1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/remoteproc.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_clock.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_cmd.h" 27 #include "ipa_reg.h" 28 #include "ipa_mem.h" 29 #include "ipa_table.h" 30 #include "ipa_modem.h" 31 #include "ipa_uc.h" 32 #include "ipa_interrupt.h" 33 #include "gsi_trans.h" 34 35 /** 36 * DOC: The IP Accelerator 37 * 38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 39 * networking component found in many Qualcomm SoCs. The IPA is connected 40 * to the application processor (AP), but is also connected (and partially 41 * controlled by) other "execution environments" (EEs), such as a modem. 42 * 43 * The IPA is the conduit between the AP and the modem that carries network 44 * traffic. This driver presents a network interface representing the 45 * connection of the modem to external (e.g. LTE) networks. 46 * 47 * The IPA provides protocol checksum calculation, offloading this work 48 * from the AP. The IPA offers additional functionality, including routing, 49 * filtering, and NAT support, but that more advanced functionality is not 50 * currently supported. Despite that, some resources--including routing 51 * tables and filter tables--are defined in this driver because they must 52 * be initialized even when the advanced hardware features are not used. 53 * 54 * There are two distinct layers that implement the IPA hardware, and this 55 * is reflected in the organization of the driver. The generic software 56 * interface (GSI) is an integral component of the IPA, providing a 57 * well-defined communication layer between the AP subsystem and the IPA 58 * core. The GSI implements a set of "channels" used for communication 59 * between the AP and the IPA. 60 * 61 * The IPA layer uses GSI channels to implement its "endpoints". And while 62 * a GSI channel carries data between the AP and the IPA, a pair of IPA 63 * endpoints is used to carry traffic between two EEs. Specifically, the main 64 * modem network interface is implemented by two pairs of endpoints: a TX 65 * endpoint on the AP coupled with an RX endpoint on the modem; and another 66 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 67 */ 68 69 /* The name of the GSI firmware file relative to /lib/firmware */ 70 #define IPA_FWS_PATH "ipa_fws.mdt" 71 #define IPA_PAS_ID 15 72 73 /** 74 * ipa_suspend_handler() - Handle the suspend IPA interrupt 75 * @ipa: IPA pointer 76 * @irq_id: IPA interrupt type (unused) 77 * 78 * If an RX endpoint is in suspend state, and the IPA has a packet 79 * destined for that endpoint, the IPA generates a SUSPEND interrupt 80 * to inform the AP that it should resume the endpoint. If we get 81 * one of these interrupts we just resume everything. 82 */ 83 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 84 { 85 /* Just report the event, and let system resume handle the rest. 86 * More than one endpoint could signal this; if so, ignore 87 * all but the first. 88 */ 89 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) 90 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); 91 92 /* Acknowledge/clear the suspend interrupt on all endpoints */ 93 ipa_interrupt_suspend_clear_all(ipa->interrupt); 94 } 95 96 /** 97 * ipa_setup() - Set up IPA hardware 98 * @ipa: IPA pointer 99 * 100 * Perform initialization that requires issuing immediate commands on 101 * the command TX endpoint. If the modem is doing GSI firmware load 102 * and initialization, this function will be called when an SMP2P 103 * interrupt has been signaled by the modem. Otherwise it will be 104 * called from ipa_probe() after GSI firmware has been successfully 105 * loaded, authenticated, and started by Trust Zone. 106 */ 107 int ipa_setup(struct ipa *ipa) 108 { 109 struct ipa_endpoint *exception_endpoint; 110 struct ipa_endpoint *command_endpoint; 111 struct device *dev = &ipa->pdev->dev; 112 int ret; 113 114 /* Setup for IPA v3.5.1 has some slight differences */ 115 ret = gsi_setup(&ipa->gsi, ipa->version == IPA_VERSION_3_5_1); 116 if (ret) 117 return ret; 118 119 ipa->interrupt = ipa_interrupt_setup(ipa); 120 if (IS_ERR(ipa->interrupt)) { 121 ret = PTR_ERR(ipa->interrupt); 122 goto err_gsi_teardown; 123 } 124 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 125 ipa_suspend_handler); 126 127 ipa_uc_setup(ipa); 128 129 ret = device_init_wakeup(dev, true); 130 if (ret) 131 goto err_uc_teardown; 132 133 ipa_endpoint_setup(ipa); 134 135 /* We need to use the AP command TX endpoint to perform other 136 * initialization, so we enable first. 137 */ 138 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 139 ret = ipa_endpoint_enable_one(command_endpoint); 140 if (ret) 141 goto err_endpoint_teardown; 142 143 ret = ipa_mem_setup(ipa); 144 if (ret) 145 goto err_command_disable; 146 147 ret = ipa_table_setup(ipa); 148 if (ret) 149 goto err_mem_teardown; 150 151 /* Enable the exception handling endpoint, and tell the hardware 152 * to use it by default. 153 */ 154 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 155 ret = ipa_endpoint_enable_one(exception_endpoint); 156 if (ret) 157 goto err_table_teardown; 158 159 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 160 161 /* We're all set. Now prepare for communication with the modem */ 162 ret = ipa_modem_setup(ipa); 163 if (ret) 164 goto err_default_route_clear; 165 166 ipa->setup_complete = true; 167 168 dev_info(dev, "IPA driver setup completed successfully\n"); 169 170 return 0; 171 172 err_default_route_clear: 173 ipa_endpoint_default_route_clear(ipa); 174 ipa_endpoint_disable_one(exception_endpoint); 175 err_table_teardown: 176 ipa_table_teardown(ipa); 177 err_mem_teardown: 178 ipa_mem_teardown(ipa); 179 err_command_disable: 180 ipa_endpoint_disable_one(command_endpoint); 181 err_endpoint_teardown: 182 ipa_endpoint_teardown(ipa); 183 (void)device_init_wakeup(dev, false); 184 err_uc_teardown: 185 ipa_uc_teardown(ipa); 186 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 187 ipa_interrupt_teardown(ipa->interrupt); 188 err_gsi_teardown: 189 gsi_teardown(&ipa->gsi); 190 191 return ret; 192 } 193 194 /** 195 * ipa_teardown() - Inverse of ipa_setup() 196 * @ipa: IPA pointer 197 */ 198 static void ipa_teardown(struct ipa *ipa) 199 { 200 struct ipa_endpoint *exception_endpoint; 201 struct ipa_endpoint *command_endpoint; 202 203 ipa_modem_teardown(ipa); 204 ipa_endpoint_default_route_clear(ipa); 205 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 206 ipa_endpoint_disable_one(exception_endpoint); 207 ipa_table_teardown(ipa); 208 ipa_mem_teardown(ipa); 209 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 210 ipa_endpoint_disable_one(command_endpoint); 211 ipa_endpoint_teardown(ipa); 212 (void)device_init_wakeup(&ipa->pdev->dev, false); 213 ipa_uc_teardown(ipa); 214 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 215 ipa_interrupt_teardown(ipa->interrupt); 216 gsi_teardown(&ipa->gsi); 217 } 218 219 /* Configure QMB Core Master Port selection */ 220 static void ipa_hardware_config_comp(struct ipa *ipa) 221 { 222 u32 val; 223 224 /* Nothing to configure for IPA v3.5.1 */ 225 if (ipa->version == IPA_VERSION_3_5_1) 226 return; 227 228 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 229 230 if (ipa->version == IPA_VERSION_4_0) { 231 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 232 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 233 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 234 } else { 235 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 236 } 237 238 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 239 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 240 241 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 242 } 243 244 /* Configure DDR and PCIe max read/write QSB values */ 245 static void ipa_hardware_config_qsb(struct ipa *ipa) 246 { 247 u32 val; 248 249 /* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */ 250 val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK); 251 if (ipa->version == IPA_VERSION_4_2) 252 val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK); 253 else 254 val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK); 255 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 256 257 if (ipa->version == IPA_VERSION_3_5_1) { 258 val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK); 259 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); 260 } else { 261 val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK); 262 if (ipa->version == IPA_VERSION_4_2) 263 val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK); 264 else 265 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); 266 /* GEN_QMB_0_MAX_READS_BEATS is 0 */ 267 /* GEN_QMB_1_MAX_READS_BEATS is 0 */ 268 } 269 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 270 } 271 272 static void ipa_idle_indication_cfg(struct ipa *ipa, 273 u32 enter_idle_debounce_thresh, 274 bool const_non_idle_enable) 275 { 276 u32 offset; 277 u32 val; 278 279 val = u32_encode_bits(enter_idle_debounce_thresh, 280 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 281 if (const_non_idle_enable) 282 val |= CONST_NON_IDLE_ENABLE_FMASK; 283 284 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 285 iowrite32(val, ipa->reg_virt + offset); 286 } 287 288 /** 289 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 290 * @ipa: IPA pointer 291 * 292 * Configures when the IPA signals it is idle to the global clock 293 * controller, which can respond by scalling down the clock to 294 * save power. 295 */ 296 static void ipa_hardware_dcd_config(struct ipa *ipa) 297 { 298 /* Recommended values for IPA 3.5 according to IPA HPG */ 299 ipa_idle_indication_cfg(ipa, 256, false); 300 } 301 302 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 303 { 304 /* Power-on reset values */ 305 ipa_idle_indication_cfg(ipa, 0, true); 306 } 307 308 /** 309 * ipa_hardware_config() - Primitive hardware initialization 310 * @ipa: IPA pointer 311 */ 312 static void ipa_hardware_config(struct ipa *ipa) 313 { 314 u32 granularity; 315 u32 val; 316 317 /* Fill in backward-compatibility register, based on version */ 318 val = ipa_reg_bcr_val(ipa->version); 319 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 320 321 if (ipa->version != IPA_VERSION_3_5_1) { 322 /* Enable open global clocks (hardware workaround) */ 323 val = GLOBAL_FMASK; 324 val |= GLOBAL_2X_CLK_FMASK; 325 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 326 327 /* Disable PA mask to allow HOLB drop (hardware workaround) */ 328 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 329 val &= ~PA_MASK_EN; 330 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 331 } 332 333 ipa_hardware_config_comp(ipa); 334 335 /* Configure system bus limits */ 336 ipa_hardware_config_qsb(ipa); 337 338 /* Configure aggregation granularity */ 339 val = ioread32(ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 340 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 341 val = u32_encode_bits(granularity, AGGR_GRANULARITY); 342 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 343 344 /* Disable hashed IPv4 and IPv6 routing and filtering for IPA v4.2 */ 345 if (ipa->version == IPA_VERSION_4_2) 346 iowrite32(0, ipa->reg_virt + IPA_REG_FILT_ROUT_HASH_EN_OFFSET); 347 348 /* Enable dynamic clock division */ 349 ipa_hardware_dcd_config(ipa); 350 } 351 352 /** 353 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 354 * @ipa: IPA pointer 355 * 356 * This restores the power-on reset values (even if they aren't different) 357 */ 358 static void ipa_hardware_deconfig(struct ipa *ipa) 359 { 360 /* Mostly we just leave things as we set them. */ 361 ipa_hardware_dcd_deconfig(ipa); 362 } 363 364 #ifdef IPA_VALIDATION 365 366 /* # IPA resources used based on version (see IPA_RESOURCE_GROUP_COUNT) */ 367 static int ipa_resource_group_count(struct ipa *ipa) 368 { 369 switch (ipa->version) { 370 case IPA_VERSION_3_5_1: 371 return 3; 372 373 case IPA_VERSION_4_0: 374 case IPA_VERSION_4_1: 375 return 4; 376 377 case IPA_VERSION_4_2: 378 return 1; 379 380 default: 381 return 0; 382 } 383 } 384 385 static bool ipa_resource_limits_valid(struct ipa *ipa, 386 const struct ipa_resource_data *data) 387 { 388 u32 group_count = ipa_resource_group_count(ipa); 389 u32 i; 390 u32 j; 391 392 if (!group_count) 393 return false; 394 395 /* Return an error if a non-zero resource group limit is specified 396 * for a resource not supported by hardware. 397 */ 398 for (i = 0; i < data->resource_src_count; i++) { 399 const struct ipa_resource_src *resource; 400 401 resource = &data->resource_src[i]; 402 for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++) 403 if (resource->limits[j].min || resource->limits[j].max) 404 return false; 405 } 406 407 for (i = 0; i < data->resource_dst_count; i++) { 408 const struct ipa_resource_dst *resource; 409 410 resource = &data->resource_dst[i]; 411 for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++) 412 if (resource->limits[j].min || resource->limits[j].max) 413 return false; 414 } 415 416 return true; 417 } 418 419 #else /* !IPA_VALIDATION */ 420 421 static bool ipa_resource_limits_valid(struct ipa *ipa, 422 const struct ipa_resource_data *data) 423 { 424 return true; 425 } 426 427 #endif /* !IPA_VALIDATION */ 428 429 static void 430 ipa_resource_config_common(struct ipa *ipa, u32 offset, 431 const struct ipa_resource_limits *xlimits, 432 const struct ipa_resource_limits *ylimits) 433 { 434 u32 val; 435 436 val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK); 437 val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK); 438 val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK); 439 val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK); 440 441 iowrite32(val, ipa->reg_virt + offset); 442 } 443 444 static void ipa_resource_config_src_01(struct ipa *ipa, 445 const struct ipa_resource_src *resource) 446 { 447 u32 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 448 449 ipa_resource_config_common(ipa, offset, 450 &resource->limits[0], &resource->limits[1]); 451 } 452 453 static void ipa_resource_config_src_23(struct ipa *ipa, 454 const struct ipa_resource_src *resource) 455 { 456 u32 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 457 458 ipa_resource_config_common(ipa, offset, 459 &resource->limits[2], &resource->limits[3]); 460 } 461 462 static void ipa_resource_config_dst_01(struct ipa *ipa, 463 const struct ipa_resource_dst *resource) 464 { 465 u32 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 466 467 ipa_resource_config_common(ipa, offset, 468 &resource->limits[0], &resource->limits[1]); 469 } 470 471 static void ipa_resource_config_dst_23(struct ipa *ipa, 472 const struct ipa_resource_dst *resource) 473 { 474 u32 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 475 476 ipa_resource_config_common(ipa, offset, 477 &resource->limits[2], &resource->limits[3]); 478 } 479 480 static int 481 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data) 482 { 483 u32 i; 484 485 if (!ipa_resource_limits_valid(ipa, data)) 486 return -EINVAL; 487 488 for (i = 0; i < data->resource_src_count; i++) { 489 ipa_resource_config_src_01(ipa, &data->resource_src[i]); 490 ipa_resource_config_src_23(ipa, &data->resource_src[i]); 491 } 492 493 for (i = 0; i < data->resource_dst_count; i++) { 494 ipa_resource_config_dst_01(ipa, &data->resource_dst[i]); 495 ipa_resource_config_dst_23(ipa, &data->resource_dst[i]); 496 } 497 498 return 0; 499 } 500 501 static void ipa_resource_deconfig(struct ipa *ipa) 502 { 503 /* Nothing to do */ 504 } 505 506 /** 507 * ipa_config() - Configure IPA hardware 508 * @ipa: IPA pointer 509 * @data: IPA configuration data 510 * 511 * Perform initialization requiring IPA clock to be enabled. 512 */ 513 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 514 { 515 int ret; 516 517 /* Get a clock reference to allow initialization. This reference 518 * is held after initialization completes, and won't get dropped 519 * unless/until a system suspend request arrives. 520 */ 521 ipa_clock_get(ipa); 522 523 ipa_hardware_config(ipa); 524 525 ret = ipa_endpoint_config(ipa); 526 if (ret) 527 goto err_hardware_deconfig; 528 529 ret = ipa_mem_config(ipa); 530 if (ret) 531 goto err_endpoint_deconfig; 532 533 ipa_table_config(ipa); 534 535 /* Assign resource limitation to each group */ 536 ret = ipa_resource_config(ipa, data->resource_data); 537 if (ret) 538 goto err_table_deconfig; 539 540 ret = ipa_modem_config(ipa); 541 if (ret) 542 goto err_resource_deconfig; 543 544 return 0; 545 546 err_resource_deconfig: 547 ipa_resource_deconfig(ipa); 548 err_table_deconfig: 549 ipa_table_deconfig(ipa); 550 ipa_mem_deconfig(ipa); 551 err_endpoint_deconfig: 552 ipa_endpoint_deconfig(ipa); 553 err_hardware_deconfig: 554 ipa_hardware_deconfig(ipa); 555 ipa_clock_put(ipa); 556 557 return ret; 558 } 559 560 /** 561 * ipa_deconfig() - Inverse of ipa_config() 562 * @ipa: IPA pointer 563 */ 564 static void ipa_deconfig(struct ipa *ipa) 565 { 566 ipa_modem_deconfig(ipa); 567 ipa_resource_deconfig(ipa); 568 ipa_table_deconfig(ipa); 569 ipa_mem_deconfig(ipa); 570 ipa_endpoint_deconfig(ipa); 571 ipa_hardware_deconfig(ipa); 572 ipa_clock_put(ipa); 573 } 574 575 static int ipa_firmware_load(struct device *dev) 576 { 577 const struct firmware *fw; 578 struct device_node *node; 579 struct resource res; 580 phys_addr_t phys; 581 ssize_t size; 582 void *virt; 583 int ret; 584 585 node = of_parse_phandle(dev->of_node, "memory-region", 0); 586 if (!node) { 587 dev_err(dev, "DT error getting \"memory-region\" property\n"); 588 return -EINVAL; 589 } 590 591 ret = of_address_to_resource(node, 0, &res); 592 if (ret) { 593 dev_err(dev, "error %d getting \"memory-region\" resource\n", 594 ret); 595 return ret; 596 } 597 598 ret = request_firmware(&fw, IPA_FWS_PATH, dev); 599 if (ret) { 600 dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH); 601 return ret; 602 } 603 604 phys = res.start; 605 size = (size_t)resource_size(&res); 606 virt = memremap(phys, size, MEMREMAP_WC); 607 if (!virt) { 608 dev_err(dev, "unable to remap firmware memory\n"); 609 ret = -ENOMEM; 610 goto out_release_firmware; 611 } 612 613 ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID, 614 virt, phys, size, NULL); 615 if (ret) 616 dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH); 617 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 618 dev_err(dev, "error %d authenticating \"%s\"\n", ret, 619 IPA_FWS_PATH); 620 621 memunmap(virt); 622 out_release_firmware: 623 release_firmware(fw); 624 625 return ret; 626 } 627 628 static const struct of_device_id ipa_match[] = { 629 { 630 .compatible = "qcom,sdm845-ipa", 631 .data = &ipa_data_sdm845, 632 }, 633 { 634 .compatible = "qcom,sc7180-ipa", 635 .data = &ipa_data_sc7180, 636 }, 637 { }, 638 }; 639 MODULE_DEVICE_TABLE(of, ipa_match); 640 641 static phandle of_property_read_phandle(const struct device_node *np, 642 const char *name) 643 { 644 struct property *prop; 645 int len = 0; 646 647 prop = of_find_property(np, name, &len); 648 if (!prop || len != sizeof(__be32)) 649 return 0; 650 651 return be32_to_cpup(prop->value); 652 } 653 654 /* Check things that can be validated at build time. This just 655 * groups these things BUILD_BUG_ON() calls don't clutter the rest 656 * of the code. 657 * */ 658 static void ipa_validate_build(void) 659 { 660 #ifdef IPA_VALIDATE 661 /* We assume we're working on 64-bit hardware */ 662 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT)); 663 664 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 665 BUILD_BUG_ON(GSI_EE_AP != 0); 666 667 /* There's no point if we have no channels or event rings */ 668 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 669 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 670 671 /* GSI hardware design limits */ 672 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 673 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 674 675 /* The number of TREs in a transaction is limited by the channel's 676 * TLV FIFO size. A transaction structure uses 8-bit fields 677 * to represents the number of TREs it has allocated and used. 678 */ 679 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 680 681 /* Exceeding 128 bytes makes the transaction pool *much* larger */ 682 BUILD_BUG_ON(sizeof(struct gsi_trans) > 128); 683 684 /* This is used as a divisor */ 685 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 686 687 /* Aggregation granularity value can't be 0, and must fit */ 688 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 689 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 690 field_max(AGGR_GRANULARITY)); 691 #endif /* IPA_VALIDATE */ 692 } 693 694 /** 695 * ipa_probe() - IPA platform driver probe function 696 * @pdev: Platform device pointer 697 * 698 * Return: 0 if successful, or a negative error code (possibly 699 * EPROBE_DEFER) 700 * 701 * This is the main entry point for the IPA driver. Initialization proceeds 702 * in several stages: 703 * - The "init" stage involves activities that can be initialized without 704 * access to the IPA hardware. 705 * - The "config" stage requires the IPA clock to be active so IPA registers 706 * can be accessed, but does not require the use of IPA immediate commands. 707 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 708 * layer to be initialized. 709 * 710 * A Boolean Device Tree "modem-init" property determines whether GSI 711 * initialization will be performed by the AP (Trust Zone) or the modem. 712 * If the AP does GSI initialization, the setup phase is entered after 713 * this has completed successfully. Otherwise the modem initializes 714 * the GSI layer and signals it has finished by sending an SMP2P interrupt 715 * to the AP; this triggers the start if IPA setup. 716 */ 717 static int ipa_probe(struct platform_device *pdev) 718 { 719 struct device *dev = &pdev->dev; 720 const struct ipa_data *data; 721 struct ipa_clock *clock; 722 struct rproc *rproc; 723 bool modem_alloc; 724 bool modem_init; 725 struct ipa *ipa; 726 bool prefetch; 727 phandle ph; 728 int ret; 729 730 ipa_validate_build(); 731 732 /* If we need Trust Zone, make sure it's available */ 733 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 734 if (!modem_init) 735 if (!qcom_scm_is_available()) 736 return -EPROBE_DEFER; 737 738 /* We rely on remoteproc to tell us about modem state changes */ 739 ph = of_property_read_phandle(dev->of_node, "modem-remoteproc"); 740 if (!ph) { 741 dev_err(dev, "DT missing \"modem-remoteproc\" property\n"); 742 return -EINVAL; 743 } 744 745 rproc = rproc_get_by_phandle(ph); 746 if (!rproc) 747 return -EPROBE_DEFER; 748 749 /* The clock and interconnects might not be ready when we're 750 * probed, so might return -EPROBE_DEFER. 751 */ 752 clock = ipa_clock_init(dev); 753 if (IS_ERR(clock)) { 754 ret = PTR_ERR(clock); 755 goto err_rproc_put; 756 } 757 758 /* No more EPROBE_DEFER. Get our configuration data */ 759 data = of_device_get_match_data(dev); 760 if (!data) { 761 /* This is really IPA_VALIDATE (should never happen) */ 762 dev_err(dev, "matched hardware not supported\n"); 763 ret = -ENOTSUPP; 764 goto err_clock_exit; 765 } 766 767 /* Allocate and initialize the IPA structure */ 768 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 769 if (!ipa) { 770 ret = -ENOMEM; 771 goto err_clock_exit; 772 } 773 774 ipa->pdev = pdev; 775 dev_set_drvdata(dev, ipa); 776 ipa->modem_rproc = rproc; 777 ipa->clock = clock; 778 ipa->version = data->version; 779 780 ret = ipa_reg_init(ipa); 781 if (ret) 782 goto err_kfree_ipa; 783 784 ret = ipa_mem_init(ipa, data->mem_data); 785 if (ret) 786 goto err_reg_exit; 787 788 /* GSI v2.0+ (IPA v4.0+) uses prefetch for the command channel */ 789 prefetch = ipa->version != IPA_VERSION_3_5_1; 790 /* IPA v4.2 requires the AP to allocate channels for the modem */ 791 modem_alloc = ipa->version == IPA_VERSION_4_2; 792 793 ret = gsi_init(&ipa->gsi, pdev, prefetch, data->endpoint_count, 794 data->endpoint_data, modem_alloc); 795 if (ret) 796 goto err_mem_exit; 797 798 /* Result is a non-zero mask endpoints that support filtering */ 799 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 800 data->endpoint_data); 801 if (!ipa->filter_map) { 802 ret = -EINVAL; 803 goto err_gsi_exit; 804 } 805 806 ret = ipa_table_init(ipa); 807 if (ret) 808 goto err_endpoint_exit; 809 810 ret = ipa_modem_init(ipa, modem_init); 811 if (ret) 812 goto err_table_exit; 813 814 ret = ipa_config(ipa, data); 815 if (ret) 816 goto err_modem_exit; 817 818 dev_info(dev, "IPA driver initialized"); 819 820 /* If the modem is doing early initialization, it will trigger a 821 * call to ipa_setup() call when it has finished. In that case 822 * we're done here. 823 */ 824 if (modem_init) 825 return 0; 826 827 /* Otherwise we need to load the firmware and have Trust Zone validate 828 * and install it. If that succeeds we can proceed with setup. 829 */ 830 ret = ipa_firmware_load(dev); 831 if (ret) 832 goto err_deconfig; 833 834 ret = ipa_setup(ipa); 835 if (ret) 836 goto err_deconfig; 837 838 return 0; 839 840 err_deconfig: 841 ipa_deconfig(ipa); 842 err_modem_exit: 843 ipa_modem_exit(ipa); 844 err_table_exit: 845 ipa_table_exit(ipa); 846 err_endpoint_exit: 847 ipa_endpoint_exit(ipa); 848 err_gsi_exit: 849 gsi_exit(&ipa->gsi); 850 err_mem_exit: 851 ipa_mem_exit(ipa); 852 err_reg_exit: 853 ipa_reg_exit(ipa); 854 err_kfree_ipa: 855 kfree(ipa); 856 err_clock_exit: 857 ipa_clock_exit(clock); 858 err_rproc_put: 859 rproc_put(rproc); 860 861 return ret; 862 } 863 864 static int ipa_remove(struct platform_device *pdev) 865 { 866 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 867 struct rproc *rproc = ipa->modem_rproc; 868 struct ipa_clock *clock = ipa->clock; 869 int ret; 870 871 if (ipa->setup_complete) { 872 ret = ipa_modem_stop(ipa); 873 if (ret) 874 return ret; 875 876 ipa_teardown(ipa); 877 } 878 879 ipa_deconfig(ipa); 880 ipa_modem_exit(ipa); 881 ipa_table_exit(ipa); 882 ipa_endpoint_exit(ipa); 883 gsi_exit(&ipa->gsi); 884 ipa_mem_exit(ipa); 885 ipa_reg_exit(ipa); 886 kfree(ipa); 887 ipa_clock_exit(clock); 888 rproc_put(rproc); 889 890 return 0; 891 } 892 893 /** 894 * ipa_suspend() - Power management system suspend callback 895 * @dev: IPA device structure 896 * 897 * Return: Always returns zero 898 * 899 * Called by the PM framework when a system suspend operation is invoked. 900 * Suspends endpoints and releases the clock reference held to keep 901 * the IPA clock running until this point. 902 */ 903 static int ipa_suspend(struct device *dev) 904 { 905 struct ipa *ipa = dev_get_drvdata(dev); 906 907 /* When a suspended RX endpoint has a packet ready to receive, we 908 * get an IPA SUSPEND interrupt. We trigger a system resume in 909 * that case, but only on the first such interrupt since suspend. 910 */ 911 __clear_bit(IPA_FLAG_RESUMED, ipa->flags); 912 913 ipa_endpoint_suspend(ipa); 914 915 ipa_clock_put(ipa); 916 917 return 0; 918 } 919 920 /** 921 * ipa_resume() - Power management system resume callback 922 * @dev: IPA device structure 923 * 924 * Return: Always returns 0 925 * 926 * Called by the PM framework when a system resume operation is invoked. 927 * Takes an IPA clock reference to keep the clock running until suspend, 928 * and resumes endpoints. 929 */ 930 static int ipa_resume(struct device *dev) 931 { 932 struct ipa *ipa = dev_get_drvdata(dev); 933 934 /* This clock reference will keep the IPA out of suspend 935 * until we get a power management suspend request. 936 */ 937 ipa_clock_get(ipa); 938 939 ipa_endpoint_resume(ipa); 940 941 return 0; 942 } 943 944 static const struct dev_pm_ops ipa_pm_ops = { 945 .suspend = ipa_suspend, 946 .resume = ipa_resume, 947 }; 948 949 static struct platform_driver ipa_driver = { 950 .probe = ipa_probe, 951 .remove = ipa_remove, 952 .driver = { 953 .name = "ipa", 954 .pm = &ipa_pm_ops, 955 .of_match_table = ipa_match, 956 }, 957 }; 958 959 module_platform_driver(ipa_driver); 960 961 MODULE_LICENSE("GPL v2"); 962 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 963