1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2023 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/firmware/qcom/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21
22 #include "ipa.h"
23 #include "ipa_power.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_resource.h"
27 #include "ipa_cmd.h"
28 #include "ipa_reg.h"
29 #include "ipa_mem.h"
30 #include "ipa_table.h"
31 #include "ipa_smp2p.h"
32 #include "ipa_modem.h"
33 #include "ipa_uc.h"
34 #include "ipa_interrupt.h"
35 #include "gsi_trans.h"
36 #include "ipa_sysfs.h"
37
38 /**
39 * DOC: The IP Accelerator
40 *
41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42 * networking component found in many Qualcomm SoCs. The IPA is connected
43 * to the application processor (AP), but is also connected (and partially
44 * controlled by) other "execution environments" (EEs), such as a modem.
45 *
46 * The IPA is the conduit between the AP and the modem that carries network
47 * traffic. This driver presents a network interface representing the
48 * connection of the modem to external (e.g. LTE) networks.
49 *
50 * The IPA provides protocol checksum calculation, offloading this work
51 * from the AP. The IPA offers additional functionality, including routing,
52 * filtering, and NAT support, but that more advanced functionality is not
53 * currently supported. Despite that, some resources--including routing
54 * tables and filter tables--are defined in this driver because they must
55 * be initialized even when the advanced hardware features are not used.
56 *
57 * There are two distinct layers that implement the IPA hardware, and this
58 * is reflected in the organization of the driver. The generic software
59 * interface (GSI) is an integral component of the IPA, providing a
60 * well-defined communication layer between the AP subsystem and the IPA
61 * core. The GSI implements a set of "channels" used for communication
62 * between the AP and the IPA.
63 *
64 * The IPA layer uses GSI channels to implement its "endpoints". And while
65 * a GSI channel carries data between the AP and the IPA, a pair of IPA
66 * endpoints is used to carry traffic between two EEs. Specifically, the main
67 * modem network interface is implemented by two pairs of endpoints: a TX
68 * endpoint on the AP coupled with an RX endpoint on the modem; and another
69 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70 */
71
72 /* The name of the GSI firmware file relative to /lib/firmware */
73 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
74 #define IPA_PAS_ID 15
75
76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
78 #define TAG_TIMESTAMP_SHIFT 14
79 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
80
81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
83
84 /**
85 * enum ipa_firmware_loader: How GSI firmware gets loaded
86 *
87 * @IPA_LOADER_DEFER: System not ready; try again later
88 * @IPA_LOADER_SELF: AP loads GSI firmware
89 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done
90 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware
91 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid
92 */
93 enum ipa_firmware_loader {
94 IPA_LOADER_DEFER,
95 IPA_LOADER_SELF,
96 IPA_LOADER_MODEM,
97 IPA_LOADER_SKIP,
98 IPA_LOADER_INVALID,
99 };
100
101 /**
102 * ipa_setup() - Set up IPA hardware
103 * @ipa: IPA pointer
104 *
105 * Perform initialization that requires issuing immediate commands on
106 * the command TX endpoint. If the modem is doing GSI firmware load
107 * and initialization, this function will be called when an SMP2P
108 * interrupt has been signaled by the modem. Otherwise it will be
109 * called from ipa_probe() after GSI firmware has been successfully
110 * loaded, authenticated, and started by Trust Zone.
111 */
ipa_setup(struct ipa * ipa)112 int ipa_setup(struct ipa *ipa)
113 {
114 struct ipa_endpoint *exception_endpoint;
115 struct ipa_endpoint *command_endpoint;
116 struct device *dev = &ipa->pdev->dev;
117 int ret;
118
119 ret = gsi_setup(&ipa->gsi);
120 if (ret)
121 return ret;
122
123 ret = ipa_power_setup(ipa);
124 if (ret)
125 goto err_gsi_teardown;
126
127 ipa_endpoint_setup(ipa);
128
129 /* We need to use the AP command TX endpoint to perform other
130 * initialization, so we enable first.
131 */
132 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
133 ret = ipa_endpoint_enable_one(command_endpoint);
134 if (ret)
135 goto err_endpoint_teardown;
136
137 ret = ipa_mem_setup(ipa); /* No matching teardown required */
138 if (ret)
139 goto err_command_disable;
140
141 ret = ipa_table_setup(ipa); /* No matching teardown required */
142 if (ret)
143 goto err_command_disable;
144
145 /* Enable the exception handling endpoint, and tell the hardware
146 * to use it by default.
147 */
148 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
149 ret = ipa_endpoint_enable_one(exception_endpoint);
150 if (ret)
151 goto err_command_disable;
152
153 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
154
155 /* We're all set. Now prepare for communication with the modem */
156 ret = ipa_qmi_setup(ipa);
157 if (ret)
158 goto err_default_route_clear;
159
160 ipa->setup_complete = true;
161
162 dev_info(dev, "IPA driver setup completed successfully\n");
163
164 return 0;
165
166 err_default_route_clear:
167 ipa_endpoint_default_route_clear(ipa);
168 ipa_endpoint_disable_one(exception_endpoint);
169 err_command_disable:
170 ipa_endpoint_disable_one(command_endpoint);
171 err_endpoint_teardown:
172 ipa_endpoint_teardown(ipa);
173 ipa_power_teardown(ipa);
174 err_gsi_teardown:
175 gsi_teardown(&ipa->gsi);
176
177 return ret;
178 }
179
180 /**
181 * ipa_teardown() - Inverse of ipa_setup()
182 * @ipa: IPA pointer
183 */
ipa_teardown(struct ipa * ipa)184 static void ipa_teardown(struct ipa *ipa)
185 {
186 struct ipa_endpoint *exception_endpoint;
187 struct ipa_endpoint *command_endpoint;
188
189 /* We're going to tear everything down, as if setup never completed */
190 ipa->setup_complete = false;
191
192 ipa_qmi_teardown(ipa);
193 ipa_endpoint_default_route_clear(ipa);
194 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
195 ipa_endpoint_disable_one(exception_endpoint);
196 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
197 ipa_endpoint_disable_one(command_endpoint);
198 ipa_endpoint_teardown(ipa);
199 ipa_power_teardown(ipa);
200 gsi_teardown(&ipa->gsi);
201 }
202
203 static void
ipa_hardware_config_bcr(struct ipa * ipa,const struct ipa_data * data)204 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
205 {
206 const struct reg *reg;
207 u32 val;
208
209 /* IPA v4.5+ has no backward compatibility register */
210 if (ipa->version >= IPA_VERSION_4_5)
211 return;
212
213 reg = ipa_reg(ipa, IPA_BCR);
214 val = data->backward_compat;
215 iowrite32(val, ipa->reg_virt + reg_offset(reg));
216 }
217
ipa_hardware_config_tx(struct ipa * ipa)218 static void ipa_hardware_config_tx(struct ipa *ipa)
219 {
220 enum ipa_version version = ipa->version;
221 const struct reg *reg;
222 u32 offset;
223 u32 val;
224
225 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
226 return;
227
228 /* Disable PA mask to allow HOLB drop */
229 reg = ipa_reg(ipa, IPA_TX_CFG);
230 offset = reg_offset(reg);
231
232 val = ioread32(ipa->reg_virt + offset);
233
234 val &= ~reg_bit(reg, PA_MASK_EN);
235
236 iowrite32(val, ipa->reg_virt + offset);
237 }
238
ipa_hardware_config_clkon(struct ipa * ipa)239 static void ipa_hardware_config_clkon(struct ipa *ipa)
240 {
241 enum ipa_version version = ipa->version;
242 const struct reg *reg;
243 u32 val;
244
245 if (version >= IPA_VERSION_4_5)
246 return;
247
248 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
249 return;
250
251 /* Implement some hardware workarounds */
252 reg = ipa_reg(ipa, CLKON_CFG);
253 if (version == IPA_VERSION_3_1) {
254 /* Disable MISC clock gating */
255 val = reg_bit(reg, CLKON_MISC);
256 } else { /* IPA v4.0+ */
257 /* Enable open global clocks in the CLKON configuration */
258 val = reg_bit(reg, CLKON_GLOBAL);
259 val |= reg_bit(reg, GLOBAL_2X_CLK);
260 }
261
262 iowrite32(val, ipa->reg_virt + reg_offset(reg));
263 }
264
265 /* Configure bus access behavior for IPA components */
ipa_hardware_config_comp(struct ipa * ipa)266 static void ipa_hardware_config_comp(struct ipa *ipa)
267 {
268 const struct reg *reg;
269 u32 offset;
270 u32 val;
271
272 /* Nothing to configure prior to IPA v4.0 */
273 if (ipa->version < IPA_VERSION_4_0)
274 return;
275
276 reg = ipa_reg(ipa, COMP_CFG);
277 offset = reg_offset(reg);
278
279 val = ioread32(ipa->reg_virt + offset);
280
281 if (ipa->version == IPA_VERSION_4_0) {
282 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
283 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
284 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
285 } else if (ipa->version < IPA_VERSION_4_5) {
286 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
287 } else {
288 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
289 }
290
291 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
292 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
293
294 iowrite32(val, ipa->reg_virt + offset);
295 }
296
297 /* Configure DDR and (possibly) PCIe max read/write QSB values */
298 static void
ipa_hardware_config_qsb(struct ipa * ipa,const struct ipa_data * data)299 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
300 {
301 const struct ipa_qsb_data *data0;
302 const struct ipa_qsb_data *data1;
303 const struct reg *reg;
304 u32 val;
305
306 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
307 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
308 if (data->qsb_count > 1)
309 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
310
311 /* Max outstanding write accesses for QSB masters */
312 reg = ipa_reg(ipa, QSB_MAX_WRITES);
313
314 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
315 if (data->qsb_count > 1)
316 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
317
318 iowrite32(val, ipa->reg_virt + reg_offset(reg));
319
320 /* Max outstanding read accesses for QSB masters */
321 reg = ipa_reg(ipa, QSB_MAX_READS);
322
323 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
324 if (ipa->version >= IPA_VERSION_4_0)
325 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
326 data0->max_reads_beats);
327 if (data->qsb_count > 1) {
328 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
329 if (ipa->version >= IPA_VERSION_4_0)
330 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
331 data1->max_reads_beats);
332 }
333
334 iowrite32(val, ipa->reg_virt + reg_offset(reg));
335 }
336
337 /* The internal inactivity timer clock is used for the aggregation timer */
338 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
339
340 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
341 * field to represent the given number of microseconds. The value is one
342 * less than the number of timer ticks in the requested period. 0 is not
343 * a valid granularity value (so for example @usec must be at least 16 for
344 * a TIMER_FREQUENCY of 32000).
345 */
ipa_aggr_granularity_val(u32 usec)346 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
347 {
348 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
349 }
350
351 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
352 * timestamps and timers independent of the IPA core clock rate. The
353 * Qtimer is based on a 56-bit timestamp incremented at each tick of
354 * a 19.2 MHz SoC crystal oscillator (XO clock).
355 *
356 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
357 * timestamp is achieved by shifting the Qtimer timestamp value right
358 * some number of bits to produce the low-order bits of the coarser
359 * granularity timestamp.
360 *
361 * For timers, a common timer clock is derived from the XO clock using
362 * a divider (we use 192, to produce a 100kHz timer clock). From
363 * this common clock, three "pulse generators" are used to produce
364 * timer ticks at a configurable frequency. IPA timers (such as
365 * those used for aggregation or head-of-line block handling) now
366 * define their period based on one of these pulse generators.
367 */
ipa_qtime_config(struct ipa * ipa)368 static void ipa_qtime_config(struct ipa *ipa)
369 {
370 const struct reg *reg;
371 u32 offset;
372 u32 val;
373
374 /* Timer clock divider must be disabled when we change the rate */
375 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
376 iowrite32(0, ipa->reg_virt + reg_offset(reg));
377
378 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
379 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
380 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
381 val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
382 /* Configure tag and NAT Qtime timestamp resolution as well */
383 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
384 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
385
386 iowrite32(val, ipa->reg_virt + reg_offset(reg));
387
388 /* Set granularity of pulse generators used for other timers */
389 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
390 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
391 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
392 if (ipa->version >= IPA_VERSION_5_0) {
393 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
394 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
395 } else {
396 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
397 }
398
399 iowrite32(val, ipa->reg_virt + reg_offset(reg));
400
401 /* Actual divider is 1 more than value supplied here */
402 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
403 offset = reg_offset(reg);
404
405 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
406
407 iowrite32(val, ipa->reg_virt + offset);
408
409 /* Divider value is set; re-enable the common timer clock divider */
410 val |= reg_bit(reg, DIV_ENABLE);
411
412 iowrite32(val, ipa->reg_virt + offset);
413 }
414
415 /* Before IPA v4.5 timing is controlled by a counter register */
ipa_hardware_config_counter(struct ipa * ipa)416 static void ipa_hardware_config_counter(struct ipa *ipa)
417 {
418 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
419 const struct reg *reg;
420 u32 val;
421
422 reg = ipa_reg(ipa, COUNTER_CFG);
423 /* If defined, EOT_COAL_GRANULARITY is 0 */
424 val = reg_encode(reg, AGGR_GRANULARITY, granularity);
425 iowrite32(val, ipa->reg_virt + reg_offset(reg));
426 }
427
ipa_hardware_config_timing(struct ipa * ipa)428 static void ipa_hardware_config_timing(struct ipa *ipa)
429 {
430 if (ipa->version < IPA_VERSION_4_5)
431 ipa_hardware_config_counter(ipa);
432 else
433 ipa_qtime_config(ipa);
434 }
435
ipa_hardware_config_hashing(struct ipa * ipa)436 static void ipa_hardware_config_hashing(struct ipa *ipa)
437 {
438 const struct reg *reg;
439
440 /* Other than IPA v4.2, all versions enable "hashing". Starting
441 * with IPA v5.0, the filter and router tables are implemented
442 * differently, but the default configuration enables this feature
443 * (now referred to as "cacheing"), so there's nothing to do here.
444 */
445 if (ipa->version != IPA_VERSION_4_2)
446 return;
447
448 /* IPA v4.2 does not support hashed tables, so disable them */
449 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
450
451 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
452 * IPV4_FILTER_HASH are all zero.
453 */
454 iowrite32(0, ipa->reg_virt + reg_offset(reg));
455 }
456
ipa_idle_indication_cfg(struct ipa * ipa,u32 enter_idle_debounce_thresh,bool const_non_idle_enable)457 static void ipa_idle_indication_cfg(struct ipa *ipa,
458 u32 enter_idle_debounce_thresh,
459 bool const_non_idle_enable)
460 {
461 const struct reg *reg;
462 u32 val;
463
464 if (ipa->version < IPA_VERSION_3_5_1)
465 return;
466
467 reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
468 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
469 enter_idle_debounce_thresh);
470 if (const_non_idle_enable)
471 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
472
473 iowrite32(val, ipa->reg_virt + reg_offset(reg));
474 }
475
476 /**
477 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
478 * @ipa: IPA pointer
479 *
480 * Configures when the IPA signals it is idle to the global clock
481 * controller, which can respond by scaling down the clock to save
482 * power.
483 */
ipa_hardware_dcd_config(struct ipa * ipa)484 static void ipa_hardware_dcd_config(struct ipa *ipa)
485 {
486 /* Recommended values for IPA 3.5 and later according to IPA HPG */
487 ipa_idle_indication_cfg(ipa, 256, false);
488 }
489
ipa_hardware_dcd_deconfig(struct ipa * ipa)490 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
491 {
492 /* Power-on reset values */
493 ipa_idle_indication_cfg(ipa, 0, true);
494 }
495
496 /**
497 * ipa_hardware_config() - Primitive hardware initialization
498 * @ipa: IPA pointer
499 * @data: IPA configuration data
500 */
ipa_hardware_config(struct ipa * ipa,const struct ipa_data * data)501 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
502 {
503 ipa_hardware_config_bcr(ipa, data);
504 ipa_hardware_config_tx(ipa);
505 ipa_hardware_config_clkon(ipa);
506 ipa_hardware_config_comp(ipa);
507 ipa_hardware_config_qsb(ipa, data);
508 ipa_hardware_config_timing(ipa);
509 ipa_hardware_config_hashing(ipa);
510 ipa_hardware_dcd_config(ipa);
511 }
512
513 /**
514 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
515 * @ipa: IPA pointer
516 *
517 * This restores the power-on reset values (even if they aren't different)
518 */
ipa_hardware_deconfig(struct ipa * ipa)519 static void ipa_hardware_deconfig(struct ipa *ipa)
520 {
521 /* Mostly we just leave things as we set them. */
522 ipa_hardware_dcd_deconfig(ipa);
523 }
524
525 /**
526 * ipa_config() - Configure IPA hardware
527 * @ipa: IPA pointer
528 * @data: IPA configuration data
529 *
530 * Perform initialization requiring IPA power to be enabled.
531 */
ipa_config(struct ipa * ipa,const struct ipa_data * data)532 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
533 {
534 int ret;
535
536 ipa_hardware_config(ipa, data);
537
538 ret = ipa_mem_config(ipa);
539 if (ret)
540 goto err_hardware_deconfig;
541
542 ipa->interrupt = ipa_interrupt_config(ipa);
543 if (IS_ERR(ipa->interrupt)) {
544 ret = PTR_ERR(ipa->interrupt);
545 ipa->interrupt = NULL;
546 goto err_mem_deconfig;
547 }
548
549 ipa_uc_config(ipa);
550
551 ret = ipa_endpoint_config(ipa);
552 if (ret)
553 goto err_uc_deconfig;
554
555 ipa_table_config(ipa); /* No deconfig required */
556
557 /* Assign resource limitation to each group; no deconfig required */
558 ret = ipa_resource_config(ipa, data->resource_data);
559 if (ret)
560 goto err_endpoint_deconfig;
561
562 ret = ipa_modem_config(ipa);
563 if (ret)
564 goto err_endpoint_deconfig;
565
566 return 0;
567
568 err_endpoint_deconfig:
569 ipa_endpoint_deconfig(ipa);
570 err_uc_deconfig:
571 ipa_uc_deconfig(ipa);
572 ipa_interrupt_deconfig(ipa->interrupt);
573 ipa->interrupt = NULL;
574 err_mem_deconfig:
575 ipa_mem_deconfig(ipa);
576 err_hardware_deconfig:
577 ipa_hardware_deconfig(ipa);
578
579 return ret;
580 }
581
582 /**
583 * ipa_deconfig() - Inverse of ipa_config()
584 * @ipa: IPA pointer
585 */
ipa_deconfig(struct ipa * ipa)586 static void ipa_deconfig(struct ipa *ipa)
587 {
588 ipa_modem_deconfig(ipa);
589 ipa_endpoint_deconfig(ipa);
590 ipa_uc_deconfig(ipa);
591 ipa_interrupt_deconfig(ipa->interrupt);
592 ipa->interrupt = NULL;
593 ipa_mem_deconfig(ipa);
594 ipa_hardware_deconfig(ipa);
595 }
596
ipa_firmware_load(struct device * dev)597 static int ipa_firmware_load(struct device *dev)
598 {
599 const struct firmware *fw;
600 struct device_node *node;
601 struct resource res;
602 phys_addr_t phys;
603 const char *path;
604 ssize_t size;
605 void *virt;
606 int ret;
607
608 node = of_parse_phandle(dev->of_node, "memory-region", 0);
609 if (!node) {
610 dev_err(dev, "DT error getting \"memory-region\" property\n");
611 return -EINVAL;
612 }
613
614 ret = of_address_to_resource(node, 0, &res);
615 of_node_put(node);
616 if (ret) {
617 dev_err(dev, "error %d getting \"memory-region\" resource\n",
618 ret);
619 return ret;
620 }
621
622 /* Use name from DTB if specified; use default for *any* error */
623 ret = of_property_read_string(dev->of_node, "firmware-name", &path);
624 if (ret) {
625 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
626 ret);
627 path = IPA_FW_PATH_DEFAULT;
628 }
629
630 ret = request_firmware(&fw, path, dev);
631 if (ret) {
632 dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
633 return ret;
634 }
635
636 phys = res.start;
637 size = (size_t)resource_size(&res);
638 virt = memremap(phys, size, MEMREMAP_WC);
639 if (!virt) {
640 dev_err(dev, "unable to remap firmware memory\n");
641 ret = -ENOMEM;
642 goto out_release_firmware;
643 }
644
645 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
646 if (ret)
647 dev_err(dev, "error %d loading \"%s\"\n", ret, path);
648 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
649 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
650
651 memunmap(virt);
652 out_release_firmware:
653 release_firmware(fw);
654
655 return ret;
656 }
657
658 static const struct of_device_id ipa_match[] = {
659 {
660 .compatible = "qcom,msm8998-ipa",
661 .data = &ipa_data_v3_1,
662 },
663 {
664 .compatible = "qcom,sdm845-ipa",
665 .data = &ipa_data_v3_5_1,
666 },
667 {
668 .compatible = "qcom,sc7180-ipa",
669 .data = &ipa_data_v4_2,
670 },
671 {
672 .compatible = "qcom,sdx55-ipa",
673 .data = &ipa_data_v4_5,
674 },
675 {
676 .compatible = "qcom,sm6350-ipa",
677 .data = &ipa_data_v4_7,
678 },
679 {
680 .compatible = "qcom,sm8350-ipa",
681 .data = &ipa_data_v4_9,
682 },
683 {
684 .compatible = "qcom,sc7280-ipa",
685 .data = &ipa_data_v4_11,
686 },
687 {
688 .compatible = "qcom,sdx65-ipa",
689 .data = &ipa_data_v5_0,
690 },
691 { },
692 };
693 MODULE_DEVICE_TABLE(of, ipa_match);
694
695 /* Check things that can be validated at build time. This just
696 * groups these things BUILD_BUG_ON() calls don't clutter the rest
697 * of the code.
698 * */
ipa_validate_build(void)699 static void ipa_validate_build(void)
700 {
701 /* At one time we assumed a 64-bit build, allowing some do_div()
702 * calls to be replaced by simple division or modulo operations.
703 * We currently only perform divide and modulo operations on u32,
704 * u16, or size_t objects, and of those only size_t has any chance
705 * of being a 64-bit value. (It should be guaranteed 32 bits wide
706 * on a 32-bit build, but there is no harm in verifying that.)
707 */
708 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
709
710 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
711 BUILD_BUG_ON(GSI_EE_AP != 0);
712
713 /* There's no point if we have no channels or event rings */
714 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
715 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
716
717 /* GSI hardware design limits */
718 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
719 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
720
721 /* The number of TREs in a transaction is limited by the channel's
722 * TLV FIFO size. A transaction structure uses 8-bit fields
723 * to represents the number of TREs it has allocated and used.
724 */
725 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
726
727 /* This is used as a divisor */
728 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
729
730 /* Aggregation granularity value can't be 0, and must fit */
731 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
732 }
733
ipa_firmware_loader(struct device * dev)734 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
735 {
736 bool modem_init;
737 const char *str;
738 int ret;
739
740 /* Look up the old and new properties by name */
741 modem_init = of_property_read_bool(dev->of_node, "modem-init");
742 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
743
744 /* If the new property doesn't exist, it's legacy behavior */
745 if (ret == -EINVAL) {
746 if (modem_init)
747 return IPA_LOADER_MODEM;
748 goto out_self;
749 }
750
751 /* Any other error on the new property means it's poorly defined */
752 if (ret)
753 return IPA_LOADER_INVALID;
754
755 /* New property value exists; if old one does too, that's invalid */
756 if (modem_init)
757 return IPA_LOADER_INVALID;
758
759 /* Modem loads GSI firmware for "modem" */
760 if (!strcmp(str, "modem"))
761 return IPA_LOADER_MODEM;
762
763 /* No GSI firmware load is needed for "skip" */
764 if (!strcmp(str, "skip"))
765 return IPA_LOADER_SKIP;
766
767 /* Any value other than "self" is an error */
768 if (strcmp(str, "self"))
769 return IPA_LOADER_INVALID;
770 out_self:
771 /* We need Trust Zone to load firmware; make sure it's available */
772 if (qcom_scm_is_available())
773 return IPA_LOADER_SELF;
774
775 return IPA_LOADER_DEFER;
776 }
777
778 /**
779 * ipa_probe() - IPA platform driver probe function
780 * @pdev: Platform device pointer
781 *
782 * Return: 0 if successful, or a negative error code (possibly
783 * EPROBE_DEFER)
784 *
785 * This is the main entry point for the IPA driver. Initialization proceeds
786 * in several stages:
787 * - The "init" stage involves activities that can be initialized without
788 * access to the IPA hardware.
789 * - The "config" stage requires IPA power to be active so IPA registers
790 * can be accessed, but does not require the use of IPA immediate commands.
791 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
792 * layer to be initialized.
793 *
794 * A Boolean Device Tree "modem-init" property determines whether GSI
795 * initialization will be performed by the AP (Trust Zone) or the modem.
796 * If the AP does GSI initialization, the setup phase is entered after
797 * this has completed successfully. Otherwise the modem initializes
798 * the GSI layer and signals it has finished by sending an SMP2P interrupt
799 * to the AP; this triggers the start if IPA setup.
800 */
ipa_probe(struct platform_device * pdev)801 static int ipa_probe(struct platform_device *pdev)
802 {
803 struct device *dev = &pdev->dev;
804 enum ipa_firmware_loader loader;
805 const struct ipa_data *data;
806 struct ipa_power *power;
807 struct ipa *ipa;
808 int ret;
809
810 ipa_validate_build();
811
812 /* Get configuration data early; needed for power initialization */
813 data = of_device_get_match_data(dev);
814 if (!data) {
815 dev_err(dev, "matched hardware not supported\n");
816 return -ENODEV;
817 }
818
819 if (!ipa_version_supported(data->version)) {
820 dev_err(dev, "unsupported IPA version %u\n", data->version);
821 return -EINVAL;
822 }
823
824 if (!data->modem_route_count) {
825 dev_err(dev, "modem_route_count cannot be zero\n");
826 return -EINVAL;
827 }
828
829 loader = ipa_firmware_loader(dev);
830 if (loader == IPA_LOADER_INVALID)
831 return -EINVAL;
832 if (loader == IPA_LOADER_DEFER)
833 return -EPROBE_DEFER;
834
835 /* The clock and interconnects might not be ready when we're
836 * probed, so might return -EPROBE_DEFER.
837 */
838 power = ipa_power_init(dev, data->power_data);
839 if (IS_ERR(power))
840 return PTR_ERR(power);
841
842 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
843 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
844 if (!ipa) {
845 ret = -ENOMEM;
846 goto err_power_exit;
847 }
848
849 ipa->pdev = pdev;
850 dev_set_drvdata(dev, ipa);
851 ipa->power = power;
852 ipa->version = data->version;
853 ipa->modem_route_count = data->modem_route_count;
854 init_completion(&ipa->completion);
855
856 ret = ipa_reg_init(ipa);
857 if (ret)
858 goto err_kfree_ipa;
859
860 ret = ipa_mem_init(ipa, data->mem_data);
861 if (ret)
862 goto err_reg_exit;
863
864 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
865 data->endpoint_data);
866 if (ret)
867 goto err_mem_exit;
868
869 /* Result is a non-zero mask of endpoints that support filtering */
870 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
871 if (ret)
872 goto err_gsi_exit;
873
874 ret = ipa_table_init(ipa);
875 if (ret)
876 goto err_endpoint_exit;
877
878 ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM);
879 if (ret)
880 goto err_table_exit;
881
882 /* Power needs to be active for config and setup */
883 ret = pm_runtime_get_sync(dev);
884 if (WARN_ON(ret < 0))
885 goto err_power_put;
886
887 ret = ipa_config(ipa, data);
888 if (ret)
889 goto err_power_put;
890
891 dev_info(dev, "IPA driver initialized");
892
893 /* If the modem is loading GSI firmware, it will trigger a call to
894 * ipa_setup() when it has finished. In that case we're done here.
895 */
896 if (loader == IPA_LOADER_MODEM)
897 goto done;
898
899 if (loader == IPA_LOADER_SELF) {
900 /* The AP is loading GSI firmware; do so now */
901 ret = ipa_firmware_load(dev);
902 if (ret)
903 goto err_deconfig;
904 } /* Otherwise loader == IPA_LOADER_SKIP */
905
906 /* GSI firmware is loaded; proceed to setup */
907 ret = ipa_setup(ipa);
908 if (ret)
909 goto err_deconfig;
910 done:
911 pm_runtime_mark_last_busy(dev);
912 (void)pm_runtime_put_autosuspend(dev);
913
914 return 0;
915
916 err_deconfig:
917 ipa_deconfig(ipa);
918 err_power_put:
919 pm_runtime_put_noidle(dev);
920 ipa_smp2p_exit(ipa);
921 err_table_exit:
922 ipa_table_exit(ipa);
923 err_endpoint_exit:
924 ipa_endpoint_exit(ipa);
925 err_gsi_exit:
926 gsi_exit(&ipa->gsi);
927 err_mem_exit:
928 ipa_mem_exit(ipa);
929 err_reg_exit:
930 ipa_reg_exit(ipa);
931 err_kfree_ipa:
932 kfree(ipa);
933 err_power_exit:
934 ipa_power_exit(power);
935
936 return ret;
937 }
938
ipa_remove(struct platform_device * pdev)939 static int ipa_remove(struct platform_device *pdev)
940 {
941 struct ipa *ipa = dev_get_drvdata(&pdev->dev);
942 struct ipa_power *power = ipa->power;
943 struct device *dev = &pdev->dev;
944 int ret;
945
946 /* Prevent the modem from triggering a call to ipa_setup(). This
947 * also ensures a modem-initiated setup that's underway completes.
948 */
949 ipa_smp2p_irq_disable_setup(ipa);
950
951 ret = pm_runtime_get_sync(dev);
952 if (WARN_ON(ret < 0))
953 goto out_power_put;
954
955 if (ipa->setup_complete) {
956 ret = ipa_modem_stop(ipa);
957 /* If starting or stopping is in progress, try once more */
958 if (ret == -EBUSY) {
959 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
960 ret = ipa_modem_stop(ipa);
961 }
962 if (ret)
963 return ret;
964
965 ipa_teardown(ipa);
966 }
967
968 ipa_deconfig(ipa);
969 out_power_put:
970 pm_runtime_put_noidle(dev);
971 ipa_smp2p_exit(ipa);
972 ipa_table_exit(ipa);
973 ipa_endpoint_exit(ipa);
974 gsi_exit(&ipa->gsi);
975 ipa_mem_exit(ipa);
976 ipa_reg_exit(ipa);
977 kfree(ipa);
978 ipa_power_exit(power);
979
980 dev_info(dev, "IPA driver removed");
981
982 return 0;
983 }
984
ipa_shutdown(struct platform_device * pdev)985 static void ipa_shutdown(struct platform_device *pdev)
986 {
987 int ret;
988
989 ret = ipa_remove(pdev);
990 if (ret)
991 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
992 }
993
994 static const struct attribute_group *ipa_attribute_groups[] = {
995 &ipa_attribute_group,
996 &ipa_feature_attribute_group,
997 &ipa_endpoint_id_attribute_group,
998 &ipa_modem_attribute_group,
999 NULL,
1000 };
1001
1002 static struct platform_driver ipa_driver = {
1003 .probe = ipa_probe,
1004 .remove = ipa_remove,
1005 .shutdown = ipa_shutdown,
1006 .driver = {
1007 .name = "ipa",
1008 .pm = &ipa_pm_ops,
1009 .of_match_table = ipa_match,
1010 .dev_groups = ipa_attribute_groups,
1011 },
1012 };
1013
1014 module_platform_driver(ipa_driver);
1015
1016 MODULE_LICENSE("GPL v2");
1017 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1018