xref: /openbmc/linux/drivers/net/ipa/ipa_main.c (revision 04295878beac396dae47ba93141cae0d9386e7ef)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/remoteproc.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_clock.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
31 #include "ipa_uc.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
34 
35 /**
36  * DOC: The IP Accelerator
37  *
38  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
39  * networking component found in many Qualcomm SoCs.  The IPA is connected
40  * to the application processor (AP), but is also connected (and partially
41  * controlled by) other "execution environments" (EEs), such as a modem.
42  *
43  * The IPA is the conduit between the AP and the modem that carries network
44  * traffic.  This driver presents a network interface representing the
45  * connection of the modem to external (e.g. LTE) networks.
46  *
47  * The IPA provides protocol checksum calculation, offloading this work
48  * from the AP.  The IPA offers additional functionality, including routing,
49  * filtering, and NAT support, but that more advanced functionality is not
50  * currently supported.  Despite that, some resources--including routing
51  * tables and filter tables--are defined in this driver because they must
52  * be initialized even when the advanced hardware features are not used.
53  *
54  * There are two distinct layers that implement the IPA hardware, and this
55  * is reflected in the organization of the driver.  The generic software
56  * interface (GSI) is an integral component of the IPA, providing a
57  * well-defined communication layer between the AP subsystem and the IPA
58  * core.  The GSI implements a set of "channels" used for communication
59  * between the AP and the IPA.
60  *
61  * The IPA layer uses GSI channels to implement its "endpoints".  And while
62  * a GSI channel carries data between the AP and the IPA, a pair of IPA
63  * endpoints is used to carry traffic between two EEs.  Specifically, the main
64  * modem network interface is implemented by two pairs of endpoints:  a TX
65  * endpoint on the AP coupled with an RX endpoint on the modem; and another
66  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
67  */
68 
69 /* The name of the GSI firmware file relative to /lib/firmware */
70 #define IPA_FWS_PATH		"ipa_fws.mdt"
71 #define IPA_PAS_ID		15
72 
73 /**
74  * ipa_suspend_handler() - Handle the suspend IPA interrupt
75  * @ipa:	IPA pointer
76  * @irq_id:	IPA interrupt type (unused)
77  *
78  * If an RX endpoint is in suspend state, and the IPA has a packet
79  * destined for that endpoint, the IPA generates a SUSPEND interrupt
80  * to inform the AP that it should resume the endpoint.  If we get
81  * one of these interrupts we just resume everything.
82  */
83 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
84 {
85 	/* Just report the event, and let system resume handle the rest.
86 	 * More than one endpoint could signal this; if so, ignore
87 	 * all but the first.
88 	 */
89 	if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
90 		pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
91 
92 	/* Acknowledge/clear the suspend interrupt on all endpoints */
93 	ipa_interrupt_suspend_clear_all(ipa->interrupt);
94 }
95 
96 /**
97  * ipa_setup() - Set up IPA hardware
98  * @ipa:	IPA pointer
99  *
100  * Perform initialization that requires issuing immediate commands on
101  * the command TX endpoint.  If the modem is doing GSI firmware load
102  * and initialization, this function will be called when an SMP2P
103  * interrupt has been signaled by the modem.  Otherwise it will be
104  * called from ipa_probe() after GSI firmware has been successfully
105  * loaded, authenticated, and started by Trust Zone.
106  */
107 int ipa_setup(struct ipa *ipa)
108 {
109 	struct ipa_endpoint *exception_endpoint;
110 	struct ipa_endpoint *command_endpoint;
111 	struct device *dev = &ipa->pdev->dev;
112 	int ret;
113 
114 	ret = gsi_setup(&ipa->gsi);
115 	if (ret)
116 		return ret;
117 
118 	ipa->interrupt = ipa_interrupt_setup(ipa);
119 	if (IS_ERR(ipa->interrupt)) {
120 		ret = PTR_ERR(ipa->interrupt);
121 		goto err_gsi_teardown;
122 	}
123 	ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
124 			  ipa_suspend_handler);
125 
126 	ipa_uc_setup(ipa);
127 
128 	ret = device_init_wakeup(dev, true);
129 	if (ret)
130 		goto err_uc_teardown;
131 
132 	ipa_endpoint_setup(ipa);
133 
134 	/* We need to use the AP command TX endpoint to perform other
135 	 * initialization, so we enable first.
136 	 */
137 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
138 	ret = ipa_endpoint_enable_one(command_endpoint);
139 	if (ret)
140 		goto err_endpoint_teardown;
141 
142 	ret = ipa_mem_setup(ipa);
143 	if (ret)
144 		goto err_command_disable;
145 
146 	ret = ipa_table_setup(ipa);
147 	if (ret)
148 		goto err_mem_teardown;
149 
150 	/* Enable the exception handling endpoint, and tell the hardware
151 	 * to use it by default.
152 	 */
153 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
154 	ret = ipa_endpoint_enable_one(exception_endpoint);
155 	if (ret)
156 		goto err_table_teardown;
157 
158 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
159 
160 	/* We're all set.  Now prepare for communication with the modem */
161 	ret = ipa_modem_setup(ipa);
162 	if (ret)
163 		goto err_default_route_clear;
164 
165 	ipa->setup_complete = true;
166 
167 	dev_info(dev, "IPA driver setup completed successfully\n");
168 
169 	return 0;
170 
171 err_default_route_clear:
172 	ipa_endpoint_default_route_clear(ipa);
173 	ipa_endpoint_disable_one(exception_endpoint);
174 err_table_teardown:
175 	ipa_table_teardown(ipa);
176 err_mem_teardown:
177 	ipa_mem_teardown(ipa);
178 err_command_disable:
179 	ipa_endpoint_disable_one(command_endpoint);
180 err_endpoint_teardown:
181 	ipa_endpoint_teardown(ipa);
182 	(void)device_init_wakeup(dev, false);
183 err_uc_teardown:
184 	ipa_uc_teardown(ipa);
185 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
186 	ipa_interrupt_teardown(ipa->interrupt);
187 err_gsi_teardown:
188 	gsi_teardown(&ipa->gsi);
189 
190 	return ret;
191 }
192 
193 /**
194  * ipa_teardown() - Inverse of ipa_setup()
195  * @ipa:	IPA pointer
196  */
197 static void ipa_teardown(struct ipa *ipa)
198 {
199 	struct ipa_endpoint *exception_endpoint;
200 	struct ipa_endpoint *command_endpoint;
201 
202 	ipa_modem_teardown(ipa);
203 	ipa_endpoint_default_route_clear(ipa);
204 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
205 	ipa_endpoint_disable_one(exception_endpoint);
206 	ipa_table_teardown(ipa);
207 	ipa_mem_teardown(ipa);
208 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
209 	ipa_endpoint_disable_one(command_endpoint);
210 	ipa_endpoint_teardown(ipa);
211 	(void)device_init_wakeup(&ipa->pdev->dev, false);
212 	ipa_uc_teardown(ipa);
213 	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
214 	ipa_interrupt_teardown(ipa->interrupt);
215 	gsi_teardown(&ipa->gsi);
216 }
217 
218 /* Configure QMB Core Master Port selection */
219 static void ipa_hardware_config_comp(struct ipa *ipa)
220 {
221 	u32 val;
222 
223 	/* Nothing to configure for IPA v3.5.1 */
224 	if (ipa->version == IPA_VERSION_3_5_1)
225 		return;
226 
227 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
228 
229 	if (ipa->version == IPA_VERSION_4_0) {
230 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
231 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
232 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
233 	} else  {
234 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
235 	}
236 
237 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
238 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
239 
240 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
241 }
242 
243 /* Configure DDR and PCIe max read/write QSB values */
244 static void ipa_hardware_config_qsb(struct ipa *ipa)
245 {
246 	u32 val;
247 
248 	/* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */
249 	val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK);
250 	if (ipa->version == IPA_VERSION_4_2)
251 		val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK);
252 	else
253 		val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK);
254 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
255 
256 	if (ipa->version == IPA_VERSION_3_5_1) {
257 		val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK);
258 		val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
259 	} else {
260 		val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK);
261 		if (ipa->version == IPA_VERSION_4_2)
262 			val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK);
263 		else
264 			val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
265 		/* GEN_QMB_0_MAX_READS_BEATS is 0 */
266 		/* GEN_QMB_1_MAX_READS_BEATS is 0 */
267 	}
268 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
269 }
270 
271 static void ipa_idle_indication_cfg(struct ipa *ipa,
272 				    u32 enter_idle_debounce_thresh,
273 				    bool const_non_idle_enable)
274 {
275 	u32 offset;
276 	u32 val;
277 
278 	val = u32_encode_bits(enter_idle_debounce_thresh,
279 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
280 	if (const_non_idle_enable)
281 		val |= CONST_NON_IDLE_ENABLE_FMASK;
282 
283 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
284 	iowrite32(val, ipa->reg_virt + offset);
285 }
286 
287 /**
288  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
289  * @ipa:	IPA pointer
290  *
291  * Configures when the IPA signals it is idle to the global clock
292  * controller, which can respond by scalling down the clock to
293  * save power.
294  */
295 static void ipa_hardware_dcd_config(struct ipa *ipa)
296 {
297 	/* Recommended values for IPA 3.5 according to IPA HPG */
298 	ipa_idle_indication_cfg(ipa, 256, false);
299 }
300 
301 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
302 {
303 	/* Power-on reset values */
304 	ipa_idle_indication_cfg(ipa, 0, true);
305 }
306 
307 /**
308  * ipa_hardware_config() - Primitive hardware initialization
309  * @ipa:	IPA pointer
310  */
311 static void ipa_hardware_config(struct ipa *ipa)
312 {
313 	u32 granularity;
314 	u32 val;
315 
316 	/* Fill in backward-compatibility register, based on version */
317 	val = ipa_reg_bcr_val(ipa->version);
318 	iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
319 
320 	if (ipa->version != IPA_VERSION_3_5_1) {
321 		/* Enable open global clocks (hardware workaround) */
322 		val = GLOBAL_FMASK;
323 		val |= GLOBAL_2X_CLK_FMASK;
324 		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
325 
326 		/* Disable PA mask to allow HOLB drop (hardware workaround) */
327 		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
328 		val &= ~PA_MASK_EN_FMASK;
329 		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
330 	}
331 
332 	ipa_hardware_config_comp(ipa);
333 
334 	/* Configure system bus limits */
335 	ipa_hardware_config_qsb(ipa);
336 
337 	/* Configure aggregation granularity */
338 	granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
339 	val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
340 	iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
341 
342 	/* IPA v4.2 does not support hashed tables, so disable them */
343 	if (ipa->version == IPA_VERSION_4_2) {
344 		u32 offset = ipa_reg_filt_rout_hash_en_offset(ipa->version);
345 
346 		iowrite32(0, ipa->reg_virt + offset);
347 	}
348 
349 	/* Enable dynamic clock division */
350 	ipa_hardware_dcd_config(ipa);
351 }
352 
353 /**
354  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
355  * @ipa:	IPA pointer
356  *
357  * This restores the power-on reset values (even if they aren't different)
358  */
359 static void ipa_hardware_deconfig(struct ipa *ipa)
360 {
361 	/* Mostly we just leave things as we set them. */
362 	ipa_hardware_dcd_deconfig(ipa);
363 }
364 
365 #ifdef IPA_VALIDATION
366 
367 static bool ipa_resource_limits_valid(struct ipa *ipa,
368 				      const struct ipa_resource_data *data)
369 {
370 	u32 group_count;
371 	u32 i;
372 	u32 j;
373 
374 	/* We program at most 6 source or destination resource group limits */
375 	BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6);
376 
377 	group_count = ipa_resource_group_src_count(ipa->version);
378 	if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX)
379 		return false;
380 
381 	/* Return an error if a non-zero resource limit is specified
382 	 * for a resource group not supported by hardware.
383 	 */
384 	for (i = 0; i < data->resource_src_count; i++) {
385 		const struct ipa_resource_src *resource;
386 
387 		resource = &data->resource_src[i];
388 		for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++)
389 			if (resource->limits[j].min || resource->limits[j].max)
390 				return false;
391 	}
392 
393 	group_count = ipa_resource_group_dst_count(ipa->version);
394 	if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX)
395 		return false;
396 
397 	for (i = 0; i < data->resource_dst_count; i++) {
398 		const struct ipa_resource_dst *resource;
399 
400 		resource = &data->resource_dst[i];
401 		for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++)
402 			if (resource->limits[j].min || resource->limits[j].max)
403 				return false;
404 	}
405 
406 	return true;
407 }
408 
409 #else /* !IPA_VALIDATION */
410 
411 static bool ipa_resource_limits_valid(struct ipa *ipa,
412 				      const struct ipa_resource_data *data)
413 {
414 	return true;
415 }
416 
417 #endif /* !IPA_VALIDATION */
418 
419 static void
420 ipa_resource_config_common(struct ipa *ipa, u32 offset,
421 			   const struct ipa_resource_limits *xlimits,
422 			   const struct ipa_resource_limits *ylimits)
423 {
424 	u32 val;
425 
426 	val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK);
427 	val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK);
428 	if (ylimits) {
429 		val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK);
430 		val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK);
431 	}
432 
433 	iowrite32(val, ipa->reg_virt + offset);
434 }
435 
436 static void ipa_resource_config_src(struct ipa *ipa,
437 				    const struct ipa_resource_src *resource)
438 {
439 	u32 group_count = ipa_resource_group_src_count(ipa->version);
440 	const struct ipa_resource_limits *ylimits;
441 	u32 offset;
442 
443 	offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
444 	ylimits = group_count == 1 ? NULL : &resource->limits[1];
445 	ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits);
446 
447 	if (group_count < 2)
448 		return;
449 
450 	offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
451 	ylimits = group_count == 3 ? NULL : &resource->limits[3];
452 	ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits);
453 
454 	if (group_count < 4)
455 		return;
456 
457 	offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type);
458 	ylimits = group_count == 5 ? NULL : &resource->limits[5];
459 	ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits);
460 }
461 
462 static void ipa_resource_config_dst(struct ipa *ipa,
463 				    const struct ipa_resource_dst *resource)
464 {
465 	u32 group_count = ipa_resource_group_dst_count(ipa->version);
466 	const struct ipa_resource_limits *ylimits;
467 	u32 offset;
468 
469 	offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
470 	ylimits = group_count == 1 ? NULL : &resource->limits[1];
471 	ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits);
472 
473 	if (group_count < 2)
474 		return;
475 
476 	offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
477 	ylimits = group_count == 3 ? NULL : &resource->limits[3];
478 	ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits);
479 
480 	if (group_count < 4)
481 		return;
482 
483 	offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type);
484 	ylimits = group_count == 5 ? NULL : &resource->limits[5];
485 	ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits);
486 }
487 
488 static int
489 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data)
490 {
491 	u32 i;
492 
493 	if (!ipa_resource_limits_valid(ipa, data))
494 		return -EINVAL;
495 
496 	for (i = 0; i < data->resource_src_count; i++)
497 		ipa_resource_config_src(ipa, data->resource_src);
498 
499 	for (i = 0; i < data->resource_dst_count; i++)
500 		ipa_resource_config_dst(ipa, data->resource_dst);
501 
502 	return 0;
503 }
504 
505 static void ipa_resource_deconfig(struct ipa *ipa)
506 {
507 	/* Nothing to do */
508 }
509 
510 /**
511  * ipa_config() - Configure IPA hardware
512  * @ipa:	IPA pointer
513  * @data:	IPA configuration data
514  *
515  * Perform initialization requiring IPA clock to be enabled.
516  */
517 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
518 {
519 	int ret;
520 
521 	/* Get a clock reference to allow initialization.  This reference
522 	 * is held after initialization completes, and won't get dropped
523 	 * unless/until a system suspend request arrives.
524 	 */
525 	ipa_clock_get(ipa);
526 
527 	ipa_hardware_config(ipa);
528 
529 	ret = ipa_endpoint_config(ipa);
530 	if (ret)
531 		goto err_hardware_deconfig;
532 
533 	ret = ipa_mem_config(ipa);
534 	if (ret)
535 		goto err_endpoint_deconfig;
536 
537 	ipa_table_config(ipa);
538 
539 	/* Assign resource limitation to each group */
540 	ret = ipa_resource_config(ipa, data->resource_data);
541 	if (ret)
542 		goto err_table_deconfig;
543 
544 	ret = ipa_modem_config(ipa);
545 	if (ret)
546 		goto err_resource_deconfig;
547 
548 	return 0;
549 
550 err_resource_deconfig:
551 	ipa_resource_deconfig(ipa);
552 err_table_deconfig:
553 	ipa_table_deconfig(ipa);
554 	ipa_mem_deconfig(ipa);
555 err_endpoint_deconfig:
556 	ipa_endpoint_deconfig(ipa);
557 err_hardware_deconfig:
558 	ipa_hardware_deconfig(ipa);
559 	ipa_clock_put(ipa);
560 
561 	return ret;
562 }
563 
564 /**
565  * ipa_deconfig() - Inverse of ipa_config()
566  * @ipa:	IPA pointer
567  */
568 static void ipa_deconfig(struct ipa *ipa)
569 {
570 	ipa_modem_deconfig(ipa);
571 	ipa_resource_deconfig(ipa);
572 	ipa_table_deconfig(ipa);
573 	ipa_mem_deconfig(ipa);
574 	ipa_endpoint_deconfig(ipa);
575 	ipa_hardware_deconfig(ipa);
576 	ipa_clock_put(ipa);
577 }
578 
579 static int ipa_firmware_load(struct device *dev)
580 {
581 	const struct firmware *fw;
582 	struct device_node *node;
583 	struct resource res;
584 	phys_addr_t phys;
585 	ssize_t size;
586 	void *virt;
587 	int ret;
588 
589 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
590 	if (!node) {
591 		dev_err(dev, "DT error getting \"memory-region\" property\n");
592 		return -EINVAL;
593 	}
594 
595 	ret = of_address_to_resource(node, 0, &res);
596 	if (ret) {
597 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
598 			ret);
599 		return ret;
600 	}
601 
602 	ret = request_firmware(&fw, IPA_FWS_PATH, dev);
603 	if (ret) {
604 		dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH);
605 		return ret;
606 	}
607 
608 	phys = res.start;
609 	size = (size_t)resource_size(&res);
610 	virt = memremap(phys, size, MEMREMAP_WC);
611 	if (!virt) {
612 		dev_err(dev, "unable to remap firmware memory\n");
613 		ret = -ENOMEM;
614 		goto out_release_firmware;
615 	}
616 
617 	ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID,
618 			    virt, phys, size, NULL);
619 	if (ret)
620 		dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH);
621 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
622 		dev_err(dev, "error %d authenticating \"%s\"\n", ret,
623 			IPA_FWS_PATH);
624 
625 	memunmap(virt);
626 out_release_firmware:
627 	release_firmware(fw);
628 
629 	return ret;
630 }
631 
632 static const struct of_device_id ipa_match[] = {
633 	{
634 		.compatible	= "qcom,sdm845-ipa",
635 		.data		= &ipa_data_sdm845,
636 	},
637 	{
638 		.compatible	= "qcom,sc7180-ipa",
639 		.data		= &ipa_data_sc7180,
640 	},
641 	{ },
642 };
643 MODULE_DEVICE_TABLE(of, ipa_match);
644 
645 static phandle of_property_read_phandle(const struct device_node *np,
646 					const char *name)
647 {
648         struct property *prop;
649         int len = 0;
650 
651         prop = of_find_property(np, name, &len);
652         if (!prop || len != sizeof(__be32))
653                 return 0;
654 
655         return be32_to_cpup(prop->value);
656 }
657 
658 /* Check things that can be validated at build time.  This just
659  * groups these things BUILD_BUG_ON() calls don't clutter the rest
660  * of the code.
661  * */
662 static void ipa_validate_build(void)
663 {
664 #ifdef IPA_VALIDATE
665 	/* We assume we're working on 64-bit hardware */
666 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT));
667 
668 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
669 	BUILD_BUG_ON(GSI_EE_AP != 0);
670 
671 	/* There's no point if we have no channels or event rings */
672 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
673 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
674 
675 	/* GSI hardware design limits */
676 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
677 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
678 
679 	/* The number of TREs in a transaction is limited by the channel's
680 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
681 	 * to represents the number of TREs it has allocated and used.
682 	 */
683 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
684 
685 	/* This is used as a divisor */
686 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
687 
688 	/* Aggregation granularity value can't be 0, and must fit */
689 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
690 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
691 			field_max(AGGR_GRANULARITY_FMASK));
692 #endif /* IPA_VALIDATE */
693 }
694 
695 /**
696  * ipa_probe() - IPA platform driver probe function
697  * @pdev:	Platform device pointer
698  *
699  * Return:	0 if successful, or a negative error code (possibly
700  *		EPROBE_DEFER)
701  *
702  * This is the main entry point for the IPA driver.  Initialization proceeds
703  * in several stages:
704  *   - The "init" stage involves activities that can be initialized without
705  *     access to the IPA hardware.
706  *   - The "config" stage requires the IPA clock to be active so IPA registers
707  *     can be accessed, but does not require the use of IPA immediate commands.
708  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
709  *     layer to be initialized.
710  *
711  * A Boolean Device Tree "modem-init" property determines whether GSI
712  * initialization will be performed by the AP (Trust Zone) or the modem.
713  * If the AP does GSI initialization, the setup phase is entered after
714  * this has completed successfully.  Otherwise the modem initializes
715  * the GSI layer and signals it has finished by sending an SMP2P interrupt
716  * to the AP; this triggers the start if IPA setup.
717  */
718 static int ipa_probe(struct platform_device *pdev)
719 {
720 	struct device *dev = &pdev->dev;
721 	const struct ipa_data *data;
722 	struct ipa_clock *clock;
723 	struct rproc *rproc;
724 	bool modem_init;
725 	struct ipa *ipa;
726 	phandle ph;
727 	int ret;
728 
729 	ipa_validate_build();
730 
731 	/* Get configuration data early; needed for clock initialization */
732 	data = of_device_get_match_data(dev);
733 	if (!data) {
734 		/* This is really IPA_VALIDATE (should never happen) */
735 		dev_err(dev, "matched hardware not supported\n");
736 		return -ENODEV;
737 	}
738 
739 	/* If we need Trust Zone, make sure it's available */
740 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
741 	if (!modem_init)
742 		if (!qcom_scm_is_available())
743 			return -EPROBE_DEFER;
744 
745 	/* We rely on remoteproc to tell us about modem state changes */
746 	ph = of_property_read_phandle(dev->of_node, "modem-remoteproc");
747 	if (!ph) {
748 		dev_err(dev, "DT missing \"modem-remoteproc\" property\n");
749 		return -EINVAL;
750 	}
751 
752 	rproc = rproc_get_by_phandle(ph);
753 	if (!rproc)
754 		return -EPROBE_DEFER;
755 
756 	/* The clock and interconnects might not be ready when we're
757 	 * probed, so might return -EPROBE_DEFER.
758 	 */
759 	clock = ipa_clock_init(dev, data->clock_data);
760 	if (IS_ERR(clock)) {
761 		ret = PTR_ERR(clock);
762 		goto err_rproc_put;
763 	}
764 
765 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
766 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
767 	if (!ipa) {
768 		ret = -ENOMEM;
769 		goto err_clock_exit;
770 	}
771 
772 	ipa->pdev = pdev;
773 	dev_set_drvdata(dev, ipa);
774 	ipa->modem_rproc = rproc;
775 	ipa->clock = clock;
776 	ipa->version = data->version;
777 
778 	ret = ipa_reg_init(ipa);
779 	if (ret)
780 		goto err_kfree_ipa;
781 
782 	ret = ipa_mem_init(ipa, data->mem_data);
783 	if (ret)
784 		goto err_reg_exit;
785 
786 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
787 		       data->endpoint_data);
788 	if (ret)
789 		goto err_mem_exit;
790 
791 	/* Result is a non-zero mask of endpoints that support filtering */
792 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
793 					    data->endpoint_data);
794 	if (!ipa->filter_map) {
795 		ret = -EINVAL;
796 		goto err_gsi_exit;
797 	}
798 
799 	ret = ipa_table_init(ipa);
800 	if (ret)
801 		goto err_endpoint_exit;
802 
803 	ret = ipa_modem_init(ipa, modem_init);
804 	if (ret)
805 		goto err_table_exit;
806 
807 	ret = ipa_config(ipa, data);
808 	if (ret)
809 		goto err_modem_exit;
810 
811 	dev_info(dev, "IPA driver initialized");
812 
813 	/* If the modem is doing early initialization, it will trigger a
814 	 * call to ipa_setup() call when it has finished.  In that case
815 	 * we're done here.
816 	 */
817 	if (modem_init)
818 		return 0;
819 
820 	/* Otherwise we need to load the firmware and have Trust Zone validate
821 	 * and install it.  If that succeeds we can proceed with setup.
822 	 */
823 	ret = ipa_firmware_load(dev);
824 	if (ret)
825 		goto err_deconfig;
826 
827 	ret = ipa_setup(ipa);
828 	if (ret)
829 		goto err_deconfig;
830 
831 	return 0;
832 
833 err_deconfig:
834 	ipa_deconfig(ipa);
835 err_modem_exit:
836 	ipa_modem_exit(ipa);
837 err_table_exit:
838 	ipa_table_exit(ipa);
839 err_endpoint_exit:
840 	ipa_endpoint_exit(ipa);
841 err_gsi_exit:
842 	gsi_exit(&ipa->gsi);
843 err_mem_exit:
844 	ipa_mem_exit(ipa);
845 err_reg_exit:
846 	ipa_reg_exit(ipa);
847 err_kfree_ipa:
848 	kfree(ipa);
849 err_clock_exit:
850 	ipa_clock_exit(clock);
851 err_rproc_put:
852 	rproc_put(rproc);
853 
854 	return ret;
855 }
856 
857 static int ipa_remove(struct platform_device *pdev)
858 {
859 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
860 	struct rproc *rproc = ipa->modem_rproc;
861 	struct ipa_clock *clock = ipa->clock;
862 	int ret;
863 
864 	if (ipa->setup_complete) {
865 		ret = ipa_modem_stop(ipa);
866 		/* If starting or stopping is in progress, try once more */
867 		if (ret == -EBUSY) {
868 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
869 			ret = ipa_modem_stop(ipa);
870 		}
871 		if (ret)
872 			return ret;
873 
874 		ipa_teardown(ipa);
875 	}
876 
877 	ipa_deconfig(ipa);
878 	ipa_modem_exit(ipa);
879 	ipa_table_exit(ipa);
880 	ipa_endpoint_exit(ipa);
881 	gsi_exit(&ipa->gsi);
882 	ipa_mem_exit(ipa);
883 	ipa_reg_exit(ipa);
884 	kfree(ipa);
885 	ipa_clock_exit(clock);
886 	rproc_put(rproc);
887 
888 	return 0;
889 }
890 
891 static void ipa_shutdown(struct platform_device *pdev)
892 {
893 	int ret;
894 
895 	ret = ipa_remove(pdev);
896 	if (ret)
897 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
898 }
899 
900 /**
901  * ipa_suspend() - Power management system suspend callback
902  * @dev:	IPA device structure
903  *
904  * Return:	Always returns zero
905  *
906  * Called by the PM framework when a system suspend operation is invoked.
907  * Suspends endpoints and releases the clock reference held to keep
908  * the IPA clock running until this point.
909  */
910 static int ipa_suspend(struct device *dev)
911 {
912 	struct ipa *ipa = dev_get_drvdata(dev);
913 
914 	/* When a suspended RX endpoint has a packet ready to receive, we
915 	 * get an IPA SUSPEND interrupt.  We trigger a system resume in
916 	 * that case, but only on the first such interrupt since suspend.
917 	 */
918 	__clear_bit(IPA_FLAG_RESUMED, ipa->flags);
919 
920 	ipa_endpoint_suspend(ipa);
921 
922 	ipa_clock_put(ipa);
923 
924 	return 0;
925 }
926 
927 /**
928  * ipa_resume() - Power management system resume callback
929  * @dev:	IPA device structure
930  *
931  * Return:	Always returns 0
932  *
933  * Called by the PM framework when a system resume operation is invoked.
934  * Takes an IPA clock reference to keep the clock running until suspend,
935  * and resumes endpoints.
936  */
937 static int ipa_resume(struct device *dev)
938 {
939 	struct ipa *ipa = dev_get_drvdata(dev);
940 
941 	/* This clock reference will keep the IPA out of suspend
942 	 * until we get a power management suspend request.
943 	 */
944 	ipa_clock_get(ipa);
945 
946 	ipa_endpoint_resume(ipa);
947 
948 	return 0;
949 }
950 
951 static const struct dev_pm_ops ipa_pm_ops = {
952 	.suspend	= ipa_suspend,
953 	.resume		= ipa_resume,
954 };
955 
956 static struct platform_driver ipa_driver = {
957 	.probe		= ipa_probe,
958 	.remove		= ipa_remove,
959 	.shutdown	= ipa_shutdown,
960 	.driver	= {
961 		.name		= "ipa",
962 		.pm		= &ipa_pm_ops,
963 		.of_match_table	= ipa_match,
964 	},
965 };
966 
967 module_platform_driver(ipa_driver);
968 
969 MODULE_LICENSE("GPL v2");
970 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
971