1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2022 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_power.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_resource.h" 27 #include "ipa_cmd.h" 28 #include "ipa_reg.h" 29 #include "ipa_mem.h" 30 #include "ipa_table.h" 31 #include "ipa_smp2p.h" 32 #include "ipa_modem.h" 33 #include "ipa_uc.h" 34 #include "ipa_interrupt.h" 35 #include "gsi_trans.h" 36 #include "ipa_sysfs.h" 37 38 /** 39 * DOC: The IP Accelerator 40 * 41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 42 * networking component found in many Qualcomm SoCs. The IPA is connected 43 * to the application processor (AP), but is also connected (and partially 44 * controlled by) other "execution environments" (EEs), such as a modem. 45 * 46 * The IPA is the conduit between the AP and the modem that carries network 47 * traffic. This driver presents a network interface representing the 48 * connection of the modem to external (e.g. LTE) networks. 49 * 50 * The IPA provides protocol checksum calculation, offloading this work 51 * from the AP. The IPA offers additional functionality, including routing, 52 * filtering, and NAT support, but that more advanced functionality is not 53 * currently supported. Despite that, some resources--including routing 54 * tables and filter tables--are defined in this driver because they must 55 * be initialized even when the advanced hardware features are not used. 56 * 57 * There are two distinct layers that implement the IPA hardware, and this 58 * is reflected in the organization of the driver. The generic software 59 * interface (GSI) is an integral component of the IPA, providing a 60 * well-defined communication layer between the AP subsystem and the IPA 61 * core. The GSI implements a set of "channels" used for communication 62 * between the AP and the IPA. 63 * 64 * The IPA layer uses GSI channels to implement its "endpoints". And while 65 * a GSI channel carries data between the AP and the IPA, a pair of IPA 66 * endpoints is used to carry traffic between two EEs. Specifically, the main 67 * modem network interface is implemented by two pairs of endpoints: a TX 68 * endpoint on the AP coupled with an RX endpoint on the modem; and another 69 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 70 */ 71 72 /* The name of the GSI firmware file relative to /lib/firmware */ 73 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 74 #define IPA_PAS_ID 15 75 76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 77 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 78 #define TAG_TIMESTAMP_SHIFT 14 79 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 80 81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 82 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 83 84 /** 85 * enum ipa_firmware_loader: How GSI firmware gets loaded 86 * 87 * @IPA_LOADER_DEFER: System not ready; try again later 88 * @IPA_LOADER_SELF: AP loads GSI firmware 89 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done 90 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware 91 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid 92 */ 93 enum ipa_firmware_loader { 94 IPA_LOADER_DEFER, 95 IPA_LOADER_SELF, 96 IPA_LOADER_MODEM, 97 IPA_LOADER_SKIP, 98 IPA_LOADER_INVALID, 99 }; 100 101 /** 102 * ipa_setup() - Set up IPA hardware 103 * @ipa: IPA pointer 104 * 105 * Perform initialization that requires issuing immediate commands on 106 * the command TX endpoint. If the modem is doing GSI firmware load 107 * and initialization, this function will be called when an SMP2P 108 * interrupt has been signaled by the modem. Otherwise it will be 109 * called from ipa_probe() after GSI firmware has been successfully 110 * loaded, authenticated, and started by Trust Zone. 111 */ 112 int ipa_setup(struct ipa *ipa) 113 { 114 struct ipa_endpoint *exception_endpoint; 115 struct ipa_endpoint *command_endpoint; 116 struct device *dev = &ipa->pdev->dev; 117 int ret; 118 119 ret = gsi_setup(&ipa->gsi); 120 if (ret) 121 return ret; 122 123 ret = ipa_power_setup(ipa); 124 if (ret) 125 goto err_gsi_teardown; 126 127 ipa_endpoint_setup(ipa); 128 129 /* We need to use the AP command TX endpoint to perform other 130 * initialization, so we enable first. 131 */ 132 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 133 ret = ipa_endpoint_enable_one(command_endpoint); 134 if (ret) 135 goto err_endpoint_teardown; 136 137 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 138 if (ret) 139 goto err_command_disable; 140 141 ret = ipa_table_setup(ipa); /* No matching teardown required */ 142 if (ret) 143 goto err_command_disable; 144 145 /* Enable the exception handling endpoint, and tell the hardware 146 * to use it by default. 147 */ 148 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 149 ret = ipa_endpoint_enable_one(exception_endpoint); 150 if (ret) 151 goto err_command_disable; 152 153 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 154 155 /* We're all set. Now prepare for communication with the modem */ 156 ret = ipa_qmi_setup(ipa); 157 if (ret) 158 goto err_default_route_clear; 159 160 ipa->setup_complete = true; 161 162 dev_info(dev, "IPA driver setup completed successfully\n"); 163 164 return 0; 165 166 err_default_route_clear: 167 ipa_endpoint_default_route_clear(ipa); 168 ipa_endpoint_disable_one(exception_endpoint); 169 err_command_disable: 170 ipa_endpoint_disable_one(command_endpoint); 171 err_endpoint_teardown: 172 ipa_endpoint_teardown(ipa); 173 ipa_power_teardown(ipa); 174 err_gsi_teardown: 175 gsi_teardown(&ipa->gsi); 176 177 return ret; 178 } 179 180 /** 181 * ipa_teardown() - Inverse of ipa_setup() 182 * @ipa: IPA pointer 183 */ 184 static void ipa_teardown(struct ipa *ipa) 185 { 186 struct ipa_endpoint *exception_endpoint; 187 struct ipa_endpoint *command_endpoint; 188 189 /* We're going to tear everything down, as if setup never completed */ 190 ipa->setup_complete = false; 191 192 ipa_qmi_teardown(ipa); 193 ipa_endpoint_default_route_clear(ipa); 194 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 195 ipa_endpoint_disable_one(exception_endpoint); 196 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 197 ipa_endpoint_disable_one(command_endpoint); 198 ipa_endpoint_teardown(ipa); 199 ipa_power_teardown(ipa); 200 gsi_teardown(&ipa->gsi); 201 } 202 203 static void 204 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) 205 { 206 const struct ipa_reg *reg; 207 u32 val; 208 209 /* IPA v4.5+ has no backward compatibility register */ 210 if (ipa->version >= IPA_VERSION_4_5) 211 return; 212 213 reg = ipa_reg(ipa, IPA_BCR); 214 val = data->backward_compat; 215 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 216 } 217 218 static void ipa_hardware_config_tx(struct ipa *ipa) 219 { 220 enum ipa_version version = ipa->version; 221 const struct ipa_reg *reg; 222 u32 offset; 223 u32 val; 224 225 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) 226 return; 227 228 /* Disable PA mask to allow HOLB drop */ 229 reg = ipa_reg(ipa, IPA_TX_CFG); 230 offset = ipa_reg_offset(reg); 231 232 val = ioread32(ipa->reg_virt + offset); 233 234 val &= ~ipa_reg_bit(reg, PA_MASK_EN); 235 236 iowrite32(val, ipa->reg_virt + offset); 237 } 238 239 static void ipa_hardware_config_clkon(struct ipa *ipa) 240 { 241 enum ipa_version version = ipa->version; 242 const struct ipa_reg *reg; 243 u32 val; 244 245 if (version >= IPA_VERSION_4_5) 246 return; 247 248 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) 249 return; 250 251 /* Implement some hardware workarounds */ 252 reg = ipa_reg(ipa, CLKON_CFG); 253 if (version == IPA_VERSION_3_1) { 254 /* Disable MISC clock gating */ 255 val = ipa_reg_bit(reg, CLKON_MISC); 256 } else { /* IPA v4.0+ */ 257 /* Enable open global clocks in the CLKON configuration */ 258 val = ipa_reg_bit(reg, CLKON_GLOBAL); 259 val |= ipa_reg_bit(reg, GLOBAL_2X_CLK); 260 } 261 262 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 263 } 264 265 /* Configure bus access behavior for IPA components */ 266 static void ipa_hardware_config_comp(struct ipa *ipa) 267 { 268 const struct ipa_reg *reg; 269 u32 offset; 270 u32 val; 271 272 /* Nothing to configure prior to IPA v4.0 */ 273 if (ipa->version < IPA_VERSION_4_0) 274 return; 275 276 reg = ipa_reg(ipa, COMP_CFG); 277 offset = ipa_reg_offset(reg); 278 val = ioread32(ipa->reg_virt + offset); 279 280 if (ipa->version == IPA_VERSION_4_0) { 281 val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_CONS_EN); 282 val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_PROD_EN); 283 val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); 284 } else if (ipa->version < IPA_VERSION_4_5) { 285 val |= ipa_reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); 286 } else { 287 /* For IPA v4.5 FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ 288 } 289 290 val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); 291 val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); 292 293 iowrite32(val, ipa->reg_virt + offset); 294 } 295 296 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 297 static void 298 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 299 { 300 const struct ipa_qsb_data *data0; 301 const struct ipa_qsb_data *data1; 302 const struct ipa_reg *reg; 303 u32 val; 304 305 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 306 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 307 if (data->qsb_count > 1) 308 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 309 310 /* Max outstanding write accesses for QSB masters */ 311 reg = ipa_reg(ipa, QSB_MAX_WRITES); 312 313 val = ipa_reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); 314 if (data->qsb_count > 1) 315 val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_WRITES, 316 data1->max_writes); 317 318 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 319 320 /* Max outstanding read accesses for QSB masters */ 321 reg = ipa_reg(ipa, QSB_MAX_READS); 322 323 val = ipa_reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); 324 if (ipa->version >= IPA_VERSION_4_0) 325 val |= ipa_reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, 326 data0->max_reads_beats); 327 if (data->qsb_count > 1) { 328 val = ipa_reg_encode(reg, GEN_QMB_1_MAX_READS, 329 data1->max_reads); 330 if (ipa->version >= IPA_VERSION_4_0) 331 val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, 332 data1->max_reads_beats); 333 } 334 335 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 336 } 337 338 /* The internal inactivity timer clock is used for the aggregation timer */ 339 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 340 341 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 342 * field to represent the given number of microseconds. The value is one 343 * less than the number of timer ticks in the requested period. 0 is not 344 * a valid granularity value (so for example @usec must be at least 16 for 345 * a TIMER_FREQUENCY of 32000). 346 */ 347 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 348 { 349 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 350 } 351 352 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 353 * timestamps and timers independent of the IPA core clock rate. The 354 * Qtimer is based on a 56-bit timestamp incremented at each tick of 355 * a 19.2 MHz SoC crystal oscillator (XO clock). 356 * 357 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 358 * timestamp is achieved by shifting the Qtimer timestamp value right 359 * some number of bits to produce the low-order bits of the coarser 360 * granularity timestamp. 361 * 362 * For timers, a common timer clock is derived from the XO clock using 363 * a divider (we use 192, to produce a 100kHz timer clock). From 364 * this common clock, three "pulse generators" are used to produce 365 * timer ticks at a configurable frequency. IPA timers (such as 366 * those used for aggregation or head-of-line block handling) now 367 * define their period based on one of these pulse generators. 368 */ 369 static void ipa_qtime_config(struct ipa *ipa) 370 { 371 const struct ipa_reg *reg; 372 u32 offset; 373 u32 val; 374 375 /* Timer clock divider must be disabled when we change the rate */ 376 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 377 iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg)); 378 379 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); 380 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 381 val = ipa_reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); 382 val |= ipa_reg_bit(reg, DPL_TIMESTAMP_SEL); 383 /* Configure tag and NAT Qtime timestamp resolution as well */ 384 val = ipa_reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); 385 val = ipa_reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); 386 387 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 388 389 /* Set granularity of pulse generators used for other timers */ 390 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); 391 val = ipa_reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); 392 val |= ipa_reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); 393 val |= ipa_reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); 394 395 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 396 397 /* Actual divider is 1 more than value supplied here */ 398 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 399 offset = ipa_reg_offset(reg); 400 val = ipa_reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); 401 402 iowrite32(val, ipa->reg_virt + offset); 403 404 /* Divider value is set; re-enable the common timer clock divider */ 405 val |= ipa_reg_bit(reg, DIV_ENABLE); 406 407 iowrite32(val, ipa->reg_virt + offset); 408 } 409 410 /* Before IPA v4.5 timing is controlled by a counter register */ 411 static void ipa_hardware_config_counter(struct ipa *ipa) 412 { 413 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 414 const struct ipa_reg *reg; 415 u32 val; 416 417 reg = ipa_reg(ipa, COUNTER_CFG); 418 /* If defined, EOT_COAL_GRANULARITY is 0 */ 419 val = ipa_reg_encode(reg, AGGR_GRANULARITY, granularity); 420 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 421 } 422 423 static void ipa_hardware_config_timing(struct ipa *ipa) 424 { 425 if (ipa->version < IPA_VERSION_4_5) 426 ipa_hardware_config_counter(ipa); 427 else 428 ipa_qtime_config(ipa); 429 } 430 431 static void ipa_hardware_config_hashing(struct ipa *ipa) 432 { 433 const struct ipa_reg *reg; 434 435 if (ipa->version != IPA_VERSION_4_2) 436 return; 437 438 /* IPA v4.2 does not support hashed tables, so disable them */ 439 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); 440 441 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, 442 * IPV4_FILTER_HASH are all zero. 443 */ 444 iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg)); 445 } 446 447 static void ipa_idle_indication_cfg(struct ipa *ipa, 448 u32 enter_idle_debounce_thresh, 449 bool const_non_idle_enable) 450 { 451 const struct ipa_reg *reg; 452 u32 val; 453 454 if (ipa->version < IPA_VERSION_3_5_1) 455 return; 456 457 reg = ipa_reg(ipa, IDLE_INDICATION_CFG); 458 val = ipa_reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, 459 enter_idle_debounce_thresh); 460 if (const_non_idle_enable) 461 val |= ipa_reg_bit(reg, CONST_NON_IDLE_ENABLE); 462 463 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); 464 } 465 466 /** 467 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 468 * @ipa: IPA pointer 469 * 470 * Configures when the IPA signals it is idle to the global clock 471 * controller, which can respond by scaling down the clock to save 472 * power. 473 */ 474 static void ipa_hardware_dcd_config(struct ipa *ipa) 475 { 476 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 477 ipa_idle_indication_cfg(ipa, 256, false); 478 } 479 480 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 481 { 482 /* Power-on reset values */ 483 ipa_idle_indication_cfg(ipa, 0, true); 484 } 485 486 /** 487 * ipa_hardware_config() - Primitive hardware initialization 488 * @ipa: IPA pointer 489 * @data: IPA configuration data 490 */ 491 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 492 { 493 ipa_hardware_config_bcr(ipa, data); 494 ipa_hardware_config_tx(ipa); 495 ipa_hardware_config_clkon(ipa); 496 ipa_hardware_config_comp(ipa); 497 ipa_hardware_config_qsb(ipa, data); 498 ipa_hardware_config_timing(ipa); 499 ipa_hardware_config_hashing(ipa); 500 ipa_hardware_dcd_config(ipa); 501 } 502 503 /** 504 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 505 * @ipa: IPA pointer 506 * 507 * This restores the power-on reset values (even if they aren't different) 508 */ 509 static void ipa_hardware_deconfig(struct ipa *ipa) 510 { 511 /* Mostly we just leave things as we set them. */ 512 ipa_hardware_dcd_deconfig(ipa); 513 } 514 515 /** 516 * ipa_config() - Configure IPA hardware 517 * @ipa: IPA pointer 518 * @data: IPA configuration data 519 * 520 * Perform initialization requiring IPA power to be enabled. 521 */ 522 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 523 { 524 int ret; 525 526 ipa_hardware_config(ipa, data); 527 528 ret = ipa_mem_config(ipa); 529 if (ret) 530 goto err_hardware_deconfig; 531 532 ipa->interrupt = ipa_interrupt_config(ipa); 533 if (IS_ERR(ipa->interrupt)) { 534 ret = PTR_ERR(ipa->interrupt); 535 ipa->interrupt = NULL; 536 goto err_mem_deconfig; 537 } 538 539 ipa_uc_config(ipa); 540 541 ret = ipa_endpoint_config(ipa); 542 if (ret) 543 goto err_uc_deconfig; 544 545 ipa_table_config(ipa); /* No deconfig required */ 546 547 /* Assign resource limitation to each group; no deconfig required */ 548 ret = ipa_resource_config(ipa, data->resource_data); 549 if (ret) 550 goto err_endpoint_deconfig; 551 552 ret = ipa_modem_config(ipa); 553 if (ret) 554 goto err_endpoint_deconfig; 555 556 return 0; 557 558 err_endpoint_deconfig: 559 ipa_endpoint_deconfig(ipa); 560 err_uc_deconfig: 561 ipa_uc_deconfig(ipa); 562 ipa_interrupt_deconfig(ipa->interrupt); 563 ipa->interrupt = NULL; 564 err_mem_deconfig: 565 ipa_mem_deconfig(ipa); 566 err_hardware_deconfig: 567 ipa_hardware_deconfig(ipa); 568 569 return ret; 570 } 571 572 /** 573 * ipa_deconfig() - Inverse of ipa_config() 574 * @ipa: IPA pointer 575 */ 576 static void ipa_deconfig(struct ipa *ipa) 577 { 578 ipa_modem_deconfig(ipa); 579 ipa_endpoint_deconfig(ipa); 580 ipa_uc_deconfig(ipa); 581 ipa_interrupt_deconfig(ipa->interrupt); 582 ipa->interrupt = NULL; 583 ipa_mem_deconfig(ipa); 584 ipa_hardware_deconfig(ipa); 585 } 586 587 static int ipa_firmware_load(struct device *dev) 588 { 589 const struct firmware *fw; 590 struct device_node *node; 591 struct resource res; 592 phys_addr_t phys; 593 const char *path; 594 ssize_t size; 595 void *virt; 596 int ret; 597 598 node = of_parse_phandle(dev->of_node, "memory-region", 0); 599 if (!node) { 600 dev_err(dev, "DT error getting \"memory-region\" property\n"); 601 return -EINVAL; 602 } 603 604 ret = of_address_to_resource(node, 0, &res); 605 of_node_put(node); 606 if (ret) { 607 dev_err(dev, "error %d getting \"memory-region\" resource\n", 608 ret); 609 return ret; 610 } 611 612 /* Use name from DTB if specified; use default for *any* error */ 613 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 614 if (ret) { 615 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 616 ret); 617 path = IPA_FW_PATH_DEFAULT; 618 } 619 620 ret = request_firmware(&fw, path, dev); 621 if (ret) { 622 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 623 return ret; 624 } 625 626 phys = res.start; 627 size = (size_t)resource_size(&res); 628 virt = memremap(phys, size, MEMREMAP_WC); 629 if (!virt) { 630 dev_err(dev, "unable to remap firmware memory\n"); 631 ret = -ENOMEM; 632 goto out_release_firmware; 633 } 634 635 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 636 if (ret) 637 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 638 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 639 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 640 641 memunmap(virt); 642 out_release_firmware: 643 release_firmware(fw); 644 645 return ret; 646 } 647 648 static const struct of_device_id ipa_match[] = { 649 { 650 .compatible = "qcom,msm8998-ipa", 651 .data = &ipa_data_v3_1, 652 }, 653 { 654 .compatible = "qcom,sdm845-ipa", 655 .data = &ipa_data_v3_5_1, 656 }, 657 { 658 .compatible = "qcom,sc7180-ipa", 659 .data = &ipa_data_v4_2, 660 }, 661 { 662 .compatible = "qcom,sdx55-ipa", 663 .data = &ipa_data_v4_5, 664 }, 665 { 666 .compatible = "qcom,sm6350-ipa", 667 .data = &ipa_data_v4_7, 668 }, 669 { 670 .compatible = "qcom,sm8350-ipa", 671 .data = &ipa_data_v4_9, 672 }, 673 { 674 .compatible = "qcom,sc7280-ipa", 675 .data = &ipa_data_v4_11, 676 }, 677 { }, 678 }; 679 MODULE_DEVICE_TABLE(of, ipa_match); 680 681 /* Check things that can be validated at build time. This just 682 * groups these things BUILD_BUG_ON() calls don't clutter the rest 683 * of the code. 684 * */ 685 static void ipa_validate_build(void) 686 { 687 /* At one time we assumed a 64-bit build, allowing some do_div() 688 * calls to be replaced by simple division or modulo operations. 689 * We currently only perform divide and modulo operations on u32, 690 * u16, or size_t objects, and of those only size_t has any chance 691 * of being a 64-bit value. (It should be guaranteed 32 bits wide 692 * on a 32-bit build, but there is no harm in verifying that.) 693 */ 694 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 695 696 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 697 BUILD_BUG_ON(GSI_EE_AP != 0); 698 699 /* There's no point if we have no channels or event rings */ 700 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 701 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 702 703 /* GSI hardware design limits */ 704 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 705 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 706 707 /* The number of TREs in a transaction is limited by the channel's 708 * TLV FIFO size. A transaction structure uses 8-bit fields 709 * to represents the number of TREs it has allocated and used. 710 */ 711 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 712 713 /* This is used as a divisor */ 714 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 715 716 /* Aggregation granularity value can't be 0, and must fit */ 717 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 718 } 719 720 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev) 721 { 722 bool modem_init; 723 const char *str; 724 int ret; 725 726 /* Look up the old and new properties by name */ 727 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 728 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str); 729 730 /* If the new property doesn't exist, it's legacy behavior */ 731 if (ret == -EINVAL) { 732 if (modem_init) 733 return IPA_LOADER_MODEM; 734 goto out_self; 735 } 736 737 /* Any other error on the new property means it's poorly defined */ 738 if (ret) 739 return IPA_LOADER_INVALID; 740 741 /* New property value exists; if old one does too, that's invalid */ 742 if (modem_init) 743 return IPA_LOADER_INVALID; 744 745 /* Modem loads GSI firmware for "modem" */ 746 if (!strcmp(str, "modem")) 747 return IPA_LOADER_MODEM; 748 749 /* No GSI firmware load is needed for "skip" */ 750 if (!strcmp(str, "skip")) 751 return IPA_LOADER_SKIP; 752 753 /* Any value other than "self" is an error */ 754 if (strcmp(str, "self")) 755 return IPA_LOADER_INVALID; 756 out_self: 757 /* We need Trust Zone to load firmware; make sure it's available */ 758 if (qcom_scm_is_available()) 759 return IPA_LOADER_SELF; 760 761 return IPA_LOADER_DEFER; 762 } 763 764 /** 765 * ipa_probe() - IPA platform driver probe function 766 * @pdev: Platform device pointer 767 * 768 * Return: 0 if successful, or a negative error code (possibly 769 * EPROBE_DEFER) 770 * 771 * This is the main entry point for the IPA driver. Initialization proceeds 772 * in several stages: 773 * - The "init" stage involves activities that can be initialized without 774 * access to the IPA hardware. 775 * - The "config" stage requires IPA power to be active so IPA registers 776 * can be accessed, but does not require the use of IPA immediate commands. 777 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 778 * layer to be initialized. 779 * 780 * A Boolean Device Tree "modem-init" property determines whether GSI 781 * initialization will be performed by the AP (Trust Zone) or the modem. 782 * If the AP does GSI initialization, the setup phase is entered after 783 * this has completed successfully. Otherwise the modem initializes 784 * the GSI layer and signals it has finished by sending an SMP2P interrupt 785 * to the AP; this triggers the start if IPA setup. 786 */ 787 static int ipa_probe(struct platform_device *pdev) 788 { 789 struct device *dev = &pdev->dev; 790 enum ipa_firmware_loader loader; 791 const struct ipa_data *data; 792 struct ipa_power *power; 793 struct ipa *ipa; 794 int ret; 795 796 ipa_validate_build(); 797 798 /* Get configuration data early; needed for power initialization */ 799 data = of_device_get_match_data(dev); 800 if (!data) { 801 dev_err(dev, "matched hardware not supported\n"); 802 return -ENODEV; 803 } 804 805 if (!ipa_version_supported(data->version)) { 806 dev_err(dev, "unsupported IPA version %u\n", data->version); 807 return -EINVAL; 808 } 809 810 if (!data->modem_route_count) { 811 dev_err(dev, "modem_route_count cannot be zero\n"); 812 return -EINVAL; 813 } 814 815 loader = ipa_firmware_loader(dev); 816 if (loader == IPA_LOADER_INVALID) 817 return -EINVAL; 818 if (loader == IPA_LOADER_DEFER) 819 return -EPROBE_DEFER; 820 821 /* The clock and interconnects might not be ready when we're 822 * probed, so might return -EPROBE_DEFER. 823 */ 824 power = ipa_power_init(dev, data->power_data); 825 if (IS_ERR(power)) 826 return PTR_ERR(power); 827 828 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 829 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 830 if (!ipa) { 831 ret = -ENOMEM; 832 goto err_power_exit; 833 } 834 835 ipa->pdev = pdev; 836 dev_set_drvdata(dev, ipa); 837 ipa->power = power; 838 ipa->version = data->version; 839 ipa->modem_route_count = data->modem_route_count; 840 init_completion(&ipa->completion); 841 842 ret = ipa_reg_init(ipa); 843 if (ret) 844 goto err_kfree_ipa; 845 846 ret = ipa_mem_init(ipa, data->mem_data); 847 if (ret) 848 goto err_reg_exit; 849 850 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 851 data->endpoint_data); 852 if (ret) 853 goto err_mem_exit; 854 855 /* Result is a non-zero mask of endpoints that support filtering */ 856 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); 857 if (ret) 858 goto err_gsi_exit; 859 860 ret = ipa_table_init(ipa); 861 if (ret) 862 goto err_endpoint_exit; 863 864 ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM); 865 if (ret) 866 goto err_table_exit; 867 868 /* Power needs to be active for config and setup */ 869 ret = pm_runtime_get_sync(dev); 870 if (WARN_ON(ret < 0)) 871 goto err_power_put; 872 873 ret = ipa_config(ipa, data); 874 if (ret) 875 goto err_power_put; 876 877 dev_info(dev, "IPA driver initialized"); 878 879 /* If the modem is loading GSI firmware, it will trigger a call to 880 * ipa_setup() when it has finished. In that case we're done here. 881 */ 882 if (loader == IPA_LOADER_MODEM) 883 goto done; 884 885 if (loader == IPA_LOADER_SELF) { 886 /* The AP is loading GSI firmware; do so now */ 887 ret = ipa_firmware_load(dev); 888 if (ret) 889 goto err_deconfig; 890 } /* Otherwise loader == IPA_LOADER_SKIP */ 891 892 /* GSI firmware is loaded; proceed to setup */ 893 ret = ipa_setup(ipa); 894 if (ret) 895 goto err_deconfig; 896 done: 897 pm_runtime_mark_last_busy(dev); 898 (void)pm_runtime_put_autosuspend(dev); 899 900 return 0; 901 902 err_deconfig: 903 ipa_deconfig(ipa); 904 err_power_put: 905 pm_runtime_put_noidle(dev); 906 ipa_smp2p_exit(ipa); 907 err_table_exit: 908 ipa_table_exit(ipa); 909 err_endpoint_exit: 910 ipa_endpoint_exit(ipa); 911 err_gsi_exit: 912 gsi_exit(&ipa->gsi); 913 err_mem_exit: 914 ipa_mem_exit(ipa); 915 err_reg_exit: 916 ipa_reg_exit(ipa); 917 err_kfree_ipa: 918 kfree(ipa); 919 err_power_exit: 920 ipa_power_exit(power); 921 922 return ret; 923 } 924 925 static int ipa_remove(struct platform_device *pdev) 926 { 927 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 928 struct ipa_power *power = ipa->power; 929 struct device *dev = &pdev->dev; 930 int ret; 931 932 /* Prevent the modem from triggering a call to ipa_setup(). This 933 * also ensures a modem-initiated setup that's underway completes. 934 */ 935 ipa_smp2p_irq_disable_setup(ipa); 936 937 ret = pm_runtime_get_sync(dev); 938 if (WARN_ON(ret < 0)) 939 goto out_power_put; 940 941 if (ipa->setup_complete) { 942 ret = ipa_modem_stop(ipa); 943 /* If starting or stopping is in progress, try once more */ 944 if (ret == -EBUSY) { 945 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 946 ret = ipa_modem_stop(ipa); 947 } 948 if (ret) 949 return ret; 950 951 ipa_teardown(ipa); 952 } 953 954 ipa_deconfig(ipa); 955 out_power_put: 956 pm_runtime_put_noidle(dev); 957 ipa_smp2p_exit(ipa); 958 ipa_table_exit(ipa); 959 ipa_endpoint_exit(ipa); 960 gsi_exit(&ipa->gsi); 961 ipa_mem_exit(ipa); 962 ipa_reg_exit(ipa); 963 kfree(ipa); 964 ipa_power_exit(power); 965 966 dev_info(dev, "IPA driver removed"); 967 968 return 0; 969 } 970 971 static void ipa_shutdown(struct platform_device *pdev) 972 { 973 int ret; 974 975 ret = ipa_remove(pdev); 976 if (ret) 977 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 978 } 979 980 static const struct attribute_group *ipa_attribute_groups[] = { 981 &ipa_attribute_group, 982 &ipa_feature_attribute_group, 983 &ipa_endpoint_id_attribute_group, 984 &ipa_modem_attribute_group, 985 NULL, 986 }; 987 988 static struct platform_driver ipa_driver = { 989 .probe = ipa_probe, 990 .remove = ipa_remove, 991 .shutdown = ipa_shutdown, 992 .driver = { 993 .name = "ipa", 994 .pm = &ipa_pm_ops, 995 .of_match_table = ipa_match, 996 .dev_groups = ipa_attribute_groups, 997 }, 998 }; 999 1000 module_platform_driver(ipa_driver); 1001 1002 MODULE_LICENSE("GPL v2"); 1003 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1004