disable(power->interconnect_count,
128 power->interconnect);
129 }
130
131 return ret;
132 }
133
134 /* Inverse of ipa_power_enable() */
ipa_power_disable(struct ipa * ipa)135 static void ipa_power_disable(struct ipa *ipa)
136 {
137 struct ipa_power *power = ipa->power;
138
139 clk_disable_unprepare(power->core);
140
141 icc_bulk_disable(power->interconnect_count, power->interconnect);
142 }
143
ipa_runtime_suspend(struct device * dev)144 static int ipa_runtime_suspend(struct device *dev)
145 {
146 struct ipa *ipa = dev_get_drvdata(dev);
147
148 /* Endpoints aren't usable until setup is complete */
149 if (ipa->setup_complete) {
150 __clear_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags);
151 ipa_endpoint_suspend(ipa);
152 gsi_suspend(&ipa->gsi);
153 }
154
155 ipa_power_disable(ipa);
156
157 return 0;
158 }
159
ipa_runtime_resume(struct device * dev)160 static int ipa_runtime_resume(struct device *dev)
161 {
162 struct ipa *ipa = dev_get_drvdata(dev);
163 int ret;
164
165 ret = ipa_power_enable(ipa);
166 if (WARN_ON(ret < 0))
167 return ret;
168
169 /* Endpoints aren't usable until setup is complete */
170 if (ipa->setup_complete) {
171 gsi_resume(&ipa->gsi);
172 ipa_endpoint_resume(ipa);
173 }
174
175 return 0;
176 }
177
ipa_suspend(struct device * dev)178 static int ipa_suspend(struct device *dev)
179 {
180 struct ipa *ipa = dev_get_drvdata(dev);
181
182 __set_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);
183
184 /* Increment the disable depth to ensure that the IRQ won't
185 * be re-enabled until the matching _enable call in
186 * ipa_resume(). We do this to ensure that the interrupt
187 * handler won't run whilst PM runtime is disabled.
188 *
189 * Note that disabling the IRQ is NOT the same as disabling
190 * irq wake. If wakeup is enabled for the IPA then the IRQ
191 * will still cause the system to wake up, see irq_set_irq_wake().
192 */
193 ipa_interrupt_irq_disable(ipa);
194
195 return pm_runtime_force_suspend(dev);
196 }
197
ipa_resume(struct device * dev)198 static int ipa_resume(struct device *dev)
199 {
200 struct ipa *ipa = dev_get_drvdata(dev);
201 int ret;
202
203 ret = pm_runtime_force_resume(dev);
204
205 __clear_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);
206
207 /* Now that PM runtime is enabled again it's safe
208 * to turn the IRQ back on and process any data
209 * that was received during suspend.
210 */
211 ipa_interrupt_irq_enable(ipa);
212
213 return ret;
214 }
215
216 /* Return the current IPA core clock rate */
ipa_core_clock_rate(struct ipa * ipa)217 u32 ipa_core_clock_rate(struct ipa *ipa)
218 {
219 return ipa->power ? (u32)clk_get_rate(ipa->power->core) : 0;
220 }
221
ipa_power_suspend_handler(struct ipa * ipa,enum ipa_irq_id irq_id)222 void ipa_power_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
223 {
224 /* To handle an IPA interrupt we will have resumed the hardware
225 * just to handle the interrupt, so we're done. If we are in a
226 * system suspend, trigger a system resume.
227 */
228 if (!__test_and_set_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags))
229 if (test_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags))
230 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
231
232 /* Acknowledge/clear the suspend interrupt on all endpoints */
233 ipa_interrupt_suspend_clear_all(ipa->interrupt);
234 }
235
236 /* The next few functions coordinate stopping and starting the modem
237 * network device transmit queue.
238 *
239 * Transmit can be running concurrent with power resume, and there's a
240 * chance the resume completes before the transmit path stops the queue,
241 * leaving the queue in a stopped state. The next two functions are used
242 * to avoid this: ipa_power_modem_queue_stop() is used by ipa_start_xmit()
243 * to conditionally stop the TX queue; and ipa_power_modem_queue_start()
244 * is used by ipa_runtime_resume() to conditionally restart it.
245 *
246 * Two flags and a spinlock are used. If the queue is stopped, the STOPPED
247 * power flag is set. And if the queue is started, the STARTED flag is set.
248 * The queue is only started on resume if the STOPPED flag is set. And the
249 * queue is only started in ipa_start_xmit() if the STARTED flag is *not*
250 * set. As a result, the queue remains operational if the two activites
251 * happen concurrently regardless of the order they complete. The spinlock
252 * ensures the flag and TX queue operations are done atomically.
253 *
254 * The first function stops the modem netdev transmit queue, but only if
255 * the STARTED flag is *not* set. That flag is cleared if it was set.
256 * If the queue is stopped, the STOPPED flag is set. This is called only
257 * from the power ->runtime_resume operation.
258 */
ipa_power_modem_queue_stop(struct ipa * ipa)259 void ipa_power_modem_queue_stop(struct ipa *ipa)
260 {
261 struct ipa_power *power = ipa->power;
262 unsigned long flags;
263
264 spin_lock_irqsave(&power->spinlock, flags);
265
266 if (!__test_and_clear_bit(IPA_POWER_FLAG_STARTED, power->flags)) {
267 netif_stop_queue(ipa->modem_netdev);
268 __set_bit(IPA_POWER_FLAG_STOPPED, power->flags);
269 }
270
271 spin_unlock_irqrestore(&power->spinlock, flags);
272 }
273
274 /* This function starts the modem netdev transmit queue, but only if the
275 * STOPPED flag is set. That flag is cleared if it was set. If the queue
276 * was restarted, the STARTED flag is set; this allows ipa_start_xmit()
277 * to skip stopping the queue in the event of a race.
278 */
ipa_power_modem_queue_wake(struct ipa * ipa)279 void ipa_power_modem_queue_wake(struct ipa *ipa)
280 {
281 struct ipa_power *power = ipa->power;
282 unsigned long flags;
283
284 spin_lock_irqsave(&power->spinlock, flags);
285
286 if (__test_and_clear_bit(IPA_POWER_FLAG_STOPPED, power->flags)) {
287 __set_bit(IPA_POWER_FLAG_STARTED, power->flags);
288 netif_wake_queue(ipa->modem_netdev);
289 }
290
291 spin_unlock_irqrestore(&power->spinlock, flags);
292 }
293
294 /* This function clears the STARTED flag once the TX queue is operating */
ipa_power_modem_queue_active(struct ipa * ipa)295 void ipa_power_modem_queue_active(struct ipa *ipa)
296 {
297 clear_bit(IPA_POWER_FLAG_STARTED, ipa->power->flags);
298 }
299
ipa_power_retention_init(struct ipa_power * power)300 static int ipa_power_retention_init(struct ipa_power *power)
301 {
302 struct qmp *qmp = qmp_get(power->dev);
303
304 if (IS_ERR(qmp)) {
305 if (PTR_ERR(qmp) == -EPROBE_DEFER)
306 return -EPROBE_DEFER;
307
308 /* We assume any other error means it's not defined/needed */
309 qmp = NULL;
310 }
311 power->qmp = qmp;
312
313 return 0;
314 }
315
ipa_power_retention_exit(struct ipa_power * power)316 static void ipa_power_retention_exit(struct ipa_power *power)
317 {
318 qmp_put(power->qmp);
319 power->qmp = NULL;
320 }
321
322 /* Control register retention on power collapse */
ipa_power_retention(struct ipa * ipa,bool enable)323 void ipa_power_retention(struct ipa *ipa, bool enable)
324 {
325 static const char fmt[] = "{ class: bcm, res: ipa_pc, val: %c }";
326 struct ipa_power *power = ipa->power;
327 int ret;
328
329 if (!power->qmp)
330 return; /* Not needed on this platform */
331
332 ret = qmp_send(power->qmp, fmt, enable ? '1' : '0');
333 if (ret)
334 dev_err(power->dev, "error %d sending QMP %sable request\n",
335 ret, enable ? "en" : "dis");
336 }
337
ipa_power_setup(struct ipa * ipa)338 int ipa_power_setup(struct ipa *ipa)
339 {
340 int ret;
341
342 ipa_interrupt_enable(ipa, IPA_IRQ_TX_SUSPEND);
343
344 ret = device_init_wakeup(&ipa->pdev->dev, true);
345 if (ret)
346 ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND);
347
348 return ret;
349 }
350
ipa_power_teardown(struct ipa * ipa)351 void ipa_power_teardown(struct ipa *ipa)
352 {
353 (void)device_init_wakeup(&ipa->pdev->dev, false);
354 ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND);
355 }
356
357 /* Initialize IPA power management */
358 struct ipa_power *
ipa_power_init(struct device * dev,const struct ipa_power_data * data)359 ipa_power_init(struct device *dev, const struct ipa_power_data *data)
360 {
361 struct ipa_power *power;
362 struct clk *clk;
363 size_t size;
364 int ret;
365
366 clk = clk_get(dev, "core");
367 if (IS_ERR(clk)) {
368 dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n");
369
370 return ERR_CAST(clk);
371 }
372
373 ret = clk_set_rate(clk, data->core_clock_rate);
374 if (ret) {
375 dev_err(dev, "error %d setting core clock rate to %u\n",
376 ret, data->core_clock_rate);
377 goto err_clk_put;
378 }
379
380 size = struct_size(power, interconnect, data->interconnect_count);
381 power = kzalloc(size, GFP_KERNEL);
382 if (!power) {
383 ret = -ENOMEM;
384 goto err_clk_put;
385 }
386 power->dev = dev;
387 power->core = clk;
388 spin_lock_init(&power->spinlock);
389 power->interconnect_count = data->interconnect_count;
390
391 ret = ipa_interconnect_init(power, data->interconnect_data);
392 if (ret)
393 goto err_kfree;
394
395 ret = ipa_power_retention_init(power);
396 if (ret)
397 goto err_interconnect_exit;
398
399 pm_runtime_set_autosuspend_delay(dev, IPA_AUTOSUSPEND_DELAY);
400 pm_runtime_use_autosuspend(dev);
401 pm_runtime_enable(dev);
402
403 return power;
404
405 err_interconnect_exit:
406 ipa_interconnect_exit(power);
407 err_kfree:
408 kfree(power);
409 err_clk_put:
410 clk_put(clk);
411
412 return ERR_PTR(ret);
413 }
414
415 /* Inverse of ipa_power_init() */
ipa_power_exit(struct ipa_power * power)416 void ipa_power_exit(struct ipa_power *power)
417 {
418 struct device *dev = power->dev;
419 struct clk *clk = power->core;
420
421 pm_runtime_disable(dev);
422 pm_runtime_dont_use_autosuspend(dev);
423 ipa_power_retention_exit(power);
424 ipa_interconnect_exit(power);
425 kfree(power);
426 clk_put(clk);
427 }
428
429 const struct dev_pm_ops ipa_pm_ops = {
430 .suspend = ipa_suspend,
431 .resume = ipa_resume,
432 .runtime_suspend = ipa_runtime_suspend,
433 .runtime_resume = ipa_runtime_resume,
434 };
435