1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/remoteproc.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_clock.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_cmd.h" 27 #include "ipa_reg.h" 28 #include "ipa_mem.h" 29 #include "ipa_table.h" 30 #include "ipa_modem.h" 31 #include "ipa_uc.h" 32 #include "ipa_interrupt.h" 33 #include "gsi_trans.h" 34 35 /** 36 * DOC: The IP Accelerator 37 * 38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 39 * networking component found in many Qualcomm SoCs. The IPA is connected 40 * to the application processor (AP), but is also connected (and partially 41 * controlled by) other "execution environments" (EEs), such as a modem. 42 * 43 * The IPA is the conduit between the AP and the modem that carries network 44 * traffic. This driver presents a network interface representing the 45 * connection of the modem to external (e.g. LTE) networks. 46 * 47 * The IPA provides protocol checksum calculation, offloading this work 48 * from the AP. The IPA offers additional functionality, including routing, 49 * filtering, and NAT support, but that more advanced functionality is not 50 * currently supported. Despite that, some resources--including routing 51 * tables and filter tables--are defined in this driver because they must 52 * be initialized even when the advanced hardware features are not used. 53 * 54 * There are two distinct layers that implement the IPA hardware, and this 55 * is reflected in the organization of the driver. The generic software 56 * interface (GSI) is an integral component of the IPA, providing a 57 * well-defined communication layer between the AP subsystem and the IPA 58 * core. The GSI implements a set of "channels" used for communication 59 * between the AP and the IPA. 60 * 61 * The IPA layer uses GSI channels to implement its "endpoints". And while 62 * a GSI channel carries data between the AP and the IPA, a pair of IPA 63 * endpoints is used to carry traffic between two EEs. Specifically, the main 64 * modem network interface is implemented by two pairs of endpoints: a TX 65 * endpoint on the AP coupled with an RX endpoint on the modem; and another 66 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 67 */ 68 69 /* The name of the GSI firmware file relative to /lib/firmware */ 70 #define IPA_FWS_PATH "ipa_fws.mdt" 71 #define IPA_PAS_ID 15 72 73 /** 74 * ipa_suspend_handler() - Handle the suspend IPA interrupt 75 * @ipa: IPA pointer 76 * @irq_id: IPA interrupt type (unused) 77 * 78 * When in suspended state, the IPA can trigger a resume by sending a SUSPEND 79 * IPA interrupt. 80 */ 81 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 82 { 83 /* Take a a single clock reference to prevent suspend. All 84 * endpoints will be resumed as a result. This reference will 85 * be dropped when we get a power management suspend request. 86 */ 87 if (!atomic_xchg(&ipa->suspend_ref, 1)) 88 ipa_clock_get(ipa); 89 90 /* Acknowledge/clear the suspend interrupt on all endpoints */ 91 ipa_interrupt_suspend_clear_all(ipa->interrupt); 92 } 93 94 /** 95 * ipa_setup() - Set up IPA hardware 96 * @ipa: IPA pointer 97 * 98 * Perform initialization that requires issuing immediate commands on 99 * the command TX endpoint. If the modem is doing GSI firmware load 100 * and initialization, this function will be called when an SMP2P 101 * interrupt has been signaled by the modem. Otherwise it will be 102 * called from ipa_probe() after GSI firmware has been successfully 103 * loaded, authenticated, and started by Trust Zone. 104 */ 105 int ipa_setup(struct ipa *ipa) 106 { 107 struct ipa_endpoint *exception_endpoint; 108 struct ipa_endpoint *command_endpoint; 109 int ret; 110 111 /* IPA v4.0 and above don't use the doorbell engine. */ 112 ret = gsi_setup(&ipa->gsi, ipa->version == IPA_VERSION_3_5_1); 113 if (ret) 114 return ret; 115 116 ipa->interrupt = ipa_interrupt_setup(ipa); 117 if (IS_ERR(ipa->interrupt)) { 118 ret = PTR_ERR(ipa->interrupt); 119 goto err_gsi_teardown; 120 } 121 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 122 ipa_suspend_handler); 123 124 ipa_uc_setup(ipa); 125 126 ipa_endpoint_setup(ipa); 127 128 /* We need to use the AP command TX endpoint to perform other 129 * initialization, so we enable first. 130 */ 131 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 132 ret = ipa_endpoint_enable_one(command_endpoint); 133 if (ret) 134 goto err_endpoint_teardown; 135 136 ret = ipa_mem_setup(ipa); 137 if (ret) 138 goto err_command_disable; 139 140 ret = ipa_table_setup(ipa); 141 if (ret) 142 goto err_mem_teardown; 143 144 /* Enable the exception handling endpoint, and tell the hardware 145 * to use it by default. 146 */ 147 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 148 ret = ipa_endpoint_enable_one(exception_endpoint); 149 if (ret) 150 goto err_table_teardown; 151 152 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 153 154 /* We're all set. Now prepare for communication with the modem */ 155 ret = ipa_modem_setup(ipa); 156 if (ret) 157 goto err_default_route_clear; 158 159 ipa->setup_complete = true; 160 161 dev_info(&ipa->pdev->dev, "IPA driver setup completed successfully\n"); 162 163 return 0; 164 165 err_default_route_clear: 166 ipa_endpoint_default_route_clear(ipa); 167 ipa_endpoint_disable_one(exception_endpoint); 168 err_table_teardown: 169 ipa_table_teardown(ipa); 170 err_mem_teardown: 171 ipa_mem_teardown(ipa); 172 err_command_disable: 173 ipa_endpoint_disable_one(command_endpoint); 174 err_endpoint_teardown: 175 ipa_endpoint_teardown(ipa); 176 ipa_uc_teardown(ipa); 177 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 178 ipa_interrupt_teardown(ipa->interrupt); 179 err_gsi_teardown: 180 gsi_teardown(&ipa->gsi); 181 182 return ret; 183 } 184 185 /** 186 * ipa_teardown() - Inverse of ipa_setup() 187 * @ipa: IPA pointer 188 */ 189 static void ipa_teardown(struct ipa *ipa) 190 { 191 struct ipa_endpoint *exception_endpoint; 192 struct ipa_endpoint *command_endpoint; 193 194 ipa_modem_teardown(ipa); 195 ipa_endpoint_default_route_clear(ipa); 196 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 197 ipa_endpoint_disable_one(exception_endpoint); 198 ipa_table_teardown(ipa); 199 ipa_mem_teardown(ipa); 200 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 201 ipa_endpoint_disable_one(command_endpoint); 202 ipa_endpoint_teardown(ipa); 203 ipa_uc_teardown(ipa); 204 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 205 ipa_interrupt_teardown(ipa->interrupt); 206 gsi_teardown(&ipa->gsi); 207 } 208 209 /* Configure QMB Core Master Port selection */ 210 static void ipa_hardware_config_comp(struct ipa *ipa) 211 { 212 u32 val; 213 214 /* Nothing to configure for IPA v3.5.1 */ 215 if (ipa->version == IPA_VERSION_3_5_1) 216 return; 217 218 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 219 220 if (ipa->version == IPA_VERSION_4_0) { 221 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 222 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 223 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 224 } else { 225 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 226 } 227 228 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 229 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 230 231 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 232 } 233 234 /* Configure DDR and PCIe max read/write QSB values */ 235 static void ipa_hardware_config_qsb(struct ipa *ipa) 236 { 237 u32 val; 238 239 /* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */ 240 val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK); 241 if (ipa->version == IPA_VERSION_4_2) 242 val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK); 243 else 244 val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK); 245 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 246 247 if (ipa->version == IPA_VERSION_3_5_1) { 248 val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK); 249 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); 250 } else { 251 val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK); 252 if (ipa->version == IPA_VERSION_4_2) 253 val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK); 254 else 255 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); 256 /* GEN_QMB_0_MAX_READS_BEATS is 0 */ 257 /* GEN_QMB_1_MAX_READS_BEATS is 0 */ 258 } 259 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 260 } 261 262 static void ipa_idle_indication_cfg(struct ipa *ipa, 263 u32 enter_idle_debounce_thresh, 264 bool const_non_idle_enable) 265 { 266 u32 offset; 267 u32 val; 268 269 val = u32_encode_bits(enter_idle_debounce_thresh, 270 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 271 if (const_non_idle_enable) 272 val |= CONST_NON_IDLE_ENABLE_FMASK; 273 274 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 275 iowrite32(val, ipa->reg_virt + offset); 276 } 277 278 /** 279 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 280 * 281 * Configures when the IPA signals it is idle to the global clock 282 * controller, which can respond by scalling down the clock to 283 * save power. 284 */ 285 static void ipa_hardware_dcd_config(struct ipa *ipa) 286 { 287 /* Recommended values for IPA 3.5 according to IPA HPG */ 288 ipa_idle_indication_cfg(ipa, 256, false); 289 } 290 291 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 292 { 293 /* Power-on reset values */ 294 ipa_idle_indication_cfg(ipa, 0, true); 295 } 296 297 /** 298 * ipa_hardware_config() - Primitive hardware initialization 299 * @ipa: IPA pointer 300 */ 301 static void ipa_hardware_config(struct ipa *ipa) 302 { 303 u32 granularity; 304 u32 val; 305 306 /* Fill in backward-compatibility register, based on version */ 307 val = ipa_reg_bcr_val(ipa->version); 308 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 309 310 if (ipa->version != IPA_VERSION_3_5_1) { 311 /* Enable open global clocks (hardware workaround) */ 312 val = GLOBAL_FMASK; 313 val |= GLOBAL_2X_CLK_FMASK; 314 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 315 316 /* Disable PA mask to allow HOLB drop (hardware workaround) */ 317 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 318 val &= ~PA_MASK_EN; 319 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 320 } 321 322 ipa_hardware_config_comp(ipa); 323 324 /* Configure system bus limits */ 325 ipa_hardware_config_qsb(ipa); 326 327 /* Configure aggregation granularity */ 328 val = ioread32(ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 329 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 330 val = u32_encode_bits(granularity, AGGR_GRANULARITY); 331 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 332 333 /* Disable hashed IPv4 and IPv6 routing and filtering for IPA v4.2 */ 334 if (ipa->version == IPA_VERSION_4_2) 335 iowrite32(0, ipa->reg_virt + IPA_REG_FILT_ROUT_HASH_EN_OFFSET); 336 337 /* Enable dynamic clock division */ 338 ipa_hardware_dcd_config(ipa); 339 } 340 341 /** 342 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 343 * @ipa: IPA pointer 344 * 345 * This restores the power-on reset values (even if they aren't different) 346 */ 347 static void ipa_hardware_deconfig(struct ipa *ipa) 348 { 349 /* Mostly we just leave things as we set them. */ 350 ipa_hardware_dcd_deconfig(ipa); 351 } 352 353 #ifdef IPA_VALIDATION 354 355 /* # IPA resources used based on version (see IPA_RESOURCE_GROUP_COUNT) */ 356 static int ipa_resource_group_count(struct ipa *ipa) 357 { 358 switch (ipa->version) { 359 case IPA_VERSION_3_5_1: 360 return 3; 361 362 case IPA_VERSION_4_0: 363 case IPA_VERSION_4_1: 364 return 4; 365 366 case IPA_VERSION_4_2: 367 return 1; 368 369 default: 370 return 0; 371 } 372 } 373 374 static bool ipa_resource_limits_valid(struct ipa *ipa, 375 const struct ipa_resource_data *data) 376 { 377 u32 group_count = ipa_resource_group_count(ipa); 378 u32 i; 379 u32 j; 380 381 if (!group_count) 382 return false; 383 384 /* Return an error if a non-zero resource group limit is specified 385 * for a resource not supported by hardware. 386 */ 387 for (i = 0; i < data->resource_src_count; i++) { 388 const struct ipa_resource_src *resource; 389 390 resource = &data->resource_src[i]; 391 for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++) 392 if (resource->limits[j].min || resource->limits[j].max) 393 return false; 394 } 395 396 for (i = 0; i < data->resource_dst_count; i++) { 397 const struct ipa_resource_dst *resource; 398 399 resource = &data->resource_dst[i]; 400 for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++) 401 if (resource->limits[j].min || resource->limits[j].max) 402 return false; 403 } 404 405 return true; 406 } 407 408 #else /* !IPA_VALIDATION */ 409 410 static bool ipa_resource_limits_valid(struct ipa *ipa, 411 const struct ipa_resource_data *data) 412 { 413 return true; 414 } 415 416 #endif /* !IPA_VALIDATION */ 417 418 static void 419 ipa_resource_config_common(struct ipa *ipa, u32 offset, 420 const struct ipa_resource_limits *xlimits, 421 const struct ipa_resource_limits *ylimits) 422 { 423 u32 val; 424 425 val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK); 426 val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK); 427 val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK); 428 val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK); 429 430 iowrite32(val, ipa->reg_virt + offset); 431 } 432 433 static void ipa_resource_config_src_01(struct ipa *ipa, 434 const struct ipa_resource_src *resource) 435 { 436 u32 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 437 438 ipa_resource_config_common(ipa, offset, 439 &resource->limits[0], &resource->limits[1]); 440 } 441 442 static void ipa_resource_config_src_23(struct ipa *ipa, 443 const struct ipa_resource_src *resource) 444 { 445 u32 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 446 447 ipa_resource_config_common(ipa, offset, 448 &resource->limits[2], &resource->limits[3]); 449 } 450 451 static void ipa_resource_config_dst_01(struct ipa *ipa, 452 const struct ipa_resource_dst *resource) 453 { 454 u32 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 455 456 ipa_resource_config_common(ipa, offset, 457 &resource->limits[0], &resource->limits[1]); 458 } 459 460 static void ipa_resource_config_dst_23(struct ipa *ipa, 461 const struct ipa_resource_dst *resource) 462 { 463 u32 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 464 465 ipa_resource_config_common(ipa, offset, 466 &resource->limits[2], &resource->limits[3]); 467 } 468 469 static int 470 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data) 471 { 472 u32 i; 473 474 if (!ipa_resource_limits_valid(ipa, data)) 475 return -EINVAL; 476 477 for (i = 0; i < data->resource_src_count; i++) { 478 ipa_resource_config_src_01(ipa, &data->resource_src[i]); 479 ipa_resource_config_src_23(ipa, &data->resource_src[i]); 480 } 481 482 for (i = 0; i < data->resource_dst_count; i++) { 483 ipa_resource_config_dst_01(ipa, &data->resource_dst[i]); 484 ipa_resource_config_dst_23(ipa, &data->resource_dst[i]); 485 } 486 487 return 0; 488 } 489 490 static void ipa_resource_deconfig(struct ipa *ipa) 491 { 492 /* Nothing to do */ 493 } 494 495 /** 496 * ipa_config() - Configure IPA hardware 497 * @ipa: IPA pointer 498 * 499 * Perform initialization requiring IPA clock to be enabled. 500 */ 501 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 502 { 503 int ret; 504 505 /* Get a clock reference to allow initialization. This reference 506 * is held after initialization completes, and won't get dropped 507 * unless/until a system suspend request arrives. 508 */ 509 atomic_set(&ipa->suspend_ref, 1); 510 ipa_clock_get(ipa); 511 512 ipa_hardware_config(ipa); 513 514 ret = ipa_endpoint_config(ipa); 515 if (ret) 516 goto err_hardware_deconfig; 517 518 ret = ipa_mem_config(ipa); 519 if (ret) 520 goto err_endpoint_deconfig; 521 522 ipa_table_config(ipa); 523 524 /* Assign resource limitation to each group */ 525 ret = ipa_resource_config(ipa, data->resource_data); 526 if (ret) 527 goto err_table_deconfig; 528 529 ret = ipa_modem_config(ipa); 530 if (ret) 531 goto err_resource_deconfig; 532 533 return 0; 534 535 err_resource_deconfig: 536 ipa_resource_deconfig(ipa); 537 err_table_deconfig: 538 ipa_table_deconfig(ipa); 539 ipa_mem_deconfig(ipa); 540 err_endpoint_deconfig: 541 ipa_endpoint_deconfig(ipa); 542 err_hardware_deconfig: 543 ipa_hardware_deconfig(ipa); 544 ipa_clock_put(ipa); 545 atomic_set(&ipa->suspend_ref, 0); 546 547 return ret; 548 } 549 550 /** 551 * ipa_deconfig() - Inverse of ipa_config() 552 * @ipa: IPA pointer 553 */ 554 static void ipa_deconfig(struct ipa *ipa) 555 { 556 ipa_modem_deconfig(ipa); 557 ipa_resource_deconfig(ipa); 558 ipa_table_deconfig(ipa); 559 ipa_mem_deconfig(ipa); 560 ipa_endpoint_deconfig(ipa); 561 ipa_hardware_deconfig(ipa); 562 ipa_clock_put(ipa); 563 atomic_set(&ipa->suspend_ref, 0); 564 } 565 566 static int ipa_firmware_load(struct device *dev) 567 { 568 const struct firmware *fw; 569 struct device_node *node; 570 struct resource res; 571 phys_addr_t phys; 572 ssize_t size; 573 void *virt; 574 int ret; 575 576 node = of_parse_phandle(dev->of_node, "memory-region", 0); 577 if (!node) { 578 dev_err(dev, "DT error getting \"memory-region\" property\n"); 579 return -EINVAL; 580 } 581 582 ret = of_address_to_resource(node, 0, &res); 583 if (ret) { 584 dev_err(dev, "error %d getting \"memory-region\" resource\n", 585 ret); 586 return ret; 587 } 588 589 ret = request_firmware(&fw, IPA_FWS_PATH, dev); 590 if (ret) { 591 dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH); 592 return ret; 593 } 594 595 phys = res.start; 596 size = (size_t)resource_size(&res); 597 virt = memremap(phys, size, MEMREMAP_WC); 598 if (!virt) { 599 dev_err(dev, "unable to remap firmware memory\n"); 600 ret = -ENOMEM; 601 goto out_release_firmware; 602 } 603 604 ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID, 605 virt, phys, size, NULL); 606 if (ret) 607 dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH); 608 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 609 dev_err(dev, "error %d authenticating \"%s\"\n", ret, 610 IPA_FWS_PATH); 611 612 memunmap(virt); 613 out_release_firmware: 614 release_firmware(fw); 615 616 return ret; 617 } 618 619 static const struct of_device_id ipa_match[] = { 620 { 621 .compatible = "qcom,sdm845-ipa", 622 .data = &ipa_data_sdm845, 623 }, 624 { 625 .compatible = "qcom,sc7180-ipa", 626 .data = &ipa_data_sc7180, 627 }, 628 { }, 629 }; 630 MODULE_DEVICE_TABLE(of, ipa_match); 631 632 static phandle of_property_read_phandle(const struct device_node *np, 633 const char *name) 634 { 635 struct property *prop; 636 int len = 0; 637 638 prop = of_find_property(np, name, &len); 639 if (!prop || len != sizeof(__be32)) 640 return 0; 641 642 return be32_to_cpup(prop->value); 643 } 644 645 /* Check things that can be validated at build time. This just 646 * groups these things BUILD_BUG_ON() calls don't clutter the rest 647 * of the code. 648 * */ 649 static void ipa_validate_build(void) 650 { 651 #ifdef IPA_VALIDATE 652 /* We assume we're working on 64-bit hardware */ 653 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT)); 654 655 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 656 BUILD_BUG_ON(GSI_EE_AP != 0); 657 658 /* There's no point if we have no channels or event rings */ 659 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 660 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 661 662 /* GSI hardware design limits */ 663 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 664 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 665 666 /* The number of TREs in a transaction is limited by the channel's 667 * TLV FIFO size. A transaction structure uses 8-bit fields 668 * to represents the number of TREs it has allocated and used. 669 */ 670 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 671 672 /* Exceeding 128 bytes makes the transaction pool *much* larger */ 673 BUILD_BUG_ON(sizeof(struct gsi_trans) > 128); 674 675 /* This is used as a divisor */ 676 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 677 #endif /* IPA_VALIDATE */ 678 } 679 680 /** 681 * ipa_probe() - IPA platform driver probe function 682 * @pdev: Platform device pointer 683 * 684 * @Return: 0 if successful, or a negative error code (possibly 685 * EPROBE_DEFER) 686 * 687 * This is the main entry point for the IPA driver. Initialization proceeds 688 * in several stages: 689 * - The "init" stage involves activities that can be initialized without 690 * access to the IPA hardware. 691 * - The "config" stage requires the IPA clock to be active so IPA registers 692 * can be accessed, but does not require the use of IPA immediate commands. 693 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 694 * layer to be initialized. 695 * 696 * A Boolean Device Tree "modem-init" property determines whether GSI 697 * initialization will be performed by the AP (Trust Zone) or the modem. 698 * If the AP does GSI initialization, the setup phase is entered after 699 * this has completed successfully. Otherwise the modem initializes 700 * the GSI layer and signals it has finished by sending an SMP2P interrupt 701 * to the AP; this triggers the start if IPA setup. 702 */ 703 static int ipa_probe(struct platform_device *pdev) 704 { 705 struct wakeup_source *wakeup_source; 706 struct device *dev = &pdev->dev; 707 const struct ipa_data *data; 708 struct ipa_clock *clock; 709 struct rproc *rproc; 710 bool modem_alloc; 711 bool modem_init; 712 struct ipa *ipa; 713 phandle phandle; 714 bool prefetch; 715 int ret; 716 717 ipa_validate_build(); 718 719 /* If we need Trust Zone, make sure it's available */ 720 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 721 if (!modem_init) 722 if (!qcom_scm_is_available()) 723 return -EPROBE_DEFER; 724 725 /* We rely on remoteproc to tell us about modem state changes */ 726 phandle = of_property_read_phandle(dev->of_node, "modem-remoteproc"); 727 if (!phandle) { 728 dev_err(dev, "DT missing \"modem-remoteproc\" property\n"); 729 return -EINVAL; 730 } 731 732 rproc = rproc_get_by_phandle(phandle); 733 if (!rproc) 734 return -EPROBE_DEFER; 735 736 /* The clock and interconnects might not be ready when we're 737 * probed, so might return -EPROBE_DEFER. 738 */ 739 clock = ipa_clock_init(dev); 740 if (IS_ERR(clock)) { 741 ret = PTR_ERR(clock); 742 goto err_rproc_put; 743 } 744 745 /* No more EPROBE_DEFER. Get our configuration data */ 746 data = of_device_get_match_data(dev); 747 if (!data) { 748 /* This is really IPA_VALIDATE (should never happen) */ 749 dev_err(dev, "matched hardware not supported\n"); 750 ret = -ENOTSUPP; 751 goto err_clock_exit; 752 } 753 754 /* Create a wakeup source. */ 755 wakeup_source = wakeup_source_register(dev, "ipa"); 756 if (!wakeup_source) { 757 /* The most likely reason for failure is memory exhaustion */ 758 ret = -ENOMEM; 759 goto err_clock_exit; 760 } 761 762 /* Allocate and initialize the IPA structure */ 763 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 764 if (!ipa) { 765 ret = -ENOMEM; 766 goto err_wakeup_source_unregister; 767 } 768 769 ipa->pdev = pdev; 770 dev_set_drvdata(dev, ipa); 771 ipa->modem_rproc = rproc; 772 ipa->clock = clock; 773 atomic_set(&ipa->suspend_ref, 0); 774 ipa->wakeup_source = wakeup_source; 775 ipa->version = data->version; 776 777 ret = ipa_reg_init(ipa); 778 if (ret) 779 goto err_kfree_ipa; 780 781 ret = ipa_mem_init(ipa, data->mem_count, data->mem_data); 782 if (ret) 783 goto err_reg_exit; 784 785 /* GSI v2.0+ (IPA v4.0+) uses prefetch for the command channel */ 786 prefetch = ipa->version != IPA_VERSION_3_5_1; 787 /* IPA v4.2 requires the AP to allocate channels for the modem */ 788 modem_alloc = ipa->version == IPA_VERSION_4_2; 789 790 ret = gsi_init(&ipa->gsi, pdev, prefetch, data->endpoint_count, 791 data->endpoint_data, modem_alloc); 792 if (ret) 793 goto err_mem_exit; 794 795 /* Result is a non-zero mask endpoints that support filtering */ 796 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 797 data->endpoint_data); 798 if (!ipa->filter_map) { 799 ret = -EINVAL; 800 goto err_gsi_exit; 801 } 802 803 ret = ipa_table_init(ipa); 804 if (ret) 805 goto err_endpoint_exit; 806 807 ret = ipa_modem_init(ipa, modem_init); 808 if (ret) 809 goto err_table_exit; 810 811 ret = ipa_config(ipa, data); 812 if (ret) 813 goto err_modem_exit; 814 815 dev_info(dev, "IPA driver initialized"); 816 817 /* If the modem is doing early initialization, it will trigger a 818 * call to ipa_setup() call when it has finished. In that case 819 * we're done here. 820 */ 821 if (modem_init) 822 return 0; 823 824 /* Otherwise we need to load the firmware and have Trust Zone validate 825 * and install it. If that succeeds we can proceed with setup. 826 */ 827 ret = ipa_firmware_load(dev); 828 if (ret) 829 goto err_deconfig; 830 831 ret = ipa_setup(ipa); 832 if (ret) 833 goto err_deconfig; 834 835 return 0; 836 837 err_deconfig: 838 ipa_deconfig(ipa); 839 err_modem_exit: 840 ipa_modem_exit(ipa); 841 err_table_exit: 842 ipa_table_exit(ipa); 843 err_endpoint_exit: 844 ipa_endpoint_exit(ipa); 845 err_gsi_exit: 846 gsi_exit(&ipa->gsi); 847 err_mem_exit: 848 ipa_mem_exit(ipa); 849 err_reg_exit: 850 ipa_reg_exit(ipa); 851 err_kfree_ipa: 852 kfree(ipa); 853 err_wakeup_source_unregister: 854 wakeup_source_unregister(wakeup_source); 855 err_clock_exit: 856 ipa_clock_exit(clock); 857 err_rproc_put: 858 rproc_put(rproc); 859 860 return ret; 861 } 862 863 static int ipa_remove(struct platform_device *pdev) 864 { 865 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 866 struct rproc *rproc = ipa->modem_rproc; 867 struct ipa_clock *clock = ipa->clock; 868 struct wakeup_source *wakeup_source; 869 int ret; 870 871 wakeup_source = ipa->wakeup_source; 872 873 if (ipa->setup_complete) { 874 ret = ipa_modem_stop(ipa); 875 if (ret) 876 return ret; 877 878 ipa_teardown(ipa); 879 } 880 881 ipa_deconfig(ipa); 882 ipa_modem_exit(ipa); 883 ipa_table_exit(ipa); 884 ipa_endpoint_exit(ipa); 885 gsi_exit(&ipa->gsi); 886 ipa_mem_exit(ipa); 887 ipa_reg_exit(ipa); 888 kfree(ipa); 889 wakeup_source_unregister(wakeup_source); 890 ipa_clock_exit(clock); 891 rproc_put(rproc); 892 893 return 0; 894 } 895 896 /** 897 * ipa_suspend() - Power management system suspend callback 898 * @dev: IPA device structure 899 * 900 * @Return: Zero 901 * 902 * Called by the PM framework when a system suspend operation is invoked. 903 */ 904 static int ipa_suspend(struct device *dev) 905 { 906 struct ipa *ipa = dev_get_drvdata(dev); 907 908 ipa_clock_put(ipa); 909 atomic_set(&ipa->suspend_ref, 0); 910 911 return 0; 912 } 913 914 /** 915 * ipa_resume() - Power management system resume callback 916 * @dev: IPA device structure 917 * 918 * @Return: Always returns 0 919 * 920 * Called by the PM framework when a system resume operation is invoked. 921 */ 922 static int ipa_resume(struct device *dev) 923 { 924 struct ipa *ipa = dev_get_drvdata(dev); 925 926 /* This clock reference will keep the IPA out of suspend 927 * until we get a power management suspend request. 928 */ 929 atomic_set(&ipa->suspend_ref, 1); 930 ipa_clock_get(ipa); 931 932 return 0; 933 } 934 935 static const struct dev_pm_ops ipa_pm_ops = { 936 .suspend_noirq = ipa_suspend, 937 .resume_noirq = ipa_resume, 938 }; 939 940 static struct platform_driver ipa_driver = { 941 .probe = ipa_probe, 942 .remove = ipa_remove, 943 .driver = { 944 .name = "ipa", 945 .pm = &ipa_pm_ops, 946 .of_match_table = ipa_match, 947 }, 948 }; 949 950 module_platform_driver(ipa_driver); 951 952 MODULE_LICENSE("GPL v2"); 953 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 954