xref: /openbmc/linux/drivers/net/ipa/ipa_main.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2022 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_power.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_resource.h"
27 #include "ipa_cmd.h"
28 #include "ipa_reg.h"
29 #include "ipa_mem.h"
30 #include "ipa_table.h"
31 #include "ipa_smp2p.h"
32 #include "ipa_modem.h"
33 #include "ipa_uc.h"
34 #include "ipa_interrupt.h"
35 #include "gsi_trans.h"
36 #include "ipa_sysfs.h"
37 
38 /**
39  * DOC: The IP Accelerator
40  *
41  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42  * networking component found in many Qualcomm SoCs.  The IPA is connected
43  * to the application processor (AP), but is also connected (and partially
44  * controlled by) other "execution environments" (EEs), such as a modem.
45  *
46  * The IPA is the conduit between the AP and the modem that carries network
47  * traffic.  This driver presents a network interface representing the
48  * connection of the modem to external (e.g. LTE) networks.
49  *
50  * The IPA provides protocol checksum calculation, offloading this work
51  * from the AP.  The IPA offers additional functionality, including routing,
52  * filtering, and NAT support, but that more advanced functionality is not
53  * currently supported.  Despite that, some resources--including routing
54  * tables and filter tables--are defined in this driver because they must
55  * be initialized even when the advanced hardware features are not used.
56  *
57  * There are two distinct layers that implement the IPA hardware, and this
58  * is reflected in the organization of the driver.  The generic software
59  * interface (GSI) is an integral component of the IPA, providing a
60  * well-defined communication layer between the AP subsystem and the IPA
61  * core.  The GSI implements a set of "channels" used for communication
62  * between the AP and the IPA.
63  *
64  * The IPA layer uses GSI channels to implement its "endpoints".  And while
65  * a GSI channel carries data between the AP and the IPA, a pair of IPA
66  * endpoints is used to carry traffic between two EEs.  Specifically, the main
67  * modem network interface is implemented by two pairs of endpoints:  a TX
68  * endpoint on the AP coupled with an RX endpoint on the modem; and another
69  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70  */
71 
72 /* The name of the GSI firmware file relative to /lib/firmware */
73 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
74 #define IPA_PAS_ID		15
75 
76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
78 #define TAG_TIMESTAMP_SHIFT	14
79 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
80 
81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
83 
84 /**
85  * enum ipa_firmware_loader: How GSI firmware gets loaded
86  *
87  * @IPA_LOADER_DEFER:		System not ready; try again later
88  * @IPA_LOADER_SELF:		AP loads GSI firmware
89  * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
90  * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
91  * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
92  */
93 enum ipa_firmware_loader {
94 	IPA_LOADER_DEFER,
95 	IPA_LOADER_SELF,
96 	IPA_LOADER_MODEM,
97 	IPA_LOADER_SKIP,
98 	IPA_LOADER_INVALID,
99 };
100 
101 /**
102  * ipa_setup() - Set up IPA hardware
103  * @ipa:	IPA pointer
104  *
105  * Perform initialization that requires issuing immediate commands on
106  * the command TX endpoint.  If the modem is doing GSI firmware load
107  * and initialization, this function will be called when an SMP2P
108  * interrupt has been signaled by the modem.  Otherwise it will be
109  * called from ipa_probe() after GSI firmware has been successfully
110  * loaded, authenticated, and started by Trust Zone.
111  */
112 int ipa_setup(struct ipa *ipa)
113 {
114 	struct ipa_endpoint *exception_endpoint;
115 	struct ipa_endpoint *command_endpoint;
116 	struct device *dev = &ipa->pdev->dev;
117 	int ret;
118 
119 	ret = gsi_setup(&ipa->gsi);
120 	if (ret)
121 		return ret;
122 
123 	ret = ipa_power_setup(ipa);
124 	if (ret)
125 		goto err_gsi_teardown;
126 
127 	ipa_endpoint_setup(ipa);
128 
129 	/* We need to use the AP command TX endpoint to perform other
130 	 * initialization, so we enable first.
131 	 */
132 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
133 	ret = ipa_endpoint_enable_one(command_endpoint);
134 	if (ret)
135 		goto err_endpoint_teardown;
136 
137 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
138 	if (ret)
139 		goto err_command_disable;
140 
141 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
142 	if (ret)
143 		goto err_command_disable;
144 
145 	/* Enable the exception handling endpoint, and tell the hardware
146 	 * to use it by default.
147 	 */
148 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
149 	ret = ipa_endpoint_enable_one(exception_endpoint);
150 	if (ret)
151 		goto err_command_disable;
152 
153 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
154 
155 	/* We're all set.  Now prepare for communication with the modem */
156 	ret = ipa_qmi_setup(ipa);
157 	if (ret)
158 		goto err_default_route_clear;
159 
160 	ipa->setup_complete = true;
161 
162 	dev_info(dev, "IPA driver setup completed successfully\n");
163 
164 	return 0;
165 
166 err_default_route_clear:
167 	ipa_endpoint_default_route_clear(ipa);
168 	ipa_endpoint_disable_one(exception_endpoint);
169 err_command_disable:
170 	ipa_endpoint_disable_one(command_endpoint);
171 err_endpoint_teardown:
172 	ipa_endpoint_teardown(ipa);
173 	ipa_power_teardown(ipa);
174 err_gsi_teardown:
175 	gsi_teardown(&ipa->gsi);
176 
177 	return ret;
178 }
179 
180 /**
181  * ipa_teardown() - Inverse of ipa_setup()
182  * @ipa:	IPA pointer
183  */
184 static void ipa_teardown(struct ipa *ipa)
185 {
186 	struct ipa_endpoint *exception_endpoint;
187 	struct ipa_endpoint *command_endpoint;
188 
189 	/* We're going to tear everything down, as if setup never completed */
190 	ipa->setup_complete = false;
191 
192 	ipa_qmi_teardown(ipa);
193 	ipa_endpoint_default_route_clear(ipa);
194 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
195 	ipa_endpoint_disable_one(exception_endpoint);
196 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
197 	ipa_endpoint_disable_one(command_endpoint);
198 	ipa_endpoint_teardown(ipa);
199 	ipa_power_teardown(ipa);
200 	gsi_teardown(&ipa->gsi);
201 }
202 
203 static void
204 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
205 {
206 	const struct ipa_reg *reg;
207 	u32 val;
208 
209 	/* IPA v4.5+ has no backward compatibility register */
210 	if (ipa->version >= IPA_VERSION_4_5)
211 		return;
212 
213 	reg = ipa_reg(ipa, IPA_BCR);
214 	val = data->backward_compat;
215 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
216 }
217 
218 static void ipa_hardware_config_tx(struct ipa *ipa)
219 {
220 	enum ipa_version version = ipa->version;
221 	const struct ipa_reg *reg;
222 	u32 offset;
223 	u32 val;
224 
225 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
226 		return;
227 
228 	/* Disable PA mask to allow HOLB drop */
229 	reg = ipa_reg(ipa, IPA_TX_CFG);
230 	offset = ipa_reg_offset(reg);
231 
232 	val = ioread32(ipa->reg_virt + offset);
233 
234 	val &= ~ipa_reg_bit(reg, PA_MASK_EN);
235 
236 	iowrite32(val, ipa->reg_virt + offset);
237 }
238 
239 static void ipa_hardware_config_clkon(struct ipa *ipa)
240 {
241 	enum ipa_version version = ipa->version;
242 	const struct ipa_reg *reg;
243 	u32 val;
244 
245 	if (version >= IPA_VERSION_4_5)
246 		return;
247 
248 	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
249 		return;
250 
251 	/* Implement some hardware workarounds */
252 	reg = ipa_reg(ipa, CLKON_CFG);
253 	if (version == IPA_VERSION_3_1) {
254 		/* Disable MISC clock gating */
255 		val = ipa_reg_bit(reg, CLKON_MISC);
256 	} else {	/* IPA v4.0+ */
257 		/* Enable open global clocks in the CLKON configuration */
258 		val = ipa_reg_bit(reg, CLKON_GLOBAL);
259 		val |= ipa_reg_bit(reg, GLOBAL_2X_CLK);
260 	}
261 
262 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
263 }
264 
265 /* Configure bus access behavior for IPA components */
266 static void ipa_hardware_config_comp(struct ipa *ipa)
267 {
268 	const struct ipa_reg *reg;
269 	u32 offset;
270 	u32 val;
271 
272 	/* Nothing to configure prior to IPA v4.0 */
273 	if (ipa->version < IPA_VERSION_4_0)
274 		return;
275 
276 	reg = ipa_reg(ipa, COMP_CFG);
277 	offset = ipa_reg_offset(reg);
278 	val = ioread32(ipa->reg_virt + offset);
279 
280 	if (ipa->version == IPA_VERSION_4_0) {
281 		val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
282 		val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
283 		val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
284 	} else if (ipa->version < IPA_VERSION_4_5) {
285 		val |= ipa_reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
286 	} else {
287 		/* For IPA v4.5 FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
288 	}
289 
290 	val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
291 	val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
292 
293 	iowrite32(val, ipa->reg_virt + offset);
294 }
295 
296 /* Configure DDR and (possibly) PCIe max read/write QSB values */
297 static void
298 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
299 {
300 	const struct ipa_qsb_data *data0;
301 	const struct ipa_qsb_data *data1;
302 	const struct ipa_reg *reg;
303 	u32 val;
304 
305 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
306 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
307 	if (data->qsb_count > 1)
308 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
309 
310 	/* Max outstanding write accesses for QSB masters */
311 	reg = ipa_reg(ipa, QSB_MAX_WRITES);
312 
313 	val = ipa_reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
314 	if (data->qsb_count > 1)
315 		val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_WRITES,
316 				      data1->max_writes);
317 
318 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
319 
320 	/* Max outstanding read accesses for QSB masters */
321 	reg = ipa_reg(ipa, QSB_MAX_READS);
322 
323 	val = ipa_reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
324 	if (ipa->version >= IPA_VERSION_4_0)
325 		val |= ipa_reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
326 				      data0->max_reads_beats);
327 	if (data->qsb_count > 1) {
328 		val = ipa_reg_encode(reg, GEN_QMB_1_MAX_READS,
329 				     data1->max_reads);
330 		if (ipa->version >= IPA_VERSION_4_0)
331 			val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
332 					      data1->max_reads_beats);
333 	}
334 
335 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
336 }
337 
338 /* The internal inactivity timer clock is used for the aggregation timer */
339 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
340 
341 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
342  * field to represent the given number of microseconds.  The value is one
343  * less than the number of timer ticks in the requested period.  0 is not
344  * a valid granularity value (so for example @usec must be at least 16 for
345  * a TIMER_FREQUENCY of 32000).
346  */
347 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
348 {
349 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
350 }
351 
352 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
353  * timestamps and timers independent of the IPA core clock rate.  The
354  * Qtimer is based on a 56-bit timestamp incremented at each tick of
355  * a 19.2 MHz SoC crystal oscillator (XO clock).
356  *
357  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
358  * timestamp is achieved by shifting the Qtimer timestamp value right
359  * some number of bits to produce the low-order bits of the coarser
360  * granularity timestamp.
361  *
362  * For timers, a common timer clock is derived from the XO clock using
363  * a divider (we use 192, to produce a 100kHz timer clock).  From
364  * this common clock, three "pulse generators" are used to produce
365  * timer ticks at a configurable frequency.  IPA timers (such as
366  * those used for aggregation or head-of-line block handling) now
367  * define their period based on one of these pulse generators.
368  */
369 static void ipa_qtime_config(struct ipa *ipa)
370 {
371 	const struct ipa_reg *reg;
372 	u32 offset;
373 	u32 val;
374 
375 	/* Timer clock divider must be disabled when we change the rate */
376 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
377 	iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg));
378 
379 	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
380 	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
381 	val = ipa_reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
382 	val |= ipa_reg_bit(reg, DPL_TIMESTAMP_SEL);
383 	/* Configure tag and NAT Qtime timestamp resolution as well */
384 	val = ipa_reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
385 	val = ipa_reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
386 
387 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
388 
389 	/* Set granularity of pulse generators used for other timers */
390 	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
391 	val = ipa_reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
392 	val |= ipa_reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
393 	val |= ipa_reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
394 
395 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
396 
397 	/* Actual divider is 1 more than value supplied here */
398 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
399 	offset = ipa_reg_offset(reg);
400 	val = ipa_reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
401 
402 	iowrite32(val, ipa->reg_virt + offset);
403 
404 	/* Divider value is set; re-enable the common timer clock divider */
405 	val |= ipa_reg_bit(reg, DIV_ENABLE);
406 
407 	iowrite32(val, ipa->reg_virt + offset);
408 }
409 
410 /* Before IPA v4.5 timing is controlled by a counter register */
411 static void ipa_hardware_config_counter(struct ipa *ipa)
412 {
413 	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
414 	const struct ipa_reg *reg;
415 	u32 val;
416 
417 	reg = ipa_reg(ipa, COUNTER_CFG);
418 	/* If defined, EOT_COAL_GRANULARITY is 0 */
419 	val = ipa_reg_encode(reg, AGGR_GRANULARITY, granularity);
420 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
421 }
422 
423 static void ipa_hardware_config_timing(struct ipa *ipa)
424 {
425 	if (ipa->version < IPA_VERSION_4_5)
426 		ipa_hardware_config_counter(ipa);
427 	else
428 		ipa_qtime_config(ipa);
429 }
430 
431 static void ipa_hardware_config_hashing(struct ipa *ipa)
432 {
433 	const struct ipa_reg *reg;
434 
435 	if (ipa->version != IPA_VERSION_4_2)
436 		return;
437 
438 	/* IPA v4.2 does not support hashed tables, so disable them */
439 	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
440 
441 	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
442 	 * IPV4_FILTER_HASH are all zero.
443 	 */
444 	iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg));
445 }
446 
447 static void ipa_idle_indication_cfg(struct ipa *ipa,
448 				    u32 enter_idle_debounce_thresh,
449 				    bool const_non_idle_enable)
450 {
451 	const struct ipa_reg *reg;
452 	u32 val;
453 
454 	if (ipa->version < IPA_VERSION_3_5_1)
455 		return;
456 
457 	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
458 	val = ipa_reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
459 			     enter_idle_debounce_thresh);
460 	if (const_non_idle_enable)
461 		val |= ipa_reg_bit(reg, CONST_NON_IDLE_ENABLE);
462 
463 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
464 }
465 
466 /**
467  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
468  * @ipa:	IPA pointer
469  *
470  * Configures when the IPA signals it is idle to the global clock
471  * controller, which can respond by scaling down the clock to save
472  * power.
473  */
474 static void ipa_hardware_dcd_config(struct ipa *ipa)
475 {
476 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
477 	ipa_idle_indication_cfg(ipa, 256, false);
478 }
479 
480 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
481 {
482 	/* Power-on reset values */
483 	ipa_idle_indication_cfg(ipa, 0, true);
484 }
485 
486 /**
487  * ipa_hardware_config() - Primitive hardware initialization
488  * @ipa:	IPA pointer
489  * @data:	IPA configuration data
490  */
491 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
492 {
493 	ipa_hardware_config_bcr(ipa, data);
494 	ipa_hardware_config_tx(ipa);
495 	ipa_hardware_config_clkon(ipa);
496 	ipa_hardware_config_comp(ipa);
497 	ipa_hardware_config_qsb(ipa, data);
498 	ipa_hardware_config_timing(ipa);
499 	ipa_hardware_config_hashing(ipa);
500 	ipa_hardware_dcd_config(ipa);
501 }
502 
503 /**
504  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
505  * @ipa:	IPA pointer
506  *
507  * This restores the power-on reset values (even if they aren't different)
508  */
509 static void ipa_hardware_deconfig(struct ipa *ipa)
510 {
511 	/* Mostly we just leave things as we set them. */
512 	ipa_hardware_dcd_deconfig(ipa);
513 }
514 
515 /**
516  * ipa_config() - Configure IPA hardware
517  * @ipa:	IPA pointer
518  * @data:	IPA configuration data
519  *
520  * Perform initialization requiring IPA power to be enabled.
521  */
522 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
523 {
524 	int ret;
525 
526 	ipa_hardware_config(ipa, data);
527 
528 	ret = ipa_mem_config(ipa);
529 	if (ret)
530 		goto err_hardware_deconfig;
531 
532 	ipa->interrupt = ipa_interrupt_config(ipa);
533 	if (IS_ERR(ipa->interrupt)) {
534 		ret = PTR_ERR(ipa->interrupt);
535 		ipa->interrupt = NULL;
536 		goto err_mem_deconfig;
537 	}
538 
539 	ipa_uc_config(ipa);
540 
541 	ret = ipa_endpoint_config(ipa);
542 	if (ret)
543 		goto err_uc_deconfig;
544 
545 	ipa_table_config(ipa);		/* No deconfig required */
546 
547 	/* Assign resource limitation to each group; no deconfig required */
548 	ret = ipa_resource_config(ipa, data->resource_data);
549 	if (ret)
550 		goto err_endpoint_deconfig;
551 
552 	ret = ipa_modem_config(ipa);
553 	if (ret)
554 		goto err_endpoint_deconfig;
555 
556 	return 0;
557 
558 err_endpoint_deconfig:
559 	ipa_endpoint_deconfig(ipa);
560 err_uc_deconfig:
561 	ipa_uc_deconfig(ipa);
562 	ipa_interrupt_deconfig(ipa->interrupt);
563 	ipa->interrupt = NULL;
564 err_mem_deconfig:
565 	ipa_mem_deconfig(ipa);
566 err_hardware_deconfig:
567 	ipa_hardware_deconfig(ipa);
568 
569 	return ret;
570 }
571 
572 /**
573  * ipa_deconfig() - Inverse of ipa_config()
574  * @ipa:	IPA pointer
575  */
576 static void ipa_deconfig(struct ipa *ipa)
577 {
578 	ipa_modem_deconfig(ipa);
579 	ipa_endpoint_deconfig(ipa);
580 	ipa_uc_deconfig(ipa);
581 	ipa_interrupt_deconfig(ipa->interrupt);
582 	ipa->interrupt = NULL;
583 	ipa_mem_deconfig(ipa);
584 	ipa_hardware_deconfig(ipa);
585 }
586 
587 static int ipa_firmware_load(struct device *dev)
588 {
589 	const struct firmware *fw;
590 	struct device_node *node;
591 	struct resource res;
592 	phys_addr_t phys;
593 	const char *path;
594 	ssize_t size;
595 	void *virt;
596 	int ret;
597 
598 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
599 	if (!node) {
600 		dev_err(dev, "DT error getting \"memory-region\" property\n");
601 		return -EINVAL;
602 	}
603 
604 	ret = of_address_to_resource(node, 0, &res);
605 	of_node_put(node);
606 	if (ret) {
607 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
608 			ret);
609 		return ret;
610 	}
611 
612 	/* Use name from DTB if specified; use default for *any* error */
613 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
614 	if (ret) {
615 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
616 			ret);
617 		path = IPA_FW_PATH_DEFAULT;
618 	}
619 
620 	ret = request_firmware(&fw, path, dev);
621 	if (ret) {
622 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
623 		return ret;
624 	}
625 
626 	phys = res.start;
627 	size = (size_t)resource_size(&res);
628 	virt = memremap(phys, size, MEMREMAP_WC);
629 	if (!virt) {
630 		dev_err(dev, "unable to remap firmware memory\n");
631 		ret = -ENOMEM;
632 		goto out_release_firmware;
633 	}
634 
635 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
636 	if (ret)
637 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
638 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
639 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
640 
641 	memunmap(virt);
642 out_release_firmware:
643 	release_firmware(fw);
644 
645 	return ret;
646 }
647 
648 static const struct of_device_id ipa_match[] = {
649 	{
650 		.compatible	= "qcom,msm8998-ipa",
651 		.data		= &ipa_data_v3_1,
652 	},
653 	{
654 		.compatible	= "qcom,sdm845-ipa",
655 		.data		= &ipa_data_v3_5_1,
656 	},
657 	{
658 		.compatible	= "qcom,sc7180-ipa",
659 		.data		= &ipa_data_v4_2,
660 	},
661 	{
662 		.compatible	= "qcom,sdx55-ipa",
663 		.data		= &ipa_data_v4_5,
664 	},
665 	{
666 		.compatible	= "qcom,sm6350-ipa",
667 		.data		= &ipa_data_v4_7,
668 	},
669 	{
670 		.compatible	= "qcom,sm8350-ipa",
671 		.data		= &ipa_data_v4_9,
672 	},
673 	{
674 		.compatible	= "qcom,sc7280-ipa",
675 		.data		= &ipa_data_v4_11,
676 	},
677 	{ },
678 };
679 MODULE_DEVICE_TABLE(of, ipa_match);
680 
681 /* Check things that can be validated at build time.  This just
682  * groups these things BUILD_BUG_ON() calls don't clutter the rest
683  * of the code.
684  * */
685 static void ipa_validate_build(void)
686 {
687 	/* At one time we assumed a 64-bit build, allowing some do_div()
688 	 * calls to be replaced by simple division or modulo operations.
689 	 * We currently only perform divide and modulo operations on u32,
690 	 * u16, or size_t objects, and of those only size_t has any chance
691 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
692 	 * on a 32-bit build, but there is no harm in verifying that.)
693 	 */
694 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
695 
696 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
697 	BUILD_BUG_ON(GSI_EE_AP != 0);
698 
699 	/* There's no point if we have no channels or event rings */
700 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
701 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
702 
703 	/* GSI hardware design limits */
704 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
705 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
706 
707 	/* The number of TREs in a transaction is limited by the channel's
708 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
709 	 * to represents the number of TREs it has allocated and used.
710 	 */
711 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
712 
713 	/* This is used as a divisor */
714 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
715 
716 	/* Aggregation granularity value can't be 0, and must fit */
717 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
718 }
719 
720 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
721 {
722 	bool modem_init;
723 	const char *str;
724 	int ret;
725 
726 	/* Look up the old and new properties by name */
727 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
728 	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
729 
730 	/* If the new property doesn't exist, it's legacy behavior */
731 	if (ret == -EINVAL) {
732 		if (modem_init)
733 			return IPA_LOADER_MODEM;
734 		goto out_self;
735 	}
736 
737 	/* Any other error on the new property means it's poorly defined */
738 	if (ret)
739 		return IPA_LOADER_INVALID;
740 
741 	/* New property value exists; if old one does too, that's invalid */
742 	if (modem_init)
743 		return IPA_LOADER_INVALID;
744 
745 	/* Modem loads GSI firmware for "modem" */
746 	if (!strcmp(str, "modem"))
747 		return IPA_LOADER_MODEM;
748 
749 	/* No GSI firmware load is needed for "skip" */
750 	if (!strcmp(str, "skip"))
751 		return IPA_LOADER_SKIP;
752 
753 	/* Any value other than "self" is an error */
754 	if (strcmp(str, "self"))
755 		return IPA_LOADER_INVALID;
756 out_self:
757 	/* We need Trust Zone to load firmware; make sure it's available */
758 	if (qcom_scm_is_available())
759 		return IPA_LOADER_SELF;
760 
761 	return IPA_LOADER_DEFER;
762 }
763 
764 /**
765  * ipa_probe() - IPA platform driver probe function
766  * @pdev:	Platform device pointer
767  *
768  * Return:	0 if successful, or a negative error code (possibly
769  *		EPROBE_DEFER)
770  *
771  * This is the main entry point for the IPA driver.  Initialization proceeds
772  * in several stages:
773  *   - The "init" stage involves activities that can be initialized without
774  *     access to the IPA hardware.
775  *   - The "config" stage requires IPA power to be active so IPA registers
776  *     can be accessed, but does not require the use of IPA immediate commands.
777  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
778  *     layer to be initialized.
779  *
780  * A Boolean Device Tree "modem-init" property determines whether GSI
781  * initialization will be performed by the AP (Trust Zone) or the modem.
782  * If the AP does GSI initialization, the setup phase is entered after
783  * this has completed successfully.  Otherwise the modem initializes
784  * the GSI layer and signals it has finished by sending an SMP2P interrupt
785  * to the AP; this triggers the start if IPA setup.
786  */
787 static int ipa_probe(struct platform_device *pdev)
788 {
789 	struct device *dev = &pdev->dev;
790 	enum ipa_firmware_loader loader;
791 	const struct ipa_data *data;
792 	struct ipa_power *power;
793 	struct ipa *ipa;
794 	int ret;
795 
796 	ipa_validate_build();
797 
798 	/* Get configuration data early; needed for power initialization */
799 	data = of_device_get_match_data(dev);
800 	if (!data) {
801 		dev_err(dev, "matched hardware not supported\n");
802 		return -ENODEV;
803 	}
804 
805 	if (!ipa_version_supported(data->version)) {
806 		dev_err(dev, "unsupported IPA version %u\n", data->version);
807 		return -EINVAL;
808 	}
809 
810 	if (!data->modem_route_count) {
811 		dev_err(dev, "modem_route_count cannot be zero\n");
812 		return -EINVAL;
813 	}
814 
815 	loader = ipa_firmware_loader(dev);
816 	if (loader == IPA_LOADER_INVALID)
817 		return -EINVAL;
818 	if (loader == IPA_LOADER_DEFER)
819 		return -EPROBE_DEFER;
820 
821 	/* The clock and interconnects might not be ready when we're
822 	 * probed, so might return -EPROBE_DEFER.
823 	 */
824 	power = ipa_power_init(dev, data->power_data);
825 	if (IS_ERR(power))
826 		return PTR_ERR(power);
827 
828 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
829 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
830 	if (!ipa) {
831 		ret = -ENOMEM;
832 		goto err_power_exit;
833 	}
834 
835 	ipa->pdev = pdev;
836 	dev_set_drvdata(dev, ipa);
837 	ipa->power = power;
838 	ipa->version = data->version;
839 	ipa->modem_route_count = data->modem_route_count;
840 	init_completion(&ipa->completion);
841 
842 	ret = ipa_reg_init(ipa);
843 	if (ret)
844 		goto err_kfree_ipa;
845 
846 	ret = ipa_mem_init(ipa, data->mem_data);
847 	if (ret)
848 		goto err_reg_exit;
849 
850 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
851 		       data->endpoint_data);
852 	if (ret)
853 		goto err_mem_exit;
854 
855 	/* Result is a non-zero mask of endpoints that support filtering */
856 	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
857 	if (ret)
858 		goto err_gsi_exit;
859 
860 	ret = ipa_table_init(ipa);
861 	if (ret)
862 		goto err_endpoint_exit;
863 
864 	ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM);
865 	if (ret)
866 		goto err_table_exit;
867 
868 	/* Power needs to be active for config and setup */
869 	ret = pm_runtime_get_sync(dev);
870 	if (WARN_ON(ret < 0))
871 		goto err_power_put;
872 
873 	ret = ipa_config(ipa, data);
874 	if (ret)
875 		goto err_power_put;
876 
877 	dev_info(dev, "IPA driver initialized");
878 
879 	/* If the modem is loading GSI firmware, it will trigger a call to
880 	 * ipa_setup() when it has finished.  In that case we're done here.
881 	 */
882 	if (loader == IPA_LOADER_MODEM)
883 		goto done;
884 
885 	if (loader == IPA_LOADER_SELF) {
886 		/* The AP is loading GSI firmware; do so now */
887 		ret = ipa_firmware_load(dev);
888 		if (ret)
889 			goto err_deconfig;
890 	} /* Otherwise loader == IPA_LOADER_SKIP */
891 
892 	/* GSI firmware is loaded; proceed to setup */
893 	ret = ipa_setup(ipa);
894 	if (ret)
895 		goto err_deconfig;
896 done:
897 	pm_runtime_mark_last_busy(dev);
898 	(void)pm_runtime_put_autosuspend(dev);
899 
900 	return 0;
901 
902 err_deconfig:
903 	ipa_deconfig(ipa);
904 err_power_put:
905 	pm_runtime_put_noidle(dev);
906 	ipa_smp2p_exit(ipa);
907 err_table_exit:
908 	ipa_table_exit(ipa);
909 err_endpoint_exit:
910 	ipa_endpoint_exit(ipa);
911 err_gsi_exit:
912 	gsi_exit(&ipa->gsi);
913 err_mem_exit:
914 	ipa_mem_exit(ipa);
915 err_reg_exit:
916 	ipa_reg_exit(ipa);
917 err_kfree_ipa:
918 	kfree(ipa);
919 err_power_exit:
920 	ipa_power_exit(power);
921 
922 	return ret;
923 }
924 
925 static int ipa_remove(struct platform_device *pdev)
926 {
927 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
928 	struct ipa_power *power = ipa->power;
929 	struct device *dev = &pdev->dev;
930 	int ret;
931 
932 	/* Prevent the modem from triggering a call to ipa_setup().  This
933 	 * also ensures a modem-initiated setup that's underway completes.
934 	 */
935 	ipa_smp2p_irq_disable_setup(ipa);
936 
937 	ret = pm_runtime_get_sync(dev);
938 	if (WARN_ON(ret < 0))
939 		goto out_power_put;
940 
941 	if (ipa->setup_complete) {
942 		ret = ipa_modem_stop(ipa);
943 		/* If starting or stopping is in progress, try once more */
944 		if (ret == -EBUSY) {
945 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
946 			ret = ipa_modem_stop(ipa);
947 		}
948 		if (ret)
949 			return ret;
950 
951 		ipa_teardown(ipa);
952 	}
953 
954 	ipa_deconfig(ipa);
955 out_power_put:
956 	pm_runtime_put_noidle(dev);
957 	ipa_smp2p_exit(ipa);
958 	ipa_table_exit(ipa);
959 	ipa_endpoint_exit(ipa);
960 	gsi_exit(&ipa->gsi);
961 	ipa_mem_exit(ipa);
962 	ipa_reg_exit(ipa);
963 	kfree(ipa);
964 	ipa_power_exit(power);
965 
966 	dev_info(dev, "IPA driver removed");
967 
968 	return 0;
969 }
970 
971 static void ipa_shutdown(struct platform_device *pdev)
972 {
973 	int ret;
974 
975 	ret = ipa_remove(pdev);
976 	if (ret)
977 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
978 }
979 
980 static const struct attribute_group *ipa_attribute_groups[] = {
981 	&ipa_attribute_group,
982 	&ipa_feature_attribute_group,
983 	&ipa_endpoint_id_attribute_group,
984 	&ipa_modem_attribute_group,
985 	NULL,
986 };
987 
988 static struct platform_driver ipa_driver = {
989 	.probe		= ipa_probe,
990 	.remove		= ipa_remove,
991 	.shutdown	= ipa_shutdown,
992 	.driver	= {
993 		.name		= "ipa",
994 		.pm		= &ipa_pm_ops,
995 		.of_match_table	= ipa_match,
996 		.dev_groups	= ipa_attribute_groups,
997 	},
998 };
999 
1000 module_platform_driver(ipa_driver);
1001 
1002 MODULE_LICENSE("GPL v2");
1003 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1004