xref: /openbmc/linux/drivers/net/ipa/ipa_main.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/remoteproc.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_clock.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
31 #include "ipa_uc.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
34 
35 /**
36  * DOC: The IP Accelerator
37  *
38  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
39  * networking component found in many Qualcomm SoCs.  The IPA is connected
40  * to the application processor (AP), but is also connected (and partially
41  * controlled by) other "execution environments" (EEs), such as a modem.
42  *
43  * The IPA is the conduit between the AP and the modem that carries network
44  * traffic.  This driver presents a network interface representing the
45  * connection of the modem to external (e.g. LTE) networks.
46  *
47  * The IPA provides protocol checksum calculation, offloading this work
48  * from the AP.  The IPA offers additional functionality, including routing,
49  * filtering, and NAT support, but that more advanced functionality is not
50  * currently supported.  Despite that, some resources--including routing
51  * tables and filter tables--are defined in this driver because they must
52  * be initialized even when the advanced hardware features are not used.
53  *
54  * There are two distinct layers that implement the IPA hardware, and this
55  * is reflected in the organization of the driver.  The generic software
56  * interface (GSI) is an integral component of the IPA, providing a
57  * well-defined communication layer between the AP subsystem and the IPA
58  * core.  The GSI implements a set of "channels" used for communication
59  * between the AP and the IPA.
60  *
61  * The IPA layer uses GSI channels to implement its "endpoints".  And while
62  * a GSI channel carries data between the AP and the IPA, a pair of IPA
63  * endpoints is used to carry traffic between two EEs.  Specifically, the main
64  * modem network interface is implemented by two pairs of endpoints:  a TX
65  * endpoint on the AP coupled with an RX endpoint on the modem; and another
66  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
67  */
68 
69 /* The name of the GSI firmware file relative to /lib/firmware */
70 #define IPA_FWS_PATH		"ipa_fws.mdt"
71 #define IPA_PAS_ID		15
72 
73 /**
74  * ipa_suspend_handler() - Handle the suspend IPA interrupt
75  * @ipa:	IPA pointer
76  * @irq_id:	IPA interrupt type (unused)
77  *
78  * When in suspended state, the IPA can trigger a resume by sending a SUSPEND
79  * IPA interrupt.
80  */
81 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
82 {
83 	/* Take a a single clock reference to prevent suspend.  All
84 	 * endpoints will be resumed as a result.  This reference will
85 	 * be dropped when we get a power management suspend request.
86 	 */
87 	if (!atomic_xchg(&ipa->suspend_ref, 1))
88 		ipa_clock_get(ipa);
89 
90 	/* Acknowledge/clear the suspend interrupt on all endpoints */
91 	ipa_interrupt_suspend_clear_all(ipa->interrupt);
92 }
93 
94 /**
95  * ipa_setup() - Set up IPA hardware
96  * @ipa:	IPA pointer
97  *
98  * Perform initialization that requires issuing immediate commands on
99  * the command TX endpoint.  If the modem is doing GSI firmware load
100  * and initialization, this function will be called when an SMP2P
101  * interrupt has been signaled by the modem.  Otherwise it will be
102  * called from ipa_probe() after GSI firmware has been successfully
103  * loaded, authenticated, and started by Trust Zone.
104  */
105 int ipa_setup(struct ipa *ipa)
106 {
107 	struct ipa_endpoint *exception_endpoint;
108 	struct ipa_endpoint *command_endpoint;
109 	int ret;
110 
111 	/* Setup for IPA v3.5.1 has some slight differences */
112 	ret = gsi_setup(&ipa->gsi, ipa->version == IPA_VERSION_3_5_1);
113 	if (ret)
114 		return ret;
115 
116 	ipa->interrupt = ipa_interrupt_setup(ipa);
117 	if (IS_ERR(ipa->interrupt)) {
118 		ret = PTR_ERR(ipa->interrupt);
119 		goto err_gsi_teardown;
120 	}
121 	ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
122 			  ipa_suspend_handler);
123 
124 	ipa_uc_setup(ipa);
125 
126 	ipa_endpoint_setup(ipa);
127 
128 	/* We need to use the AP command TX endpoint to perform other
129 	 * initialization, so we enable first.
130 	 */
131 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
132 	ret = ipa_endpoint_enable_one(command_endpoint);
133 	if (ret)
134 		goto err_endpoint_teardown;
135 
136 	ret = ipa_mem_setup(ipa);
137 	if (ret)
138 		goto err_command_disable;
139 
140 	ret = ipa_table_setup(ipa);
141 	if (ret)
142 		goto err_mem_teardown;
143 
144 	/* Enable the exception handling endpoint, and tell the hardware
145 	 * to use it by default.
146 	 */
147 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
148 	ret = ipa_endpoint_enable_one(exception_endpoint);
149 	if (ret)
150 		goto err_table_teardown;
151 
152 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
153 
154 	/* We're all set.  Now prepare for communication with the modem */
155 	ret = ipa_modem_setup(ipa);
156 	if (ret)
157 		goto err_default_route_clear;
158 
159 	ipa->setup_complete = true;
160 
161 	dev_info(&ipa->pdev->dev, "IPA driver setup completed successfully\n");
162 
163 	return 0;
164 
165 err_default_route_clear:
166 	ipa_endpoint_default_route_clear(ipa);
167 	ipa_endpoint_disable_one(exception_endpoint);
168 err_table_teardown:
169 	ipa_table_teardown(ipa);
170 err_mem_teardown:
171 	ipa_mem_teardown(ipa);
172 err_command_disable:
173 	ipa_endpoint_disable_one(command_endpoint);
174 err_endpoint_teardown:
175 	ipa_endpoint_teardown(ipa);
176 	ipa_uc_teardown(ipa);
177 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
178 	ipa_interrupt_teardown(ipa->interrupt);
179 err_gsi_teardown:
180 	gsi_teardown(&ipa->gsi);
181 
182 	return ret;
183 }
184 
185 /**
186  * ipa_teardown() - Inverse of ipa_setup()
187  * @ipa:	IPA pointer
188  */
189 static void ipa_teardown(struct ipa *ipa)
190 {
191 	struct ipa_endpoint *exception_endpoint;
192 	struct ipa_endpoint *command_endpoint;
193 
194 	ipa_modem_teardown(ipa);
195 	ipa_endpoint_default_route_clear(ipa);
196 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
197 	ipa_endpoint_disable_one(exception_endpoint);
198 	ipa_table_teardown(ipa);
199 	ipa_mem_teardown(ipa);
200 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
201 	ipa_endpoint_disable_one(command_endpoint);
202 	ipa_endpoint_teardown(ipa);
203 	ipa_uc_teardown(ipa);
204 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
205 	ipa_interrupt_teardown(ipa->interrupt);
206 	gsi_teardown(&ipa->gsi);
207 }
208 
209 /* Configure QMB Core Master Port selection */
210 static void ipa_hardware_config_comp(struct ipa *ipa)
211 {
212 	u32 val;
213 
214 	/* Nothing to configure for IPA v3.5.1 */
215 	if (ipa->version == IPA_VERSION_3_5_1)
216 		return;
217 
218 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
219 
220 	if (ipa->version == IPA_VERSION_4_0) {
221 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
222 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
223 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
224 	} else  {
225 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
226 	}
227 
228 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
229 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
230 
231 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
232 }
233 
234 /* Configure DDR and PCIe max read/write QSB values */
235 static void ipa_hardware_config_qsb(struct ipa *ipa)
236 {
237 	u32 val;
238 
239 	/* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */
240 	val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK);
241 	if (ipa->version == IPA_VERSION_4_2)
242 		val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK);
243 	else
244 		val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK);
245 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
246 
247 	if (ipa->version == IPA_VERSION_3_5_1) {
248 		val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK);
249 		val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
250 	} else {
251 		val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK);
252 		if (ipa->version == IPA_VERSION_4_2)
253 			val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK);
254 		else
255 			val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
256 		/* GEN_QMB_0_MAX_READS_BEATS is 0 */
257 		/* GEN_QMB_1_MAX_READS_BEATS is 0 */
258 	}
259 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
260 }
261 
262 static void ipa_idle_indication_cfg(struct ipa *ipa,
263 				    u32 enter_idle_debounce_thresh,
264 				    bool const_non_idle_enable)
265 {
266 	u32 offset;
267 	u32 val;
268 
269 	val = u32_encode_bits(enter_idle_debounce_thresh,
270 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
271 	if (const_non_idle_enable)
272 		val |= CONST_NON_IDLE_ENABLE_FMASK;
273 
274 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
275 	iowrite32(val, ipa->reg_virt + offset);
276 }
277 
278 /**
279  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
280  * @ipa:	IPA pointer
281  *
282  * Configures when the IPA signals it is idle to the global clock
283  * controller, which can respond by scalling down the clock to
284  * save power.
285  */
286 static void ipa_hardware_dcd_config(struct ipa *ipa)
287 {
288 	/* Recommended values for IPA 3.5 according to IPA HPG */
289 	ipa_idle_indication_cfg(ipa, 256, false);
290 }
291 
292 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
293 {
294 	/* Power-on reset values */
295 	ipa_idle_indication_cfg(ipa, 0, true);
296 }
297 
298 /**
299  * ipa_hardware_config() - Primitive hardware initialization
300  * @ipa:	IPA pointer
301  */
302 static void ipa_hardware_config(struct ipa *ipa)
303 {
304 	u32 granularity;
305 	u32 val;
306 
307 	/* Fill in backward-compatibility register, based on version */
308 	val = ipa_reg_bcr_val(ipa->version);
309 	iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
310 
311 	if (ipa->version != IPA_VERSION_3_5_1) {
312 		/* Enable open global clocks (hardware workaround) */
313 		val = GLOBAL_FMASK;
314 		val |= GLOBAL_2X_CLK_FMASK;
315 		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
316 
317 		/* Disable PA mask to allow HOLB drop (hardware workaround) */
318 		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
319 		val &= ~PA_MASK_EN;
320 		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
321 	}
322 
323 	ipa_hardware_config_comp(ipa);
324 
325 	/* Configure system bus limits */
326 	ipa_hardware_config_qsb(ipa);
327 
328 	/* Configure aggregation granularity */
329 	val = ioread32(ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
330 	granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
331 	val = u32_encode_bits(granularity, AGGR_GRANULARITY);
332 	iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
333 
334 	/* Disable hashed IPv4 and IPv6 routing and filtering for IPA v4.2 */
335 	if (ipa->version == IPA_VERSION_4_2)
336 		iowrite32(0, ipa->reg_virt + IPA_REG_FILT_ROUT_HASH_EN_OFFSET);
337 
338 	/* Enable dynamic clock division */
339 	ipa_hardware_dcd_config(ipa);
340 }
341 
342 /**
343  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
344  * @ipa:	IPA pointer
345  *
346  * This restores the power-on reset values (even if they aren't different)
347  */
348 static void ipa_hardware_deconfig(struct ipa *ipa)
349 {
350 	/* Mostly we just leave things as we set them. */
351 	ipa_hardware_dcd_deconfig(ipa);
352 }
353 
354 #ifdef IPA_VALIDATION
355 
356 /* # IPA resources used based on version (see IPA_RESOURCE_GROUP_COUNT) */
357 static int ipa_resource_group_count(struct ipa *ipa)
358 {
359 	switch (ipa->version) {
360 	case IPA_VERSION_3_5_1:
361 		return 3;
362 
363 	case IPA_VERSION_4_0:
364 	case IPA_VERSION_4_1:
365 		return 4;
366 
367 	case IPA_VERSION_4_2:
368 		return 1;
369 
370 	default:
371 		return 0;
372 	}
373 }
374 
375 static bool ipa_resource_limits_valid(struct ipa *ipa,
376 				      const struct ipa_resource_data *data)
377 {
378 	u32 group_count = ipa_resource_group_count(ipa);
379 	u32 i;
380 	u32 j;
381 
382 	if (!group_count)
383 		return false;
384 
385 	/* Return an error if a non-zero resource group limit is specified
386 	 * for a resource not supported by hardware.
387 	 */
388 	for (i = 0; i < data->resource_src_count; i++) {
389 		const struct ipa_resource_src *resource;
390 
391 		resource = &data->resource_src[i];
392 		for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++)
393 			if (resource->limits[j].min || resource->limits[j].max)
394 				return false;
395 	}
396 
397 	for (i = 0; i < data->resource_dst_count; i++) {
398 		const struct ipa_resource_dst *resource;
399 
400 		resource = &data->resource_dst[i];
401 		for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++)
402 			if (resource->limits[j].min || resource->limits[j].max)
403 				return false;
404 	}
405 
406 	return true;
407 }
408 
409 #else /* !IPA_VALIDATION */
410 
411 static bool ipa_resource_limits_valid(struct ipa *ipa,
412 				      const struct ipa_resource_data *data)
413 {
414 	return true;
415 }
416 
417 #endif /* !IPA_VALIDATION */
418 
419 static void
420 ipa_resource_config_common(struct ipa *ipa, u32 offset,
421 			   const struct ipa_resource_limits *xlimits,
422 			   const struct ipa_resource_limits *ylimits)
423 {
424 	u32 val;
425 
426 	val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK);
427 	val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK);
428 	val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK);
429 	val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK);
430 
431 	iowrite32(val, ipa->reg_virt + offset);
432 }
433 
434 static void ipa_resource_config_src_01(struct ipa *ipa,
435 				       const struct ipa_resource_src *resource)
436 {
437 	u32 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
438 
439 	ipa_resource_config_common(ipa, offset,
440 				   &resource->limits[0], &resource->limits[1]);
441 }
442 
443 static void ipa_resource_config_src_23(struct ipa *ipa,
444 				       const struct ipa_resource_src *resource)
445 {
446 	u32 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
447 
448 	ipa_resource_config_common(ipa, offset,
449 				   &resource->limits[2], &resource->limits[3]);
450 }
451 
452 static void ipa_resource_config_dst_01(struct ipa *ipa,
453 				       const struct ipa_resource_dst *resource)
454 {
455 	u32 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
456 
457 	ipa_resource_config_common(ipa, offset,
458 				   &resource->limits[0], &resource->limits[1]);
459 }
460 
461 static void ipa_resource_config_dst_23(struct ipa *ipa,
462 				       const struct ipa_resource_dst *resource)
463 {
464 	u32 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
465 
466 	ipa_resource_config_common(ipa, offset,
467 				   &resource->limits[2], &resource->limits[3]);
468 }
469 
470 static int
471 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data)
472 {
473 	u32 i;
474 
475 	if (!ipa_resource_limits_valid(ipa, data))
476 		return -EINVAL;
477 
478 	for (i = 0; i < data->resource_src_count; i++) {
479 		ipa_resource_config_src_01(ipa, &data->resource_src[i]);
480 		ipa_resource_config_src_23(ipa, &data->resource_src[i]);
481 	}
482 
483 	for (i = 0; i < data->resource_dst_count; i++) {
484 		ipa_resource_config_dst_01(ipa, &data->resource_dst[i]);
485 		ipa_resource_config_dst_23(ipa, &data->resource_dst[i]);
486 	}
487 
488 	return 0;
489 }
490 
491 static void ipa_resource_deconfig(struct ipa *ipa)
492 {
493 	/* Nothing to do */
494 }
495 
496 /**
497  * ipa_config() - Configure IPA hardware
498  * @ipa:	IPA pointer
499  * @data:	IPA configuration data
500  *
501  * Perform initialization requiring IPA clock to be enabled.
502  */
503 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
504 {
505 	int ret;
506 
507 	/* Get a clock reference to allow initialization.  This reference
508 	 * is held after initialization completes, and won't get dropped
509 	 * unless/until a system suspend request arrives.
510 	 */
511 	atomic_set(&ipa->suspend_ref, 1);
512 	ipa_clock_get(ipa);
513 
514 	ipa_hardware_config(ipa);
515 
516 	ret = ipa_endpoint_config(ipa);
517 	if (ret)
518 		goto err_hardware_deconfig;
519 
520 	ret = ipa_mem_config(ipa);
521 	if (ret)
522 		goto err_endpoint_deconfig;
523 
524 	ipa_table_config(ipa);
525 
526 	/* Assign resource limitation to each group */
527 	ret = ipa_resource_config(ipa, data->resource_data);
528 	if (ret)
529 		goto err_table_deconfig;
530 
531 	ret = ipa_modem_config(ipa);
532 	if (ret)
533 		goto err_resource_deconfig;
534 
535 	return 0;
536 
537 err_resource_deconfig:
538 	ipa_resource_deconfig(ipa);
539 err_table_deconfig:
540 	ipa_table_deconfig(ipa);
541 	ipa_mem_deconfig(ipa);
542 err_endpoint_deconfig:
543 	ipa_endpoint_deconfig(ipa);
544 err_hardware_deconfig:
545 	ipa_hardware_deconfig(ipa);
546 	ipa_clock_put(ipa);
547 	atomic_set(&ipa->suspend_ref, 0);
548 
549 	return ret;
550 }
551 
552 /**
553  * ipa_deconfig() - Inverse of ipa_config()
554  * @ipa:	IPA pointer
555  */
556 static void ipa_deconfig(struct ipa *ipa)
557 {
558 	ipa_modem_deconfig(ipa);
559 	ipa_resource_deconfig(ipa);
560 	ipa_table_deconfig(ipa);
561 	ipa_mem_deconfig(ipa);
562 	ipa_endpoint_deconfig(ipa);
563 	ipa_hardware_deconfig(ipa);
564 	ipa_clock_put(ipa);
565 	atomic_set(&ipa->suspend_ref, 0);
566 }
567 
568 static int ipa_firmware_load(struct device *dev)
569 {
570 	const struct firmware *fw;
571 	struct device_node *node;
572 	struct resource res;
573 	phys_addr_t phys;
574 	ssize_t size;
575 	void *virt;
576 	int ret;
577 
578 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
579 	if (!node) {
580 		dev_err(dev, "DT error getting \"memory-region\" property\n");
581 		return -EINVAL;
582 	}
583 
584 	ret = of_address_to_resource(node, 0, &res);
585 	if (ret) {
586 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
587 			ret);
588 		return ret;
589 	}
590 
591 	ret = request_firmware(&fw, IPA_FWS_PATH, dev);
592 	if (ret) {
593 		dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH);
594 		return ret;
595 	}
596 
597 	phys = res.start;
598 	size = (size_t)resource_size(&res);
599 	virt = memremap(phys, size, MEMREMAP_WC);
600 	if (!virt) {
601 		dev_err(dev, "unable to remap firmware memory\n");
602 		ret = -ENOMEM;
603 		goto out_release_firmware;
604 	}
605 
606 	ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID,
607 			    virt, phys, size, NULL);
608 	if (ret)
609 		dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH);
610 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
611 		dev_err(dev, "error %d authenticating \"%s\"\n", ret,
612 			IPA_FWS_PATH);
613 
614 	memunmap(virt);
615 out_release_firmware:
616 	release_firmware(fw);
617 
618 	return ret;
619 }
620 
621 static const struct of_device_id ipa_match[] = {
622 	{
623 		.compatible	= "qcom,sdm845-ipa",
624 		.data		= &ipa_data_sdm845,
625 	},
626 	{
627 		.compatible	= "qcom,sc7180-ipa",
628 		.data		= &ipa_data_sc7180,
629 	},
630 	{ },
631 };
632 MODULE_DEVICE_TABLE(of, ipa_match);
633 
634 static phandle of_property_read_phandle(const struct device_node *np,
635 					const char *name)
636 {
637         struct property *prop;
638         int len = 0;
639 
640         prop = of_find_property(np, name, &len);
641         if (!prop || len != sizeof(__be32))
642                 return 0;
643 
644         return be32_to_cpup(prop->value);
645 }
646 
647 /* Check things that can be validated at build time.  This just
648  * groups these things BUILD_BUG_ON() calls don't clutter the rest
649  * of the code.
650  * */
651 static void ipa_validate_build(void)
652 {
653 #ifdef IPA_VALIDATE
654 	/* We assume we're working on 64-bit hardware */
655 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT));
656 
657 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
658 	BUILD_BUG_ON(GSI_EE_AP != 0);
659 
660 	/* There's no point if we have no channels or event rings */
661 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
662 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
663 
664 	/* GSI hardware design limits */
665 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
666 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
667 
668 	/* The number of TREs in a transaction is limited by the channel's
669 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
670 	 * to represents the number of TREs it has allocated and used.
671 	 */
672 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
673 
674 	/* Exceeding 128 bytes makes the transaction pool *much* larger */
675 	BUILD_BUG_ON(sizeof(struct gsi_trans) > 128);
676 
677 	/* This is used as a divisor */
678 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
679 
680 	/* Aggregation granularity value can't be 0, and must fit */
681 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
682 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
683 			field_max(AGGR_GRANULARITY));
684 #endif /* IPA_VALIDATE */
685 }
686 
687 /**
688  * ipa_probe() - IPA platform driver probe function
689  * @pdev:	Platform device pointer
690  *
691  * Return:	0 if successful, or a negative error code (possibly
692  *		EPROBE_DEFER)
693  *
694  * This is the main entry point for the IPA driver.  Initialization proceeds
695  * in several stages:
696  *   - The "init" stage involves activities that can be initialized without
697  *     access to the IPA hardware.
698  *   - The "config" stage requires the IPA clock to be active so IPA registers
699  *     can be accessed, but does not require the use of IPA immediate commands.
700  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
701  *     layer to be initialized.
702  *
703  * A Boolean Device Tree "modem-init" property determines whether GSI
704  * initialization will be performed by the AP (Trust Zone) or the modem.
705  * If the AP does GSI initialization, the setup phase is entered after
706  * this has completed successfully.  Otherwise the modem initializes
707  * the GSI layer and signals it has finished by sending an SMP2P interrupt
708  * to the AP; this triggers the start if IPA setup.
709  */
710 static int ipa_probe(struct platform_device *pdev)
711 {
712 	struct wakeup_source *wakeup_source;
713 	struct device *dev = &pdev->dev;
714 	const struct ipa_data *data;
715 	struct ipa_clock *clock;
716 	struct rproc *rproc;
717 	bool modem_alloc;
718 	bool modem_init;
719 	struct ipa *ipa;
720 	phandle phandle;
721 	bool prefetch;
722 	int ret;
723 
724 	ipa_validate_build();
725 
726 	/* If we need Trust Zone, make sure it's available */
727 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
728 	if (!modem_init)
729 		if (!qcom_scm_is_available())
730 			return -EPROBE_DEFER;
731 
732 	/* We rely on remoteproc to tell us about modem state changes */
733 	phandle = of_property_read_phandle(dev->of_node, "modem-remoteproc");
734 	if (!phandle) {
735 		dev_err(dev, "DT missing \"modem-remoteproc\" property\n");
736 		return -EINVAL;
737 	}
738 
739 	rproc = rproc_get_by_phandle(phandle);
740 	if (!rproc)
741 		return -EPROBE_DEFER;
742 
743 	/* The clock and interconnects might not be ready when we're
744 	 * probed, so might return -EPROBE_DEFER.
745 	 */
746 	clock = ipa_clock_init(dev);
747 	if (IS_ERR(clock)) {
748 		ret = PTR_ERR(clock);
749 		goto err_rproc_put;
750 	}
751 
752 	/* No more EPROBE_DEFER.  Get our configuration data */
753 	data = of_device_get_match_data(dev);
754 	if (!data) {
755 		/* This is really IPA_VALIDATE (should never happen) */
756 		dev_err(dev, "matched hardware not supported\n");
757 		ret = -ENOTSUPP;
758 		goto err_clock_exit;
759 	}
760 
761 	/* Create a wakeup source. */
762 	wakeup_source = wakeup_source_register(dev, "ipa");
763 	if (!wakeup_source) {
764 		/* The most likely reason for failure is memory exhaustion */
765 		ret = -ENOMEM;
766 		goto err_clock_exit;
767 	}
768 
769 	/* Allocate and initialize the IPA structure */
770 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
771 	if (!ipa) {
772 		ret = -ENOMEM;
773 		goto err_wakeup_source_unregister;
774 	}
775 
776 	ipa->pdev = pdev;
777 	dev_set_drvdata(dev, ipa);
778 	ipa->modem_rproc = rproc;
779 	ipa->clock = clock;
780 	atomic_set(&ipa->suspend_ref, 0);
781 	ipa->wakeup_source = wakeup_source;
782 	ipa->version = data->version;
783 
784 	ret = ipa_reg_init(ipa);
785 	if (ret)
786 		goto err_kfree_ipa;
787 
788 	ret = ipa_mem_init(ipa, data->mem_data);
789 	if (ret)
790 		goto err_reg_exit;
791 
792 	/* GSI v2.0+ (IPA v4.0+) uses prefetch for the command channel */
793 	prefetch = ipa->version != IPA_VERSION_3_5_1;
794 	/* IPA v4.2 requires the AP to allocate channels for the modem */
795 	modem_alloc = ipa->version == IPA_VERSION_4_2;
796 
797 	ret = gsi_init(&ipa->gsi, pdev, prefetch, data->endpoint_count,
798 		       data->endpoint_data, modem_alloc);
799 	if (ret)
800 		goto err_mem_exit;
801 
802 	/* Result is a non-zero mask endpoints that support filtering */
803 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
804 					    data->endpoint_data);
805 	if (!ipa->filter_map) {
806 		ret = -EINVAL;
807 		goto err_gsi_exit;
808 	}
809 
810 	ret = ipa_table_init(ipa);
811 	if (ret)
812 		goto err_endpoint_exit;
813 
814 	ret = ipa_modem_init(ipa, modem_init);
815 	if (ret)
816 		goto err_table_exit;
817 
818 	ret = ipa_config(ipa, data);
819 	if (ret)
820 		goto err_modem_exit;
821 
822 	dev_info(dev, "IPA driver initialized");
823 
824 	/* If the modem is doing early initialization, it will trigger a
825 	 * call to ipa_setup() call when it has finished.  In that case
826 	 * we're done here.
827 	 */
828 	if (modem_init)
829 		return 0;
830 
831 	/* Otherwise we need to load the firmware and have Trust Zone validate
832 	 * and install it.  If that succeeds we can proceed with setup.
833 	 */
834 	ret = ipa_firmware_load(dev);
835 	if (ret)
836 		goto err_deconfig;
837 
838 	ret = ipa_setup(ipa);
839 	if (ret)
840 		goto err_deconfig;
841 
842 	return 0;
843 
844 err_deconfig:
845 	ipa_deconfig(ipa);
846 err_modem_exit:
847 	ipa_modem_exit(ipa);
848 err_table_exit:
849 	ipa_table_exit(ipa);
850 err_endpoint_exit:
851 	ipa_endpoint_exit(ipa);
852 err_gsi_exit:
853 	gsi_exit(&ipa->gsi);
854 err_mem_exit:
855 	ipa_mem_exit(ipa);
856 err_reg_exit:
857 	ipa_reg_exit(ipa);
858 err_kfree_ipa:
859 	kfree(ipa);
860 err_wakeup_source_unregister:
861 	wakeup_source_unregister(wakeup_source);
862 err_clock_exit:
863 	ipa_clock_exit(clock);
864 err_rproc_put:
865 	rproc_put(rproc);
866 
867 	return ret;
868 }
869 
870 static int ipa_remove(struct platform_device *pdev)
871 {
872 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
873 	struct rproc *rproc = ipa->modem_rproc;
874 	struct ipa_clock *clock = ipa->clock;
875 	struct wakeup_source *wakeup_source;
876 	int ret;
877 
878 	wakeup_source = ipa->wakeup_source;
879 
880 	if (ipa->setup_complete) {
881 		ret = ipa_modem_stop(ipa);
882 		if (ret)
883 			return ret;
884 
885 		ipa_teardown(ipa);
886 	}
887 
888 	ipa_deconfig(ipa);
889 	ipa_modem_exit(ipa);
890 	ipa_table_exit(ipa);
891 	ipa_endpoint_exit(ipa);
892 	gsi_exit(&ipa->gsi);
893 	ipa_mem_exit(ipa);
894 	ipa_reg_exit(ipa);
895 	kfree(ipa);
896 	wakeup_source_unregister(wakeup_source);
897 	ipa_clock_exit(clock);
898 	rproc_put(rproc);
899 
900 	return 0;
901 }
902 
903 /**
904  * ipa_suspend() - Power management system suspend callback
905  * @dev:	IPA device structure
906  *
907  * Return:	Always returns zero
908  *
909  * Called by the PM framework when a system suspend operation is invoked.
910  */
911 static int ipa_suspend(struct device *dev)
912 {
913 	struct ipa *ipa = dev_get_drvdata(dev);
914 
915 	ipa_clock_put(ipa);
916 	atomic_set(&ipa->suspend_ref, 0);
917 
918 	return 0;
919 }
920 
921 /**
922  * ipa_resume() - Power management system resume callback
923  * @dev:	IPA device structure
924  *
925  * Return:	Always returns 0
926  *
927  * Called by the PM framework when a system resume operation is invoked.
928  */
929 static int ipa_resume(struct device *dev)
930 {
931 	struct ipa *ipa = dev_get_drvdata(dev);
932 
933 	/* This clock reference will keep the IPA out of suspend
934 	 * until we get a power management suspend request.
935 	 */
936 	atomic_set(&ipa->suspend_ref, 1);
937 	ipa_clock_get(ipa);
938 
939 	return 0;
940 }
941 
942 static const struct dev_pm_ops ipa_pm_ops = {
943 	.suspend	= ipa_suspend,
944 	.resume		= ipa_resume,
945 };
946 
947 static struct platform_driver ipa_driver = {
948 	.probe	= ipa_probe,
949 	.remove	= ipa_remove,
950 	.driver	= {
951 		.name		= "ipa",
952 		.pm		= &ipa_pm_ops,
953 		.of_match_table	= ipa_match,
954 	},
955 };
956 
957 module_platform_driver(ipa_driver);
958 
959 MODULE_LICENSE("GPL v2");
960 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
961