1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/qcom_scm.h> 19 #include <linux/soc/qcom/mdt_loader.h> 20 21 #include "ipa.h" 22 #include "ipa_clock.h" 23 #include "ipa_data.h" 24 #include "ipa_endpoint.h" 25 #include "ipa_resource.h" 26 #include "ipa_cmd.h" 27 #include "ipa_reg.h" 28 #include "ipa_mem.h" 29 #include "ipa_table.h" 30 #include "ipa_modem.h" 31 #include "ipa_uc.h" 32 #include "ipa_interrupt.h" 33 #include "gsi_trans.h" 34 35 /** 36 * DOC: The IP Accelerator 37 * 38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 39 * networking component found in many Qualcomm SoCs. The IPA is connected 40 * to the application processor (AP), but is also connected (and partially 41 * controlled by) other "execution environments" (EEs), such as a modem. 42 * 43 * The IPA is the conduit between the AP and the modem that carries network 44 * traffic. This driver presents a network interface representing the 45 * connection of the modem to external (e.g. LTE) networks. 46 * 47 * The IPA provides protocol checksum calculation, offloading this work 48 * from the AP. The IPA offers additional functionality, including routing, 49 * filtering, and NAT support, but that more advanced functionality is not 50 * currently supported. Despite that, some resources--including routing 51 * tables and filter tables--are defined in this driver because they must 52 * be initialized even when the advanced hardware features are not used. 53 * 54 * There are two distinct layers that implement the IPA hardware, and this 55 * is reflected in the organization of the driver. The generic software 56 * interface (GSI) is an integral component of the IPA, providing a 57 * well-defined communication layer between the AP subsystem and the IPA 58 * core. The GSI implements a set of "channels" used for communication 59 * between the AP and the IPA. 60 * 61 * The IPA layer uses GSI channels to implement its "endpoints". And while 62 * a GSI channel carries data between the AP and the IPA, a pair of IPA 63 * endpoints is used to carry traffic between two EEs. Specifically, the main 64 * modem network interface is implemented by two pairs of endpoints: a TX 65 * endpoint on the AP coupled with an RX endpoint on the modem; and another 66 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 67 */ 68 69 /* The name of the GSI firmware file relative to /lib/firmware */ 70 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 71 #define IPA_PAS_ID 15 72 73 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 74 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 75 #define TAG_TIMESTAMP_SHIFT 14 76 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 77 78 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 79 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 80 81 /** 82 * ipa_suspend_handler() - Handle the suspend IPA interrupt 83 * @ipa: IPA pointer 84 * @irq_id: IPA interrupt type (unused) 85 * 86 * If an RX endpoint is in suspend state, and the IPA has a packet 87 * destined for that endpoint, the IPA generates a SUSPEND interrupt 88 * to inform the AP that it should resume the endpoint. If we get 89 * one of these interrupts we just resume everything. 90 */ 91 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 92 { 93 /* Just report the event, and let system resume handle the rest. 94 * More than one endpoint could signal this; if so, ignore 95 * all but the first. 96 */ 97 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) 98 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); 99 100 /* Acknowledge/clear the suspend interrupt on all endpoints */ 101 ipa_interrupt_suspend_clear_all(ipa->interrupt); 102 } 103 104 /** 105 * ipa_setup() - Set up IPA hardware 106 * @ipa: IPA pointer 107 * 108 * Perform initialization that requires issuing immediate commands on 109 * the command TX endpoint. If the modem is doing GSI firmware load 110 * and initialization, this function will be called when an SMP2P 111 * interrupt has been signaled by the modem. Otherwise it will be 112 * called from ipa_probe() after GSI firmware has been successfully 113 * loaded, authenticated, and started by Trust Zone. 114 */ 115 int ipa_setup(struct ipa *ipa) 116 { 117 struct ipa_endpoint *exception_endpoint; 118 struct ipa_endpoint *command_endpoint; 119 struct device *dev = &ipa->pdev->dev; 120 int ret; 121 122 ret = gsi_setup(&ipa->gsi); 123 if (ret) 124 return ret; 125 126 ipa->interrupt = ipa_interrupt_setup(ipa); 127 if (IS_ERR(ipa->interrupt)) { 128 ret = PTR_ERR(ipa->interrupt); 129 goto err_gsi_teardown; 130 } 131 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 132 ipa_suspend_handler); 133 134 ipa_uc_setup(ipa); 135 136 ret = device_init_wakeup(dev, true); 137 if (ret) 138 goto err_uc_teardown; 139 140 ipa_endpoint_setup(ipa); 141 142 /* We need to use the AP command TX endpoint to perform other 143 * initialization, so we enable first. 144 */ 145 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 146 ret = ipa_endpoint_enable_one(command_endpoint); 147 if (ret) 148 goto err_endpoint_teardown; 149 150 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 151 if (ret) 152 goto err_command_disable; 153 154 ret = ipa_table_setup(ipa); /* No matching teardown required */ 155 if (ret) 156 goto err_command_disable; 157 158 /* Enable the exception handling endpoint, and tell the hardware 159 * to use it by default. 160 */ 161 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 162 ret = ipa_endpoint_enable_one(exception_endpoint); 163 if (ret) 164 goto err_command_disable; 165 166 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 167 168 /* We're all set. Now prepare for communication with the modem */ 169 ret = ipa_modem_setup(ipa); 170 if (ret) 171 goto err_default_route_clear; 172 173 ipa->setup_complete = true; 174 175 dev_info(dev, "IPA driver setup completed successfully\n"); 176 177 return 0; 178 179 err_default_route_clear: 180 ipa_endpoint_default_route_clear(ipa); 181 ipa_endpoint_disable_one(exception_endpoint); 182 err_command_disable: 183 ipa_endpoint_disable_one(command_endpoint); 184 err_endpoint_teardown: 185 ipa_endpoint_teardown(ipa); 186 (void)device_init_wakeup(dev, false); 187 err_uc_teardown: 188 ipa_uc_teardown(ipa); 189 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 190 ipa_interrupt_teardown(ipa->interrupt); 191 err_gsi_teardown: 192 gsi_teardown(&ipa->gsi); 193 194 return ret; 195 } 196 197 /** 198 * ipa_teardown() - Inverse of ipa_setup() 199 * @ipa: IPA pointer 200 */ 201 static void ipa_teardown(struct ipa *ipa) 202 { 203 struct ipa_endpoint *exception_endpoint; 204 struct ipa_endpoint *command_endpoint; 205 206 ipa_modem_teardown(ipa); 207 ipa_endpoint_default_route_clear(ipa); 208 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 209 ipa_endpoint_disable_one(exception_endpoint); 210 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 211 ipa_endpoint_disable_one(command_endpoint); 212 ipa_endpoint_teardown(ipa); 213 (void)device_init_wakeup(&ipa->pdev->dev, false); 214 ipa_uc_teardown(ipa); 215 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 216 ipa_interrupt_teardown(ipa->interrupt); 217 gsi_teardown(&ipa->gsi); 218 } 219 220 /* Configure bus access behavior for IPA components */ 221 static void ipa_hardware_config_comp(struct ipa *ipa) 222 { 223 u32 val; 224 225 /* Nothing to configure prior to IPA v4.0 */ 226 if (ipa->version < IPA_VERSION_4_0) 227 return; 228 229 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 230 231 if (ipa->version == IPA_VERSION_4_0) { 232 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 233 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 234 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 235 } else if (ipa->version < IPA_VERSION_4_5) { 236 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 237 } else { 238 /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */ 239 } 240 241 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 242 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 243 244 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 245 } 246 247 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 248 static void 249 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 250 { 251 const struct ipa_qsb_data *data0; 252 const struct ipa_qsb_data *data1; 253 u32 val; 254 255 /* assert(data->qsb_count > 0); */ 256 /* assert(data->qsb_count < 3); */ 257 258 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 259 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 260 if (data->qsb_count > 1) 261 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 262 263 /* Max outstanding write accesses for QSB masters */ 264 val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK); 265 if (data->qsb_count > 1) 266 val |= u32_encode_bits(data1->max_writes, 267 GEN_QMB_1_MAX_WRITES_FMASK); 268 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 269 270 /* Max outstanding read accesses for QSB masters */ 271 val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK); 272 if (ipa->version >= IPA_VERSION_4_0) 273 val |= u32_encode_bits(data0->max_reads_beats, 274 GEN_QMB_0_MAX_READS_BEATS_FMASK); 275 if (data->qsb_count > 1) { 276 val |= u32_encode_bits(data1->max_reads, 277 GEN_QMB_1_MAX_READS_FMASK); 278 if (ipa->version >= IPA_VERSION_4_0) 279 val |= u32_encode_bits(data1->max_reads_beats, 280 GEN_QMB_1_MAX_READS_BEATS_FMASK); 281 } 282 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 283 } 284 285 /* The internal inactivity timer clock is used for the aggregation timer */ 286 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 287 288 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 289 * field to represent the given number of microseconds. The value is one 290 * less than the number of timer ticks in the requested period. 0 is not 291 * a valid granularity value. 292 */ 293 static u32 ipa_aggr_granularity_val(u32 usec) 294 { 295 /* assert(usec != 0); */ 296 297 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 298 } 299 300 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 301 * timestamps and timers independent of the IPA core clock rate. The 302 * Qtimer is based on a 56-bit timestamp incremented at each tick of 303 * a 19.2 MHz SoC crystal oscillator (XO clock). 304 * 305 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 306 * timestamp is achieved by shifting the Qtimer timestamp value right 307 * some number of bits to produce the low-order bits of the coarser 308 * granularity timestamp. 309 * 310 * For timers, a common timer clock is derived from the XO clock using 311 * a divider (we use 192, to produce a 100kHz timer clock). From 312 * this common clock, three "pulse generators" are used to produce 313 * timer ticks at a configurable frequency. IPA timers (such as 314 * those used for aggregation or head-of-line block handling) now 315 * define their period based on one of these pulse generators. 316 */ 317 static void ipa_qtime_config(struct ipa *ipa) 318 { 319 u32 val; 320 321 /* Timer clock divider must be disabled when we change the rate */ 322 iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 323 324 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 325 val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK); 326 val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK); 327 /* Configure tag and NAT Qtime timestamp resolution as well */ 328 val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK); 329 val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK); 330 iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET); 331 332 /* Set granularity of pulse generators used for other timers */ 333 val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK); 334 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK); 335 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK); 336 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET); 337 338 /* Actual divider is 1 more than value supplied here */ 339 val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK); 340 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 341 342 /* Divider value is set; re-enable the common timer clock divider */ 343 val |= u32_encode_bits(1, DIV_ENABLE_FMASK); 344 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 345 } 346 347 static void ipa_idle_indication_cfg(struct ipa *ipa, 348 u32 enter_idle_debounce_thresh, 349 bool const_non_idle_enable) 350 { 351 u32 offset; 352 u32 val; 353 354 val = u32_encode_bits(enter_idle_debounce_thresh, 355 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 356 if (const_non_idle_enable) 357 val |= CONST_NON_IDLE_ENABLE_FMASK; 358 359 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 360 iowrite32(val, ipa->reg_virt + offset); 361 } 362 363 /** 364 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 365 * @ipa: IPA pointer 366 * 367 * Configures when the IPA signals it is idle to the global clock 368 * controller, which can respond by scalling down the clock to 369 * save power. 370 */ 371 static void ipa_hardware_dcd_config(struct ipa *ipa) 372 { 373 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 374 ipa_idle_indication_cfg(ipa, 256, false); 375 } 376 377 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 378 { 379 /* Power-on reset values */ 380 ipa_idle_indication_cfg(ipa, 0, true); 381 } 382 383 /** 384 * ipa_hardware_config() - Primitive hardware initialization 385 * @ipa: IPA pointer 386 * @data: IPA configuration data 387 */ 388 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 389 { 390 enum ipa_version version = ipa->version; 391 u32 granularity; 392 u32 val; 393 394 /* IPA v4.5+ has no backward compatibility register */ 395 if (version < IPA_VERSION_4_5) { 396 val = data->backward_compat; 397 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 398 } 399 400 /* Implement some hardware workarounds */ 401 if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) { 402 /* Enable open global clocks (not needed for IPA v4.5) */ 403 val = GLOBAL_FMASK; 404 val |= GLOBAL_2X_CLK_FMASK; 405 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 406 407 /* Disable PA mask to allow HOLB drop */ 408 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 409 val &= ~PA_MASK_EN_FMASK; 410 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 411 } 412 413 ipa_hardware_config_comp(ipa); 414 415 /* Configure system bus limits */ 416 ipa_hardware_config_qsb(ipa, data); 417 418 if (version < IPA_VERSION_4_5) { 419 /* Configure aggregation timer granularity */ 420 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 421 val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); 422 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 423 } else { 424 ipa_qtime_config(ipa); 425 } 426 427 /* IPA v4.2 does not support hashed tables, so disable them */ 428 if (version == IPA_VERSION_4_2) { 429 u32 offset = ipa_reg_filt_rout_hash_en_offset(version); 430 431 iowrite32(0, ipa->reg_virt + offset); 432 } 433 434 /* Enable dynamic clock division */ 435 ipa_hardware_dcd_config(ipa); 436 } 437 438 /** 439 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 440 * @ipa: IPA pointer 441 * 442 * This restores the power-on reset values (even if they aren't different) 443 */ 444 static void ipa_hardware_deconfig(struct ipa *ipa) 445 { 446 /* Mostly we just leave things as we set them. */ 447 ipa_hardware_dcd_deconfig(ipa); 448 } 449 450 /** 451 * ipa_config() - Configure IPA hardware 452 * @ipa: IPA pointer 453 * @data: IPA configuration data 454 * 455 * Perform initialization requiring IPA clock to be enabled. 456 */ 457 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 458 { 459 int ret; 460 461 /* Get a clock reference to allow initialization. This reference 462 * is held after initialization completes, and won't get dropped 463 * unless/until a system suspend request arrives. 464 */ 465 ipa_clock_get(ipa); 466 467 ipa_hardware_config(ipa, data); 468 469 ret = ipa_endpoint_config(ipa); 470 if (ret) 471 goto err_hardware_deconfig; 472 473 ret = ipa_mem_config(ipa); 474 if (ret) 475 goto err_endpoint_deconfig; 476 477 ipa_table_config(ipa); /* No deconfig required */ 478 479 /* Assign resource limitation to each group; no deconfig required */ 480 ret = ipa_resource_config(ipa, data->resource_data); 481 if (ret) 482 goto err_mem_deconfig; 483 484 ret = ipa_modem_config(ipa); 485 if (ret) 486 goto err_mem_deconfig; 487 488 return 0; 489 490 err_mem_deconfig: 491 ipa_mem_deconfig(ipa); 492 err_endpoint_deconfig: 493 ipa_endpoint_deconfig(ipa); 494 err_hardware_deconfig: 495 ipa_hardware_deconfig(ipa); 496 ipa_clock_put(ipa); 497 498 return ret; 499 } 500 501 /** 502 * ipa_deconfig() - Inverse of ipa_config() 503 * @ipa: IPA pointer 504 */ 505 static void ipa_deconfig(struct ipa *ipa) 506 { 507 ipa_modem_deconfig(ipa); 508 ipa_mem_deconfig(ipa); 509 ipa_endpoint_deconfig(ipa); 510 ipa_hardware_deconfig(ipa); 511 ipa_clock_put(ipa); 512 } 513 514 static int ipa_firmware_load(struct device *dev) 515 { 516 const struct firmware *fw; 517 struct device_node *node; 518 struct resource res; 519 phys_addr_t phys; 520 const char *path; 521 ssize_t size; 522 void *virt; 523 int ret; 524 525 node = of_parse_phandle(dev->of_node, "memory-region", 0); 526 if (!node) { 527 dev_err(dev, "DT error getting \"memory-region\" property\n"); 528 return -EINVAL; 529 } 530 531 ret = of_address_to_resource(node, 0, &res); 532 if (ret) { 533 dev_err(dev, "error %d getting \"memory-region\" resource\n", 534 ret); 535 return ret; 536 } 537 538 /* Use name from DTB if specified; use default for *any* error */ 539 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 540 if (ret) { 541 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 542 ret); 543 path = IPA_FW_PATH_DEFAULT; 544 } 545 546 ret = request_firmware(&fw, path, dev); 547 if (ret) { 548 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 549 return ret; 550 } 551 552 phys = res.start; 553 size = (size_t)resource_size(&res); 554 virt = memremap(phys, size, MEMREMAP_WC); 555 if (!virt) { 556 dev_err(dev, "unable to remap firmware memory\n"); 557 ret = -ENOMEM; 558 goto out_release_firmware; 559 } 560 561 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 562 if (ret) 563 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 564 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 565 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 566 567 memunmap(virt); 568 out_release_firmware: 569 release_firmware(fw); 570 571 return ret; 572 } 573 574 static const struct of_device_id ipa_match[] = { 575 { 576 .compatible = "qcom,sdm845-ipa", 577 .data = &ipa_data_v3_5_1, 578 }, 579 { 580 .compatible = "qcom,sc7180-ipa", 581 .data = &ipa_data_v4_2, 582 }, 583 { 584 .compatible = "qcom,sdx55-ipa", 585 .data = &ipa_data_v4_5, 586 }, 587 { 588 .compatible = "qcom,sm8350-ipa", 589 .data = &ipa_data_v4_9, 590 }, 591 { 592 .compatible = "qcom,sc7280-ipa", 593 .data = &ipa_data_v4_11, 594 }, 595 { }, 596 }; 597 MODULE_DEVICE_TABLE(of, ipa_match); 598 599 /* Check things that can be validated at build time. This just 600 * groups these things BUILD_BUG_ON() calls don't clutter the rest 601 * of the code. 602 * */ 603 static void ipa_validate_build(void) 604 { 605 #ifdef IPA_VALIDATE 606 /* At one time we assumed a 64-bit build, allowing some do_div() 607 * calls to be replaced by simple division or modulo operations. 608 * We currently only perform divide and modulo operations on u32, 609 * u16, or size_t objects, and of those only size_t has any chance 610 * of being a 64-bit value. (It should be guaranteed 32 bits wide 611 * on a 32-bit build, but there is no harm in verifying that.) 612 */ 613 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 614 615 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 616 BUILD_BUG_ON(GSI_EE_AP != 0); 617 618 /* There's no point if we have no channels or event rings */ 619 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 620 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 621 622 /* GSI hardware design limits */ 623 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 624 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 625 626 /* The number of TREs in a transaction is limited by the channel's 627 * TLV FIFO size. A transaction structure uses 8-bit fields 628 * to represents the number of TREs it has allocated and used. 629 */ 630 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 631 632 /* This is used as a divisor */ 633 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 634 635 /* Aggregation granularity value can't be 0, and must fit */ 636 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 637 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 638 field_max(AGGR_GRANULARITY_FMASK)); 639 #endif /* IPA_VALIDATE */ 640 } 641 642 /** 643 * ipa_probe() - IPA platform driver probe function 644 * @pdev: Platform device pointer 645 * 646 * Return: 0 if successful, or a negative error code (possibly 647 * EPROBE_DEFER) 648 * 649 * This is the main entry point for the IPA driver. Initialization proceeds 650 * in several stages: 651 * - The "init" stage involves activities that can be initialized without 652 * access to the IPA hardware. 653 * - The "config" stage requires the IPA clock to be active so IPA registers 654 * can be accessed, but does not require the use of IPA immediate commands. 655 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 656 * layer to be initialized. 657 * 658 * A Boolean Device Tree "modem-init" property determines whether GSI 659 * initialization will be performed by the AP (Trust Zone) or the modem. 660 * If the AP does GSI initialization, the setup phase is entered after 661 * this has completed successfully. Otherwise the modem initializes 662 * the GSI layer and signals it has finished by sending an SMP2P interrupt 663 * to the AP; this triggers the start if IPA setup. 664 */ 665 static int ipa_probe(struct platform_device *pdev) 666 { 667 struct device *dev = &pdev->dev; 668 const struct ipa_data *data; 669 struct ipa_clock *clock; 670 bool modem_init; 671 struct ipa *ipa; 672 int ret; 673 674 ipa_validate_build(); 675 676 /* Get configuration data early; needed for clock initialization */ 677 data = of_device_get_match_data(dev); 678 if (!data) { 679 /* This is really IPA_VALIDATE (should never happen) */ 680 dev_err(dev, "matched hardware not supported\n"); 681 return -ENODEV; 682 } 683 684 /* If we need Trust Zone, make sure it's available */ 685 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 686 if (!modem_init) 687 if (!qcom_scm_is_available()) 688 return -EPROBE_DEFER; 689 690 /* The clock and interconnects might not be ready when we're 691 * probed, so might return -EPROBE_DEFER. 692 */ 693 clock = ipa_clock_init(dev, data->clock_data); 694 if (IS_ERR(clock)) 695 return PTR_ERR(clock); 696 697 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 698 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 699 if (!ipa) { 700 ret = -ENOMEM; 701 goto err_clock_exit; 702 } 703 704 ipa->pdev = pdev; 705 dev_set_drvdata(dev, ipa); 706 ipa->clock = clock; 707 ipa->version = data->version; 708 init_completion(&ipa->completion); 709 710 ret = ipa_reg_init(ipa); 711 if (ret) 712 goto err_kfree_ipa; 713 714 ret = ipa_mem_init(ipa, data->mem_data); 715 if (ret) 716 goto err_reg_exit; 717 718 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 719 data->endpoint_data); 720 if (ret) 721 goto err_mem_exit; 722 723 /* Result is a non-zero mask of endpoints that support filtering */ 724 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 725 data->endpoint_data); 726 if (!ipa->filter_map) { 727 ret = -EINVAL; 728 goto err_gsi_exit; 729 } 730 731 ret = ipa_table_init(ipa); 732 if (ret) 733 goto err_endpoint_exit; 734 735 ret = ipa_modem_init(ipa, modem_init); 736 if (ret) 737 goto err_table_exit; 738 739 ret = ipa_config(ipa, data); 740 if (ret) 741 goto err_modem_exit; 742 743 dev_info(dev, "IPA driver initialized"); 744 745 /* If the modem is doing early initialization, it will trigger a 746 * call to ipa_setup() call when it has finished. In that case 747 * we're done here. 748 */ 749 if (modem_init) 750 return 0; 751 752 /* Otherwise we need to load the firmware and have Trust Zone validate 753 * and install it. If that succeeds we can proceed with setup. 754 */ 755 ret = ipa_firmware_load(dev); 756 if (ret) 757 goto err_deconfig; 758 759 ret = ipa_setup(ipa); 760 if (ret) 761 goto err_deconfig; 762 763 return 0; 764 765 err_deconfig: 766 ipa_deconfig(ipa); 767 err_modem_exit: 768 ipa_modem_exit(ipa); 769 err_table_exit: 770 ipa_table_exit(ipa); 771 err_endpoint_exit: 772 ipa_endpoint_exit(ipa); 773 err_gsi_exit: 774 gsi_exit(&ipa->gsi); 775 err_mem_exit: 776 ipa_mem_exit(ipa); 777 err_reg_exit: 778 ipa_reg_exit(ipa); 779 err_kfree_ipa: 780 kfree(ipa); 781 err_clock_exit: 782 ipa_clock_exit(clock); 783 784 return ret; 785 } 786 787 static int ipa_remove(struct platform_device *pdev) 788 { 789 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 790 struct ipa_clock *clock = ipa->clock; 791 int ret; 792 793 if (ipa->setup_complete) { 794 ret = ipa_modem_stop(ipa); 795 /* If starting or stopping is in progress, try once more */ 796 if (ret == -EBUSY) { 797 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 798 ret = ipa_modem_stop(ipa); 799 } 800 if (ret) 801 return ret; 802 803 ipa_teardown(ipa); 804 } 805 806 ipa_deconfig(ipa); 807 ipa_modem_exit(ipa); 808 ipa_table_exit(ipa); 809 ipa_endpoint_exit(ipa); 810 gsi_exit(&ipa->gsi); 811 ipa_mem_exit(ipa); 812 ipa_reg_exit(ipa); 813 kfree(ipa); 814 ipa_clock_exit(clock); 815 816 return 0; 817 } 818 819 static void ipa_shutdown(struct platform_device *pdev) 820 { 821 int ret; 822 823 ret = ipa_remove(pdev); 824 if (ret) 825 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 826 } 827 828 /** 829 * ipa_suspend() - Power management system suspend callback 830 * @dev: IPA device structure 831 * 832 * Return: Always returns zero 833 * 834 * Called by the PM framework when a system suspend operation is invoked. 835 * Suspends endpoints and releases the clock reference held to keep 836 * the IPA clock running until this point. 837 */ 838 static int ipa_suspend(struct device *dev) 839 { 840 struct ipa *ipa = dev_get_drvdata(dev); 841 842 /* When a suspended RX endpoint has a packet ready to receive, we 843 * get an IPA SUSPEND interrupt. We trigger a system resume in 844 * that case, but only on the first such interrupt since suspend. 845 */ 846 __clear_bit(IPA_FLAG_RESUMED, ipa->flags); 847 848 ipa_endpoint_suspend(ipa); 849 850 ipa_clock_put(ipa); 851 852 return 0; 853 } 854 855 /** 856 * ipa_resume() - Power management system resume callback 857 * @dev: IPA device structure 858 * 859 * Return: Always returns 0 860 * 861 * Called by the PM framework when a system resume operation is invoked. 862 * Takes an IPA clock reference to keep the clock running until suspend, 863 * and resumes endpoints. 864 */ 865 static int ipa_resume(struct device *dev) 866 { 867 struct ipa *ipa = dev_get_drvdata(dev); 868 869 /* This clock reference will keep the IPA out of suspend 870 * until we get a power management suspend request. 871 */ 872 ipa_clock_get(ipa); 873 874 ipa_endpoint_resume(ipa); 875 876 return 0; 877 } 878 879 static const struct dev_pm_ops ipa_pm_ops = { 880 .suspend = ipa_suspend, 881 .resume = ipa_resume, 882 }; 883 884 static struct platform_driver ipa_driver = { 885 .probe = ipa_probe, 886 .remove = ipa_remove, 887 .shutdown = ipa_shutdown, 888 .driver = { 889 .name = "ipa", 890 .pm = &ipa_pm_ops, 891 .of_match_table = ipa_match, 892 }, 893 }; 894 895 module_platform_driver(ipa_driver); 896 897 MODULE_LICENSE("GPL v2"); 898 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 899