1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/remoteproc.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_clock.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_cmd.h" 27 #include "ipa_reg.h" 28 #include "ipa_mem.h" 29 #include "ipa_table.h" 30 #include "ipa_modem.h" 31 #include "ipa_uc.h" 32 #include "ipa_interrupt.h" 33 #include "gsi_trans.h" 34 35 /** 36 * DOC: The IP Accelerator 37 * 38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 39 * networking component found in many Qualcomm SoCs. The IPA is connected 40 * to the application processor (AP), but is also connected (and partially 41 * controlled by) other "execution environments" (EEs), such as a modem. 42 * 43 * The IPA is the conduit between the AP and the modem that carries network 44 * traffic. This driver presents a network interface representing the 45 * connection of the modem to external (e.g. LTE) networks. 46 * 47 * The IPA provides protocol checksum calculation, offloading this work 48 * from the AP. The IPA offers additional functionality, including routing, 49 * filtering, and NAT support, but that more advanced functionality is not 50 * currently supported. Despite that, some resources--including routing 51 * tables and filter tables--are defined in this driver because they must 52 * be initialized even when the advanced hardware features are not used. 53 * 54 * There are two distinct layers that implement the IPA hardware, and this 55 * is reflected in the organization of the driver. The generic software 56 * interface (GSI) is an integral component of the IPA, providing a 57 * well-defined communication layer between the AP subsystem and the IPA 58 * core. The GSI implements a set of "channels" used for communication 59 * between the AP and the IPA. 60 * 61 * The IPA layer uses GSI channels to implement its "endpoints". And while 62 * a GSI channel carries data between the AP and the IPA, a pair of IPA 63 * endpoints is used to carry traffic between two EEs. Specifically, the main 64 * modem network interface is implemented by two pairs of endpoints: a TX 65 * endpoint on the AP coupled with an RX endpoint on the modem; and another 66 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 67 */ 68 69 /* The name of the GSI firmware file relative to /lib/firmware */ 70 #define IPA_FWS_PATH "ipa_fws.mdt" 71 #define IPA_PAS_ID 15 72 73 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 74 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 75 #define TAG_TIMESTAMP_SHIFT 14 76 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 77 78 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 79 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 80 81 /** 82 * ipa_suspend_handler() - Handle the suspend IPA interrupt 83 * @ipa: IPA pointer 84 * @irq_id: IPA interrupt type (unused) 85 * 86 * If an RX endpoint is in suspend state, and the IPA has a packet 87 * destined for that endpoint, the IPA generates a SUSPEND interrupt 88 * to inform the AP that it should resume the endpoint. If we get 89 * one of these interrupts we just resume everything. 90 */ 91 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 92 { 93 /* Just report the event, and let system resume handle the rest. 94 * More than one endpoint could signal this; if so, ignore 95 * all but the first. 96 */ 97 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) 98 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); 99 100 /* Acknowledge/clear the suspend interrupt on all endpoints */ 101 ipa_interrupt_suspend_clear_all(ipa->interrupt); 102 } 103 104 /** 105 * ipa_setup() - Set up IPA hardware 106 * @ipa: IPA pointer 107 * 108 * Perform initialization that requires issuing immediate commands on 109 * the command TX endpoint. If the modem is doing GSI firmware load 110 * and initialization, this function will be called when an SMP2P 111 * interrupt has been signaled by the modem. Otherwise it will be 112 * called from ipa_probe() after GSI firmware has been successfully 113 * loaded, authenticated, and started by Trust Zone. 114 */ 115 int ipa_setup(struct ipa *ipa) 116 { 117 struct ipa_endpoint *exception_endpoint; 118 struct ipa_endpoint *command_endpoint; 119 struct device *dev = &ipa->pdev->dev; 120 int ret; 121 122 ret = gsi_setup(&ipa->gsi); 123 if (ret) 124 return ret; 125 126 ipa->interrupt = ipa_interrupt_setup(ipa); 127 if (IS_ERR(ipa->interrupt)) { 128 ret = PTR_ERR(ipa->interrupt); 129 goto err_gsi_teardown; 130 } 131 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 132 ipa_suspend_handler); 133 134 ipa_uc_setup(ipa); 135 136 ret = device_init_wakeup(dev, true); 137 if (ret) 138 goto err_uc_teardown; 139 140 ipa_endpoint_setup(ipa); 141 142 /* We need to use the AP command TX endpoint to perform other 143 * initialization, so we enable first. 144 */ 145 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 146 ret = ipa_endpoint_enable_one(command_endpoint); 147 if (ret) 148 goto err_endpoint_teardown; 149 150 ret = ipa_mem_setup(ipa); 151 if (ret) 152 goto err_command_disable; 153 154 ret = ipa_table_setup(ipa); 155 if (ret) 156 goto err_mem_teardown; 157 158 /* Enable the exception handling endpoint, and tell the hardware 159 * to use it by default. 160 */ 161 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 162 ret = ipa_endpoint_enable_one(exception_endpoint); 163 if (ret) 164 goto err_table_teardown; 165 166 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 167 168 /* We're all set. Now prepare for communication with the modem */ 169 ret = ipa_modem_setup(ipa); 170 if (ret) 171 goto err_default_route_clear; 172 173 ipa->setup_complete = true; 174 175 dev_info(dev, "IPA driver setup completed successfully\n"); 176 177 return 0; 178 179 err_default_route_clear: 180 ipa_endpoint_default_route_clear(ipa); 181 ipa_endpoint_disable_one(exception_endpoint); 182 err_table_teardown: 183 ipa_table_teardown(ipa); 184 err_mem_teardown: 185 ipa_mem_teardown(ipa); 186 err_command_disable: 187 ipa_endpoint_disable_one(command_endpoint); 188 err_endpoint_teardown: 189 ipa_endpoint_teardown(ipa); 190 (void)device_init_wakeup(dev, false); 191 err_uc_teardown: 192 ipa_uc_teardown(ipa); 193 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 194 ipa_interrupt_teardown(ipa->interrupt); 195 err_gsi_teardown: 196 gsi_teardown(&ipa->gsi); 197 198 return ret; 199 } 200 201 /** 202 * ipa_teardown() - Inverse of ipa_setup() 203 * @ipa: IPA pointer 204 */ 205 static void ipa_teardown(struct ipa *ipa) 206 { 207 struct ipa_endpoint *exception_endpoint; 208 struct ipa_endpoint *command_endpoint; 209 210 ipa_modem_teardown(ipa); 211 ipa_endpoint_default_route_clear(ipa); 212 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 213 ipa_endpoint_disable_one(exception_endpoint); 214 ipa_table_teardown(ipa); 215 ipa_mem_teardown(ipa); 216 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 217 ipa_endpoint_disable_one(command_endpoint); 218 ipa_endpoint_teardown(ipa); 219 (void)device_init_wakeup(&ipa->pdev->dev, false); 220 ipa_uc_teardown(ipa); 221 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 222 ipa_interrupt_teardown(ipa->interrupt); 223 gsi_teardown(&ipa->gsi); 224 } 225 226 /* Configure QMB Core Master Port selection */ 227 static void ipa_hardware_config_comp(struct ipa *ipa) 228 { 229 u32 val; 230 231 /* Nothing to configure for IPA v3.5.1 */ 232 if (ipa->version == IPA_VERSION_3_5_1) 233 return; 234 235 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 236 237 if (ipa->version == IPA_VERSION_4_0) { 238 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 239 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 240 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 241 } else if (ipa->version < IPA_VERSION_4_5) { 242 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 243 } else { 244 /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */ 245 } 246 247 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 248 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 249 250 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 251 } 252 253 /* Configure DDR and PCIe max read/write QSB values */ 254 static void ipa_hardware_config_qsb(struct ipa *ipa) 255 { 256 enum ipa_version version = ipa->version; 257 u32 max0; 258 u32 max1; 259 u32 val; 260 261 /* QMB_0 represents DDR; QMB_1 represents PCIe */ 262 val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK); 263 switch (version) { 264 case IPA_VERSION_4_2: 265 max1 = 0; /* PCIe not present */ 266 break; 267 case IPA_VERSION_4_5: 268 max1 = 8; 269 break; 270 default: 271 max1 = 4; 272 break; 273 } 274 val |= u32_encode_bits(max1, GEN_QMB_1_MAX_WRITES_FMASK); 275 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 276 277 max1 = 12; 278 switch (version) { 279 case IPA_VERSION_3_5_1: 280 max0 = 8; 281 break; 282 case IPA_VERSION_4_0: 283 case IPA_VERSION_4_1: 284 max0 = 12; 285 break; 286 case IPA_VERSION_4_2: 287 max0 = 12; 288 max1 = 0; /* PCIe not present */ 289 break; 290 case IPA_VERSION_4_5: 291 max0 = 0; /* No limit (hardware maximum) */ 292 break; 293 } 294 val = u32_encode_bits(max0, GEN_QMB_0_MAX_READS_FMASK); 295 val |= u32_encode_bits(max1, GEN_QMB_1_MAX_READS_FMASK); 296 if (version != IPA_VERSION_3_5_1) { 297 /* GEN_QMB_0_MAX_READS_BEATS is 0 */ 298 /* GEN_QMB_1_MAX_READS_BEATS is 0 */ 299 } 300 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 301 } 302 303 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 304 * timestamps and timers independent of the IPA core clock rate. The 305 * Qtimer is based on a 56-bit timestamp incremented at each tick of 306 * a 19.2 MHz SoC crystal oscillator (XO clock). 307 * 308 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 309 * timestamp is achieved by shifting the Qtimer timestamp value right 310 * some number of bits to produce the low-order bits of the coarser 311 * granularity timestamp. 312 * 313 * For timers, a common timer clock is derived from the XO clock using 314 * a divider (we use 192, to produce a 100kHz timer clock). From 315 * this common clock, three "pulse generators" are used to produce 316 * timer ticks at a configurable frequency. IPA timers (such as 317 * those used for aggregation or head-of-line block handling) now 318 * define their period based on one of these pulse generators. 319 */ 320 static void ipa_qtime_config(struct ipa *ipa) 321 { 322 u32 val; 323 324 /* Timer clock divider must be disabled when we change the rate */ 325 iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 326 327 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 328 val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK); 329 val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK); 330 /* Configure tag and NAT Qtime timestamp resolution as well */ 331 val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK); 332 val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK); 333 iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET); 334 335 /* Set granularity of pulse generators used for other timers */ 336 val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK); 337 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK); 338 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK); 339 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET); 340 341 /* Actual divider is 1 more than value supplied here */ 342 val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK); 343 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 344 345 /* Divider value is set; re-enable the common timer clock divider */ 346 val |= u32_encode_bits(1, DIV_ENABLE_FMASK); 347 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 348 } 349 350 static void ipa_idle_indication_cfg(struct ipa *ipa, 351 u32 enter_idle_debounce_thresh, 352 bool const_non_idle_enable) 353 { 354 u32 offset; 355 u32 val; 356 357 val = u32_encode_bits(enter_idle_debounce_thresh, 358 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 359 if (const_non_idle_enable) 360 val |= CONST_NON_IDLE_ENABLE_FMASK; 361 362 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 363 iowrite32(val, ipa->reg_virt + offset); 364 } 365 366 /** 367 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 368 * @ipa: IPA pointer 369 * 370 * Configures when the IPA signals it is idle to the global clock 371 * controller, which can respond by scalling down the clock to 372 * save power. 373 */ 374 static void ipa_hardware_dcd_config(struct ipa *ipa) 375 { 376 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 377 ipa_idle_indication_cfg(ipa, 256, false); 378 } 379 380 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 381 { 382 /* Power-on reset values */ 383 ipa_idle_indication_cfg(ipa, 0, true); 384 } 385 386 /** 387 * ipa_hardware_config() - Primitive hardware initialization 388 * @ipa: IPA pointer 389 */ 390 static void ipa_hardware_config(struct ipa *ipa) 391 { 392 enum ipa_version version = ipa->version; 393 u32 granularity; 394 u32 val; 395 396 /* IPA v4.5 has no backward compatibility register */ 397 if (version < IPA_VERSION_4_5) { 398 val = ipa_reg_bcr_val(version); 399 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 400 } 401 402 /* Implement some hardware workarounds */ 403 if (version != IPA_VERSION_3_5_1 && version < IPA_VERSION_4_5) { 404 /* Enable open global clocks (not needed for IPA v4.5) */ 405 val = GLOBAL_FMASK; 406 val |= GLOBAL_2X_CLK_FMASK; 407 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 408 409 /* Disable PA mask to allow HOLB drop */ 410 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 411 val &= ~PA_MASK_EN_FMASK; 412 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 413 } 414 415 ipa_hardware_config_comp(ipa); 416 417 /* Configure system bus limits */ 418 ipa_hardware_config_qsb(ipa); 419 420 if (version < IPA_VERSION_4_5) { 421 /* Configure aggregation timer granularity */ 422 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 423 val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); 424 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 425 } else { 426 ipa_qtime_config(ipa); 427 } 428 429 /* IPA v4.2 does not support hashed tables, so disable them */ 430 if (version == IPA_VERSION_4_2) { 431 u32 offset = ipa_reg_filt_rout_hash_en_offset(version); 432 433 iowrite32(0, ipa->reg_virt + offset); 434 } 435 436 /* Enable dynamic clock division */ 437 ipa_hardware_dcd_config(ipa); 438 } 439 440 /** 441 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 442 * @ipa: IPA pointer 443 * 444 * This restores the power-on reset values (even if they aren't different) 445 */ 446 static void ipa_hardware_deconfig(struct ipa *ipa) 447 { 448 /* Mostly we just leave things as we set them. */ 449 ipa_hardware_dcd_deconfig(ipa); 450 } 451 452 #ifdef IPA_VALIDATION 453 454 static bool ipa_resource_limits_valid(struct ipa *ipa, 455 const struct ipa_resource_data *data) 456 { 457 u32 group_count; 458 u32 i; 459 u32 j; 460 461 /* We program at most 6 source or destination resource group limits */ 462 BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6); 463 464 group_count = ipa_resource_group_src_count(ipa->version); 465 if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX) 466 return false; 467 468 /* Return an error if a non-zero resource limit is specified 469 * for a resource group not supported by hardware. 470 */ 471 for (i = 0; i < data->resource_src_count; i++) { 472 const struct ipa_resource_src *resource; 473 474 resource = &data->resource_src[i]; 475 for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++) 476 if (resource->limits[j].min || resource->limits[j].max) 477 return false; 478 } 479 480 group_count = ipa_resource_group_dst_count(ipa->version); 481 if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX) 482 return false; 483 484 for (i = 0; i < data->resource_dst_count; i++) { 485 const struct ipa_resource_dst *resource; 486 487 resource = &data->resource_dst[i]; 488 for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++) 489 if (resource->limits[j].min || resource->limits[j].max) 490 return false; 491 } 492 493 return true; 494 } 495 496 #else /* !IPA_VALIDATION */ 497 498 static bool ipa_resource_limits_valid(struct ipa *ipa, 499 const struct ipa_resource_data *data) 500 { 501 return true; 502 } 503 504 #endif /* !IPA_VALIDATION */ 505 506 static void 507 ipa_resource_config_common(struct ipa *ipa, u32 offset, 508 const struct ipa_resource_limits *xlimits, 509 const struct ipa_resource_limits *ylimits) 510 { 511 u32 val; 512 513 val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK); 514 val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK); 515 if (ylimits) { 516 val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK); 517 val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK); 518 } 519 520 iowrite32(val, ipa->reg_virt + offset); 521 } 522 523 static void ipa_resource_config_src(struct ipa *ipa, 524 const struct ipa_resource_src *resource) 525 { 526 u32 group_count = ipa_resource_group_src_count(ipa->version); 527 const struct ipa_resource_limits *ylimits; 528 u32 offset; 529 530 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 531 ylimits = group_count == 1 ? NULL : &resource->limits[1]; 532 ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); 533 534 if (group_count < 2) 535 return; 536 537 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 538 ylimits = group_count == 3 ? NULL : &resource->limits[3]; 539 ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); 540 541 if (group_count < 4) 542 return; 543 544 offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); 545 ylimits = group_count == 5 ? NULL : &resource->limits[5]; 546 ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); 547 } 548 549 static void ipa_resource_config_dst(struct ipa *ipa, 550 const struct ipa_resource_dst *resource) 551 { 552 u32 group_count = ipa_resource_group_dst_count(ipa->version); 553 const struct ipa_resource_limits *ylimits; 554 u32 offset; 555 556 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 557 ylimits = group_count == 1 ? NULL : &resource->limits[1]; 558 ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); 559 560 if (group_count < 2) 561 return; 562 563 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 564 ylimits = group_count == 3 ? NULL : &resource->limits[3]; 565 ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); 566 567 if (group_count < 4) 568 return; 569 570 offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); 571 ylimits = group_count == 5 ? NULL : &resource->limits[5]; 572 ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); 573 } 574 575 static int 576 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data) 577 { 578 u32 i; 579 580 if (!ipa_resource_limits_valid(ipa, data)) 581 return -EINVAL; 582 583 for (i = 0; i < data->resource_src_count; i++) 584 ipa_resource_config_src(ipa, data->resource_src); 585 586 for (i = 0; i < data->resource_dst_count; i++) 587 ipa_resource_config_dst(ipa, data->resource_dst); 588 589 return 0; 590 } 591 592 static void ipa_resource_deconfig(struct ipa *ipa) 593 { 594 /* Nothing to do */ 595 } 596 597 /** 598 * ipa_config() - Configure IPA hardware 599 * @ipa: IPA pointer 600 * @data: IPA configuration data 601 * 602 * Perform initialization requiring IPA clock to be enabled. 603 */ 604 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 605 { 606 int ret; 607 608 /* Get a clock reference to allow initialization. This reference 609 * is held after initialization completes, and won't get dropped 610 * unless/until a system suspend request arrives. 611 */ 612 ipa_clock_get(ipa); 613 614 ipa_hardware_config(ipa); 615 616 ret = ipa_endpoint_config(ipa); 617 if (ret) 618 goto err_hardware_deconfig; 619 620 ret = ipa_mem_config(ipa); 621 if (ret) 622 goto err_endpoint_deconfig; 623 624 ipa_table_config(ipa); 625 626 /* Assign resource limitation to each group */ 627 ret = ipa_resource_config(ipa, data->resource_data); 628 if (ret) 629 goto err_table_deconfig; 630 631 ret = ipa_modem_config(ipa); 632 if (ret) 633 goto err_resource_deconfig; 634 635 return 0; 636 637 err_resource_deconfig: 638 ipa_resource_deconfig(ipa); 639 err_table_deconfig: 640 ipa_table_deconfig(ipa); 641 ipa_mem_deconfig(ipa); 642 err_endpoint_deconfig: 643 ipa_endpoint_deconfig(ipa); 644 err_hardware_deconfig: 645 ipa_hardware_deconfig(ipa); 646 ipa_clock_put(ipa); 647 648 return ret; 649 } 650 651 /** 652 * ipa_deconfig() - Inverse of ipa_config() 653 * @ipa: IPA pointer 654 */ 655 static void ipa_deconfig(struct ipa *ipa) 656 { 657 ipa_modem_deconfig(ipa); 658 ipa_resource_deconfig(ipa); 659 ipa_table_deconfig(ipa); 660 ipa_mem_deconfig(ipa); 661 ipa_endpoint_deconfig(ipa); 662 ipa_hardware_deconfig(ipa); 663 ipa_clock_put(ipa); 664 } 665 666 static int ipa_firmware_load(struct device *dev) 667 { 668 const struct firmware *fw; 669 struct device_node *node; 670 struct resource res; 671 phys_addr_t phys; 672 ssize_t size; 673 void *virt; 674 int ret; 675 676 node = of_parse_phandle(dev->of_node, "memory-region", 0); 677 if (!node) { 678 dev_err(dev, "DT error getting \"memory-region\" property\n"); 679 return -EINVAL; 680 } 681 682 ret = of_address_to_resource(node, 0, &res); 683 if (ret) { 684 dev_err(dev, "error %d getting \"memory-region\" resource\n", 685 ret); 686 return ret; 687 } 688 689 ret = request_firmware(&fw, IPA_FWS_PATH, dev); 690 if (ret) { 691 dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH); 692 return ret; 693 } 694 695 phys = res.start; 696 size = (size_t)resource_size(&res); 697 virt = memremap(phys, size, MEMREMAP_WC); 698 if (!virt) { 699 dev_err(dev, "unable to remap firmware memory\n"); 700 ret = -ENOMEM; 701 goto out_release_firmware; 702 } 703 704 ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID, 705 virt, phys, size, NULL); 706 if (ret) 707 dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH); 708 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 709 dev_err(dev, "error %d authenticating \"%s\"\n", ret, 710 IPA_FWS_PATH); 711 712 memunmap(virt); 713 out_release_firmware: 714 release_firmware(fw); 715 716 return ret; 717 } 718 719 static const struct of_device_id ipa_match[] = { 720 { 721 .compatible = "qcom,sdm845-ipa", 722 .data = &ipa_data_sdm845, 723 }, 724 { 725 .compatible = "qcom,sc7180-ipa", 726 .data = &ipa_data_sc7180, 727 }, 728 { }, 729 }; 730 MODULE_DEVICE_TABLE(of, ipa_match); 731 732 static phandle of_property_read_phandle(const struct device_node *np, 733 const char *name) 734 { 735 struct property *prop; 736 int len = 0; 737 738 prop = of_find_property(np, name, &len); 739 if (!prop || len != sizeof(__be32)) 740 return 0; 741 742 return be32_to_cpup(prop->value); 743 } 744 745 /* Check things that can be validated at build time. This just 746 * groups these things BUILD_BUG_ON() calls don't clutter the rest 747 * of the code. 748 * */ 749 static void ipa_validate_build(void) 750 { 751 #ifdef IPA_VALIDATE 752 /* We assume we're working on 64-bit hardware */ 753 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT)); 754 755 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 756 BUILD_BUG_ON(GSI_EE_AP != 0); 757 758 /* There's no point if we have no channels or event rings */ 759 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 760 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 761 762 /* GSI hardware design limits */ 763 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 764 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 765 766 /* The number of TREs in a transaction is limited by the channel's 767 * TLV FIFO size. A transaction structure uses 8-bit fields 768 * to represents the number of TREs it has allocated and used. 769 */ 770 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 771 772 /* This is used as a divisor */ 773 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 774 775 /* Aggregation granularity value can't be 0, and must fit */ 776 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 777 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 778 field_max(AGGR_GRANULARITY_FMASK)); 779 #endif /* IPA_VALIDATE */ 780 } 781 782 /** 783 * ipa_probe() - IPA platform driver probe function 784 * @pdev: Platform device pointer 785 * 786 * Return: 0 if successful, or a negative error code (possibly 787 * EPROBE_DEFER) 788 * 789 * This is the main entry point for the IPA driver. Initialization proceeds 790 * in several stages: 791 * - The "init" stage involves activities that can be initialized without 792 * access to the IPA hardware. 793 * - The "config" stage requires the IPA clock to be active so IPA registers 794 * can be accessed, but does not require the use of IPA immediate commands. 795 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 796 * layer to be initialized. 797 * 798 * A Boolean Device Tree "modem-init" property determines whether GSI 799 * initialization will be performed by the AP (Trust Zone) or the modem. 800 * If the AP does GSI initialization, the setup phase is entered after 801 * this has completed successfully. Otherwise the modem initializes 802 * the GSI layer and signals it has finished by sending an SMP2P interrupt 803 * to the AP; this triggers the start if IPA setup. 804 */ 805 static int ipa_probe(struct platform_device *pdev) 806 { 807 struct device *dev = &pdev->dev; 808 const struct ipa_data *data; 809 struct ipa_clock *clock; 810 struct rproc *rproc; 811 bool modem_init; 812 struct ipa *ipa; 813 phandle ph; 814 int ret; 815 816 ipa_validate_build(); 817 818 /* Get configuration data early; needed for clock initialization */ 819 data = of_device_get_match_data(dev); 820 if (!data) { 821 /* This is really IPA_VALIDATE (should never happen) */ 822 dev_err(dev, "matched hardware not supported\n"); 823 return -ENODEV; 824 } 825 826 /* If we need Trust Zone, make sure it's available */ 827 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 828 if (!modem_init) 829 if (!qcom_scm_is_available()) 830 return -EPROBE_DEFER; 831 832 /* We rely on remoteproc to tell us about modem state changes */ 833 ph = of_property_read_phandle(dev->of_node, "modem-remoteproc"); 834 if (!ph) { 835 dev_err(dev, "DT missing \"modem-remoteproc\" property\n"); 836 return -EINVAL; 837 } 838 839 rproc = rproc_get_by_phandle(ph); 840 if (!rproc) 841 return -EPROBE_DEFER; 842 843 /* The clock and interconnects might not be ready when we're 844 * probed, so might return -EPROBE_DEFER. 845 */ 846 clock = ipa_clock_init(dev, data->clock_data); 847 if (IS_ERR(clock)) { 848 ret = PTR_ERR(clock); 849 goto err_rproc_put; 850 } 851 852 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 853 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 854 if (!ipa) { 855 ret = -ENOMEM; 856 goto err_clock_exit; 857 } 858 859 ipa->pdev = pdev; 860 dev_set_drvdata(dev, ipa); 861 ipa->modem_rproc = rproc; 862 ipa->clock = clock; 863 ipa->version = data->version; 864 865 ret = ipa_reg_init(ipa); 866 if (ret) 867 goto err_kfree_ipa; 868 869 ret = ipa_mem_init(ipa, data->mem_data); 870 if (ret) 871 goto err_reg_exit; 872 873 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 874 data->endpoint_data); 875 if (ret) 876 goto err_mem_exit; 877 878 /* Result is a non-zero mask of endpoints that support filtering */ 879 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 880 data->endpoint_data); 881 if (!ipa->filter_map) { 882 ret = -EINVAL; 883 goto err_gsi_exit; 884 } 885 886 ret = ipa_table_init(ipa); 887 if (ret) 888 goto err_endpoint_exit; 889 890 ret = ipa_modem_init(ipa, modem_init); 891 if (ret) 892 goto err_table_exit; 893 894 ret = ipa_config(ipa, data); 895 if (ret) 896 goto err_modem_exit; 897 898 dev_info(dev, "IPA driver initialized"); 899 900 /* If the modem is doing early initialization, it will trigger a 901 * call to ipa_setup() call when it has finished. In that case 902 * we're done here. 903 */ 904 if (modem_init) 905 return 0; 906 907 /* Otherwise we need to load the firmware and have Trust Zone validate 908 * and install it. If that succeeds we can proceed with setup. 909 */ 910 ret = ipa_firmware_load(dev); 911 if (ret) 912 goto err_deconfig; 913 914 ret = ipa_setup(ipa); 915 if (ret) 916 goto err_deconfig; 917 918 return 0; 919 920 err_deconfig: 921 ipa_deconfig(ipa); 922 err_modem_exit: 923 ipa_modem_exit(ipa); 924 err_table_exit: 925 ipa_table_exit(ipa); 926 err_endpoint_exit: 927 ipa_endpoint_exit(ipa); 928 err_gsi_exit: 929 gsi_exit(&ipa->gsi); 930 err_mem_exit: 931 ipa_mem_exit(ipa); 932 err_reg_exit: 933 ipa_reg_exit(ipa); 934 err_kfree_ipa: 935 kfree(ipa); 936 err_clock_exit: 937 ipa_clock_exit(clock); 938 err_rproc_put: 939 rproc_put(rproc); 940 941 return ret; 942 } 943 944 static int ipa_remove(struct platform_device *pdev) 945 { 946 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 947 struct rproc *rproc = ipa->modem_rproc; 948 struct ipa_clock *clock = ipa->clock; 949 int ret; 950 951 if (ipa->setup_complete) { 952 ret = ipa_modem_stop(ipa); 953 /* If starting or stopping is in progress, try once more */ 954 if (ret == -EBUSY) { 955 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 956 ret = ipa_modem_stop(ipa); 957 } 958 if (ret) 959 return ret; 960 961 ipa_teardown(ipa); 962 } 963 964 ipa_deconfig(ipa); 965 ipa_modem_exit(ipa); 966 ipa_table_exit(ipa); 967 ipa_endpoint_exit(ipa); 968 gsi_exit(&ipa->gsi); 969 ipa_mem_exit(ipa); 970 ipa_reg_exit(ipa); 971 kfree(ipa); 972 ipa_clock_exit(clock); 973 rproc_put(rproc); 974 975 return 0; 976 } 977 978 static void ipa_shutdown(struct platform_device *pdev) 979 { 980 int ret; 981 982 ret = ipa_remove(pdev); 983 if (ret) 984 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 985 } 986 987 /** 988 * ipa_suspend() - Power management system suspend callback 989 * @dev: IPA device structure 990 * 991 * Return: Always returns zero 992 * 993 * Called by the PM framework when a system suspend operation is invoked. 994 * Suspends endpoints and releases the clock reference held to keep 995 * the IPA clock running until this point. 996 */ 997 static int ipa_suspend(struct device *dev) 998 { 999 struct ipa *ipa = dev_get_drvdata(dev); 1000 1001 /* When a suspended RX endpoint has a packet ready to receive, we 1002 * get an IPA SUSPEND interrupt. We trigger a system resume in 1003 * that case, but only on the first such interrupt since suspend. 1004 */ 1005 __clear_bit(IPA_FLAG_RESUMED, ipa->flags); 1006 1007 ipa_endpoint_suspend(ipa); 1008 1009 ipa_clock_put(ipa); 1010 1011 return 0; 1012 } 1013 1014 /** 1015 * ipa_resume() - Power management system resume callback 1016 * @dev: IPA device structure 1017 * 1018 * Return: Always returns 0 1019 * 1020 * Called by the PM framework when a system resume operation is invoked. 1021 * Takes an IPA clock reference to keep the clock running until suspend, 1022 * and resumes endpoints. 1023 */ 1024 static int ipa_resume(struct device *dev) 1025 { 1026 struct ipa *ipa = dev_get_drvdata(dev); 1027 1028 /* This clock reference will keep the IPA out of suspend 1029 * until we get a power management suspend request. 1030 */ 1031 ipa_clock_get(ipa); 1032 1033 ipa_endpoint_resume(ipa); 1034 1035 return 0; 1036 } 1037 1038 static const struct dev_pm_ops ipa_pm_ops = { 1039 .suspend = ipa_suspend, 1040 .resume = ipa_resume, 1041 }; 1042 1043 static struct platform_driver ipa_driver = { 1044 .probe = ipa_probe, 1045 .remove = ipa_remove, 1046 .shutdown = ipa_shutdown, 1047 .driver = { 1048 .name = "ipa", 1049 .pm = &ipa_pm_ops, 1050 .of_match_table = ipa_match, 1051 }, 1052 }; 1053 1054 module_platform_driver(ipa_driver); 1055 1056 MODULE_LICENSE("GPL v2"); 1057 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1058