1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2023 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/firmware/qcom/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_power.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_resource.h" 27 #include "ipa_cmd.h" 28 #include "ipa_reg.h" 29 #include "ipa_mem.h" 30 #include "ipa_table.h" 31 #include "ipa_smp2p.h" 32 #include "ipa_modem.h" 33 #include "ipa_uc.h" 34 #include "ipa_interrupt.h" 35 #include "gsi_trans.h" 36 #include "ipa_sysfs.h" 37 38 /** 39 * DOC: The IP Accelerator 40 * 41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 42 * networking component found in many Qualcomm SoCs. The IPA is connected 43 * to the application processor (AP), but is also connected (and partially 44 * controlled by) other "execution environments" (EEs), such as a modem. 45 * 46 * The IPA is the conduit between the AP and the modem that carries network 47 * traffic. This driver presents a network interface representing the 48 * connection of the modem to external (e.g. LTE) networks. 49 * 50 * The IPA provides protocol checksum calculation, offloading this work 51 * from the AP. The IPA offers additional functionality, including routing, 52 * filtering, and NAT support, but that more advanced functionality is not 53 * currently supported. Despite that, some resources--including routing 54 * tables and filter tables--are defined in this driver because they must 55 * be initialized even when the advanced hardware features are not used. 56 * 57 * There are two distinct layers that implement the IPA hardware, and this 58 * is reflected in the organization of the driver. The generic software 59 * interface (GSI) is an integral component of the IPA, providing a 60 * well-defined communication layer between the AP subsystem and the IPA 61 * core. The GSI implements a set of "channels" used for communication 62 * between the AP and the IPA. 63 * 64 * The IPA layer uses GSI channels to implement its "endpoints". And while 65 * a GSI channel carries data between the AP and the IPA, a pair of IPA 66 * endpoints is used to carry traffic between two EEs. Specifically, the main 67 * modem network interface is implemented by two pairs of endpoints: a TX 68 * endpoint on the AP coupled with an RX endpoint on the modem; and another 69 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 70 */ 71 72 /* The name of the GSI firmware file relative to /lib/firmware */ 73 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 74 #define IPA_PAS_ID 15 75 76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 77 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 78 #define TAG_TIMESTAMP_SHIFT 14 79 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 80 81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 82 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 83 84 /** 85 * enum ipa_firmware_loader: How GSI firmware gets loaded 86 * 87 * @IPA_LOADER_DEFER: System not ready; try again later 88 * @IPA_LOADER_SELF: AP loads GSI firmware 89 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done 90 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware 91 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid 92 */ 93 enum ipa_firmware_loader { 94 IPA_LOADER_DEFER, 95 IPA_LOADER_SELF, 96 IPA_LOADER_MODEM, 97 IPA_LOADER_SKIP, 98 IPA_LOADER_INVALID, 99 }; 100 101 /** 102 * ipa_setup() - Set up IPA hardware 103 * @ipa: IPA pointer 104 * 105 * Perform initialization that requires issuing immediate commands on 106 * the command TX endpoint. If the modem is doing GSI firmware load 107 * and initialization, this function will be called when an SMP2P 108 * interrupt has been signaled by the modem. Otherwise it will be 109 * called from ipa_probe() after GSI firmware has been successfully 110 * loaded, authenticated, and started by Trust Zone. 111 */ 112 int ipa_setup(struct ipa *ipa) 113 { 114 struct ipa_endpoint *exception_endpoint; 115 struct ipa_endpoint *command_endpoint; 116 struct device *dev = &ipa->pdev->dev; 117 int ret; 118 119 ret = gsi_setup(&ipa->gsi); 120 if (ret) 121 return ret; 122 123 ret = ipa_power_setup(ipa); 124 if (ret) 125 goto err_gsi_teardown; 126 127 ipa_endpoint_setup(ipa); 128 129 /* We need to use the AP command TX endpoint to perform other 130 * initialization, so we enable first. 131 */ 132 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 133 ret = ipa_endpoint_enable_one(command_endpoint); 134 if (ret) 135 goto err_endpoint_teardown; 136 137 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 138 if (ret) 139 goto err_command_disable; 140 141 ret = ipa_table_setup(ipa); /* No matching teardown required */ 142 if (ret) 143 goto err_command_disable; 144 145 /* Enable the exception handling endpoint, and tell the hardware 146 * to use it by default. 147 */ 148 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 149 ret = ipa_endpoint_enable_one(exception_endpoint); 150 if (ret) 151 goto err_command_disable; 152 153 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 154 155 /* We're all set. Now prepare for communication with the modem */ 156 ret = ipa_qmi_setup(ipa); 157 if (ret) 158 goto err_default_route_clear; 159 160 ipa->setup_complete = true; 161 162 dev_info(dev, "IPA driver setup completed successfully\n"); 163 164 return 0; 165 166 err_default_route_clear: 167 ipa_endpoint_default_route_clear(ipa); 168 ipa_endpoint_disable_one(exception_endpoint); 169 err_command_disable: 170 ipa_endpoint_disable_one(command_endpoint); 171 err_endpoint_teardown: 172 ipa_endpoint_teardown(ipa); 173 ipa_power_teardown(ipa); 174 err_gsi_teardown: 175 gsi_teardown(&ipa->gsi); 176 177 return ret; 178 } 179 180 /** 181 * ipa_teardown() - Inverse of ipa_setup() 182 * @ipa: IPA pointer 183 */ 184 static void ipa_teardown(struct ipa *ipa) 185 { 186 struct ipa_endpoint *exception_endpoint; 187 struct ipa_endpoint *command_endpoint; 188 189 /* We're going to tear everything down, as if setup never completed */ 190 ipa->setup_complete = false; 191 192 ipa_qmi_teardown(ipa); 193 ipa_endpoint_default_route_clear(ipa); 194 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 195 ipa_endpoint_disable_one(exception_endpoint); 196 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 197 ipa_endpoint_disable_one(command_endpoint); 198 ipa_endpoint_teardown(ipa); 199 ipa_power_teardown(ipa); 200 gsi_teardown(&ipa->gsi); 201 } 202 203 static void 204 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) 205 { 206 const struct reg *reg; 207 u32 val; 208 209 /* IPA v4.5+ has no backward compatibility register */ 210 if (ipa->version >= IPA_VERSION_4_5) 211 return; 212 213 reg = ipa_reg(ipa, IPA_BCR); 214 val = data->backward_compat; 215 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 216 } 217 218 static void ipa_hardware_config_tx(struct ipa *ipa) 219 { 220 enum ipa_version version = ipa->version; 221 const struct reg *reg; 222 u32 offset; 223 u32 val; 224 225 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) 226 return; 227 228 /* Disable PA mask to allow HOLB drop */ 229 reg = ipa_reg(ipa, IPA_TX_CFG); 230 offset = reg_offset(reg); 231 232 val = ioread32(ipa->reg_virt + offset); 233 234 val &= ~reg_bit(reg, PA_MASK_EN); 235 236 iowrite32(val, ipa->reg_virt + offset); 237 } 238 239 static void ipa_hardware_config_clkon(struct ipa *ipa) 240 { 241 enum ipa_version version = ipa->version; 242 const struct reg *reg; 243 u32 val; 244 245 if (version >= IPA_VERSION_4_5) 246 return; 247 248 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) 249 return; 250 251 /* Implement some hardware workarounds */ 252 reg = ipa_reg(ipa, CLKON_CFG); 253 if (version == IPA_VERSION_3_1) { 254 /* Disable MISC clock gating */ 255 val = reg_bit(reg, CLKON_MISC); 256 } else { /* IPA v4.0+ */ 257 /* Enable open global clocks in the CLKON configuration */ 258 val = reg_bit(reg, CLKON_GLOBAL); 259 val |= reg_bit(reg, GLOBAL_2X_CLK); 260 } 261 262 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 263 } 264 265 /* Configure bus access behavior for IPA components */ 266 static void ipa_hardware_config_comp(struct ipa *ipa) 267 { 268 const struct reg *reg; 269 u32 offset; 270 u32 val; 271 272 /* Nothing to configure prior to IPA v4.0 */ 273 if (ipa->version < IPA_VERSION_4_0) 274 return; 275 276 reg = ipa_reg(ipa, COMP_CFG); 277 offset = reg_offset(reg); 278 279 val = ioread32(ipa->reg_virt + offset); 280 281 if (ipa->version == IPA_VERSION_4_0) { 282 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN); 283 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN); 284 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); 285 } else if (ipa->version < IPA_VERSION_4_5) { 286 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); 287 } else { 288 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ 289 } 290 291 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); 292 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); 293 294 iowrite32(val, ipa->reg_virt + offset); 295 } 296 297 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 298 static void 299 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 300 { 301 const struct ipa_qsb_data *data0; 302 const struct ipa_qsb_data *data1; 303 const struct reg *reg; 304 u32 val; 305 306 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 307 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 308 if (data->qsb_count > 1) 309 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 310 311 /* Max outstanding write accesses for QSB masters */ 312 reg = ipa_reg(ipa, QSB_MAX_WRITES); 313 314 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); 315 if (data->qsb_count > 1) 316 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes); 317 318 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 319 320 /* Max outstanding read accesses for QSB masters */ 321 reg = ipa_reg(ipa, QSB_MAX_READS); 322 323 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); 324 if (ipa->version >= IPA_VERSION_4_0) 325 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, 326 data0->max_reads_beats); 327 if (data->qsb_count > 1) { 328 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads); 329 if (ipa->version >= IPA_VERSION_4_0) 330 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, 331 data1->max_reads_beats); 332 } 333 334 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 335 } 336 337 /* The internal inactivity timer clock is used for the aggregation timer */ 338 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 339 340 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 341 * field to represent the given number of microseconds. The value is one 342 * less than the number of timer ticks in the requested period. 0 is not 343 * a valid granularity value (so for example @usec must be at least 16 for 344 * a TIMER_FREQUENCY of 32000). 345 */ 346 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 347 { 348 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 349 } 350 351 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 352 * timestamps and timers independent of the IPA core clock rate. The 353 * Qtimer is based on a 56-bit timestamp incremented at each tick of 354 * a 19.2 MHz SoC crystal oscillator (XO clock). 355 * 356 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 357 * timestamp is achieved by shifting the Qtimer timestamp value right 358 * some number of bits to produce the low-order bits of the coarser 359 * granularity timestamp. 360 * 361 * For timers, a common timer clock is derived from the XO clock using 362 * a divider (we use 192, to produce a 100kHz timer clock). From 363 * this common clock, three "pulse generators" are used to produce 364 * timer ticks at a configurable frequency. IPA timers (such as 365 * those used for aggregation or head-of-line block handling) now 366 * define their period based on one of these pulse generators. 367 */ 368 static void ipa_qtime_config(struct ipa *ipa) 369 { 370 const struct reg *reg; 371 u32 offset; 372 u32 val; 373 374 /* Timer clock divider must be disabled when we change the rate */ 375 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 376 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 377 378 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); 379 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 380 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); 381 val |= reg_bit(reg, DPL_TIMESTAMP_SEL); 382 /* Configure tag and NAT Qtime timestamp resolution as well */ 383 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); 384 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); 385 386 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 387 388 /* Set granularity of pulse generators used for other timers */ 389 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); 390 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); 391 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); 392 if (ipa->version >= IPA_VERSION_5_0) { 393 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS); 394 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS); 395 } else { 396 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); 397 } 398 399 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 400 401 /* Actual divider is 1 more than value supplied here */ 402 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 403 offset = reg_offset(reg); 404 405 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); 406 407 iowrite32(val, ipa->reg_virt + offset); 408 409 /* Divider value is set; re-enable the common timer clock divider */ 410 val |= reg_bit(reg, DIV_ENABLE); 411 412 iowrite32(val, ipa->reg_virt + offset); 413 } 414 415 /* Before IPA v4.5 timing is controlled by a counter register */ 416 static void ipa_hardware_config_counter(struct ipa *ipa) 417 { 418 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 419 const struct reg *reg; 420 u32 val; 421 422 reg = ipa_reg(ipa, COUNTER_CFG); 423 /* If defined, EOT_COAL_GRANULARITY is 0 */ 424 val = reg_encode(reg, AGGR_GRANULARITY, granularity); 425 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 426 } 427 428 static void ipa_hardware_config_timing(struct ipa *ipa) 429 { 430 if (ipa->version < IPA_VERSION_4_5) 431 ipa_hardware_config_counter(ipa); 432 else 433 ipa_qtime_config(ipa); 434 } 435 436 static void ipa_hardware_config_hashing(struct ipa *ipa) 437 { 438 const struct reg *reg; 439 440 /* Other than IPA v4.2, all versions enable "hashing". Starting 441 * with IPA v5.0, the filter and router tables are implemented 442 * differently, but the default configuration enables this feature 443 * (now referred to as "cacheing"), so there's nothing to do here. 444 */ 445 if (ipa->version != IPA_VERSION_4_2) 446 return; 447 448 /* IPA v4.2 does not support hashed tables, so disable them */ 449 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); 450 451 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, 452 * IPV4_FILTER_HASH are all zero. 453 */ 454 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 455 } 456 457 static void ipa_idle_indication_cfg(struct ipa *ipa, 458 u32 enter_idle_debounce_thresh, 459 bool const_non_idle_enable) 460 { 461 const struct reg *reg; 462 u32 val; 463 464 if (ipa->version < IPA_VERSION_3_5_1) 465 return; 466 467 reg = ipa_reg(ipa, IDLE_INDICATION_CFG); 468 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, 469 enter_idle_debounce_thresh); 470 if (const_non_idle_enable) 471 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE); 472 473 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 474 } 475 476 /** 477 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 478 * @ipa: IPA pointer 479 * 480 * Configures when the IPA signals it is idle to the global clock 481 * controller, which can respond by scaling down the clock to save 482 * power. 483 */ 484 static void ipa_hardware_dcd_config(struct ipa *ipa) 485 { 486 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 487 ipa_idle_indication_cfg(ipa, 256, false); 488 } 489 490 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 491 { 492 /* Power-on reset values */ 493 ipa_idle_indication_cfg(ipa, 0, true); 494 } 495 496 /** 497 * ipa_hardware_config() - Primitive hardware initialization 498 * @ipa: IPA pointer 499 * @data: IPA configuration data 500 */ 501 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 502 { 503 ipa_hardware_config_bcr(ipa, data); 504 ipa_hardware_config_tx(ipa); 505 ipa_hardware_config_clkon(ipa); 506 ipa_hardware_config_comp(ipa); 507 ipa_hardware_config_qsb(ipa, data); 508 ipa_hardware_config_timing(ipa); 509 ipa_hardware_config_hashing(ipa); 510 ipa_hardware_dcd_config(ipa); 511 } 512 513 /** 514 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 515 * @ipa: IPA pointer 516 * 517 * This restores the power-on reset values (even if they aren't different) 518 */ 519 static void ipa_hardware_deconfig(struct ipa *ipa) 520 { 521 /* Mostly we just leave things as we set them. */ 522 ipa_hardware_dcd_deconfig(ipa); 523 } 524 525 /** 526 * ipa_config() - Configure IPA hardware 527 * @ipa: IPA pointer 528 * @data: IPA configuration data 529 * 530 * Perform initialization requiring IPA power to be enabled. 531 */ 532 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 533 { 534 int ret; 535 536 ipa_hardware_config(ipa, data); 537 538 ret = ipa_mem_config(ipa); 539 if (ret) 540 goto err_hardware_deconfig; 541 542 ipa->interrupt = ipa_interrupt_config(ipa); 543 if (IS_ERR(ipa->interrupt)) { 544 ret = PTR_ERR(ipa->interrupt); 545 ipa->interrupt = NULL; 546 goto err_mem_deconfig; 547 } 548 549 ipa_uc_config(ipa); 550 551 ret = ipa_endpoint_config(ipa); 552 if (ret) 553 goto err_uc_deconfig; 554 555 ipa_table_config(ipa); /* No deconfig required */ 556 557 /* Assign resource limitation to each group; no deconfig required */ 558 ret = ipa_resource_config(ipa, data->resource_data); 559 if (ret) 560 goto err_endpoint_deconfig; 561 562 ret = ipa_modem_config(ipa); 563 if (ret) 564 goto err_endpoint_deconfig; 565 566 return 0; 567 568 err_endpoint_deconfig: 569 ipa_endpoint_deconfig(ipa); 570 err_uc_deconfig: 571 ipa_uc_deconfig(ipa); 572 ipa_interrupt_deconfig(ipa->interrupt); 573 ipa->interrupt = NULL; 574 err_mem_deconfig: 575 ipa_mem_deconfig(ipa); 576 err_hardware_deconfig: 577 ipa_hardware_deconfig(ipa); 578 579 return ret; 580 } 581 582 /** 583 * ipa_deconfig() - Inverse of ipa_config() 584 * @ipa: IPA pointer 585 */ 586 static void ipa_deconfig(struct ipa *ipa) 587 { 588 ipa_modem_deconfig(ipa); 589 ipa_endpoint_deconfig(ipa); 590 ipa_uc_deconfig(ipa); 591 ipa_interrupt_deconfig(ipa->interrupt); 592 ipa->interrupt = NULL; 593 ipa_mem_deconfig(ipa); 594 ipa_hardware_deconfig(ipa); 595 } 596 597 static int ipa_firmware_load(struct device *dev) 598 { 599 const struct firmware *fw; 600 struct device_node *node; 601 struct resource res; 602 phys_addr_t phys; 603 const char *path; 604 ssize_t size; 605 void *virt; 606 int ret; 607 608 node = of_parse_phandle(dev->of_node, "memory-region", 0); 609 if (!node) { 610 dev_err(dev, "DT error getting \"memory-region\" property\n"); 611 return -EINVAL; 612 } 613 614 ret = of_address_to_resource(node, 0, &res); 615 of_node_put(node); 616 if (ret) { 617 dev_err(dev, "error %d getting \"memory-region\" resource\n", 618 ret); 619 return ret; 620 } 621 622 /* Use name from DTB if specified; use default for *any* error */ 623 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 624 if (ret) { 625 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 626 ret); 627 path = IPA_FW_PATH_DEFAULT; 628 } 629 630 ret = request_firmware(&fw, path, dev); 631 if (ret) { 632 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 633 return ret; 634 } 635 636 phys = res.start; 637 size = (size_t)resource_size(&res); 638 virt = memremap(phys, size, MEMREMAP_WC); 639 if (!virt) { 640 dev_err(dev, "unable to remap firmware memory\n"); 641 ret = -ENOMEM; 642 goto out_release_firmware; 643 } 644 645 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 646 if (ret) 647 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 648 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 649 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 650 651 memunmap(virt); 652 out_release_firmware: 653 release_firmware(fw); 654 655 return ret; 656 } 657 658 static const struct of_device_id ipa_match[] = { 659 { 660 .compatible = "qcom,msm8998-ipa", 661 .data = &ipa_data_v3_1, 662 }, 663 { 664 .compatible = "qcom,sdm845-ipa", 665 .data = &ipa_data_v3_5_1, 666 }, 667 { 668 .compatible = "qcom,sc7180-ipa", 669 .data = &ipa_data_v4_2, 670 }, 671 { 672 .compatible = "qcom,sdx55-ipa", 673 .data = &ipa_data_v4_5, 674 }, 675 { 676 .compatible = "qcom,sm6350-ipa", 677 .data = &ipa_data_v4_7, 678 }, 679 { 680 .compatible = "qcom,sm8350-ipa", 681 .data = &ipa_data_v4_9, 682 }, 683 { 684 .compatible = "qcom,sc7280-ipa", 685 .data = &ipa_data_v4_11, 686 }, 687 { 688 .compatible = "qcom,sdx65-ipa", 689 .data = &ipa_data_v5_0, 690 }, 691 { }, 692 }; 693 MODULE_DEVICE_TABLE(of, ipa_match); 694 695 /* Check things that can be validated at build time. This just 696 * groups these things BUILD_BUG_ON() calls don't clutter the rest 697 * of the code. 698 * */ 699 static void ipa_validate_build(void) 700 { 701 /* At one time we assumed a 64-bit build, allowing some do_div() 702 * calls to be replaced by simple division or modulo operations. 703 * We currently only perform divide and modulo operations on u32, 704 * u16, or size_t objects, and of those only size_t has any chance 705 * of being a 64-bit value. (It should be guaranteed 32 bits wide 706 * on a 32-bit build, but there is no harm in verifying that.) 707 */ 708 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 709 710 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 711 BUILD_BUG_ON(GSI_EE_AP != 0); 712 713 /* There's no point if we have no channels or event rings */ 714 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 715 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 716 717 /* GSI hardware design limits */ 718 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 719 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 720 721 /* The number of TREs in a transaction is limited by the channel's 722 * TLV FIFO size. A transaction structure uses 8-bit fields 723 * to represents the number of TREs it has allocated and used. 724 */ 725 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 726 727 /* This is used as a divisor */ 728 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 729 730 /* Aggregation granularity value can't be 0, and must fit */ 731 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 732 } 733 734 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev) 735 { 736 bool modem_init; 737 const char *str; 738 int ret; 739 740 /* Look up the old and new properties by name */ 741 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 742 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str); 743 744 /* If the new property doesn't exist, it's legacy behavior */ 745 if (ret == -EINVAL) { 746 if (modem_init) 747 return IPA_LOADER_MODEM; 748 goto out_self; 749 } 750 751 /* Any other error on the new property means it's poorly defined */ 752 if (ret) 753 return IPA_LOADER_INVALID; 754 755 /* New property value exists; if old one does too, that's invalid */ 756 if (modem_init) 757 return IPA_LOADER_INVALID; 758 759 /* Modem loads GSI firmware for "modem" */ 760 if (!strcmp(str, "modem")) 761 return IPA_LOADER_MODEM; 762 763 /* No GSI firmware load is needed for "skip" */ 764 if (!strcmp(str, "skip")) 765 return IPA_LOADER_SKIP; 766 767 /* Any value other than "self" is an error */ 768 if (strcmp(str, "self")) 769 return IPA_LOADER_INVALID; 770 out_self: 771 /* We need Trust Zone to load firmware; make sure it's available */ 772 if (qcom_scm_is_available()) 773 return IPA_LOADER_SELF; 774 775 return IPA_LOADER_DEFER; 776 } 777 778 /** 779 * ipa_probe() - IPA platform driver probe function 780 * @pdev: Platform device pointer 781 * 782 * Return: 0 if successful, or a negative error code (possibly 783 * EPROBE_DEFER) 784 * 785 * This is the main entry point for the IPA driver. Initialization proceeds 786 * in several stages: 787 * - The "init" stage involves activities that can be initialized without 788 * access to the IPA hardware. 789 * - The "config" stage requires IPA power to be active so IPA registers 790 * can be accessed, but does not require the use of IPA immediate commands. 791 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 792 * layer to be initialized. 793 * 794 * A Boolean Device Tree "modem-init" property determines whether GSI 795 * initialization will be performed by the AP (Trust Zone) or the modem. 796 * If the AP does GSI initialization, the setup phase is entered after 797 * this has completed successfully. Otherwise the modem initializes 798 * the GSI layer and signals it has finished by sending an SMP2P interrupt 799 * to the AP; this triggers the start if IPA setup. 800 */ 801 static int ipa_probe(struct platform_device *pdev) 802 { 803 struct device *dev = &pdev->dev; 804 enum ipa_firmware_loader loader; 805 const struct ipa_data *data; 806 struct ipa_power *power; 807 struct ipa *ipa; 808 int ret; 809 810 ipa_validate_build(); 811 812 /* Get configuration data early; needed for power initialization */ 813 data = of_device_get_match_data(dev); 814 if (!data) { 815 dev_err(dev, "matched hardware not supported\n"); 816 return -ENODEV; 817 } 818 819 if (!ipa_version_supported(data->version)) { 820 dev_err(dev, "unsupported IPA version %u\n", data->version); 821 return -EINVAL; 822 } 823 824 if (!data->modem_route_count) { 825 dev_err(dev, "modem_route_count cannot be zero\n"); 826 return -EINVAL; 827 } 828 829 loader = ipa_firmware_loader(dev); 830 if (loader == IPA_LOADER_INVALID) 831 return -EINVAL; 832 if (loader == IPA_LOADER_DEFER) 833 return -EPROBE_DEFER; 834 835 /* The clock and interconnects might not be ready when we're 836 * probed, so might return -EPROBE_DEFER. 837 */ 838 power = ipa_power_init(dev, data->power_data); 839 if (IS_ERR(power)) 840 return PTR_ERR(power); 841 842 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 843 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 844 if (!ipa) { 845 ret = -ENOMEM; 846 goto err_power_exit; 847 } 848 849 ipa->pdev = pdev; 850 dev_set_drvdata(dev, ipa); 851 ipa->power = power; 852 ipa->version = data->version; 853 ipa->modem_route_count = data->modem_route_count; 854 init_completion(&ipa->completion); 855 856 ret = ipa_reg_init(ipa); 857 if (ret) 858 goto err_kfree_ipa; 859 860 ret = ipa_mem_init(ipa, data->mem_data); 861 if (ret) 862 goto err_reg_exit; 863 864 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 865 data->endpoint_data); 866 if (ret) 867 goto err_mem_exit; 868 869 /* Result is a non-zero mask of endpoints that support filtering */ 870 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); 871 if (ret) 872 goto err_gsi_exit; 873 874 ret = ipa_table_init(ipa); 875 if (ret) 876 goto err_endpoint_exit; 877 878 ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM); 879 if (ret) 880 goto err_table_exit; 881 882 /* Power needs to be active for config and setup */ 883 ret = pm_runtime_get_sync(dev); 884 if (WARN_ON(ret < 0)) 885 goto err_power_put; 886 887 ret = ipa_config(ipa, data); 888 if (ret) 889 goto err_power_put; 890 891 dev_info(dev, "IPA driver initialized"); 892 893 /* If the modem is loading GSI firmware, it will trigger a call to 894 * ipa_setup() when it has finished. In that case we're done here. 895 */ 896 if (loader == IPA_LOADER_MODEM) 897 goto done; 898 899 if (loader == IPA_LOADER_SELF) { 900 /* The AP is loading GSI firmware; do so now */ 901 ret = ipa_firmware_load(dev); 902 if (ret) 903 goto err_deconfig; 904 } /* Otherwise loader == IPA_LOADER_SKIP */ 905 906 /* GSI firmware is loaded; proceed to setup */ 907 ret = ipa_setup(ipa); 908 if (ret) 909 goto err_deconfig; 910 done: 911 pm_runtime_mark_last_busy(dev); 912 (void)pm_runtime_put_autosuspend(dev); 913 914 return 0; 915 916 err_deconfig: 917 ipa_deconfig(ipa); 918 err_power_put: 919 pm_runtime_put_noidle(dev); 920 ipa_smp2p_exit(ipa); 921 err_table_exit: 922 ipa_table_exit(ipa); 923 err_endpoint_exit: 924 ipa_endpoint_exit(ipa); 925 err_gsi_exit: 926 gsi_exit(&ipa->gsi); 927 err_mem_exit: 928 ipa_mem_exit(ipa); 929 err_reg_exit: 930 ipa_reg_exit(ipa); 931 err_kfree_ipa: 932 kfree(ipa); 933 err_power_exit: 934 ipa_power_exit(power); 935 936 return ret; 937 } 938 939 static int ipa_remove(struct platform_device *pdev) 940 { 941 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 942 struct ipa_power *power = ipa->power; 943 struct device *dev = &pdev->dev; 944 int ret; 945 946 /* Prevent the modem from triggering a call to ipa_setup(). This 947 * also ensures a modem-initiated setup that's underway completes. 948 */ 949 ipa_smp2p_irq_disable_setup(ipa); 950 951 ret = pm_runtime_get_sync(dev); 952 if (WARN_ON(ret < 0)) 953 goto out_power_put; 954 955 if (ipa->setup_complete) { 956 ret = ipa_modem_stop(ipa); 957 /* If starting or stopping is in progress, try once more */ 958 if (ret == -EBUSY) { 959 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 960 ret = ipa_modem_stop(ipa); 961 } 962 if (ret) 963 return ret; 964 965 ipa_teardown(ipa); 966 } 967 968 ipa_deconfig(ipa); 969 out_power_put: 970 pm_runtime_put_noidle(dev); 971 ipa_smp2p_exit(ipa); 972 ipa_table_exit(ipa); 973 ipa_endpoint_exit(ipa); 974 gsi_exit(&ipa->gsi); 975 ipa_mem_exit(ipa); 976 ipa_reg_exit(ipa); 977 kfree(ipa); 978 ipa_power_exit(power); 979 980 dev_info(dev, "IPA driver removed"); 981 982 return 0; 983 } 984 985 static void ipa_shutdown(struct platform_device *pdev) 986 { 987 int ret; 988 989 ret = ipa_remove(pdev); 990 if (ret) 991 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 992 } 993 994 static const struct attribute_group *ipa_attribute_groups[] = { 995 &ipa_attribute_group, 996 &ipa_feature_attribute_group, 997 &ipa_endpoint_id_attribute_group, 998 &ipa_modem_attribute_group, 999 NULL, 1000 }; 1001 1002 static struct platform_driver ipa_driver = { 1003 .probe = ipa_probe, 1004 .remove = ipa_remove, 1005 .shutdown = ipa_shutdown, 1006 .driver = { 1007 .name = "ipa", 1008 .pm = &ipa_pm_ops, 1009 .of_match_table = ipa_match, 1010 .dev_groups = ipa_attribute_groups, 1011 }, 1012 }; 1013 1014 module_platform_driver(ipa_driver); 1015 1016 MODULE_LICENSE("GPL v2"); 1017 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1018