xref: /openbmc/linux/drivers/net/ipa/ipa_main.c (revision 64ba3d59)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/remoteproc.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_clock.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
31 #include "ipa_uc.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
34 
35 /**
36  * DOC: The IP Accelerator
37  *
38  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
39  * networking component found in many Qualcomm SoCs.  The IPA is connected
40  * to the application processor (AP), but is also connected (and partially
41  * controlled by) other "execution environments" (EEs), such as a modem.
42  *
43  * The IPA is the conduit between the AP and the modem that carries network
44  * traffic.  This driver presents a network interface representing the
45  * connection of the modem to external (e.g. LTE) networks.
46  *
47  * The IPA provides protocol checksum calculation, offloading this work
48  * from the AP.  The IPA offers additional functionality, including routing,
49  * filtering, and NAT support, but that more advanced functionality is not
50  * currently supported.  Despite that, some resources--including routing
51  * tables and filter tables--are defined in this driver because they must
52  * be initialized even when the advanced hardware features are not used.
53  *
54  * There are two distinct layers that implement the IPA hardware, and this
55  * is reflected in the organization of the driver.  The generic software
56  * interface (GSI) is an integral component of the IPA, providing a
57  * well-defined communication layer between the AP subsystem and the IPA
58  * core.  The GSI implements a set of "channels" used for communication
59  * between the AP and the IPA.
60  *
61  * The IPA layer uses GSI channels to implement its "endpoints".  And while
62  * a GSI channel carries data between the AP and the IPA, a pair of IPA
63  * endpoints is used to carry traffic between two EEs.  Specifically, the main
64  * modem network interface is implemented by two pairs of endpoints:  a TX
65  * endpoint on the AP coupled with an RX endpoint on the modem; and another
66  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
67  */
68 
69 /* The name of the GSI firmware file relative to /lib/firmware */
70 #define IPA_FWS_PATH		"ipa_fws.mdt"
71 #define IPA_PAS_ID		15
72 
73 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
74 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
75 #define TAG_TIMESTAMP_SHIFT	14
76 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
77 
78 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
79 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
80 
81 /**
82  * ipa_suspend_handler() - Handle the suspend IPA interrupt
83  * @ipa:	IPA pointer
84  * @irq_id:	IPA interrupt type (unused)
85  *
86  * If an RX endpoint is in suspend state, and the IPA has a packet
87  * destined for that endpoint, the IPA generates a SUSPEND interrupt
88  * to inform the AP that it should resume the endpoint.  If we get
89  * one of these interrupts we just resume everything.
90  */
91 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
92 {
93 	/* Just report the event, and let system resume handle the rest.
94 	 * More than one endpoint could signal this; if so, ignore
95 	 * all but the first.
96 	 */
97 	if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
98 		pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
99 
100 	/* Acknowledge/clear the suspend interrupt on all endpoints */
101 	ipa_interrupt_suspend_clear_all(ipa->interrupt);
102 }
103 
104 /**
105  * ipa_setup() - Set up IPA hardware
106  * @ipa:	IPA pointer
107  *
108  * Perform initialization that requires issuing immediate commands on
109  * the command TX endpoint.  If the modem is doing GSI firmware load
110  * and initialization, this function will be called when an SMP2P
111  * interrupt has been signaled by the modem.  Otherwise it will be
112  * called from ipa_probe() after GSI firmware has been successfully
113  * loaded, authenticated, and started by Trust Zone.
114  */
115 int ipa_setup(struct ipa *ipa)
116 {
117 	struct ipa_endpoint *exception_endpoint;
118 	struct ipa_endpoint *command_endpoint;
119 	struct device *dev = &ipa->pdev->dev;
120 	int ret;
121 
122 	ret = gsi_setup(&ipa->gsi);
123 	if (ret)
124 		return ret;
125 
126 	ipa->interrupt = ipa_interrupt_setup(ipa);
127 	if (IS_ERR(ipa->interrupt)) {
128 		ret = PTR_ERR(ipa->interrupt);
129 		goto err_gsi_teardown;
130 	}
131 	ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
132 			  ipa_suspend_handler);
133 
134 	ipa_uc_setup(ipa);
135 
136 	ret = device_init_wakeup(dev, true);
137 	if (ret)
138 		goto err_uc_teardown;
139 
140 	ipa_endpoint_setup(ipa);
141 
142 	/* We need to use the AP command TX endpoint to perform other
143 	 * initialization, so we enable first.
144 	 */
145 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
146 	ret = ipa_endpoint_enable_one(command_endpoint);
147 	if (ret)
148 		goto err_endpoint_teardown;
149 
150 	ret = ipa_mem_setup(ipa);
151 	if (ret)
152 		goto err_command_disable;
153 
154 	ret = ipa_table_setup(ipa);
155 	if (ret)
156 		goto err_mem_teardown;
157 
158 	/* Enable the exception handling endpoint, and tell the hardware
159 	 * to use it by default.
160 	 */
161 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
162 	ret = ipa_endpoint_enable_one(exception_endpoint);
163 	if (ret)
164 		goto err_table_teardown;
165 
166 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
167 
168 	/* We're all set.  Now prepare for communication with the modem */
169 	ret = ipa_modem_setup(ipa);
170 	if (ret)
171 		goto err_default_route_clear;
172 
173 	ipa->setup_complete = true;
174 
175 	dev_info(dev, "IPA driver setup completed successfully\n");
176 
177 	return 0;
178 
179 err_default_route_clear:
180 	ipa_endpoint_default_route_clear(ipa);
181 	ipa_endpoint_disable_one(exception_endpoint);
182 err_table_teardown:
183 	ipa_table_teardown(ipa);
184 err_mem_teardown:
185 	ipa_mem_teardown(ipa);
186 err_command_disable:
187 	ipa_endpoint_disable_one(command_endpoint);
188 err_endpoint_teardown:
189 	ipa_endpoint_teardown(ipa);
190 	(void)device_init_wakeup(dev, false);
191 err_uc_teardown:
192 	ipa_uc_teardown(ipa);
193 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
194 	ipa_interrupt_teardown(ipa->interrupt);
195 err_gsi_teardown:
196 	gsi_teardown(&ipa->gsi);
197 
198 	return ret;
199 }
200 
201 /**
202  * ipa_teardown() - Inverse of ipa_setup()
203  * @ipa:	IPA pointer
204  */
205 static void ipa_teardown(struct ipa *ipa)
206 {
207 	struct ipa_endpoint *exception_endpoint;
208 	struct ipa_endpoint *command_endpoint;
209 
210 	ipa_modem_teardown(ipa);
211 	ipa_endpoint_default_route_clear(ipa);
212 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
213 	ipa_endpoint_disable_one(exception_endpoint);
214 	ipa_table_teardown(ipa);
215 	ipa_mem_teardown(ipa);
216 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
217 	ipa_endpoint_disable_one(command_endpoint);
218 	ipa_endpoint_teardown(ipa);
219 	(void)device_init_wakeup(&ipa->pdev->dev, false);
220 	ipa_uc_teardown(ipa);
221 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
222 	ipa_interrupt_teardown(ipa->interrupt);
223 	gsi_teardown(&ipa->gsi);
224 }
225 
226 /* Configure QMB Core Master Port selection */
227 static void ipa_hardware_config_comp(struct ipa *ipa)
228 {
229 	u32 val;
230 
231 	/* Nothing to configure for IPA v3.5.1 */
232 	if (ipa->version == IPA_VERSION_3_5_1)
233 		return;
234 
235 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
236 
237 	if (ipa->version == IPA_VERSION_4_0) {
238 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
239 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
240 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
241 	} else if (ipa->version < IPA_VERSION_4_5) {
242 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
243 	} else {
244 		/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
245 	}
246 
247 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
248 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
249 
250 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
251 }
252 
253 /* Configure DDR and PCIe max read/write QSB values */
254 static void ipa_hardware_config_qsb(struct ipa *ipa)
255 {
256 	enum ipa_version version = ipa->version;
257 	u32 max0;
258 	u32 max1;
259 	u32 val;
260 
261 	/* QMB_0 represents DDR; QMB_1 represents PCIe */
262 	val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK);
263 	switch (version) {
264 	case IPA_VERSION_4_2:
265 		max1 = 0;		/* PCIe not present */
266 		break;
267 	case IPA_VERSION_4_5:
268 		max1 = 8;
269 		break;
270 	default:
271 		max1 = 4;
272 		break;
273 	}
274 	val |= u32_encode_bits(max1, GEN_QMB_1_MAX_WRITES_FMASK);
275 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
276 
277 	max1 = 12;
278 	switch (version) {
279 	case IPA_VERSION_3_5_1:
280 		max0 = 8;
281 		break;
282 	case IPA_VERSION_4_0:
283 	case IPA_VERSION_4_1:
284 		max0 = 12;
285 		break;
286 	case IPA_VERSION_4_2:
287 		max0 = 12;
288 		max1 = 0;		/* PCIe not present */
289 		break;
290 	case IPA_VERSION_4_5:
291 		max0 = 0;		/* No limit (hardware maximum) */
292 		break;
293 	}
294 	val = u32_encode_bits(max0, GEN_QMB_0_MAX_READS_FMASK);
295 	val |= u32_encode_bits(max1, GEN_QMB_1_MAX_READS_FMASK);
296 	if (version != IPA_VERSION_3_5_1) {
297 		/* GEN_QMB_0_MAX_READS_BEATS is 0 */
298 		/* GEN_QMB_1_MAX_READS_BEATS is 0 */
299 	}
300 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
301 }
302 
303 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
304  * timestamps and timers independent of the IPA core clock rate.  The
305  * Qtimer is based on a 56-bit timestamp incremented at each tick of
306  * a 19.2 MHz SoC crystal oscillator (XO clock).
307  *
308  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
309  * timestamp is achieved by shifting the Qtimer timestamp value right
310  * some number of bits to produce the low-order bits of the coarser
311  * granularity timestamp.
312  *
313  * For timers, a common timer clock is derived from the XO clock using
314  * a divider (we use 192, to produce a 100kHz timer clock).  From
315  * this common clock, three "pulse generators" are used to produce
316  * timer ticks at a configurable frequency.  IPA timers (such as
317  * those used for aggregation or head-of-line block handling) now
318  * define their period based on one of these pulse generators.
319  */
320 static void ipa_qtime_config(struct ipa *ipa)
321 {
322 	u32 val;
323 
324 	/* Timer clock divider must be disabled when we change the rate */
325 	iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
326 
327 	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
328 	val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
329 	val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
330 	/* Configure tag and NAT Qtime timestamp resolution as well */
331 	val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
332 	val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
333 	iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
334 
335 	/* Set granularity of pulse generators used for other timers */
336 	val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
337 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
338 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
339 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
340 
341 	/* Actual divider is 1 more than value supplied here */
342 	val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
343 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
344 
345 	/* Divider value is set; re-enable the common timer clock divider */
346 	val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
347 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
348 }
349 
350 static void ipa_idle_indication_cfg(struct ipa *ipa,
351 				    u32 enter_idle_debounce_thresh,
352 				    bool const_non_idle_enable)
353 {
354 	u32 offset;
355 	u32 val;
356 
357 	val = u32_encode_bits(enter_idle_debounce_thresh,
358 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
359 	if (const_non_idle_enable)
360 		val |= CONST_NON_IDLE_ENABLE_FMASK;
361 
362 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
363 	iowrite32(val, ipa->reg_virt + offset);
364 }
365 
366 /**
367  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
368  * @ipa:	IPA pointer
369  *
370  * Configures when the IPA signals it is idle to the global clock
371  * controller, which can respond by scalling down the clock to
372  * save power.
373  */
374 static void ipa_hardware_dcd_config(struct ipa *ipa)
375 {
376 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
377 	ipa_idle_indication_cfg(ipa, 256, false);
378 }
379 
380 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
381 {
382 	/* Power-on reset values */
383 	ipa_idle_indication_cfg(ipa, 0, true);
384 }
385 
386 /**
387  * ipa_hardware_config() - Primitive hardware initialization
388  * @ipa:	IPA pointer
389  */
390 static void ipa_hardware_config(struct ipa *ipa)
391 {
392 	enum ipa_version version = ipa->version;
393 	u32 granularity;
394 	u32 val;
395 
396 	/* IPA v4.5 has no backward compatibility register */
397 	if (version < IPA_VERSION_4_5) {
398 		val = ipa_reg_bcr_val(version);
399 		iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
400 	}
401 
402 	/* Implement some hardware workarounds */
403 	if (version != IPA_VERSION_3_5_1 && version < IPA_VERSION_4_5) {
404 		/* Enable open global clocks (not needed for IPA v4.5) */
405 		val = GLOBAL_FMASK;
406 		val |= GLOBAL_2X_CLK_FMASK;
407 		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
408 
409 		/* Disable PA mask to allow HOLB drop */
410 		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
411 		val &= ~PA_MASK_EN_FMASK;
412 		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
413 	}
414 
415 	ipa_hardware_config_comp(ipa);
416 
417 	/* Configure system bus limits */
418 	ipa_hardware_config_qsb(ipa);
419 
420 	if (version < IPA_VERSION_4_5) {
421 		/* Configure aggregation timer granularity */
422 		granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
423 		val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
424 		iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
425 	} else {
426 		ipa_qtime_config(ipa);
427 	}
428 
429 	/* IPA v4.2 does not support hashed tables, so disable them */
430 	if (version == IPA_VERSION_4_2) {
431 		u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
432 
433 		iowrite32(0, ipa->reg_virt + offset);
434 	}
435 
436 	/* Enable dynamic clock division */
437 	ipa_hardware_dcd_config(ipa);
438 }
439 
440 /**
441  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
442  * @ipa:	IPA pointer
443  *
444  * This restores the power-on reset values (even if they aren't different)
445  */
446 static void ipa_hardware_deconfig(struct ipa *ipa)
447 {
448 	/* Mostly we just leave things as we set them. */
449 	ipa_hardware_dcd_deconfig(ipa);
450 }
451 
452 #ifdef IPA_VALIDATION
453 
454 static bool ipa_resource_limits_valid(struct ipa *ipa,
455 				      const struct ipa_resource_data *data)
456 {
457 	u32 group_count;
458 	u32 i;
459 	u32 j;
460 
461 	/* We program at most 6 source or destination resource group limits */
462 	BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6);
463 
464 	group_count = ipa_resource_group_src_count(ipa->version);
465 	if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX)
466 		return false;
467 
468 	/* Return an error if a non-zero resource limit is specified
469 	 * for a resource group not supported by hardware.
470 	 */
471 	for (i = 0; i < data->resource_src_count; i++) {
472 		const struct ipa_resource_src *resource;
473 
474 		resource = &data->resource_src[i];
475 		for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++)
476 			if (resource->limits[j].min || resource->limits[j].max)
477 				return false;
478 	}
479 
480 	group_count = ipa_resource_group_dst_count(ipa->version);
481 	if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX)
482 		return false;
483 
484 	for (i = 0; i < data->resource_dst_count; i++) {
485 		const struct ipa_resource_dst *resource;
486 
487 		resource = &data->resource_dst[i];
488 		for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++)
489 			if (resource->limits[j].min || resource->limits[j].max)
490 				return false;
491 	}
492 
493 	return true;
494 }
495 
496 #else /* !IPA_VALIDATION */
497 
498 static bool ipa_resource_limits_valid(struct ipa *ipa,
499 				      const struct ipa_resource_data *data)
500 {
501 	return true;
502 }
503 
504 #endif /* !IPA_VALIDATION */
505 
506 static void
507 ipa_resource_config_common(struct ipa *ipa, u32 offset,
508 			   const struct ipa_resource_limits *xlimits,
509 			   const struct ipa_resource_limits *ylimits)
510 {
511 	u32 val;
512 
513 	val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK);
514 	val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK);
515 	if (ylimits) {
516 		val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK);
517 		val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK);
518 	}
519 
520 	iowrite32(val, ipa->reg_virt + offset);
521 }
522 
523 static void ipa_resource_config_src(struct ipa *ipa,
524 				    const struct ipa_resource_src *resource)
525 {
526 	u32 group_count = ipa_resource_group_src_count(ipa->version);
527 	const struct ipa_resource_limits *ylimits;
528 	u32 offset;
529 
530 	offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
531 	ylimits = group_count == 1 ? NULL : &resource->limits[1];
532 	ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits);
533 
534 	if (group_count < 2)
535 		return;
536 
537 	offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
538 	ylimits = group_count == 3 ? NULL : &resource->limits[3];
539 	ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits);
540 
541 	if (group_count < 4)
542 		return;
543 
544 	offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type);
545 	ylimits = group_count == 5 ? NULL : &resource->limits[5];
546 	ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits);
547 }
548 
549 static void ipa_resource_config_dst(struct ipa *ipa,
550 				    const struct ipa_resource_dst *resource)
551 {
552 	u32 group_count = ipa_resource_group_dst_count(ipa->version);
553 	const struct ipa_resource_limits *ylimits;
554 	u32 offset;
555 
556 	offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
557 	ylimits = group_count == 1 ? NULL : &resource->limits[1];
558 	ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits);
559 
560 	if (group_count < 2)
561 		return;
562 
563 	offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
564 	ylimits = group_count == 3 ? NULL : &resource->limits[3];
565 	ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits);
566 
567 	if (group_count < 4)
568 		return;
569 
570 	offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type);
571 	ylimits = group_count == 5 ? NULL : &resource->limits[5];
572 	ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits);
573 }
574 
575 static int
576 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data)
577 {
578 	u32 i;
579 
580 	if (!ipa_resource_limits_valid(ipa, data))
581 		return -EINVAL;
582 
583 	for (i = 0; i < data->resource_src_count; i++)
584 		ipa_resource_config_src(ipa, data->resource_src);
585 
586 	for (i = 0; i < data->resource_dst_count; i++)
587 		ipa_resource_config_dst(ipa, data->resource_dst);
588 
589 	return 0;
590 }
591 
592 static void ipa_resource_deconfig(struct ipa *ipa)
593 {
594 	/* Nothing to do */
595 }
596 
597 /**
598  * ipa_config() - Configure IPA hardware
599  * @ipa:	IPA pointer
600  * @data:	IPA configuration data
601  *
602  * Perform initialization requiring IPA clock to be enabled.
603  */
604 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
605 {
606 	int ret;
607 
608 	/* Get a clock reference to allow initialization.  This reference
609 	 * is held after initialization completes, and won't get dropped
610 	 * unless/until a system suspend request arrives.
611 	 */
612 	ipa_clock_get(ipa);
613 
614 	ipa_hardware_config(ipa);
615 
616 	ret = ipa_endpoint_config(ipa);
617 	if (ret)
618 		goto err_hardware_deconfig;
619 
620 	ret = ipa_mem_config(ipa);
621 	if (ret)
622 		goto err_endpoint_deconfig;
623 
624 	ipa_table_config(ipa);
625 
626 	/* Assign resource limitation to each group */
627 	ret = ipa_resource_config(ipa, data->resource_data);
628 	if (ret)
629 		goto err_table_deconfig;
630 
631 	ret = ipa_modem_config(ipa);
632 	if (ret)
633 		goto err_resource_deconfig;
634 
635 	return 0;
636 
637 err_resource_deconfig:
638 	ipa_resource_deconfig(ipa);
639 err_table_deconfig:
640 	ipa_table_deconfig(ipa);
641 	ipa_mem_deconfig(ipa);
642 err_endpoint_deconfig:
643 	ipa_endpoint_deconfig(ipa);
644 err_hardware_deconfig:
645 	ipa_hardware_deconfig(ipa);
646 	ipa_clock_put(ipa);
647 
648 	return ret;
649 }
650 
651 /**
652  * ipa_deconfig() - Inverse of ipa_config()
653  * @ipa:	IPA pointer
654  */
655 static void ipa_deconfig(struct ipa *ipa)
656 {
657 	ipa_modem_deconfig(ipa);
658 	ipa_resource_deconfig(ipa);
659 	ipa_table_deconfig(ipa);
660 	ipa_mem_deconfig(ipa);
661 	ipa_endpoint_deconfig(ipa);
662 	ipa_hardware_deconfig(ipa);
663 	ipa_clock_put(ipa);
664 }
665 
666 static int ipa_firmware_load(struct device *dev)
667 {
668 	const struct firmware *fw;
669 	struct device_node *node;
670 	struct resource res;
671 	phys_addr_t phys;
672 	ssize_t size;
673 	void *virt;
674 	int ret;
675 
676 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
677 	if (!node) {
678 		dev_err(dev, "DT error getting \"memory-region\" property\n");
679 		return -EINVAL;
680 	}
681 
682 	ret = of_address_to_resource(node, 0, &res);
683 	if (ret) {
684 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
685 			ret);
686 		return ret;
687 	}
688 
689 	ret = request_firmware(&fw, IPA_FWS_PATH, dev);
690 	if (ret) {
691 		dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH);
692 		return ret;
693 	}
694 
695 	phys = res.start;
696 	size = (size_t)resource_size(&res);
697 	virt = memremap(phys, size, MEMREMAP_WC);
698 	if (!virt) {
699 		dev_err(dev, "unable to remap firmware memory\n");
700 		ret = -ENOMEM;
701 		goto out_release_firmware;
702 	}
703 
704 	ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID,
705 			    virt, phys, size, NULL);
706 	if (ret)
707 		dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH);
708 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
709 		dev_err(dev, "error %d authenticating \"%s\"\n", ret,
710 			IPA_FWS_PATH);
711 
712 	memunmap(virt);
713 out_release_firmware:
714 	release_firmware(fw);
715 
716 	return ret;
717 }
718 
719 static const struct of_device_id ipa_match[] = {
720 	{
721 		.compatible	= "qcom,sdm845-ipa",
722 		.data		= &ipa_data_sdm845,
723 	},
724 	{
725 		.compatible	= "qcom,sc7180-ipa",
726 		.data		= &ipa_data_sc7180,
727 	},
728 	{ },
729 };
730 MODULE_DEVICE_TABLE(of, ipa_match);
731 
732 static phandle of_property_read_phandle(const struct device_node *np,
733 					const char *name)
734 {
735         struct property *prop;
736         int len = 0;
737 
738         prop = of_find_property(np, name, &len);
739         if (!prop || len != sizeof(__be32))
740                 return 0;
741 
742         return be32_to_cpup(prop->value);
743 }
744 
745 /* Check things that can be validated at build time.  This just
746  * groups these things BUILD_BUG_ON() calls don't clutter the rest
747  * of the code.
748  * */
749 static void ipa_validate_build(void)
750 {
751 #ifdef IPA_VALIDATE
752 	/* We assume we're working on 64-bit hardware */
753 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT));
754 
755 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
756 	BUILD_BUG_ON(GSI_EE_AP != 0);
757 
758 	/* There's no point if we have no channels or event rings */
759 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
760 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
761 
762 	/* GSI hardware design limits */
763 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
764 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
765 
766 	/* The number of TREs in a transaction is limited by the channel's
767 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
768 	 * to represents the number of TREs it has allocated and used.
769 	 */
770 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
771 
772 	/* This is used as a divisor */
773 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
774 
775 	/* Aggregation granularity value can't be 0, and must fit */
776 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
777 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
778 			field_max(AGGR_GRANULARITY_FMASK));
779 #endif /* IPA_VALIDATE */
780 }
781 
782 /**
783  * ipa_probe() - IPA platform driver probe function
784  * @pdev:	Platform device pointer
785  *
786  * Return:	0 if successful, or a negative error code (possibly
787  *		EPROBE_DEFER)
788  *
789  * This is the main entry point for the IPA driver.  Initialization proceeds
790  * in several stages:
791  *   - The "init" stage involves activities that can be initialized without
792  *     access to the IPA hardware.
793  *   - The "config" stage requires the IPA clock to be active so IPA registers
794  *     can be accessed, but does not require the use of IPA immediate commands.
795  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
796  *     layer to be initialized.
797  *
798  * A Boolean Device Tree "modem-init" property determines whether GSI
799  * initialization will be performed by the AP (Trust Zone) or the modem.
800  * If the AP does GSI initialization, the setup phase is entered after
801  * this has completed successfully.  Otherwise the modem initializes
802  * the GSI layer and signals it has finished by sending an SMP2P interrupt
803  * to the AP; this triggers the start if IPA setup.
804  */
805 static int ipa_probe(struct platform_device *pdev)
806 {
807 	struct device *dev = &pdev->dev;
808 	const struct ipa_data *data;
809 	struct ipa_clock *clock;
810 	struct rproc *rproc;
811 	bool modem_init;
812 	struct ipa *ipa;
813 	phandle ph;
814 	int ret;
815 
816 	ipa_validate_build();
817 
818 	/* Get configuration data early; needed for clock initialization */
819 	data = of_device_get_match_data(dev);
820 	if (!data) {
821 		/* This is really IPA_VALIDATE (should never happen) */
822 		dev_err(dev, "matched hardware not supported\n");
823 		return -ENODEV;
824 	}
825 
826 	/* If we need Trust Zone, make sure it's available */
827 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
828 	if (!modem_init)
829 		if (!qcom_scm_is_available())
830 			return -EPROBE_DEFER;
831 
832 	/* We rely on remoteproc to tell us about modem state changes */
833 	ph = of_property_read_phandle(dev->of_node, "modem-remoteproc");
834 	if (!ph) {
835 		dev_err(dev, "DT missing \"modem-remoteproc\" property\n");
836 		return -EINVAL;
837 	}
838 
839 	rproc = rproc_get_by_phandle(ph);
840 	if (!rproc)
841 		return -EPROBE_DEFER;
842 
843 	/* The clock and interconnects might not be ready when we're
844 	 * probed, so might return -EPROBE_DEFER.
845 	 */
846 	clock = ipa_clock_init(dev, data->clock_data);
847 	if (IS_ERR(clock)) {
848 		ret = PTR_ERR(clock);
849 		goto err_rproc_put;
850 	}
851 
852 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
853 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
854 	if (!ipa) {
855 		ret = -ENOMEM;
856 		goto err_clock_exit;
857 	}
858 
859 	ipa->pdev = pdev;
860 	dev_set_drvdata(dev, ipa);
861 	ipa->modem_rproc = rproc;
862 	ipa->clock = clock;
863 	ipa->version = data->version;
864 
865 	ret = ipa_reg_init(ipa);
866 	if (ret)
867 		goto err_kfree_ipa;
868 
869 	ret = ipa_mem_init(ipa, data->mem_data);
870 	if (ret)
871 		goto err_reg_exit;
872 
873 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
874 		       data->endpoint_data);
875 	if (ret)
876 		goto err_mem_exit;
877 
878 	/* Result is a non-zero mask of endpoints that support filtering */
879 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
880 					    data->endpoint_data);
881 	if (!ipa->filter_map) {
882 		ret = -EINVAL;
883 		goto err_gsi_exit;
884 	}
885 
886 	ret = ipa_table_init(ipa);
887 	if (ret)
888 		goto err_endpoint_exit;
889 
890 	ret = ipa_modem_init(ipa, modem_init);
891 	if (ret)
892 		goto err_table_exit;
893 
894 	ret = ipa_config(ipa, data);
895 	if (ret)
896 		goto err_modem_exit;
897 
898 	dev_info(dev, "IPA driver initialized");
899 
900 	/* If the modem is doing early initialization, it will trigger a
901 	 * call to ipa_setup() call when it has finished.  In that case
902 	 * we're done here.
903 	 */
904 	if (modem_init)
905 		return 0;
906 
907 	/* Otherwise we need to load the firmware and have Trust Zone validate
908 	 * and install it.  If that succeeds we can proceed with setup.
909 	 */
910 	ret = ipa_firmware_load(dev);
911 	if (ret)
912 		goto err_deconfig;
913 
914 	ret = ipa_setup(ipa);
915 	if (ret)
916 		goto err_deconfig;
917 
918 	return 0;
919 
920 err_deconfig:
921 	ipa_deconfig(ipa);
922 err_modem_exit:
923 	ipa_modem_exit(ipa);
924 err_table_exit:
925 	ipa_table_exit(ipa);
926 err_endpoint_exit:
927 	ipa_endpoint_exit(ipa);
928 err_gsi_exit:
929 	gsi_exit(&ipa->gsi);
930 err_mem_exit:
931 	ipa_mem_exit(ipa);
932 err_reg_exit:
933 	ipa_reg_exit(ipa);
934 err_kfree_ipa:
935 	kfree(ipa);
936 err_clock_exit:
937 	ipa_clock_exit(clock);
938 err_rproc_put:
939 	rproc_put(rproc);
940 
941 	return ret;
942 }
943 
944 static int ipa_remove(struct platform_device *pdev)
945 {
946 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
947 	struct rproc *rproc = ipa->modem_rproc;
948 	struct ipa_clock *clock = ipa->clock;
949 	int ret;
950 
951 	if (ipa->setup_complete) {
952 		ret = ipa_modem_stop(ipa);
953 		/* If starting or stopping is in progress, try once more */
954 		if (ret == -EBUSY) {
955 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
956 			ret = ipa_modem_stop(ipa);
957 		}
958 		if (ret)
959 			return ret;
960 
961 		ipa_teardown(ipa);
962 	}
963 
964 	ipa_deconfig(ipa);
965 	ipa_modem_exit(ipa);
966 	ipa_table_exit(ipa);
967 	ipa_endpoint_exit(ipa);
968 	gsi_exit(&ipa->gsi);
969 	ipa_mem_exit(ipa);
970 	ipa_reg_exit(ipa);
971 	kfree(ipa);
972 	ipa_clock_exit(clock);
973 	rproc_put(rproc);
974 
975 	return 0;
976 }
977 
978 static void ipa_shutdown(struct platform_device *pdev)
979 {
980 	int ret;
981 
982 	ret = ipa_remove(pdev);
983 	if (ret)
984 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
985 }
986 
987 /**
988  * ipa_suspend() - Power management system suspend callback
989  * @dev:	IPA device structure
990  *
991  * Return:	Always returns zero
992  *
993  * Called by the PM framework when a system suspend operation is invoked.
994  * Suspends endpoints and releases the clock reference held to keep
995  * the IPA clock running until this point.
996  */
997 static int ipa_suspend(struct device *dev)
998 {
999 	struct ipa *ipa = dev_get_drvdata(dev);
1000 
1001 	/* When a suspended RX endpoint has a packet ready to receive, we
1002 	 * get an IPA SUSPEND interrupt.  We trigger a system resume in
1003 	 * that case, but only on the first such interrupt since suspend.
1004 	 */
1005 	__clear_bit(IPA_FLAG_RESUMED, ipa->flags);
1006 
1007 	ipa_endpoint_suspend(ipa);
1008 
1009 	ipa_clock_put(ipa);
1010 
1011 	return 0;
1012 }
1013 
1014 /**
1015  * ipa_resume() - Power management system resume callback
1016  * @dev:	IPA device structure
1017  *
1018  * Return:	Always returns 0
1019  *
1020  * Called by the PM framework when a system resume operation is invoked.
1021  * Takes an IPA clock reference to keep the clock running until suspend,
1022  * and resumes endpoints.
1023  */
1024 static int ipa_resume(struct device *dev)
1025 {
1026 	struct ipa *ipa = dev_get_drvdata(dev);
1027 
1028 	/* This clock reference will keep the IPA out of suspend
1029 	 * until we get a power management suspend request.
1030 	 */
1031 	ipa_clock_get(ipa);
1032 
1033 	ipa_endpoint_resume(ipa);
1034 
1035 	return 0;
1036 }
1037 
1038 static const struct dev_pm_ops ipa_pm_ops = {
1039 	.suspend	= ipa_suspend,
1040 	.resume		= ipa_resume,
1041 };
1042 
1043 static struct platform_driver ipa_driver = {
1044 	.probe		= ipa_probe,
1045 	.remove		= ipa_remove,
1046 	.shutdown	= ipa_shutdown,
1047 	.driver	= {
1048 		.name		= "ipa",
1049 		.pm		= &ipa_pm_ops,
1050 		.of_match_table	= ipa_match,
1051 	},
1052 };
1053 
1054 module_platform_driver(ipa_driver);
1055 
1056 MODULE_LICENSE("GPL v2");
1057 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1058