1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bitfield.h> 9 #include <linux/bug.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/iommu.h> 12 #include <linux/io.h> 13 #include <linux/soc/qcom/smem.h> 14 15 #include "ipa.h" 16 #include "ipa_reg.h" 17 #include "ipa_data.h" 18 #include "ipa_cmd.h" 19 #include "ipa_mem.h" 20 #include "ipa_table.h" 21 #include "gsi_trans.h" 22 23 /* "Canary" value placed between memory regions to detect overflow */ 24 #define IPA_MEM_CANARY_VAL cpu_to_le32(0xdeadbeef) 25 26 /* SMEM host id representing the modem. */ 27 #define QCOM_SMEM_HOST_MODEM 1 28 29 const struct ipa_mem *ipa_mem_find(struct ipa *ipa, enum ipa_mem_id mem_id) 30 { 31 u32 i; 32 33 for (i = 0; i < ipa->mem_count; i++) { 34 const struct ipa_mem *mem = &ipa->mem[i]; 35 36 if (mem->id == mem_id) 37 return mem; 38 } 39 40 return NULL; 41 } 42 43 /* Add an immediate command to a transaction that zeroes a memory region */ 44 static void 45 ipa_mem_zero_region_add(struct gsi_trans *trans, enum ipa_mem_id mem_id) 46 { 47 struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); 48 const struct ipa_mem *mem = ipa_mem_find(ipa, mem_id); 49 dma_addr_t addr = ipa->zero_addr; 50 51 if (!mem->size) 52 return; 53 54 ipa_cmd_dma_shared_mem_add(trans, mem->offset, mem->size, addr, true); 55 } 56 57 /** 58 * ipa_mem_setup() - Set up IPA AP and modem shared memory areas 59 * @ipa: IPA pointer 60 * 61 * Set up the shared memory regions in IPA local memory. This involves 62 * zero-filling memory regions, and in the case of header memory, telling 63 * the IPA where it's located. 64 * 65 * This function performs the initial setup of this memory. If the modem 66 * crashes, its regions are re-zeroed in ipa_mem_zero_modem(). 67 * 68 * The AP informs the modem where its portions of memory are located 69 * in a QMI exchange that occurs at modem startup. 70 * 71 * There is no need for a matching ipa_mem_teardown() function. 72 * 73 * Return: 0 if successful, or a negative error code 74 */ 75 int ipa_mem_setup(struct ipa *ipa) 76 { 77 dma_addr_t addr = ipa->zero_addr; 78 const struct ipa_mem *mem; 79 struct gsi_trans *trans; 80 u32 offset; 81 u16 size; 82 u32 val; 83 84 /* Get a transaction to define the header memory region and to zero 85 * the processing context and modem memory regions. 86 */ 87 trans = ipa_cmd_trans_alloc(ipa, 4); 88 if (!trans) { 89 dev_err(&ipa->pdev->dev, "no transaction for memory setup\n"); 90 return -EBUSY; 91 } 92 93 /* Initialize IPA-local header memory. The AP header region, if 94 * present, is contiguous with and follows the modem header region, 95 * and they are initialized together. 96 */ 97 mem = ipa_mem_find(ipa, IPA_MEM_MODEM_HEADER); 98 offset = mem->offset; 99 size = mem->size; 100 mem = ipa_mem_find(ipa, IPA_MEM_AP_HEADER); 101 if (mem) 102 size += mem->size; 103 104 ipa_cmd_hdr_init_local_add(trans, offset, size, addr); 105 106 ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_PROC_CTX); 107 ipa_mem_zero_region_add(trans, IPA_MEM_AP_PROC_CTX); 108 ipa_mem_zero_region_add(trans, IPA_MEM_MODEM); 109 110 gsi_trans_commit_wait(trans); 111 112 /* Tell the hardware where the processing context area is located */ 113 mem = ipa_mem_find(ipa, IPA_MEM_MODEM_PROC_CTX); 114 offset = ipa->mem_offset + mem->offset; 115 val = proc_cntxt_base_addr_encoded(ipa->version, offset); 116 iowrite32(val, ipa->reg_virt + IPA_REG_LOCAL_PKT_PROC_CNTXT_OFFSET); 117 118 return 0; 119 } 120 121 /* Is the given memory region ID is valid for the current IPA version? */ 122 static bool ipa_mem_id_valid(struct ipa *ipa, enum ipa_mem_id mem_id) 123 { 124 enum ipa_version version = ipa->version; 125 126 switch (mem_id) { 127 case IPA_MEM_UC_SHARED: 128 case IPA_MEM_UC_INFO: 129 case IPA_MEM_V4_FILTER_HASHED: 130 case IPA_MEM_V4_FILTER: 131 case IPA_MEM_V6_FILTER_HASHED: 132 case IPA_MEM_V6_FILTER: 133 case IPA_MEM_V4_ROUTE_HASHED: 134 case IPA_MEM_V4_ROUTE: 135 case IPA_MEM_V6_ROUTE_HASHED: 136 case IPA_MEM_V6_ROUTE: 137 case IPA_MEM_MODEM_HEADER: 138 case IPA_MEM_AP_HEADER: 139 case IPA_MEM_MODEM_PROC_CTX: 140 case IPA_MEM_AP_PROC_CTX: 141 case IPA_MEM_MODEM: 142 case IPA_MEM_UC_EVENT_RING: 143 case IPA_MEM_PDN_CONFIG: 144 case IPA_MEM_STATS_QUOTA_MODEM: 145 case IPA_MEM_STATS_QUOTA_AP: 146 case IPA_MEM_END_MARKER: /* pseudo region */ 147 break; 148 149 case IPA_MEM_STATS_TETHERING: 150 case IPA_MEM_STATS_DROP: 151 if (version < IPA_VERSION_4_0) 152 return false; 153 break; 154 155 case IPA_MEM_STATS_V4_FILTER: 156 case IPA_MEM_STATS_V6_FILTER: 157 case IPA_MEM_STATS_V4_ROUTE: 158 case IPA_MEM_STATS_V6_ROUTE: 159 if (version < IPA_VERSION_4_0 || version > IPA_VERSION_4_2) 160 return false; 161 break; 162 163 case IPA_MEM_NAT_TABLE: 164 case IPA_MEM_STATS_FILTER_ROUTE: 165 if (version < IPA_VERSION_4_5) 166 return false; 167 break; 168 169 default: 170 return false; 171 } 172 173 return true; 174 } 175 176 /* Must the given memory region be present in the configuration? */ 177 static bool ipa_mem_id_required(struct ipa *ipa, enum ipa_mem_id mem_id) 178 { 179 switch (mem_id) { 180 case IPA_MEM_UC_SHARED: 181 case IPA_MEM_UC_INFO: 182 case IPA_MEM_V4_FILTER_HASHED: 183 case IPA_MEM_V4_FILTER: 184 case IPA_MEM_V6_FILTER_HASHED: 185 case IPA_MEM_V6_FILTER: 186 case IPA_MEM_V4_ROUTE_HASHED: 187 case IPA_MEM_V4_ROUTE: 188 case IPA_MEM_V6_ROUTE_HASHED: 189 case IPA_MEM_V6_ROUTE: 190 case IPA_MEM_MODEM_HEADER: 191 case IPA_MEM_MODEM_PROC_CTX: 192 case IPA_MEM_AP_PROC_CTX: 193 case IPA_MEM_MODEM: 194 return true; 195 196 case IPA_MEM_PDN_CONFIG: 197 case IPA_MEM_STATS_QUOTA_MODEM: 198 case IPA_MEM_STATS_TETHERING: 199 return ipa->version >= IPA_VERSION_4_0; 200 201 default: 202 return false; /* Anything else is optional */ 203 } 204 } 205 206 static bool ipa_mem_valid_one(struct ipa *ipa, const struct ipa_mem *mem) 207 { 208 struct device *dev = &ipa->pdev->dev; 209 enum ipa_mem_id mem_id = mem->id; 210 u16 size_multiple; 211 212 /* Make sure the memory region is valid for this version of IPA */ 213 if (!ipa_mem_id_valid(ipa, mem_id)) { 214 dev_err(dev, "region id %u not valid\n", mem_id); 215 return false; 216 } 217 218 if (!mem->size && !mem->canary_count) { 219 dev_err(dev, "empty memory region %u\n", mem_id); 220 return false; 221 } 222 223 /* Other than modem memory, sizes must be a multiple of 8 */ 224 size_multiple = mem_id == IPA_MEM_MODEM ? 4 : 8; 225 if (mem->size % size_multiple) 226 dev_err(dev, "region %u size not a multiple of %u bytes\n", 227 mem_id, size_multiple); 228 else if (mem->offset % 8) 229 dev_err(dev, "region %u offset not 8-byte aligned\n", mem_id); 230 else if (mem->offset < mem->canary_count * sizeof(__le32)) 231 dev_err(dev, "region %u offset too small for %hu canaries\n", 232 mem_id, mem->canary_count); 233 else if (mem_id == IPA_MEM_END_MARKER && mem->size) 234 dev_err(dev, "non-zero end marker region size\n"); 235 else 236 return true; 237 238 return false; 239 } 240 241 /* Verify each defined memory region is valid. */ 242 static bool ipa_mem_valid(struct ipa *ipa, const struct ipa_mem_data *mem_data) 243 { 244 DECLARE_BITMAP(regions, IPA_MEM_COUNT) = { }; 245 struct device *dev = &ipa->pdev->dev; 246 enum ipa_mem_id mem_id; 247 u32 i; 248 249 if (mem_data->local_count > IPA_MEM_COUNT) { 250 dev_err(dev, "too many memory regions (%u > %u)\n", 251 mem_data->local_count, IPA_MEM_COUNT); 252 return false; 253 } 254 255 for (i = 0; i < mem_data->local_count; i++) { 256 const struct ipa_mem *mem = &mem_data->local[i]; 257 258 if (__test_and_set_bit(mem->id, regions)) { 259 dev_err(dev, "duplicate memory region %u\n", mem->id); 260 return false; 261 } 262 263 /* Defined regions have non-zero size and/or canary count */ 264 if (!ipa_mem_valid_one(ipa, mem)) 265 return false; 266 } 267 268 /* Now see if any required regions are not defined */ 269 for_each_clear_bit(mem_id, regions, IPA_MEM_COUNT) { 270 if (ipa_mem_id_required(ipa, mem_id)) 271 dev_err(dev, "required memory region %u missing\n", 272 mem_id); 273 } 274 275 return true; 276 } 277 278 /* Do all memory regions fit within the IPA local memory? */ 279 static bool ipa_mem_size_valid(struct ipa *ipa) 280 { 281 struct device *dev = &ipa->pdev->dev; 282 u32 limit = ipa->mem_size; 283 u32 i; 284 285 for (i = 0; i < ipa->mem_count; i++) { 286 const struct ipa_mem *mem = &ipa->mem[i]; 287 288 if (mem->offset + mem->size <= limit) 289 continue; 290 291 dev_err(dev, "region %u ends beyond memory limit (0x%08x)\n", 292 mem->id, limit); 293 294 return false; 295 } 296 297 return true; 298 } 299 300 /** 301 * ipa_mem_config() - Configure IPA shared memory 302 * @ipa: IPA pointer 303 * 304 * Return: 0 if successful, or a negative error code 305 */ 306 int ipa_mem_config(struct ipa *ipa) 307 { 308 struct device *dev = &ipa->pdev->dev; 309 const struct ipa_mem *mem; 310 dma_addr_t addr; 311 u32 mem_size; 312 void *virt; 313 u32 val; 314 u32 i; 315 316 /* Check the advertised location and size of the shared memory area */ 317 val = ioread32(ipa->reg_virt + IPA_REG_SHARED_MEM_SIZE_OFFSET); 318 319 /* The fields in the register are in 8 byte units */ 320 ipa->mem_offset = 8 * u32_get_bits(val, SHARED_MEM_BADDR_FMASK); 321 /* Make sure the end is within the region's mapped space */ 322 mem_size = 8 * u32_get_bits(val, SHARED_MEM_SIZE_FMASK); 323 324 /* If the sizes don't match, issue a warning */ 325 if (ipa->mem_offset + mem_size < ipa->mem_size) { 326 dev_warn(dev, "limiting IPA memory size to 0x%08x\n", 327 mem_size); 328 ipa->mem_size = mem_size; 329 } else if (ipa->mem_offset + mem_size > ipa->mem_size) { 330 dev_dbg(dev, "ignoring larger reported memory size: 0x%08x\n", 331 mem_size); 332 } 333 334 /* We know our memory size; make sure regions are all in range */ 335 if (!ipa_mem_size_valid(ipa)) 336 return -EINVAL; 337 338 /* Prealloc DMA memory for zeroing regions */ 339 virt = dma_alloc_coherent(dev, IPA_MEM_MAX, &addr, GFP_KERNEL); 340 if (!virt) 341 return -ENOMEM; 342 ipa->zero_addr = addr; 343 ipa->zero_virt = virt; 344 ipa->zero_size = IPA_MEM_MAX; 345 346 /* For each defined region, write "canary" values in the 347 * space prior to the region's base address if indicated. 348 */ 349 for (i = 0; i < ipa->mem_count; i++) { 350 u16 canary_count = ipa->mem[i].canary_count; 351 __le32 *canary; 352 353 if (!canary_count) 354 continue; 355 356 /* Write canary values in the space before the region */ 357 canary = ipa->mem_virt + ipa->mem_offset + ipa->mem[i].offset; 358 do 359 *--canary = IPA_MEM_CANARY_VAL; 360 while (--canary_count); 361 } 362 363 /* Make sure filter and route table memory regions are valid */ 364 if (!ipa_table_valid(ipa)) 365 goto err_dma_free; 366 367 /* Validate memory-related properties relevant to immediate commands */ 368 if (!ipa_cmd_data_valid(ipa)) 369 goto err_dma_free; 370 371 /* Verify the microcontroller ring alignment (if defined) */ 372 mem = ipa_mem_find(ipa, IPA_MEM_UC_EVENT_RING); 373 if (mem && mem->offset % 1024) { 374 dev_err(dev, "microcontroller ring not 1024-byte aligned\n"); 375 goto err_dma_free; 376 } 377 378 return 0; 379 380 err_dma_free: 381 dma_free_coherent(dev, IPA_MEM_MAX, ipa->zero_virt, ipa->zero_addr); 382 383 return -EINVAL; 384 } 385 386 /* Inverse of ipa_mem_config() */ 387 void ipa_mem_deconfig(struct ipa *ipa) 388 { 389 struct device *dev = &ipa->pdev->dev; 390 391 dma_free_coherent(dev, ipa->zero_size, ipa->zero_virt, ipa->zero_addr); 392 ipa->zero_size = 0; 393 ipa->zero_virt = NULL; 394 ipa->zero_addr = 0; 395 } 396 397 /** 398 * ipa_mem_zero_modem() - Zero IPA-local memory regions owned by the modem 399 * @ipa: IPA pointer 400 * 401 * Zero regions of IPA-local memory used by the modem. These are configured 402 * (and initially zeroed) by ipa_mem_setup(), but if the modem crashes and 403 * restarts via SSR we need to re-initialize them. A QMI message tells the 404 * modem where to find regions of IPA local memory it needs to know about 405 * (these included). 406 */ 407 int ipa_mem_zero_modem(struct ipa *ipa) 408 { 409 struct gsi_trans *trans; 410 411 /* Get a transaction to zero the modem memory, modem header, 412 * and modem processing context regions. 413 */ 414 trans = ipa_cmd_trans_alloc(ipa, 3); 415 if (!trans) { 416 dev_err(&ipa->pdev->dev, 417 "no transaction to zero modem memory\n"); 418 return -EBUSY; 419 } 420 421 ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_HEADER); 422 ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_PROC_CTX); 423 ipa_mem_zero_region_add(trans, IPA_MEM_MODEM); 424 425 gsi_trans_commit_wait(trans); 426 427 return 0; 428 } 429 430 /** 431 * ipa_imem_init() - Initialize IMEM memory used by the IPA 432 * @ipa: IPA pointer 433 * @addr: Physical address of the IPA region in IMEM 434 * @size: Size (bytes) of the IPA region in IMEM 435 * 436 * IMEM is a block of shared memory separate from system DRAM, and 437 * a portion of this memory is available for the IPA to use. The 438 * modem accesses this memory directly, but the IPA accesses it 439 * via the IOMMU, using the AP's credentials. 440 * 441 * If this region exists (size > 0) we map it for read/write access 442 * through the IOMMU using the IPA device. 443 * 444 * Note: @addr and @size are not guaranteed to be page-aligned. 445 */ 446 static int ipa_imem_init(struct ipa *ipa, unsigned long addr, size_t size) 447 { 448 struct device *dev = &ipa->pdev->dev; 449 struct iommu_domain *domain; 450 unsigned long iova; 451 phys_addr_t phys; 452 int ret; 453 454 if (!size) 455 return 0; /* IMEM memory not used */ 456 457 domain = iommu_get_domain_for_dev(dev); 458 if (!domain) { 459 dev_err(dev, "no IOMMU domain found for IMEM\n"); 460 return -EINVAL; 461 } 462 463 /* Align the address down and the size up to page boundaries */ 464 phys = addr & PAGE_MASK; 465 size = PAGE_ALIGN(size + addr - phys); 466 iova = phys; /* We just want a direct mapping */ 467 468 ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE); 469 if (ret) 470 return ret; 471 472 ipa->imem_iova = iova; 473 ipa->imem_size = size; 474 475 return 0; 476 } 477 478 static void ipa_imem_exit(struct ipa *ipa) 479 { 480 struct iommu_domain *domain; 481 struct device *dev; 482 483 if (!ipa->imem_size) 484 return; 485 486 dev = &ipa->pdev->dev; 487 domain = iommu_get_domain_for_dev(dev); 488 if (domain) { 489 size_t size; 490 491 size = iommu_unmap(domain, ipa->imem_iova, ipa->imem_size); 492 if (size != ipa->imem_size) 493 dev_warn(dev, "unmapped %zu IMEM bytes, expected %zu\n", 494 size, ipa->imem_size); 495 } else { 496 dev_err(dev, "couldn't get IPA IOMMU domain for IMEM\n"); 497 } 498 499 ipa->imem_size = 0; 500 ipa->imem_iova = 0; 501 } 502 503 /** 504 * ipa_smem_init() - Initialize SMEM memory used by the IPA 505 * @ipa: IPA pointer 506 * @item: Item ID of SMEM memory 507 * @size: Size (bytes) of SMEM memory region 508 * 509 * SMEM is a managed block of shared DRAM, from which numbered "items" 510 * can be allocated. One item is designated for use by the IPA. 511 * 512 * The modem accesses SMEM memory directly, but the IPA accesses it 513 * via the IOMMU, using the AP's credentials. 514 * 515 * If size provided is non-zero, we allocate it and map it for 516 * access through the IOMMU. 517 * 518 * Note: @size and the item address are is not guaranteed to be page-aligned. 519 */ 520 static int ipa_smem_init(struct ipa *ipa, u32 item, size_t size) 521 { 522 struct device *dev = &ipa->pdev->dev; 523 struct iommu_domain *domain; 524 unsigned long iova; 525 phys_addr_t phys; 526 phys_addr_t addr; 527 size_t actual; 528 void *virt; 529 int ret; 530 531 if (!size) 532 return 0; /* SMEM memory not used */ 533 534 /* SMEM is memory shared between the AP and another system entity 535 * (in this case, the modem). An allocation from SMEM is persistent 536 * until the AP reboots; there is no way to free an allocated SMEM 537 * region. Allocation only reserves the space; to use it you need 538 * to "get" a pointer it (this does not imply reference counting). 539 * The item might have already been allocated, in which case we 540 * use it unless the size isn't what we expect. 541 */ 542 ret = qcom_smem_alloc(QCOM_SMEM_HOST_MODEM, item, size); 543 if (ret && ret != -EEXIST) { 544 dev_err(dev, "error %d allocating size %zu SMEM item %u\n", 545 ret, size, item); 546 return ret; 547 } 548 549 /* Now get the address of the SMEM memory region */ 550 virt = qcom_smem_get(QCOM_SMEM_HOST_MODEM, item, &actual); 551 if (IS_ERR(virt)) { 552 ret = PTR_ERR(virt); 553 dev_err(dev, "error %d getting SMEM item %u\n", ret, item); 554 return ret; 555 } 556 557 /* In case the region was already allocated, verify the size */ 558 if (ret && actual != size) { 559 dev_err(dev, "SMEM item %u has size %zu, expected %zu\n", 560 item, actual, size); 561 return -EINVAL; 562 } 563 564 domain = iommu_get_domain_for_dev(dev); 565 if (!domain) { 566 dev_err(dev, "no IOMMU domain found for SMEM\n"); 567 return -EINVAL; 568 } 569 570 /* Align the address down and the size up to a page boundary */ 571 addr = qcom_smem_virt_to_phys(virt) & PAGE_MASK; 572 phys = addr & PAGE_MASK; 573 size = PAGE_ALIGN(size + addr - phys); 574 iova = phys; /* We just want a direct mapping */ 575 576 ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE); 577 if (ret) 578 return ret; 579 580 ipa->smem_iova = iova; 581 ipa->smem_size = size; 582 583 return 0; 584 } 585 586 static void ipa_smem_exit(struct ipa *ipa) 587 { 588 struct device *dev = &ipa->pdev->dev; 589 struct iommu_domain *domain; 590 591 domain = iommu_get_domain_for_dev(dev); 592 if (domain) { 593 size_t size; 594 595 size = iommu_unmap(domain, ipa->smem_iova, ipa->smem_size); 596 if (size != ipa->smem_size) 597 dev_warn(dev, "unmapped %zu SMEM bytes, expected %zu\n", 598 size, ipa->smem_size); 599 600 } else { 601 dev_err(dev, "couldn't get IPA IOMMU domain for SMEM\n"); 602 } 603 604 ipa->smem_size = 0; 605 ipa->smem_iova = 0; 606 } 607 608 /* Perform memory region-related initialization */ 609 int ipa_mem_init(struct ipa *ipa, const struct ipa_mem_data *mem_data) 610 { 611 struct device *dev = &ipa->pdev->dev; 612 struct resource *res; 613 int ret; 614 615 /* Make sure the set of defined memory regions is valid */ 616 if (!ipa_mem_valid(ipa, mem_data)) 617 return -EINVAL; 618 619 ipa->mem_count = mem_data->local_count; 620 ipa->mem = mem_data->local; 621 622 ret = dma_set_mask_and_coherent(&ipa->pdev->dev, DMA_BIT_MASK(64)); 623 if (ret) { 624 dev_err(dev, "error %d setting DMA mask\n", ret); 625 return ret; 626 } 627 628 res = platform_get_resource_byname(ipa->pdev, IORESOURCE_MEM, 629 "ipa-shared"); 630 if (!res) { 631 dev_err(dev, 632 "DT error getting \"ipa-shared\" memory property\n"); 633 return -ENODEV; 634 } 635 636 ipa->mem_virt = memremap(res->start, resource_size(res), MEMREMAP_WC); 637 if (!ipa->mem_virt) { 638 dev_err(dev, "unable to remap \"ipa-shared\" memory\n"); 639 return -ENOMEM; 640 } 641 642 ipa->mem_addr = res->start; 643 ipa->mem_size = resource_size(res); 644 645 ret = ipa_imem_init(ipa, mem_data->imem_addr, mem_data->imem_size); 646 if (ret) 647 goto err_unmap; 648 649 ret = ipa_smem_init(ipa, mem_data->smem_id, mem_data->smem_size); 650 if (ret) 651 goto err_imem_exit; 652 653 return 0; 654 655 err_imem_exit: 656 ipa_imem_exit(ipa); 657 err_unmap: 658 memunmap(ipa->mem_virt); 659 660 return ret; 661 } 662 663 /* Inverse of ipa_mem_init() */ 664 void ipa_mem_exit(struct ipa *ipa) 665 { 666 ipa_smem_exit(ipa); 667 ipa_imem_exit(ipa); 668 memunmap(ipa->mem_virt); 669 } 670