xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision fd88d2e5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_clock.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
77 
78 #ifdef IPA_VALIDATE
79 
80 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
81 			    const struct ipa_gsi_endpoint_data *all_data,
82 			    const struct ipa_gsi_endpoint_data *data)
83 {
84 	const struct ipa_gsi_endpoint_data *other_data;
85 	struct device *dev = &ipa->pdev->dev;
86 	enum ipa_endpoint_name other_name;
87 
88 	if (ipa_gsi_endpoint_data_empty(data))
89 		return true;
90 
91 	/* IPA v4.5+ uses checksum offload, not yet supported by RMNet */
92 	if (ipa->version >= IPA_VERSION_4_5)
93 		if (data->endpoint.config.checksum)
94 			return false;
95 
96 	if (!data->toward_ipa) {
97 		if (data->endpoint.filter_support) {
98 			dev_err(dev, "filtering not supported for "
99 					"RX endpoint %u\n",
100 				data->endpoint_id);
101 			return false;
102 		}
103 
104 		return true;	/* Nothing more to check for RX */
105 	}
106 
107 	if (data->endpoint.config.status_enable) {
108 		other_name = data->endpoint.config.tx.status_endpoint;
109 		if (other_name >= count) {
110 			dev_err(dev, "status endpoint name %u out of range "
111 					"for endpoint %u\n",
112 				other_name, data->endpoint_id);
113 			return false;
114 		}
115 
116 		/* Status endpoint must be defined... */
117 		other_data = &all_data[other_name];
118 		if (ipa_gsi_endpoint_data_empty(other_data)) {
119 			dev_err(dev, "DMA endpoint name %u undefined "
120 					"for endpoint %u\n",
121 				other_name, data->endpoint_id);
122 			return false;
123 		}
124 
125 		/* ...and has to be an RX endpoint... */
126 		if (other_data->toward_ipa) {
127 			dev_err(dev,
128 				"status endpoint for endpoint %u not RX\n",
129 				data->endpoint_id);
130 			return false;
131 		}
132 
133 		/* ...and if it's to be an AP endpoint... */
134 		if (other_data->ee_id == GSI_EE_AP) {
135 			/* ...make sure it has status enabled. */
136 			if (!other_data->endpoint.config.status_enable) {
137 				dev_err(dev,
138 					"status not enabled for endpoint %u\n",
139 					other_data->endpoint_id);
140 				return false;
141 			}
142 		}
143 	}
144 
145 	if (data->endpoint.config.dma_mode) {
146 		other_name = data->endpoint.config.dma_endpoint;
147 		if (other_name >= count) {
148 			dev_err(dev, "DMA endpoint name %u out of range "
149 					"for endpoint %u\n",
150 				other_name, data->endpoint_id);
151 			return false;
152 		}
153 
154 		other_data = &all_data[other_name];
155 		if (ipa_gsi_endpoint_data_empty(other_data)) {
156 			dev_err(dev, "DMA endpoint name %u undefined "
157 					"for endpoint %u\n",
158 				other_name, data->endpoint_id);
159 			return false;
160 		}
161 	}
162 
163 	return true;
164 }
165 
166 static u32 aggr_byte_limit_max(enum ipa_version version)
167 {
168 	if (version < IPA_VERSION_4_5)
169 		return field_max(aggr_byte_limit_fmask(true));
170 
171 	return field_max(aggr_byte_limit_fmask(false));
172 }
173 
174 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
175 				    const struct ipa_gsi_endpoint_data *data)
176 {
177 	const struct ipa_gsi_endpoint_data *dp = data;
178 	struct device *dev = &ipa->pdev->dev;
179 	enum ipa_endpoint_name name;
180 	u32 limit;
181 
182 	if (count > IPA_ENDPOINT_COUNT) {
183 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
184 			count, IPA_ENDPOINT_COUNT);
185 		return false;
186 	}
187 
188 	/* The aggregation byte limit defines the point at which an
189 	 * aggregation window will close.  It is programmed into the
190 	 * IPA hardware as a number of KB.  We don't use "hard byte
191 	 * limit" aggregation, which means that we need to supply
192 	 * enough space in a receive buffer to hold a complete MTU
193 	 * plus normal skb overhead *after* that aggregation byte
194 	 * limit has been crossed.
195 	 *
196 	 * This check ensures we don't define a receive buffer size
197 	 * that would exceed what we can represent in the field that
198 	 * is used to program its size.
199 	 */
200 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
201 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
202 	if (limit < IPA_RX_BUFFER_SIZE) {
203 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
204 			IPA_RX_BUFFER_SIZE, limit);
205 		return false;
206 	}
207 
208 	/* Make sure needed endpoints have defined data */
209 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
210 		dev_err(dev, "command TX endpoint not defined\n");
211 		return false;
212 	}
213 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
214 		dev_err(dev, "LAN RX endpoint not defined\n");
215 		return false;
216 	}
217 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
218 		dev_err(dev, "AP->modem TX endpoint not defined\n");
219 		return false;
220 	}
221 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
222 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
223 		return false;
224 	}
225 
226 	for (name = 0; name < count; name++, dp++)
227 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
228 			return false;
229 
230 	return true;
231 }
232 
233 #else /* !IPA_VALIDATE */
234 
235 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
236 				    const struct ipa_gsi_endpoint_data *data)
237 {
238 	const struct ipa_gsi_endpoint_data *dp = data;
239 	enum ipa_endpoint_name name;
240 
241 	if (ipa->version < IPA_VERSION_4_5)
242 		return true;
243 
244 	/* IPA v4.5+ uses checksum offload, not yet supported by RMNet */
245 	for (name = 0; name < count; name++, dp++)
246 		if (data->endpoint.config.checksum)
247 			return false;
248 
249 	return true;
250 }
251 
252 #endif /* !IPA_VALIDATE */
253 
254 /* Allocate a transaction to use on a non-command endpoint */
255 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
256 						  u32 tre_count)
257 {
258 	struct gsi *gsi = &endpoint->ipa->gsi;
259 	u32 channel_id = endpoint->channel_id;
260 	enum dma_data_direction direction;
261 
262 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
263 
264 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
265 }
266 
267 /* suspend_delay represents suspend for RX, delay for TX endpoints.
268  * Note that suspend is not supported starting with IPA v4.0.
269  */
270 static bool
271 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
272 {
273 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
274 	struct ipa *ipa = endpoint->ipa;
275 	bool state;
276 	u32 mask;
277 	u32 val;
278 
279 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
280 	 * correctly on IPA v4.2.
281 	 *
282 	 * if (endpoint->toward_ipa)
283 	 * 	assert(ipa->version != IPA_VERSION_4.2);
284 	 * else
285 	 *	assert(ipa->version < IPA_VERSION_4_0);
286 	 */
287 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
288 
289 	val = ioread32(ipa->reg_virt + offset);
290 	/* Don't bother if it's already in the requested state */
291 	state = !!(val & mask);
292 	if (suspend_delay != state) {
293 		val ^= mask;
294 		iowrite32(val, ipa->reg_virt + offset);
295 	}
296 
297 	return state;
298 }
299 
300 /* We currently don't care what the previous state was for delay mode */
301 static void
302 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
303 {
304 	/* assert(endpoint->toward_ipa); */
305 
306 	/* Delay mode doesn't work properly for IPA v4.2 */
307 	if (endpoint->ipa->version != IPA_VERSION_4_2)
308 		(void)ipa_endpoint_init_ctrl(endpoint, enable);
309 }
310 
311 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
312 {
313 	u32 mask = BIT(endpoint->endpoint_id);
314 	struct ipa *ipa = endpoint->ipa;
315 	u32 offset;
316 	u32 val;
317 
318 	/* assert(mask & ipa->available); */
319 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
320 	val = ioread32(ipa->reg_virt + offset);
321 
322 	return !!(val & mask);
323 }
324 
325 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
326 {
327 	u32 mask = BIT(endpoint->endpoint_id);
328 	struct ipa *ipa = endpoint->ipa;
329 
330 	/* assert(mask & ipa->available); */
331 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
332 }
333 
334 /**
335  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
336  * @endpoint:	Endpoint on which to emulate a suspend
337  *
338  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
339  *  with an open aggregation frame.  This is to work around a hardware
340  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
341  *  generated when it should be.
342  */
343 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
344 {
345 	struct ipa *ipa = endpoint->ipa;
346 
347 	if (!endpoint->data->aggregation)
348 		return;
349 
350 	/* Nothing to do if the endpoint doesn't have aggregation open */
351 	if (!ipa_endpoint_aggr_active(endpoint))
352 		return;
353 
354 	/* Force close aggregation */
355 	ipa_endpoint_force_close(endpoint);
356 
357 	ipa_interrupt_simulate_suspend(ipa->interrupt);
358 }
359 
360 /* Returns previous suspend state (true means suspend was enabled) */
361 static bool
362 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
363 {
364 	bool suspended;
365 
366 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
367 		return enable;	/* For IPA v4.0+, no change made */
368 
369 	/* assert(!endpoint->toward_ipa); */
370 
371 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
372 
373 	/* A client suspended with an open aggregation frame will not
374 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
375 	 * ipa_endpoint_suspend_aggr() handle this.
376 	 */
377 	if (enable && !suspended)
378 		ipa_endpoint_suspend_aggr(endpoint);
379 
380 	return suspended;
381 }
382 
383 /* Enable or disable delay or suspend mode on all modem endpoints */
384 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
385 {
386 	u32 endpoint_id;
387 
388 	/* DELAY mode doesn't work correctly on IPA v4.2 */
389 	if (ipa->version == IPA_VERSION_4_2)
390 		return;
391 
392 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
393 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
394 
395 		if (endpoint->ee_id != GSI_EE_MODEM)
396 			continue;
397 
398 		/* Set TX delay mode or RX suspend mode */
399 		if (endpoint->toward_ipa)
400 			ipa_endpoint_program_delay(endpoint, enable);
401 		else
402 			(void)ipa_endpoint_program_suspend(endpoint, enable);
403 	}
404 }
405 
406 /* Reset all modem endpoints to use the default exception endpoint */
407 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
408 {
409 	u32 initialized = ipa->initialized;
410 	struct gsi_trans *trans;
411 	u32 count;
412 
413 	/* We need one command per modem TX endpoint.  We can get an upper
414 	 * bound on that by assuming all initialized endpoints are modem->IPA.
415 	 * That won't happen, and we could be more precise, but this is fine
416 	 * for now.  End the transaction with commands to clear the pipeline.
417 	 */
418 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
419 	trans = ipa_cmd_trans_alloc(ipa, count);
420 	if (!trans) {
421 		dev_err(&ipa->pdev->dev,
422 			"no transaction to reset modem exception endpoints\n");
423 		return -EBUSY;
424 	}
425 
426 	while (initialized) {
427 		u32 endpoint_id = __ffs(initialized);
428 		struct ipa_endpoint *endpoint;
429 		u32 offset;
430 
431 		initialized ^= BIT(endpoint_id);
432 
433 		/* We only reset modem TX endpoints */
434 		endpoint = &ipa->endpoint[endpoint_id];
435 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
436 			continue;
437 
438 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
439 
440 		/* Value written is 0, and all bits are updated.  That
441 		 * means status is disabled on the endpoint, and as a
442 		 * result all other fields in the register are ignored.
443 		 */
444 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
445 	}
446 
447 	ipa_cmd_pipeline_clear_add(trans);
448 
449 	/* XXX This should have a 1 second timeout */
450 	gsi_trans_commit_wait(trans);
451 
452 	ipa_cmd_pipeline_clear_wait(ipa);
453 
454 	return 0;
455 }
456 
457 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
458 {
459 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
460 	u32 val = 0;
461 
462 	/* FRAG_OFFLOAD_EN is 0 */
463 	if (endpoint->data->checksum) {
464 		if (endpoint->toward_ipa) {
465 			u32 checksum_offset;
466 
467 			val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
468 					       CS_OFFLOAD_EN_FMASK);
469 			/* Checksum header offset is in 4-byte units */
470 			checksum_offset = sizeof(struct rmnet_map_header);
471 			checksum_offset /= sizeof(u32);
472 			val |= u32_encode_bits(checksum_offset,
473 					       CS_METADATA_HDR_OFFSET_FMASK);
474 		} else {
475 			val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
476 					       CS_OFFLOAD_EN_FMASK);
477 		}
478 	} else {
479 		val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
480 				       CS_OFFLOAD_EN_FMASK);
481 	}
482 	/* CS_GEN_QMB_MASTER_SEL is 0 */
483 
484 	iowrite32(val, endpoint->ipa->reg_virt + offset);
485 }
486 
487 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
488 {
489 	u32 offset;
490 	u32 val;
491 
492 	if (!endpoint->toward_ipa)
493 		return;
494 
495 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
496 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
497 
498 	iowrite32(val, endpoint->ipa->reg_virt + offset);
499 }
500 
501 /**
502  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
503  * @endpoint:	Endpoint pointer
504  *
505  * We program QMAP endpoints so each packet received is preceded by a QMAP
506  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
507  * packet size field, and we have the IPA hardware populate both for each
508  * received packet.  The header is configured (in the HDR_EXT register)
509  * to use big endian format.
510  *
511  * The packet size is written into the QMAP header's pkt_len field.  That
512  * location is defined here using the HDR_OFST_PKT_SIZE field.
513  *
514  * The mux_id comes from a 4-byte metadata value supplied with each packet
515  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
516  * value that we want, in its low-order byte.  A bitmask defined in the
517  * endpoint's METADATA_MASK register defines which byte within the modem
518  * metadata contains the mux_id.  And the OFST_METADATA field programmed
519  * here indicates where the extracted byte should be placed within the QMAP
520  * header.
521  */
522 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
523 {
524 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
525 	struct ipa *ipa = endpoint->ipa;
526 	u32 val = 0;
527 
528 	if (endpoint->data->qmap) {
529 		size_t header_size = sizeof(struct rmnet_map_header);
530 		enum ipa_version version = ipa->version;
531 
532 		/* We might supply a checksum header after the QMAP header */
533 		if (endpoint->toward_ipa && endpoint->data->checksum)
534 			header_size += sizeof(struct rmnet_map_ul_csum_header);
535 		val |= ipa_header_size_encoded(version, header_size);
536 
537 		/* Define how to fill fields in a received QMAP header */
538 		if (!endpoint->toward_ipa) {
539 			u32 offset;	/* Field offset within header */
540 
541 			/* Where IPA will write the metadata value */
542 			offset = offsetof(struct rmnet_map_header, mux_id);
543 			val |= ipa_metadata_offset_encoded(version, offset);
544 
545 			/* Where IPA will write the length */
546 			offset = offsetof(struct rmnet_map_header, pkt_len);
547 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
548 			if (version >= IPA_VERSION_4_5)
549 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
550 
551 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
552 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
553 		}
554 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
555 		val |= HDR_OFST_METADATA_VALID_FMASK;
556 
557 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
558 		/* HDR_A5_MUX is 0 */
559 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
560 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
561 	}
562 
563 	iowrite32(val, ipa->reg_virt + offset);
564 }
565 
566 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
567 {
568 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
569 	u32 pad_align = endpoint->data->rx.pad_align;
570 	struct ipa *ipa = endpoint->ipa;
571 	u32 val = 0;
572 
573 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
574 
575 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
576 	 * driver assumes this field is meaningful in packets it receives,
577 	 * and assumes the header's payload length includes that padding.
578 	 * The RMNet driver does *not* pad packets it sends, however, so
579 	 * the pad field (although 0) should be ignored.
580 	 */
581 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
582 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
583 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
584 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
585 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
586 	}
587 
588 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
589 	if (!endpoint->toward_ipa)
590 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
591 
592 	/* IPA v4.5 adds some most-significant bits to a few fields,
593 	 * two of which are defined in the HDR (not HDR_EXT) register.
594 	 */
595 	if (ipa->version >= IPA_VERSION_4_5) {
596 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
597 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
598 			u32 offset;
599 
600 			offset = offsetof(struct rmnet_map_header, pkt_len);
601 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
602 			val |= u32_encode_bits(offset,
603 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
604 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
605 		}
606 	}
607 	iowrite32(val, ipa->reg_virt + offset);
608 }
609 
610 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
611 {
612 	u32 endpoint_id = endpoint->endpoint_id;
613 	u32 val = 0;
614 	u32 offset;
615 
616 	if (endpoint->toward_ipa)
617 		return;		/* Register not valid for TX endpoints */
618 
619 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
620 
621 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
622 	if (endpoint->data->qmap)
623 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
624 
625 	iowrite32(val, endpoint->ipa->reg_virt + offset);
626 }
627 
628 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
629 {
630 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
631 	u32 val;
632 
633 	if (!endpoint->toward_ipa)
634 		return;		/* Register not valid for RX endpoints */
635 
636 	if (endpoint->data->dma_mode) {
637 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
638 		u32 dma_endpoint_id;
639 
640 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
641 
642 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
643 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
644 	} else {
645 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
646 	}
647 	/* All other bits unspecified (and 0) */
648 
649 	iowrite32(val, endpoint->ipa->reg_virt + offset);
650 }
651 
652 /* Compute the aggregation size value to use for a given buffer size */
653 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
654 {
655 	/* We don't use "hard byte limit" aggregation, so we define the
656 	 * aggregation limit such that our buffer has enough space *after*
657 	 * that limit to receive a full MTU of data, plus overhead.
658 	 */
659 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
660 
661 	return rx_buffer_size / SZ_1K;
662 }
663 
664 /* Encoded values for AGGR endpoint register fields */
665 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
666 {
667 	if (version < IPA_VERSION_4_5)
668 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
669 
670 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
671 }
672 
673 /* Encode the aggregation timer limit (microseconds) based on IPA version */
674 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
675 {
676 	u32 gran_sel;
677 	u32 fmask;
678 	u32 val;
679 
680 	if (version < IPA_VERSION_4_5) {
681 		/* We set aggregation granularity in ipa_hardware_config() */
682 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
683 
684 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
685 	}
686 
687 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
688 	 * pulse generators 0 and 1 available, which were configured
689 	 * in ipa_qtime_config() to have granularity 100 usec and
690 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
691 	 * otherwise fall back to pulse generator 1.
692 	 */
693 	fmask = aggr_time_limit_fmask(false);
694 	val = DIV_ROUND_CLOSEST(limit, 100);
695 	if (val > field_max(fmask)) {
696 		/* Have to use pulse generator 1 (millisecond granularity) */
697 		gran_sel = AGGR_GRAN_SEL_FMASK;
698 		val = DIV_ROUND_CLOSEST(limit, 1000);
699 	} else {
700 		/* We can use pulse generator 0 (100 usec granularity) */
701 		gran_sel = 0;
702 	}
703 
704 	return gran_sel | u32_encode_bits(val, fmask);
705 }
706 
707 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
708 {
709 	u32 val = enabled ? 1 : 0;
710 
711 	if (version < IPA_VERSION_4_5)
712 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
713 
714 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
715 }
716 
717 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
718 {
719 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
720 	enum ipa_version version = endpoint->ipa->version;
721 	u32 val = 0;
722 
723 	if (endpoint->data->aggregation) {
724 		if (!endpoint->toward_ipa) {
725 			bool close_eof;
726 			u32 limit;
727 
728 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
729 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
730 
731 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
732 			val |= aggr_byte_limit_encoded(version, limit);
733 
734 			limit = IPA_AGGR_TIME_LIMIT;
735 			val |= aggr_time_limit_encoded(version, limit);
736 
737 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
738 
739 			close_eof = endpoint->data->rx.aggr_close_eof;
740 			val |= aggr_sw_eof_active_encoded(version, close_eof);
741 
742 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
743 		} else {
744 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
745 					       AGGR_EN_FMASK);
746 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
747 			/* other fields ignored */
748 		}
749 		/* AGGR_FORCE_CLOSE is 0 */
750 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
751 	} else {
752 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
753 		/* other fields ignored */
754 	}
755 
756 	iowrite32(val, endpoint->ipa->reg_virt + offset);
757 }
758 
759 /* Return the Qtime-based head-of-line blocking timer value that
760  * represents the given number of microseconds.  The result
761  * includes both the timer value and the selected timer granularity.
762  */
763 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
764 {
765 	u32 gran_sel;
766 	u32 val;
767 
768 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
769 	 * pulse generators 0 and 1 available, which were configured
770 	 * in ipa_qtime_config() to have granularity 100 usec and
771 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
772 	 * otherwise fall back to pulse generator 1.
773 	 */
774 	val = DIV_ROUND_CLOSEST(microseconds, 100);
775 	if (val > field_max(TIME_LIMIT_FMASK)) {
776 		/* Have to use pulse generator 1 (millisecond granularity) */
777 		gran_sel = GRAN_SEL_FMASK;
778 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
779 	} else {
780 		/* We can use pulse generator 0 (100 usec granularity) */
781 		gran_sel = 0;
782 	}
783 
784 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
785 }
786 
787 /* The head-of-line blocking timer is defined as a tick count.  For
788  * IPA version 4.5 the tick count is based on the Qtimer, which is
789  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
790  * each tick represents 128 cycles of the IPA core clock.
791  *
792  * Return the encoded value that should be written to that register
793  * that represents the timeout period provided.  For IPA v4.2 this
794  * encodes a base and scale value, while for earlier versions the
795  * value is a simple tick count.
796  */
797 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
798 {
799 	u32 width;
800 	u32 scale;
801 	u64 ticks;
802 	u64 rate;
803 	u32 high;
804 	u32 val;
805 
806 	if (!microseconds)
807 		return 0;	/* Nothing to compute if timer period is 0 */
808 
809 	if (ipa->version >= IPA_VERSION_4_5)
810 		return hol_block_timer_qtime_val(ipa, microseconds);
811 
812 	/* Use 64 bit arithmetic to avoid overflow... */
813 	rate = ipa_clock_rate(ipa);
814 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
815 	/* ...but we still need to fit into a 32-bit register */
816 	WARN_ON(ticks > U32_MAX);
817 
818 	/* IPA v3.5.1 through v4.1 just record the tick count */
819 	if (ipa->version < IPA_VERSION_4_2)
820 		return (u32)ticks;
821 
822 	/* For IPA v4.2, the tick count is represented by base and
823 	 * scale fields within the 32-bit timer register, where:
824 	 *     ticks = base << scale;
825 	 * The best precision is achieved when the base value is as
826 	 * large as possible.  Find the highest set bit in the tick
827 	 * count, and extract the number of bits in the base field
828 	 * such that high bit is included.
829 	 */
830 	high = fls(ticks);		/* 1..32 */
831 	width = HWEIGHT32(BASE_VALUE_FMASK);
832 	scale = high > width ? high - width : 0;
833 	if (scale) {
834 		/* If we're scaling, round up to get a closer result */
835 		ticks += 1 << (scale - 1);
836 		/* High bit was set, so rounding might have affected it */
837 		if (fls(ticks) != high)
838 			scale++;
839 	}
840 
841 	val = u32_encode_bits(scale, SCALE_FMASK);
842 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
843 
844 	return val;
845 }
846 
847 /* If microseconds is 0, timeout is immediate */
848 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
849 					      u32 microseconds)
850 {
851 	u32 endpoint_id = endpoint->endpoint_id;
852 	struct ipa *ipa = endpoint->ipa;
853 	u32 offset;
854 	u32 val;
855 
856 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
857 	val = hol_block_timer_val(ipa, microseconds);
858 	iowrite32(val, ipa->reg_virt + offset);
859 }
860 
861 static void
862 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
863 {
864 	u32 endpoint_id = endpoint->endpoint_id;
865 	u32 offset;
866 	u32 val;
867 
868 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
869 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
870 	iowrite32(val, endpoint->ipa->reg_virt + offset);
871 }
872 
873 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
874 {
875 	u32 i;
876 
877 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
878 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
879 
880 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
881 			continue;
882 
883 		ipa_endpoint_init_hol_block_timer(endpoint, 0);
884 		ipa_endpoint_init_hol_block_enable(endpoint, true);
885 	}
886 }
887 
888 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
889 {
890 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
891 	u32 val = 0;
892 
893 	if (!endpoint->toward_ipa)
894 		return;		/* Register not valid for RX endpoints */
895 
896 	/* DEAGGR_HDR_LEN is 0 */
897 	/* PACKET_OFFSET_VALID is 0 */
898 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
899 	/* MAX_PACKET_LEN is 0 (not enforced) */
900 
901 	iowrite32(val, endpoint->ipa->reg_virt + offset);
902 }
903 
904 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
905 {
906 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
907 	struct ipa *ipa = endpoint->ipa;
908 	u32 val;
909 
910 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
911 	iowrite32(val, ipa->reg_virt + offset);
912 }
913 
914 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
915 {
916 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
917 	u32 val = 0;
918 
919 	if (!endpoint->toward_ipa)
920 		return;		/* Register not valid for RX endpoints */
921 
922 	/* Low-order byte configures primary packet processing */
923 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
924 
925 	/* Second byte configures replicated packet processing */
926 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
927 			       SEQ_REP_TYPE_FMASK);
928 
929 	iowrite32(val, endpoint->ipa->reg_virt + offset);
930 }
931 
932 /**
933  * ipa_endpoint_skb_tx() - Transmit a socket buffer
934  * @endpoint:	Endpoint pointer
935  * @skb:	Socket buffer to send
936  *
937  * Returns:	0 if successful, or a negative error code
938  */
939 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
940 {
941 	struct gsi_trans *trans;
942 	u32 nr_frags;
943 	int ret;
944 
945 	/* Make sure source endpoint's TLV FIFO has enough entries to
946 	 * hold the linear portion of the skb and all its fragments.
947 	 * If not, see if we can linearize it before giving up.
948 	 */
949 	nr_frags = skb_shinfo(skb)->nr_frags;
950 	if (1 + nr_frags > endpoint->trans_tre_max) {
951 		if (skb_linearize(skb))
952 			return -E2BIG;
953 		nr_frags = 0;
954 	}
955 
956 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
957 	if (!trans)
958 		return -EBUSY;
959 
960 	ret = gsi_trans_skb_add(trans, skb);
961 	if (ret)
962 		goto err_trans_free;
963 	trans->data = skb;	/* transaction owns skb now */
964 
965 	gsi_trans_commit(trans, !netdev_xmit_more());
966 
967 	return 0;
968 
969 err_trans_free:
970 	gsi_trans_free(trans);
971 
972 	return -ENOMEM;
973 }
974 
975 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
976 {
977 	u32 endpoint_id = endpoint->endpoint_id;
978 	struct ipa *ipa = endpoint->ipa;
979 	u32 val = 0;
980 	u32 offset;
981 
982 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
983 
984 	if (endpoint->data->status_enable) {
985 		val |= STATUS_EN_FMASK;
986 		if (endpoint->toward_ipa) {
987 			enum ipa_endpoint_name name;
988 			u32 status_endpoint_id;
989 
990 			name = endpoint->data->tx.status_endpoint;
991 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
992 
993 			val |= u32_encode_bits(status_endpoint_id,
994 					       STATUS_ENDP_FMASK);
995 		}
996 		/* STATUS_LOCATION is 0, meaning status element precedes
997 		 * packet (not present for IPA v4.5)
998 		 */
999 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1000 	}
1001 
1002 	iowrite32(val, ipa->reg_virt + offset);
1003 }
1004 
1005 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1006 {
1007 	struct gsi_trans *trans;
1008 	bool doorbell = false;
1009 	struct page *page;
1010 	u32 offset;
1011 	u32 len;
1012 	int ret;
1013 
1014 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1015 	if (!page)
1016 		return -ENOMEM;
1017 
1018 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
1019 	if (!trans)
1020 		goto err_free_pages;
1021 
1022 	/* Offset the buffer to make space for skb headroom */
1023 	offset = NET_SKB_PAD;
1024 	len = IPA_RX_BUFFER_SIZE - offset;
1025 
1026 	ret = gsi_trans_page_add(trans, page, len, offset);
1027 	if (ret)
1028 		goto err_trans_free;
1029 	trans->data = page;	/* transaction owns page now */
1030 
1031 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1032 		doorbell = true;
1033 		endpoint->replenish_ready = 0;
1034 	}
1035 
1036 	gsi_trans_commit(trans, doorbell);
1037 
1038 	return 0;
1039 
1040 err_trans_free:
1041 	gsi_trans_free(trans);
1042 err_free_pages:
1043 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1044 
1045 	return -ENOMEM;
1046 }
1047 
1048 /**
1049  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1050  * @endpoint:	Endpoint to be replenished
1051  * @add_one:	Whether this is replacing a just-consumed buffer
1052  *
1053  * The IPA hardware can hold a fixed number of receive buffers for an RX
1054  * endpoint, based on the number of entries in the underlying channel ring
1055  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1056  * more receive buffers can be supplied to the hardware.  Replenishing for
1057  * an endpoint can be disabled, in which case requests to replenish a
1058  * buffer are "saved", and transferred to the backlog once it is re-enabled
1059  * again.
1060  */
1061 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1062 {
1063 	struct gsi *gsi;
1064 	u32 backlog;
1065 
1066 	if (!endpoint->replenish_enabled) {
1067 		if (add_one)
1068 			atomic_inc(&endpoint->replenish_saved);
1069 		return;
1070 	}
1071 
1072 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1073 		if (ipa_endpoint_replenish_one(endpoint))
1074 			goto try_again_later;
1075 	if (add_one)
1076 		atomic_inc(&endpoint->replenish_backlog);
1077 
1078 	return;
1079 
1080 try_again_later:
1081 	/* The last one didn't succeed, so fix the backlog */
1082 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
1083 
1084 	if (add_one)
1085 		atomic_inc(&endpoint->replenish_backlog);
1086 
1087 	/* Whenever a receive buffer transaction completes we'll try to
1088 	 * replenish again.  It's unlikely, but if we fail to supply even
1089 	 * one buffer, nothing will trigger another replenish attempt.
1090 	 * Receive buffer transactions use one TRE, so schedule work to
1091 	 * try replenishing again if our backlog is *all* available TREs.
1092 	 */
1093 	gsi = &endpoint->ipa->gsi;
1094 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1095 		schedule_delayed_work(&endpoint->replenish_work,
1096 				      msecs_to_jiffies(1));
1097 }
1098 
1099 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1100 {
1101 	struct gsi *gsi = &endpoint->ipa->gsi;
1102 	u32 max_backlog;
1103 	u32 saved;
1104 
1105 	endpoint->replenish_enabled = true;
1106 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1107 		atomic_add(saved, &endpoint->replenish_backlog);
1108 
1109 	/* Start replenishing if hardware currently has no buffers */
1110 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1111 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1112 		ipa_endpoint_replenish(endpoint, false);
1113 }
1114 
1115 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1116 {
1117 	u32 backlog;
1118 
1119 	endpoint->replenish_enabled = false;
1120 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1121 		atomic_add(backlog, &endpoint->replenish_saved);
1122 }
1123 
1124 static void ipa_endpoint_replenish_work(struct work_struct *work)
1125 {
1126 	struct delayed_work *dwork = to_delayed_work(work);
1127 	struct ipa_endpoint *endpoint;
1128 
1129 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1130 
1131 	ipa_endpoint_replenish(endpoint, false);
1132 }
1133 
1134 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1135 				  void *data, u32 len, u32 extra)
1136 {
1137 	struct sk_buff *skb;
1138 
1139 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1140 	if (skb) {
1141 		skb_put(skb, len);
1142 		memcpy(skb->data, data, len);
1143 		skb->truesize += extra;
1144 	}
1145 
1146 	/* Now receive it, or drop it if there's no netdev */
1147 	if (endpoint->netdev)
1148 		ipa_modem_skb_rx(endpoint->netdev, skb);
1149 	else if (skb)
1150 		dev_kfree_skb_any(skb);
1151 }
1152 
1153 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1154 				   struct page *page, u32 len)
1155 {
1156 	struct sk_buff *skb;
1157 
1158 	/* Nothing to do if there's no netdev */
1159 	if (!endpoint->netdev)
1160 		return false;
1161 
1162 	/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
1163 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1164 	if (skb) {
1165 		/* Reserve the headroom and account for the data */
1166 		skb_reserve(skb, NET_SKB_PAD);
1167 		skb_put(skb, len);
1168 	}
1169 
1170 	/* Receive the buffer (or record drop if unable to build it) */
1171 	ipa_modem_skb_rx(endpoint->netdev, skb);
1172 
1173 	return skb != NULL;
1174 }
1175 
1176 /* The format of a packet status element is the same for several status
1177  * types (opcodes).  Other types aren't currently supported.
1178  */
1179 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1180 {
1181 	switch (opcode) {
1182 	case IPA_STATUS_OPCODE_PACKET:
1183 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1184 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1185 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1186 		return true;
1187 	default:
1188 		return false;
1189 	}
1190 }
1191 
1192 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1193 				     const struct ipa_status *status)
1194 {
1195 	u32 endpoint_id;
1196 
1197 	if (!ipa_status_format_packet(status->opcode))
1198 		return true;
1199 	if (!status->pkt_len)
1200 		return true;
1201 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1202 				  IPA_STATUS_DST_IDX_FMASK);
1203 	if (endpoint_id != endpoint->endpoint_id)
1204 		return true;
1205 
1206 	return false;	/* Don't skip this packet, process it */
1207 }
1208 
1209 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1210 				    const struct ipa_status *status)
1211 {
1212 	struct ipa_endpoint *command_endpoint;
1213 	struct ipa *ipa = endpoint->ipa;
1214 	u32 endpoint_id;
1215 
1216 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1217 		return false;	/* No valid tag */
1218 
1219 	/* The status contains a valid tag.  We know the packet was sent to
1220 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1221 	 * If the packet came from the AP->command TX endpoint we know
1222 	 * this packet was sent as part of the pipeline clear process.
1223 	 */
1224 	endpoint_id = u8_get_bits(status->endp_src_idx,
1225 				  IPA_STATUS_SRC_IDX_FMASK);
1226 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1227 	if (endpoint_id == command_endpoint->endpoint_id) {
1228 		complete(&ipa->completion);
1229 	} else {
1230 		dev_err(&ipa->pdev->dev,
1231 			"unexpected tagged packet from endpoint %u\n",
1232 			endpoint_id);
1233 	}
1234 
1235 	return true;
1236 }
1237 
1238 /* Return whether the status indicates the packet should be dropped */
1239 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1240 				     const struct ipa_status *status)
1241 {
1242 	u32 val;
1243 
1244 	/* If the status indicates a tagged transfer, we'll drop the packet */
1245 	if (ipa_endpoint_status_tag(endpoint, status))
1246 		return true;
1247 
1248 	/* Deaggregation exceptions we drop; all other types we consume */
1249 	if (status->exception)
1250 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1251 
1252 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1253 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1254 
1255 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1256 }
1257 
1258 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1259 				      struct page *page, u32 total_len)
1260 {
1261 	void *data = page_address(page) + NET_SKB_PAD;
1262 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1263 	u32 resid = total_len;
1264 
1265 	while (resid) {
1266 		const struct ipa_status *status = data;
1267 		u32 align;
1268 		u32 len;
1269 
1270 		if (resid < sizeof(*status)) {
1271 			dev_err(&endpoint->ipa->pdev->dev,
1272 				"short message (%u bytes < %zu byte status)\n",
1273 				resid, sizeof(*status));
1274 			break;
1275 		}
1276 
1277 		/* Skip over status packets that lack packet data */
1278 		if (ipa_endpoint_status_skip(endpoint, status)) {
1279 			data += sizeof(*status);
1280 			resid -= sizeof(*status);
1281 			continue;
1282 		}
1283 
1284 		/* Compute the amount of buffer space consumed by the packet,
1285 		 * including the status element.  If the hardware is configured
1286 		 * to pad packet data to an aligned boundary, account for that.
1287 		 * And if checksum offload is enabled a trailer containing
1288 		 * computed checksum information will be appended.
1289 		 */
1290 		align = endpoint->data->rx.pad_align ? : 1;
1291 		len = le16_to_cpu(status->pkt_len);
1292 		len = sizeof(*status) + ALIGN(len, align);
1293 		if (endpoint->data->checksum)
1294 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1295 
1296 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1297 			void *data2;
1298 			u32 extra;
1299 			u32 len2;
1300 
1301 			/* Client receives only packet data (no status) */
1302 			data2 = data + sizeof(*status);
1303 			len2 = le16_to_cpu(status->pkt_len);
1304 
1305 			/* Have the true size reflect the extra unused space in
1306 			 * the original receive buffer.  Distribute the "cost"
1307 			 * proportionately across all aggregated packets in the
1308 			 * buffer.
1309 			 */
1310 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1311 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1312 		}
1313 
1314 		/* Consume status and the full packet it describes */
1315 		data += len;
1316 		resid -= len;
1317 	}
1318 }
1319 
1320 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1321 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1322 				     struct gsi_trans *trans)
1323 {
1324 }
1325 
1326 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1327 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1328 				     struct gsi_trans *trans)
1329 {
1330 	struct page *page;
1331 
1332 	ipa_endpoint_replenish(endpoint, true);
1333 
1334 	if (trans->cancelled)
1335 		return;
1336 
1337 	/* Parse or build a socket buffer using the actual received length */
1338 	page = trans->data;
1339 	if (endpoint->data->status_enable)
1340 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1341 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1342 		trans->data = NULL;	/* Pages have been consumed */
1343 }
1344 
1345 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1346 				 struct gsi_trans *trans)
1347 {
1348 	if (endpoint->toward_ipa)
1349 		ipa_endpoint_tx_complete(endpoint, trans);
1350 	else
1351 		ipa_endpoint_rx_complete(endpoint, trans);
1352 }
1353 
1354 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1355 				struct gsi_trans *trans)
1356 {
1357 	if (endpoint->toward_ipa) {
1358 		struct ipa *ipa = endpoint->ipa;
1359 
1360 		/* Nothing to do for command transactions */
1361 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1362 			struct sk_buff *skb = trans->data;
1363 
1364 			if (skb)
1365 				dev_kfree_skb_any(skb);
1366 		}
1367 	} else {
1368 		struct page *page = trans->data;
1369 
1370 		if (page)
1371 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1372 	}
1373 }
1374 
1375 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1376 {
1377 	u32 val;
1378 
1379 	/* ROUTE_DIS is 0 */
1380 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1381 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1382 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1383 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1384 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1385 
1386 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1387 }
1388 
1389 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1390 {
1391 	ipa_endpoint_default_route_set(ipa, 0);
1392 }
1393 
1394 /**
1395  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1396  * @endpoint:	Endpoint to be reset
1397  *
1398  * If aggregation is active on an RX endpoint when a reset is performed
1399  * on its underlying GSI channel, a special sequence of actions must be
1400  * taken to ensure the IPA pipeline is properly cleared.
1401  *
1402  * Return:	0 if successful, or a negative error code
1403  */
1404 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1405 {
1406 	struct device *dev = &endpoint->ipa->pdev->dev;
1407 	struct ipa *ipa = endpoint->ipa;
1408 	struct gsi *gsi = &ipa->gsi;
1409 	bool suspended = false;
1410 	dma_addr_t addr;
1411 	u32 retries;
1412 	u32 len = 1;
1413 	void *virt;
1414 	int ret;
1415 
1416 	virt = kzalloc(len, GFP_KERNEL);
1417 	if (!virt)
1418 		return -ENOMEM;
1419 
1420 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1421 	if (dma_mapping_error(dev, addr)) {
1422 		ret = -ENOMEM;
1423 		goto out_kfree;
1424 	}
1425 
1426 	/* Force close aggregation before issuing the reset */
1427 	ipa_endpoint_force_close(endpoint);
1428 
1429 	/* Reset and reconfigure the channel with the doorbell engine
1430 	 * disabled.  Then poll until we know aggregation is no longer
1431 	 * active.  We'll re-enable the doorbell (if appropriate) when
1432 	 * we reset again below.
1433 	 */
1434 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1435 
1436 	/* Make sure the channel isn't suspended */
1437 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1438 
1439 	/* Start channel and do a 1 byte read */
1440 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1441 	if (ret)
1442 		goto out_suspend_again;
1443 
1444 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1445 	if (ret)
1446 		goto err_endpoint_stop;
1447 
1448 	/* Wait for aggregation to be closed on the channel */
1449 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1450 	do {
1451 		if (!ipa_endpoint_aggr_active(endpoint))
1452 			break;
1453 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1454 	} while (retries--);
1455 
1456 	/* Check one last time */
1457 	if (ipa_endpoint_aggr_active(endpoint))
1458 		dev_err(dev, "endpoint %u still active during reset\n",
1459 			endpoint->endpoint_id);
1460 
1461 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1462 
1463 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1464 	if (ret)
1465 		goto out_suspend_again;
1466 
1467 	/* Finally, reset and reconfigure the channel again (re-enabling
1468 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1469 	 * complete the channel reset sequence.  Finish by suspending the
1470 	 * channel again (if necessary).
1471 	 */
1472 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1473 
1474 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1475 
1476 	goto out_suspend_again;
1477 
1478 err_endpoint_stop:
1479 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1480 out_suspend_again:
1481 	if (suspended)
1482 		(void)ipa_endpoint_program_suspend(endpoint, true);
1483 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1484 out_kfree:
1485 	kfree(virt);
1486 
1487 	return ret;
1488 }
1489 
1490 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1491 {
1492 	u32 channel_id = endpoint->channel_id;
1493 	struct ipa *ipa = endpoint->ipa;
1494 	bool special;
1495 	int ret = 0;
1496 
1497 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1498 	 * is active, we need to handle things specially to recover.
1499 	 * All other cases just need to reset the underlying GSI channel.
1500 	 */
1501 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1502 			endpoint->data->aggregation;
1503 	if (special && ipa_endpoint_aggr_active(endpoint))
1504 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1505 	else
1506 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1507 
1508 	if (ret)
1509 		dev_err(&ipa->pdev->dev,
1510 			"error %d resetting channel %u for endpoint %u\n",
1511 			ret, endpoint->channel_id, endpoint->endpoint_id);
1512 }
1513 
1514 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1515 {
1516 	if (endpoint->toward_ipa)
1517 		ipa_endpoint_program_delay(endpoint, false);
1518 	else
1519 		(void)ipa_endpoint_program_suspend(endpoint, false);
1520 	ipa_endpoint_init_cfg(endpoint);
1521 	ipa_endpoint_init_nat(endpoint);
1522 	ipa_endpoint_init_hdr(endpoint);
1523 	ipa_endpoint_init_hdr_ext(endpoint);
1524 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1525 	ipa_endpoint_init_mode(endpoint);
1526 	ipa_endpoint_init_aggr(endpoint);
1527 	ipa_endpoint_init_deaggr(endpoint);
1528 	ipa_endpoint_init_rsrc_grp(endpoint);
1529 	ipa_endpoint_init_seq(endpoint);
1530 	ipa_endpoint_status(endpoint);
1531 }
1532 
1533 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1534 {
1535 	struct ipa *ipa = endpoint->ipa;
1536 	struct gsi *gsi = &ipa->gsi;
1537 	int ret;
1538 
1539 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1540 	if (ret) {
1541 		dev_err(&ipa->pdev->dev,
1542 			"error %d starting %cX channel %u for endpoint %u\n",
1543 			ret, endpoint->toward_ipa ? 'T' : 'R',
1544 			endpoint->channel_id, endpoint->endpoint_id);
1545 		return ret;
1546 	}
1547 
1548 	if (!endpoint->toward_ipa) {
1549 		ipa_interrupt_suspend_enable(ipa->interrupt,
1550 					     endpoint->endpoint_id);
1551 		ipa_endpoint_replenish_enable(endpoint);
1552 	}
1553 
1554 	ipa->enabled |= BIT(endpoint->endpoint_id);
1555 
1556 	return 0;
1557 }
1558 
1559 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1560 {
1561 	u32 mask = BIT(endpoint->endpoint_id);
1562 	struct ipa *ipa = endpoint->ipa;
1563 	struct gsi *gsi = &ipa->gsi;
1564 	int ret;
1565 
1566 	if (!(ipa->enabled & mask))
1567 		return;
1568 
1569 	ipa->enabled ^= mask;
1570 
1571 	if (!endpoint->toward_ipa) {
1572 		ipa_endpoint_replenish_disable(endpoint);
1573 		ipa_interrupt_suspend_disable(ipa->interrupt,
1574 					      endpoint->endpoint_id);
1575 	}
1576 
1577 	/* Note that if stop fails, the channel's state is not well-defined */
1578 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1579 	if (ret)
1580 		dev_err(&ipa->pdev->dev,
1581 			"error %d attempting to stop endpoint %u\n", ret,
1582 			endpoint->endpoint_id);
1583 }
1584 
1585 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1586 {
1587 	struct device *dev = &endpoint->ipa->pdev->dev;
1588 	struct gsi *gsi = &endpoint->ipa->gsi;
1589 	bool stop_channel;
1590 	int ret;
1591 
1592 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1593 		return;
1594 
1595 	if (!endpoint->toward_ipa) {
1596 		ipa_endpoint_replenish_disable(endpoint);
1597 		(void)ipa_endpoint_program_suspend(endpoint, true);
1598 	}
1599 
1600 	/* Starting with IPA v4.0, endpoints are suspended by stopping the
1601 	 * underlying GSI channel rather than using endpoint suspend mode.
1602 	 */
1603 	stop_channel = endpoint->ipa->version >= IPA_VERSION_4_0;
1604 	ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1605 	if (ret)
1606 		dev_err(dev, "error %d suspending channel %u\n", ret,
1607 			endpoint->channel_id);
1608 }
1609 
1610 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1611 {
1612 	struct device *dev = &endpoint->ipa->pdev->dev;
1613 	struct gsi *gsi = &endpoint->ipa->gsi;
1614 	bool start_channel;
1615 	int ret;
1616 
1617 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1618 		return;
1619 
1620 	if (!endpoint->toward_ipa)
1621 		(void)ipa_endpoint_program_suspend(endpoint, false);
1622 
1623 	/* Starting with IPA v4.0, the underlying GSI channel must be
1624 	 * restarted for resume.
1625 	 */
1626 	start_channel = endpoint->ipa->version >= IPA_VERSION_4_0;
1627 	ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1628 	if (ret)
1629 		dev_err(dev, "error %d resuming channel %u\n", ret,
1630 			endpoint->channel_id);
1631 	else if (!endpoint->toward_ipa)
1632 		ipa_endpoint_replenish_enable(endpoint);
1633 }
1634 
1635 void ipa_endpoint_suspend(struct ipa *ipa)
1636 {
1637 	if (!ipa->setup_complete)
1638 		return;
1639 
1640 	if (ipa->modem_netdev)
1641 		ipa_modem_suspend(ipa->modem_netdev);
1642 
1643 	ipa_cmd_pipeline_clear(ipa);
1644 
1645 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1646 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1647 }
1648 
1649 void ipa_endpoint_resume(struct ipa *ipa)
1650 {
1651 	if (!ipa->setup_complete)
1652 		return;
1653 
1654 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1655 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1656 
1657 	if (ipa->modem_netdev)
1658 		ipa_modem_resume(ipa->modem_netdev);
1659 }
1660 
1661 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1662 {
1663 	struct gsi *gsi = &endpoint->ipa->gsi;
1664 	u32 channel_id = endpoint->channel_id;
1665 
1666 	/* Only AP endpoints get set up */
1667 	if (endpoint->ee_id != GSI_EE_AP)
1668 		return;
1669 
1670 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1671 	if (!endpoint->toward_ipa) {
1672 		/* RX transactions require a single TRE, so the maximum
1673 		 * backlog is the same as the maximum outstanding TREs.
1674 		 */
1675 		endpoint->replenish_enabled = false;
1676 		atomic_set(&endpoint->replenish_saved,
1677 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1678 		atomic_set(&endpoint->replenish_backlog, 0);
1679 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1680 				  ipa_endpoint_replenish_work);
1681 	}
1682 
1683 	ipa_endpoint_program(endpoint);
1684 
1685 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1686 }
1687 
1688 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1689 {
1690 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1691 
1692 	if (!endpoint->toward_ipa)
1693 		cancel_delayed_work_sync(&endpoint->replenish_work);
1694 
1695 	ipa_endpoint_reset(endpoint);
1696 }
1697 
1698 void ipa_endpoint_setup(struct ipa *ipa)
1699 {
1700 	u32 initialized = ipa->initialized;
1701 
1702 	ipa->set_up = 0;
1703 	while (initialized) {
1704 		u32 endpoint_id = __ffs(initialized);
1705 
1706 		initialized ^= BIT(endpoint_id);
1707 
1708 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1709 	}
1710 }
1711 
1712 void ipa_endpoint_teardown(struct ipa *ipa)
1713 {
1714 	u32 set_up = ipa->set_up;
1715 
1716 	while (set_up) {
1717 		u32 endpoint_id = __fls(set_up);
1718 
1719 		set_up ^= BIT(endpoint_id);
1720 
1721 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1722 	}
1723 	ipa->set_up = 0;
1724 }
1725 
1726 int ipa_endpoint_config(struct ipa *ipa)
1727 {
1728 	struct device *dev = &ipa->pdev->dev;
1729 	u32 initialized;
1730 	u32 rx_base;
1731 	u32 rx_mask;
1732 	u32 tx_mask;
1733 	int ret = 0;
1734 	u32 max;
1735 	u32 val;
1736 
1737 	/* Find out about the endpoints supplied by the hardware, and ensure
1738 	 * the highest one doesn't exceed the number we support.
1739 	 */
1740 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1741 
1742 	/* Our RX is an IPA producer */
1743 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1744 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1745 	if (max > IPA_ENDPOINT_MAX) {
1746 		dev_err(dev, "too many endpoints (%u > %u)\n",
1747 			max, IPA_ENDPOINT_MAX);
1748 		return -EINVAL;
1749 	}
1750 	rx_mask = GENMASK(max - 1, rx_base);
1751 
1752 	/* Our TX is an IPA consumer */
1753 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1754 	tx_mask = GENMASK(max - 1, 0);
1755 
1756 	ipa->available = rx_mask | tx_mask;
1757 
1758 	/* Check for initialized endpoints not supported by the hardware */
1759 	if (ipa->initialized & ~ipa->available) {
1760 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1761 			ipa->initialized & ~ipa->available);
1762 		ret = -EINVAL;		/* Report other errors too */
1763 	}
1764 
1765 	initialized = ipa->initialized;
1766 	while (initialized) {
1767 		u32 endpoint_id = __ffs(initialized);
1768 		struct ipa_endpoint *endpoint;
1769 
1770 		initialized ^= BIT(endpoint_id);
1771 
1772 		/* Make sure it's pointing in the right direction */
1773 		endpoint = &ipa->endpoint[endpoint_id];
1774 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1775 			dev_err(dev, "endpoint id %u wrong direction\n",
1776 				endpoint_id);
1777 			ret = -EINVAL;
1778 		}
1779 	}
1780 
1781 	return ret;
1782 }
1783 
1784 void ipa_endpoint_deconfig(struct ipa *ipa)
1785 {
1786 	ipa->available = 0;	/* Nothing more to do */
1787 }
1788 
1789 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1790 				  const struct ipa_gsi_endpoint_data *data)
1791 {
1792 	struct ipa_endpoint *endpoint;
1793 
1794 	endpoint = &ipa->endpoint[data->endpoint_id];
1795 
1796 	if (data->ee_id == GSI_EE_AP)
1797 		ipa->channel_map[data->channel_id] = endpoint;
1798 	ipa->name_map[name] = endpoint;
1799 
1800 	endpoint->ipa = ipa;
1801 	endpoint->ee_id = data->ee_id;
1802 	endpoint->channel_id = data->channel_id;
1803 	endpoint->endpoint_id = data->endpoint_id;
1804 	endpoint->toward_ipa = data->toward_ipa;
1805 	endpoint->data = &data->endpoint.config;
1806 
1807 	ipa->initialized |= BIT(endpoint->endpoint_id);
1808 }
1809 
1810 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1811 {
1812 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1813 
1814 	memset(endpoint, 0, sizeof(*endpoint));
1815 }
1816 
1817 void ipa_endpoint_exit(struct ipa *ipa)
1818 {
1819 	u32 initialized = ipa->initialized;
1820 
1821 	while (initialized) {
1822 		u32 endpoint_id = __fls(initialized);
1823 
1824 		initialized ^= BIT(endpoint_id);
1825 
1826 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1827 	}
1828 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1829 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1830 }
1831 
1832 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1833 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1834 		      const struct ipa_gsi_endpoint_data *data)
1835 {
1836 	enum ipa_endpoint_name name;
1837 	u32 filter_map;
1838 
1839 	if (!ipa_endpoint_data_valid(ipa, count, data))
1840 		return 0;	/* Error */
1841 
1842 	ipa->initialized = 0;
1843 
1844 	filter_map = 0;
1845 	for (name = 0; name < count; name++, data++) {
1846 		if (ipa_gsi_endpoint_data_empty(data))
1847 			continue;	/* Skip over empty slots */
1848 
1849 		ipa_endpoint_init_one(ipa, name, data);
1850 
1851 		if (data->endpoint.filter_support)
1852 			filter_map |= BIT(data->endpoint_id);
1853 	}
1854 
1855 	if (!ipa_filter_map_valid(ipa, filter_map))
1856 		goto err_endpoint_exit;
1857 
1858 	return filter_map;	/* Non-zero bitmask */
1859 
1860 err_endpoint_exit:
1861 	ipa_endpoint_exit(ipa);
1862 
1863 	return 0;	/* Error */
1864 }
1865