xref: /openbmc/linux/drivers/net/ipa/ipa_main.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/qcom_scm.h>
19 #include <linux/soc/qcom/mdt_loader.h>
20 
21 #include "ipa.h"
22 #include "ipa_clock.h"
23 #include "ipa_data.h"
24 #include "ipa_endpoint.h"
25 #include "ipa_resource.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
31 #include "ipa_uc.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
34 #include "ipa_sysfs.h"
35 
36 /**
37  * DOC: The IP Accelerator
38  *
39  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
40  * networking component found in many Qualcomm SoCs.  The IPA is connected
41  * to the application processor (AP), but is also connected (and partially
42  * controlled by) other "execution environments" (EEs), such as a modem.
43  *
44  * The IPA is the conduit between the AP and the modem that carries network
45  * traffic.  This driver presents a network interface representing the
46  * connection of the modem to external (e.g. LTE) networks.
47  *
48  * The IPA provides protocol checksum calculation, offloading this work
49  * from the AP.  The IPA offers additional functionality, including routing,
50  * filtering, and NAT support, but that more advanced functionality is not
51  * currently supported.  Despite that, some resources--including routing
52  * tables and filter tables--are defined in this driver because they must
53  * be initialized even when the advanced hardware features are not used.
54  *
55  * There are two distinct layers that implement the IPA hardware, and this
56  * is reflected in the organization of the driver.  The generic software
57  * interface (GSI) is an integral component of the IPA, providing a
58  * well-defined communication layer between the AP subsystem and the IPA
59  * core.  The GSI implements a set of "channels" used for communication
60  * between the AP and the IPA.
61  *
62  * The IPA layer uses GSI channels to implement its "endpoints".  And while
63  * a GSI channel carries data between the AP and the IPA, a pair of IPA
64  * endpoints is used to carry traffic between two EEs.  Specifically, the main
65  * modem network interface is implemented by two pairs of endpoints:  a TX
66  * endpoint on the AP coupled with an RX endpoint on the modem; and another
67  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
68  */
69 
70 /* The name of the GSI firmware file relative to /lib/firmware */
71 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
72 #define IPA_PAS_ID		15
73 
74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
75 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
76 #define TAG_TIMESTAMP_SHIFT	14
77 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
78 
79 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
80 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
81 
82 /**
83  * ipa_suspend_handler() - Handle the suspend IPA interrupt
84  * @ipa:	IPA pointer
85  * @irq_id:	IPA interrupt type (unused)
86  *
87  * If an RX endpoint is in suspend state, and the IPA has a packet
88  * destined for that endpoint, the IPA generates a SUSPEND interrupt
89  * to inform the AP that it should resume the endpoint.  If we get
90  * one of these interrupts we just resume everything.
91  */
92 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
93 {
94 	/* Just report the event, and let system resume handle the rest.
95 	 * More than one endpoint could signal this; if so, ignore
96 	 * all but the first.
97 	 */
98 	if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
99 		pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
100 
101 	/* Acknowledge/clear the suspend interrupt on all endpoints */
102 	ipa_interrupt_suspend_clear_all(ipa->interrupt);
103 }
104 
105 /**
106  * ipa_setup() - Set up IPA hardware
107  * @ipa:	IPA pointer
108  *
109  * Perform initialization that requires issuing immediate commands on
110  * the command TX endpoint.  If the modem is doing GSI firmware load
111  * and initialization, this function will be called when an SMP2P
112  * interrupt has been signaled by the modem.  Otherwise it will be
113  * called from ipa_probe() after GSI firmware has been successfully
114  * loaded, authenticated, and started by Trust Zone.
115  */
116 int ipa_setup(struct ipa *ipa)
117 {
118 	struct ipa_endpoint *exception_endpoint;
119 	struct ipa_endpoint *command_endpoint;
120 	struct device *dev = &ipa->pdev->dev;
121 	int ret;
122 
123 	ret = gsi_setup(&ipa->gsi);
124 	if (ret)
125 		return ret;
126 
127 	ipa->interrupt = ipa_interrupt_setup(ipa);
128 	if (IS_ERR(ipa->interrupt)) {
129 		ret = PTR_ERR(ipa->interrupt);
130 		goto err_gsi_teardown;
131 	}
132 	ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
133 			  ipa_suspend_handler);
134 
135 	ipa_uc_setup(ipa);
136 
137 	ret = device_init_wakeup(dev, true);
138 	if (ret)
139 		goto err_uc_teardown;
140 
141 	ipa_endpoint_setup(ipa);
142 
143 	/* We need to use the AP command TX endpoint to perform other
144 	 * initialization, so we enable first.
145 	 */
146 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
147 	ret = ipa_endpoint_enable_one(command_endpoint);
148 	if (ret)
149 		goto err_endpoint_teardown;
150 
151 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
152 	if (ret)
153 		goto err_command_disable;
154 
155 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
156 	if (ret)
157 		goto err_command_disable;
158 
159 	/* Enable the exception handling endpoint, and tell the hardware
160 	 * to use it by default.
161 	 */
162 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
163 	ret = ipa_endpoint_enable_one(exception_endpoint);
164 	if (ret)
165 		goto err_command_disable;
166 
167 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
168 
169 	/* We're all set.  Now prepare for communication with the modem */
170 	ret = ipa_modem_setup(ipa);
171 	if (ret)
172 		goto err_default_route_clear;
173 
174 	ipa->setup_complete = true;
175 
176 	dev_info(dev, "IPA driver setup completed successfully\n");
177 
178 	return 0;
179 
180 err_default_route_clear:
181 	ipa_endpoint_default_route_clear(ipa);
182 	ipa_endpoint_disable_one(exception_endpoint);
183 err_command_disable:
184 	ipa_endpoint_disable_one(command_endpoint);
185 err_endpoint_teardown:
186 	ipa_endpoint_teardown(ipa);
187 	(void)device_init_wakeup(dev, false);
188 err_uc_teardown:
189 	ipa_uc_teardown(ipa);
190 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
191 	ipa_interrupt_teardown(ipa->interrupt);
192 err_gsi_teardown:
193 	gsi_teardown(&ipa->gsi);
194 
195 	return ret;
196 }
197 
198 /**
199  * ipa_teardown() - Inverse of ipa_setup()
200  * @ipa:	IPA pointer
201  */
202 static void ipa_teardown(struct ipa *ipa)
203 {
204 	struct ipa_endpoint *exception_endpoint;
205 	struct ipa_endpoint *command_endpoint;
206 
207 	ipa_modem_teardown(ipa);
208 	ipa_endpoint_default_route_clear(ipa);
209 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
210 	ipa_endpoint_disable_one(exception_endpoint);
211 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
212 	ipa_endpoint_disable_one(command_endpoint);
213 	ipa_endpoint_teardown(ipa);
214 	(void)device_init_wakeup(&ipa->pdev->dev, false);
215 	ipa_uc_teardown(ipa);
216 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
217 	ipa_interrupt_teardown(ipa->interrupt);
218 	gsi_teardown(&ipa->gsi);
219 }
220 
221 /* Configure bus access behavior for IPA components */
222 static void ipa_hardware_config_comp(struct ipa *ipa)
223 {
224 	u32 val;
225 
226 	/* Nothing to configure prior to IPA v4.0 */
227 	if (ipa->version < IPA_VERSION_4_0)
228 		return;
229 
230 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
231 
232 	if (ipa->version == IPA_VERSION_4_0) {
233 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
234 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
235 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
236 	} else if (ipa->version < IPA_VERSION_4_5) {
237 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
238 	} else {
239 		/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
240 	}
241 
242 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
243 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
244 
245 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
246 }
247 
248 /* Configure DDR and (possibly) PCIe max read/write QSB values */
249 static void
250 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
251 {
252 	const struct ipa_qsb_data *data0;
253 	const struct ipa_qsb_data *data1;
254 	u32 val;
255 
256 	/* assert(data->qsb_count > 0); */
257 	/* assert(data->qsb_count < 3); */
258 
259 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
260 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
261 	if (data->qsb_count > 1)
262 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
263 
264 	/* Max outstanding write accesses for QSB masters */
265 	val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
266 	if (data->qsb_count > 1)
267 		val |= u32_encode_bits(data1->max_writes,
268 				       GEN_QMB_1_MAX_WRITES_FMASK);
269 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
270 
271 	/* Max outstanding read accesses for QSB masters */
272 	val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
273 	if (ipa->version >= IPA_VERSION_4_0)
274 		val |= u32_encode_bits(data0->max_reads_beats,
275 				       GEN_QMB_0_MAX_READS_BEATS_FMASK);
276 	if (data->qsb_count > 1) {
277 		val |= u32_encode_bits(data1->max_reads,
278 				       GEN_QMB_1_MAX_READS_FMASK);
279 		if (ipa->version >= IPA_VERSION_4_0)
280 			val |= u32_encode_bits(data1->max_reads_beats,
281 					       GEN_QMB_1_MAX_READS_BEATS_FMASK);
282 	}
283 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
284 }
285 
286 /* The internal inactivity timer clock is used for the aggregation timer */
287 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
288 
289 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
290  * field to represent the given number of microseconds.  The value is one
291  * less than the number of timer ticks in the requested period.  0 is not
292  * a valid granularity value.
293  */
294 static u32 ipa_aggr_granularity_val(u32 usec)
295 {
296 	/* assert(usec != 0); */
297 
298 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
299 }
300 
301 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
302  * timestamps and timers independent of the IPA core clock rate.  The
303  * Qtimer is based on a 56-bit timestamp incremented at each tick of
304  * a 19.2 MHz SoC crystal oscillator (XO clock).
305  *
306  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
307  * timestamp is achieved by shifting the Qtimer timestamp value right
308  * some number of bits to produce the low-order bits of the coarser
309  * granularity timestamp.
310  *
311  * For timers, a common timer clock is derived from the XO clock using
312  * a divider (we use 192, to produce a 100kHz timer clock).  From
313  * this common clock, three "pulse generators" are used to produce
314  * timer ticks at a configurable frequency.  IPA timers (such as
315  * those used for aggregation or head-of-line block handling) now
316  * define their period based on one of these pulse generators.
317  */
318 static void ipa_qtime_config(struct ipa *ipa)
319 {
320 	u32 val;
321 
322 	/* Timer clock divider must be disabled when we change the rate */
323 	iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
324 
325 	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
326 	val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
327 	val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
328 	/* Configure tag and NAT Qtime timestamp resolution as well */
329 	val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
330 	val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
331 	iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
332 
333 	/* Set granularity of pulse generators used for other timers */
334 	val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
335 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
336 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
337 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
338 
339 	/* Actual divider is 1 more than value supplied here */
340 	val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
341 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
342 
343 	/* Divider value is set; re-enable the common timer clock divider */
344 	val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
345 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
346 }
347 
348 static void ipa_idle_indication_cfg(struct ipa *ipa,
349 				    u32 enter_idle_debounce_thresh,
350 				    bool const_non_idle_enable)
351 {
352 	u32 offset;
353 	u32 val;
354 
355 	val = u32_encode_bits(enter_idle_debounce_thresh,
356 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
357 	if (const_non_idle_enable)
358 		val |= CONST_NON_IDLE_ENABLE_FMASK;
359 
360 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
361 	iowrite32(val, ipa->reg_virt + offset);
362 }
363 
364 /**
365  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
366  * @ipa:	IPA pointer
367  *
368  * Configures when the IPA signals it is idle to the global clock
369  * controller, which can respond by scalling down the clock to
370  * save power.
371  */
372 static void ipa_hardware_dcd_config(struct ipa *ipa)
373 {
374 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
375 	ipa_idle_indication_cfg(ipa, 256, false);
376 }
377 
378 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
379 {
380 	/* Power-on reset values */
381 	ipa_idle_indication_cfg(ipa, 0, true);
382 }
383 
384 /**
385  * ipa_hardware_config() - Primitive hardware initialization
386  * @ipa:	IPA pointer
387  * @data:	IPA configuration data
388  */
389 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
390 {
391 	enum ipa_version version = ipa->version;
392 	u32 granularity;
393 	u32 val;
394 
395 	/* IPA v4.5+ has no backward compatibility register */
396 	if (version < IPA_VERSION_4_5) {
397 		val = data->backward_compat;
398 		iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
399 	}
400 
401 	/* Implement some hardware workarounds */
402 	if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
403 		/* Disable PA mask to allow HOLB drop */
404 		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
405 		val &= ~PA_MASK_EN_FMASK;
406 		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
407 
408 		/* Enable open global clocks in the CLKON configuration */
409 		val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
410 	} else if (version == IPA_VERSION_3_1) {
411 		val = MISC_FMASK;	/* Disable MISC clock gating */
412 	} else {
413 		val = 0;		/* No CLKON configuration needed */
414 	}
415 	if (val)
416 		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
417 
418 	ipa_hardware_config_comp(ipa);
419 
420 	/* Configure system bus limits */
421 	ipa_hardware_config_qsb(ipa, data);
422 
423 	if (version < IPA_VERSION_4_5) {
424 		/* Configure aggregation timer granularity */
425 		granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
426 		val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
427 		iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
428 	} else {
429 		ipa_qtime_config(ipa);
430 	}
431 
432 	/* IPA v4.2 does not support hashed tables, so disable them */
433 	if (version == IPA_VERSION_4_2) {
434 		u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
435 
436 		iowrite32(0, ipa->reg_virt + offset);
437 	}
438 
439 	/* Enable dynamic clock division */
440 	ipa_hardware_dcd_config(ipa);
441 }
442 
443 /**
444  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
445  * @ipa:	IPA pointer
446  *
447  * This restores the power-on reset values (even if they aren't different)
448  */
449 static void ipa_hardware_deconfig(struct ipa *ipa)
450 {
451 	/* Mostly we just leave things as we set them. */
452 	ipa_hardware_dcd_deconfig(ipa);
453 }
454 
455 /**
456  * ipa_config() - Configure IPA hardware
457  * @ipa:	IPA pointer
458  * @data:	IPA configuration data
459  *
460  * Perform initialization requiring IPA clock to be enabled.
461  */
462 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
463 {
464 	int ret;
465 
466 	/* Get a clock reference to allow initialization.  This reference
467 	 * is held after initialization completes, and won't get dropped
468 	 * unless/until a system suspend request arrives.
469 	 */
470 	ipa_clock_get(ipa);
471 
472 	ipa_hardware_config(ipa, data);
473 
474 	ret = ipa_endpoint_config(ipa);
475 	if (ret)
476 		goto err_hardware_deconfig;
477 
478 	ret = ipa_mem_config(ipa);
479 	if (ret)
480 		goto err_endpoint_deconfig;
481 
482 	ipa_table_config(ipa);		/* No deconfig required */
483 
484 	/* Assign resource limitation to each group; no deconfig required */
485 	ret = ipa_resource_config(ipa, data->resource_data);
486 	if (ret)
487 		goto err_mem_deconfig;
488 
489 	ret = ipa_modem_config(ipa);
490 	if (ret)
491 		goto err_mem_deconfig;
492 
493 	return 0;
494 
495 err_mem_deconfig:
496 	ipa_mem_deconfig(ipa);
497 err_endpoint_deconfig:
498 	ipa_endpoint_deconfig(ipa);
499 err_hardware_deconfig:
500 	ipa_hardware_deconfig(ipa);
501 	ipa_clock_put(ipa);
502 
503 	return ret;
504 }
505 
506 /**
507  * ipa_deconfig() - Inverse of ipa_config()
508  * @ipa:	IPA pointer
509  */
510 static void ipa_deconfig(struct ipa *ipa)
511 {
512 	ipa_modem_deconfig(ipa);
513 	ipa_mem_deconfig(ipa);
514 	ipa_endpoint_deconfig(ipa);
515 	ipa_hardware_deconfig(ipa);
516 	ipa_clock_put(ipa);
517 }
518 
519 static int ipa_firmware_load(struct device *dev)
520 {
521 	const struct firmware *fw;
522 	struct device_node *node;
523 	struct resource res;
524 	phys_addr_t phys;
525 	const char *path;
526 	ssize_t size;
527 	void *virt;
528 	int ret;
529 
530 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
531 	if (!node) {
532 		dev_err(dev, "DT error getting \"memory-region\" property\n");
533 		return -EINVAL;
534 	}
535 
536 	ret = of_address_to_resource(node, 0, &res);
537 	of_node_put(node);
538 	if (ret) {
539 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
540 			ret);
541 		return ret;
542 	}
543 
544 	/* Use name from DTB if specified; use default for *any* error */
545 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
546 	if (ret) {
547 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
548 			ret);
549 		path = IPA_FW_PATH_DEFAULT;
550 	}
551 
552 	ret = request_firmware(&fw, path, dev);
553 	if (ret) {
554 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
555 		return ret;
556 	}
557 
558 	phys = res.start;
559 	size = (size_t)resource_size(&res);
560 	virt = memremap(phys, size, MEMREMAP_WC);
561 	if (!virt) {
562 		dev_err(dev, "unable to remap firmware memory\n");
563 		ret = -ENOMEM;
564 		goto out_release_firmware;
565 	}
566 
567 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
568 	if (ret)
569 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
570 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
571 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
572 
573 	memunmap(virt);
574 out_release_firmware:
575 	release_firmware(fw);
576 
577 	return ret;
578 }
579 
580 static const struct of_device_id ipa_match[] = {
581 	{
582 		.compatible	= "qcom,msm8998-ipa",
583 		.data		= &ipa_data_v3_1,
584 	},
585 	{
586 		.compatible	= "qcom,sdm845-ipa",
587 		.data		= &ipa_data_v3_5_1,
588 	},
589 	{
590 		.compatible	= "qcom,sc7180-ipa",
591 		.data		= &ipa_data_v4_2,
592 	},
593 	{
594 		.compatible	= "qcom,sdx55-ipa",
595 		.data		= &ipa_data_v4_5,
596 	},
597 	{
598 		.compatible	= "qcom,sm8350-ipa",
599 		.data		= &ipa_data_v4_9,
600 	},
601 	{
602 		.compatible	= "qcom,sc7280-ipa",
603 		.data		= &ipa_data_v4_11,
604 	},
605 	{ },
606 };
607 MODULE_DEVICE_TABLE(of, ipa_match);
608 
609 /* Check things that can be validated at build time.  This just
610  * groups these things BUILD_BUG_ON() calls don't clutter the rest
611  * of the code.
612  * */
613 static void ipa_validate_build(void)
614 {
615 #ifdef IPA_VALIDATE
616 	/* At one time we assumed a 64-bit build, allowing some do_div()
617 	 * calls to be replaced by simple division or modulo operations.
618 	 * We currently only perform divide and modulo operations on u32,
619 	 * u16, or size_t objects, and of those only size_t has any chance
620 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
621 	 * on a 32-bit build, but there is no harm in verifying that.)
622 	 */
623 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
624 
625 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
626 	BUILD_BUG_ON(GSI_EE_AP != 0);
627 
628 	/* There's no point if we have no channels or event rings */
629 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
630 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
631 
632 	/* GSI hardware design limits */
633 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
634 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
635 
636 	/* The number of TREs in a transaction is limited by the channel's
637 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
638 	 * to represents the number of TREs it has allocated and used.
639 	 */
640 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
641 
642 	/* This is used as a divisor */
643 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
644 
645 	/* Aggregation granularity value can't be 0, and must fit */
646 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
647 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
648 			field_max(AGGR_GRANULARITY_FMASK));
649 #endif /* IPA_VALIDATE */
650 }
651 
652 static bool ipa_version_valid(enum ipa_version version)
653 {
654 	switch (version) {
655 	case IPA_VERSION_3_0:
656 	case IPA_VERSION_3_1:
657 	case IPA_VERSION_3_5:
658 	case IPA_VERSION_3_5_1:
659 	case IPA_VERSION_4_0:
660 	case IPA_VERSION_4_1:
661 	case IPA_VERSION_4_2:
662 	case IPA_VERSION_4_5:
663 	case IPA_VERSION_4_7:
664 	case IPA_VERSION_4_9:
665 	case IPA_VERSION_4_11:
666 		return true;
667 
668 	default:
669 		return false;
670 	}
671 }
672 
673 /**
674  * ipa_probe() - IPA platform driver probe function
675  * @pdev:	Platform device pointer
676  *
677  * Return:	0 if successful, or a negative error code (possibly
678  *		EPROBE_DEFER)
679  *
680  * This is the main entry point for the IPA driver.  Initialization proceeds
681  * in several stages:
682  *   - The "init" stage involves activities that can be initialized without
683  *     access to the IPA hardware.
684  *   - The "config" stage requires the IPA clock to be active so IPA registers
685  *     can be accessed, but does not require the use of IPA immediate commands.
686  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
687  *     layer to be initialized.
688  *
689  * A Boolean Device Tree "modem-init" property determines whether GSI
690  * initialization will be performed by the AP (Trust Zone) or the modem.
691  * If the AP does GSI initialization, the setup phase is entered after
692  * this has completed successfully.  Otherwise the modem initializes
693  * the GSI layer and signals it has finished by sending an SMP2P interrupt
694  * to the AP; this triggers the start if IPA setup.
695  */
696 static int ipa_probe(struct platform_device *pdev)
697 {
698 	struct device *dev = &pdev->dev;
699 	const struct ipa_data *data;
700 	struct ipa_clock *clock;
701 	bool modem_init;
702 	struct ipa *ipa;
703 	int ret;
704 
705 	ipa_validate_build();
706 
707 	/* Get configuration data early; needed for clock initialization */
708 	data = of_device_get_match_data(dev);
709 	if (!data) {
710 		dev_err(dev, "matched hardware not supported\n");
711 		return -ENODEV;
712 	}
713 
714 	if (!ipa_version_valid(data->version)) {
715 		dev_err(dev, "invalid IPA version\n");
716 		return -EINVAL;
717 	}
718 
719 	/* If we need Trust Zone, make sure it's available */
720 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
721 	if (!modem_init)
722 		if (!qcom_scm_is_available())
723 			return -EPROBE_DEFER;
724 
725 	/* The clock and interconnects might not be ready when we're
726 	 * probed, so might return -EPROBE_DEFER.
727 	 */
728 	clock = ipa_clock_init(dev, data->clock_data);
729 	if (IS_ERR(clock))
730 		return PTR_ERR(clock);
731 
732 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
733 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
734 	if (!ipa) {
735 		ret = -ENOMEM;
736 		goto err_clock_exit;
737 	}
738 
739 	ipa->pdev = pdev;
740 	dev_set_drvdata(dev, ipa);
741 	ipa->clock = clock;
742 	ipa->version = data->version;
743 	init_completion(&ipa->completion);
744 
745 	ret = ipa_reg_init(ipa);
746 	if (ret)
747 		goto err_kfree_ipa;
748 
749 	ret = ipa_mem_init(ipa, data->mem_data);
750 	if (ret)
751 		goto err_reg_exit;
752 
753 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
754 		       data->endpoint_data);
755 	if (ret)
756 		goto err_mem_exit;
757 
758 	/* Result is a non-zero mask of endpoints that support filtering */
759 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
760 					    data->endpoint_data);
761 	if (!ipa->filter_map) {
762 		ret = -EINVAL;
763 		goto err_gsi_exit;
764 	}
765 
766 	ret = ipa_table_init(ipa);
767 	if (ret)
768 		goto err_endpoint_exit;
769 
770 	ret = ipa_modem_init(ipa, modem_init);
771 	if (ret)
772 		goto err_table_exit;
773 
774 	ret = ipa_config(ipa, data);
775 	if (ret)
776 		goto err_modem_exit;
777 
778 	dev_info(dev, "IPA driver initialized");
779 
780 	/* If the modem is doing early initialization, it will trigger a
781 	 * call to ipa_setup() call when it has finished.  In that case
782 	 * we're done here.
783 	 */
784 	if (modem_init)
785 		return 0;
786 
787 	/* Otherwise we need to load the firmware and have Trust Zone validate
788 	 * and install it.  If that succeeds we can proceed with setup.
789 	 */
790 	ret = ipa_firmware_load(dev);
791 	if (ret)
792 		goto err_deconfig;
793 
794 	ret = ipa_setup(ipa);
795 	if (ret)
796 		goto err_deconfig;
797 
798 	return 0;
799 
800 err_deconfig:
801 	ipa_deconfig(ipa);
802 err_modem_exit:
803 	ipa_modem_exit(ipa);
804 err_table_exit:
805 	ipa_table_exit(ipa);
806 err_endpoint_exit:
807 	ipa_endpoint_exit(ipa);
808 err_gsi_exit:
809 	gsi_exit(&ipa->gsi);
810 err_mem_exit:
811 	ipa_mem_exit(ipa);
812 err_reg_exit:
813 	ipa_reg_exit(ipa);
814 err_kfree_ipa:
815 	kfree(ipa);
816 err_clock_exit:
817 	ipa_clock_exit(clock);
818 
819 	return ret;
820 }
821 
822 static int ipa_remove(struct platform_device *pdev)
823 {
824 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
825 	struct ipa_clock *clock = ipa->clock;
826 	int ret;
827 
828 	if (ipa->setup_complete) {
829 		ret = ipa_modem_stop(ipa);
830 		/* If starting or stopping is in progress, try once more */
831 		if (ret == -EBUSY) {
832 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
833 			ret = ipa_modem_stop(ipa);
834 		}
835 		if (ret)
836 			return ret;
837 
838 		ipa_teardown(ipa);
839 	}
840 
841 	ipa_deconfig(ipa);
842 	ipa_modem_exit(ipa);
843 	ipa_table_exit(ipa);
844 	ipa_endpoint_exit(ipa);
845 	gsi_exit(&ipa->gsi);
846 	ipa_mem_exit(ipa);
847 	ipa_reg_exit(ipa);
848 	kfree(ipa);
849 	ipa_clock_exit(clock);
850 
851 	return 0;
852 }
853 
854 static void ipa_shutdown(struct platform_device *pdev)
855 {
856 	int ret;
857 
858 	ret = ipa_remove(pdev);
859 	if (ret)
860 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
861 }
862 
863 /**
864  * ipa_suspend() - Power management system suspend callback
865  * @dev:	IPA device structure
866  *
867  * Return:	Always returns zero
868  *
869  * Called by the PM framework when a system suspend operation is invoked.
870  * Suspends endpoints and releases the clock reference held to keep
871  * the IPA clock running until this point.
872  */
873 static int ipa_suspend(struct device *dev)
874 {
875 	struct ipa *ipa = dev_get_drvdata(dev);
876 
877 	/* When a suspended RX endpoint has a packet ready to receive, we
878 	 * get an IPA SUSPEND interrupt.  We trigger a system resume in
879 	 * that case, but only on the first such interrupt since suspend.
880 	 */
881 	__clear_bit(IPA_FLAG_RESUMED, ipa->flags);
882 
883 	ipa_endpoint_suspend(ipa);
884 
885 	ipa_clock_put(ipa);
886 
887 	return 0;
888 }
889 
890 /**
891  * ipa_resume() - Power management system resume callback
892  * @dev:	IPA device structure
893  *
894  * Return:	Always returns 0
895  *
896  * Called by the PM framework when a system resume operation is invoked.
897  * Takes an IPA clock reference to keep the clock running until suspend,
898  * and resumes endpoints.
899  */
900 static int ipa_resume(struct device *dev)
901 {
902 	struct ipa *ipa = dev_get_drvdata(dev);
903 
904 	/* This clock reference will keep the IPA out of suspend
905 	 * until we get a power management suspend request.
906 	 */
907 	ipa_clock_get(ipa);
908 
909 	ipa_endpoint_resume(ipa);
910 
911 	return 0;
912 }
913 
914 static const struct dev_pm_ops ipa_pm_ops = {
915 	.suspend	= ipa_suspend,
916 	.resume		= ipa_resume,
917 };
918 
919 static const struct attribute_group *ipa_attribute_groups[] = {
920 	&ipa_attribute_group,
921 	&ipa_feature_attribute_group,
922 	&ipa_modem_attribute_group,
923 	NULL,
924 };
925 
926 static struct platform_driver ipa_driver = {
927 	.probe		= ipa_probe,
928 	.remove		= ipa_remove,
929 	.shutdown	= ipa_shutdown,
930 	.driver	= {
931 		.name		= "ipa",
932 		.pm		= &ipa_pm_ops,
933 		.of_match_table	= ipa_match,
934 		.dev_groups	= ipa_attribute_groups,
935 	},
936 };
937 
938 module_platform_driver(ipa_driver);
939 
940 MODULE_LICENSE("GPL v2");
941 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
942