xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2022 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 /* Hardware is told about receive buffers once a "batch" has been queued */
27 #define IPA_REPLENISH_BATCH	16		/* Must be non-zero */
28 
29 /* The amount of RX buffer space consumed by standard skb overhead */
30 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
31 
32 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
33 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
34 
35 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
36 
37 /** enum ipa_status_opcode - status element opcode hardware values */
38 enum ipa_status_opcode {
39 	IPA_STATUS_OPCODE_PACKET		= 0x01,
40 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
41 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
42 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
43 };
44 
45 /** enum ipa_status_exception - status element exception type */
46 enum ipa_status_exception {
47 	/* 0 means no exception */
48 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
49 };
50 
51 /* Status element provided by hardware */
52 struct ipa_status {
53 	u8 opcode;		/* enum ipa_status_opcode */
54 	u8 exception;		/* enum ipa_status_exception */
55 	__le16 mask;
56 	__le16 pkt_len;
57 	u8 endp_src_idx;
58 	u8 endp_dst_idx;
59 	__le32 metadata;
60 	__le32 flags1;
61 	__le64 flags2;
62 	__le32 flags3;
63 	__le32 flags4;
64 };
65 
66 /* Field masks for struct ipa_status structure fields */
67 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
68 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
69 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
70 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
71 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
72 
73 /* Compute the aggregation size value to use for a given buffer size */
74 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
75 {
76 	/* A hard aggregation limit will not be crossed; aggregation closes
77 	 * if saving incoming data would cross the hard byte limit boundary.
78 	 *
79 	 * With a soft limit, aggregation closes *after* the size boundary
80 	 * has been crossed.  In that case the limit must leave enough space
81 	 * after that limit to receive a full MTU of data plus overhead.
82 	 */
83 	if (!aggr_hard_limit)
84 		rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
85 
86 	/* The byte limit is encoded as a number of kilobytes */
87 
88 	return rx_buffer_size / SZ_1K;
89 }
90 
91 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
92 			    const struct ipa_gsi_endpoint_data *all_data,
93 			    const struct ipa_gsi_endpoint_data *data)
94 {
95 	const struct ipa_gsi_endpoint_data *other_data;
96 	struct device *dev = &ipa->pdev->dev;
97 	enum ipa_endpoint_name other_name;
98 
99 	if (ipa_gsi_endpoint_data_empty(data))
100 		return true;
101 
102 	if (!data->toward_ipa) {
103 		const struct ipa_endpoint_rx *rx_config;
104 		const struct ipa_reg *reg;
105 		u32 buffer_size;
106 		u32 aggr_size;
107 		u32 limit;
108 
109 		if (data->endpoint.filter_support) {
110 			dev_err(dev, "filtering not supported for "
111 					"RX endpoint %u\n",
112 				data->endpoint_id);
113 			return false;
114 		}
115 
116 		/* Nothing more to check for non-AP RX */
117 		if (data->ee_id != GSI_EE_AP)
118 			return true;
119 
120 		rx_config = &data->endpoint.config.rx;
121 
122 		/* The buffer size must hold an MTU plus overhead */
123 		buffer_size = rx_config->buffer_size;
124 		limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
125 		if (buffer_size < limit) {
126 			dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
127 				data->endpoint_id, buffer_size, limit);
128 			return false;
129 		}
130 
131 		if (!data->endpoint.config.aggregation) {
132 			bool result = true;
133 
134 			/* No aggregation; check for bogus aggregation data */
135 			if (rx_config->aggr_time_limit) {
136 				dev_err(dev,
137 					"time limit with no aggregation for RX endpoint %u\n",
138 					data->endpoint_id);
139 				result = false;
140 			}
141 
142 			if (rx_config->aggr_hard_limit) {
143 				dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
144 					data->endpoint_id);
145 				result = false;
146 			}
147 
148 			if (rx_config->aggr_close_eof) {
149 				dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
150 					data->endpoint_id);
151 				result = false;
152 			}
153 
154 			return result;	/* Nothing more to check */
155 		}
156 
157 		/* For an endpoint supporting receive aggregation, the byte
158 		 * limit defines the point at which aggregation closes.  This
159 		 * check ensures the receive buffer size doesn't result in a
160 		 * limit that exceeds what's representable in the aggregation
161 		 * byte limit field.
162 		 */
163 		aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
164 					     rx_config->aggr_hard_limit);
165 		reg = ipa_reg(ipa, ENDP_INIT_AGGR);
166 
167 		limit = ipa_reg_field_max(reg, BYTE_LIMIT);
168 		if (aggr_size > limit) {
169 			dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
170 				data->endpoint_id, aggr_size, limit);
171 
172 			return false;
173 		}
174 
175 		return true;	/* Nothing more to check for RX */
176 	}
177 
178 	/* Starting with IPA v4.5 sequencer replication is obsolete */
179 	if (ipa->version >= IPA_VERSION_4_5) {
180 		if (data->endpoint.config.tx.seq_rep_type) {
181 			dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
182 				data->endpoint_id);
183 			return false;
184 		}
185 	}
186 
187 	if (data->endpoint.config.status_enable) {
188 		other_name = data->endpoint.config.tx.status_endpoint;
189 		if (other_name >= count) {
190 			dev_err(dev, "status endpoint name %u out of range "
191 					"for endpoint %u\n",
192 				other_name, data->endpoint_id);
193 			return false;
194 		}
195 
196 		/* Status endpoint must be defined... */
197 		other_data = &all_data[other_name];
198 		if (ipa_gsi_endpoint_data_empty(other_data)) {
199 			dev_err(dev, "DMA endpoint name %u undefined "
200 					"for endpoint %u\n",
201 				other_name, data->endpoint_id);
202 			return false;
203 		}
204 
205 		/* ...and has to be an RX endpoint... */
206 		if (other_data->toward_ipa) {
207 			dev_err(dev,
208 				"status endpoint for endpoint %u not RX\n",
209 				data->endpoint_id);
210 			return false;
211 		}
212 
213 		/* ...and if it's to be an AP endpoint... */
214 		if (other_data->ee_id == GSI_EE_AP) {
215 			/* ...make sure it has status enabled. */
216 			if (!other_data->endpoint.config.status_enable) {
217 				dev_err(dev,
218 					"status not enabled for endpoint %u\n",
219 					other_data->endpoint_id);
220 				return false;
221 			}
222 		}
223 	}
224 
225 	if (data->endpoint.config.dma_mode) {
226 		other_name = data->endpoint.config.dma_endpoint;
227 		if (other_name >= count) {
228 			dev_err(dev, "DMA endpoint name %u out of range "
229 					"for endpoint %u\n",
230 				other_name, data->endpoint_id);
231 			return false;
232 		}
233 
234 		other_data = &all_data[other_name];
235 		if (ipa_gsi_endpoint_data_empty(other_data)) {
236 			dev_err(dev, "DMA endpoint name %u undefined "
237 					"for endpoint %u\n",
238 				other_name, data->endpoint_id);
239 			return false;
240 		}
241 	}
242 
243 	return true;
244 }
245 
246 /* Validate endpoint configuration data.  Return max defined endpoint ID */
247 static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
248 			    const struct ipa_gsi_endpoint_data *data)
249 {
250 	const struct ipa_gsi_endpoint_data *dp = data;
251 	struct device *dev = &ipa->pdev->dev;
252 	enum ipa_endpoint_name name;
253 	u32 max;
254 
255 	if (count > IPA_ENDPOINT_COUNT) {
256 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
257 			count, IPA_ENDPOINT_COUNT);
258 		return 0;
259 	}
260 
261 	/* Make sure needed endpoints have defined data */
262 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
263 		dev_err(dev, "command TX endpoint not defined\n");
264 		return 0;
265 	}
266 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
267 		dev_err(dev, "LAN RX endpoint not defined\n");
268 		return 0;
269 	}
270 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
271 		dev_err(dev, "AP->modem TX endpoint not defined\n");
272 		return 0;
273 	}
274 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
275 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
276 		return 0;
277 	}
278 
279 	max = 0;
280 	for (name = 0; name < count; name++, dp++) {
281 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
282 			return 0;
283 		max = max_t(u32, max, dp->endpoint_id);
284 	}
285 
286 	return max;
287 }
288 
289 /* Allocate a transaction to use on a non-command endpoint */
290 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
291 						  u32 tre_count)
292 {
293 	struct gsi *gsi = &endpoint->ipa->gsi;
294 	u32 channel_id = endpoint->channel_id;
295 	enum dma_data_direction direction;
296 
297 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
298 
299 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
300 }
301 
302 /* suspend_delay represents suspend for RX, delay for TX endpoints.
303  * Note that suspend is not supported starting with IPA v4.0, and
304  * delay mode should not be used starting with IPA v4.2.
305  */
306 static bool
307 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
308 {
309 	struct ipa *ipa = endpoint->ipa;
310 	const struct ipa_reg *reg;
311 	u32 field_id;
312 	u32 offset;
313 	bool state;
314 	u32 mask;
315 	u32 val;
316 
317 	if (endpoint->toward_ipa)
318 		WARN_ON(ipa->version >= IPA_VERSION_4_2);
319 	else
320 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
321 
322 	reg = ipa_reg(ipa, ENDP_INIT_CTRL);
323 	offset = ipa_reg_n_offset(reg, endpoint->endpoint_id);
324 	val = ioread32(ipa->reg_virt + offset);
325 
326 	field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
327 	mask = ipa_reg_bit(reg, field_id);
328 
329 	state = !!(val & mask);
330 
331 	/* Don't bother if it's already in the requested state */
332 	if (suspend_delay != state) {
333 		val ^= mask;
334 		iowrite32(val, ipa->reg_virt + offset);
335 	}
336 
337 	return state;
338 }
339 
340 /* We don't care what the previous state was for delay mode */
341 static void
342 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
343 {
344 	/* Delay mode should not be used for IPA v4.2+ */
345 	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
346 	WARN_ON(!endpoint->toward_ipa);
347 
348 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
349 }
350 
351 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
352 {
353 	u32 endpoint_id = endpoint->endpoint_id;
354 	struct ipa *ipa = endpoint->ipa;
355 	u32 unit = endpoint_id / 32;
356 	const struct ipa_reg *reg;
357 	u32 val;
358 
359 	WARN_ON(!test_bit(endpoint_id, ipa->available));
360 
361 	reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
362 	val = ioread32(ipa->reg_virt + ipa_reg_n_offset(reg, unit));
363 
364 	return !!(val & BIT(endpoint_id % 32));
365 }
366 
367 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
368 {
369 	u32 endpoint_id = endpoint->endpoint_id;
370 	u32 mask = BIT(endpoint_id % 32);
371 	struct ipa *ipa = endpoint->ipa;
372 	u32 unit = endpoint_id / 32;
373 	const struct ipa_reg *reg;
374 
375 	WARN_ON(!test_bit(endpoint_id, ipa->available));
376 
377 	reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
378 	iowrite32(mask, ipa->reg_virt + ipa_reg_n_offset(reg, unit));
379 }
380 
381 /**
382  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
383  * @endpoint:	Endpoint on which to emulate a suspend
384  *
385  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
386  *  with an open aggregation frame.  This is to work around a hardware
387  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
388  *  generated when it should be.
389  */
390 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
391 {
392 	struct ipa *ipa = endpoint->ipa;
393 
394 	if (!endpoint->config.aggregation)
395 		return;
396 
397 	/* Nothing to do if the endpoint doesn't have aggregation open */
398 	if (!ipa_endpoint_aggr_active(endpoint))
399 		return;
400 
401 	/* Force close aggregation */
402 	ipa_endpoint_force_close(endpoint);
403 
404 	ipa_interrupt_simulate_suspend(ipa->interrupt);
405 }
406 
407 /* Returns previous suspend state (true means suspend was enabled) */
408 static bool
409 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
410 {
411 	bool suspended;
412 
413 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
414 		return enable;	/* For IPA v4.0+, no change made */
415 
416 	WARN_ON(endpoint->toward_ipa);
417 
418 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
419 
420 	/* A client suspended with an open aggregation frame will not
421 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
422 	 * ipa_endpoint_suspend_aggr() handle this.
423 	 */
424 	if (enable && !suspended)
425 		ipa_endpoint_suspend_aggr(endpoint);
426 
427 	return suspended;
428 }
429 
430 /* Put all modem RX endpoints into suspend mode, and stop transmission
431  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
432  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
433  * control instead.
434  */
435 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
436 {
437 	u32 endpoint_id = 0;
438 
439 	while (endpoint_id < ipa->endpoint_count) {
440 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
441 
442 		if (endpoint->ee_id != GSI_EE_MODEM)
443 			continue;
444 
445 		if (!endpoint->toward_ipa)
446 			(void)ipa_endpoint_program_suspend(endpoint, enable);
447 		else if (ipa->version < IPA_VERSION_4_2)
448 			ipa_endpoint_program_delay(endpoint, enable);
449 		else
450 			gsi_modem_channel_flow_control(&ipa->gsi,
451 						       endpoint->channel_id,
452 						       enable);
453 	}
454 }
455 
456 /* Reset all modem endpoints to use the default exception endpoint */
457 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
458 {
459 	struct gsi_trans *trans;
460 	u32 endpoint_id;
461 	u32 count;
462 
463 	/* We need one command per modem TX endpoint, plus the commands
464 	 * that clear the pipeline.
465 	 */
466 	count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
467 	trans = ipa_cmd_trans_alloc(ipa, count);
468 	if (!trans) {
469 		dev_err(&ipa->pdev->dev,
470 			"no transaction to reset modem exception endpoints\n");
471 		return -EBUSY;
472 	}
473 
474 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
475 		struct ipa_endpoint *endpoint;
476 		const struct ipa_reg *reg;
477 		u32 offset;
478 
479 		/* We only reset modem TX endpoints */
480 		endpoint = &ipa->endpoint[endpoint_id];
481 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
482 			continue;
483 
484 		reg = ipa_reg(ipa, ENDP_STATUS);
485 		offset = ipa_reg_n_offset(reg, endpoint_id);
486 
487 		/* Value written is 0, and all bits are updated.  That
488 		 * means status is disabled on the endpoint, and as a
489 		 * result all other fields in the register are ignored.
490 		 */
491 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
492 	}
493 
494 	ipa_cmd_pipeline_clear_add(trans);
495 
496 	gsi_trans_commit_wait(trans);
497 
498 	ipa_cmd_pipeline_clear_wait(ipa);
499 
500 	return 0;
501 }
502 
503 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
504 {
505 	u32 endpoint_id = endpoint->endpoint_id;
506 	struct ipa *ipa = endpoint->ipa;
507 	enum ipa_cs_offload_en enabled;
508 	const struct ipa_reg *reg;
509 	u32 val = 0;
510 
511 	reg = ipa_reg(ipa, ENDP_INIT_CFG);
512 	/* FRAG_OFFLOAD_EN is 0 */
513 	if (endpoint->config.checksum) {
514 		enum ipa_version version = ipa->version;
515 
516 		if (endpoint->toward_ipa) {
517 			u32 off;
518 
519 			/* Checksum header offset is in 4-byte units */
520 			off = sizeof(struct rmnet_map_header) / sizeof(u32);
521 			val |= ipa_reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
522 
523 			enabled = version < IPA_VERSION_4_5
524 					? IPA_CS_OFFLOAD_UL
525 					: IPA_CS_OFFLOAD_INLINE;
526 		} else {
527 			enabled = version < IPA_VERSION_4_5
528 					? IPA_CS_OFFLOAD_DL
529 					: IPA_CS_OFFLOAD_INLINE;
530 		}
531 	} else {
532 		enabled = IPA_CS_OFFLOAD_NONE;
533 	}
534 	val |= ipa_reg_encode(reg, CS_OFFLOAD_EN, enabled);
535 	/* CS_GEN_QMB_MASTER_SEL is 0 */
536 
537 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
538 }
539 
540 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
541 {
542 	u32 endpoint_id = endpoint->endpoint_id;
543 	struct ipa *ipa = endpoint->ipa;
544 	const struct ipa_reg *reg;
545 	u32 val;
546 
547 	if (!endpoint->toward_ipa)
548 		return;
549 
550 	reg = ipa_reg(ipa, ENDP_INIT_NAT);
551 	val = ipa_reg_encode(reg, NAT_EN, IPA_NAT_BYPASS);
552 
553 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
554 }
555 
556 static u32
557 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
558 {
559 	u32 header_size = sizeof(struct rmnet_map_header);
560 
561 	/* Without checksum offload, we just have the MAP header */
562 	if (!endpoint->config.checksum)
563 		return header_size;
564 
565 	if (version < IPA_VERSION_4_5) {
566 		/* Checksum header inserted for AP TX endpoints only */
567 		if (endpoint->toward_ipa)
568 			header_size += sizeof(struct rmnet_map_ul_csum_header);
569 	} else {
570 		/* Checksum header is used in both directions */
571 		header_size += sizeof(struct rmnet_map_v5_csum_header);
572 	}
573 
574 	return header_size;
575 }
576 
577 /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
578 static u32 ipa_header_size_encode(enum ipa_version version,
579 				  const struct ipa_reg *reg, u32 header_size)
580 {
581 	u32 field_max = ipa_reg_field_max(reg, HDR_LEN);
582 	u32 val;
583 
584 	/* We know field_max can be used as a mask (2^n - 1) */
585 	val = ipa_reg_encode(reg, HDR_LEN, header_size & field_max);
586 	if (version < IPA_VERSION_4_5) {
587 		WARN_ON(header_size > field_max);
588 		return val;
589 	}
590 
591 	/* IPA v4.5 adds a few more most-significant bits */
592 	header_size >>= hweight32(field_max);
593 	WARN_ON(header_size > ipa_reg_field_max(reg, HDR_LEN_MSB));
594 	val |= ipa_reg_encode(reg, HDR_LEN_MSB, header_size);
595 
596 	return val;
597 }
598 
599 /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
600 static u32 ipa_metadata_offset_encode(enum ipa_version version,
601 				      const struct ipa_reg *reg, u32 offset)
602 {
603 	u32 field_max = ipa_reg_field_max(reg, HDR_OFST_METADATA);
604 	u32 val;
605 
606 	/* We know field_max can be used as a mask (2^n - 1) */
607 	val = ipa_reg_encode(reg, HDR_OFST_METADATA, offset);
608 	if (version < IPA_VERSION_4_5) {
609 		WARN_ON(offset > field_max);
610 		return val;
611 	}
612 
613 	/* IPA v4.5 adds a few more most-significant bits */
614 	offset >>= hweight32(field_max);
615 	WARN_ON(offset > ipa_reg_field_max(reg, HDR_OFST_METADATA_MSB));
616 	val |= ipa_reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
617 
618 	return val;
619 }
620 
621 /**
622  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
623  * @endpoint:	Endpoint pointer
624  *
625  * We program QMAP endpoints so each packet received is preceded by a QMAP
626  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
627  * packet size field, and we have the IPA hardware populate both for each
628  * received packet.  The header is configured (in the HDR_EXT register)
629  * to use big endian format.
630  *
631  * The packet size is written into the QMAP header's pkt_len field.  That
632  * location is defined here using the HDR_OFST_PKT_SIZE field.
633  *
634  * The mux_id comes from a 4-byte metadata value supplied with each packet
635  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
636  * value that we want, in its low-order byte.  A bitmask defined in the
637  * endpoint's METADATA_MASK register defines which byte within the modem
638  * metadata contains the mux_id.  And the OFST_METADATA field programmed
639  * here indicates where the extracted byte should be placed within the QMAP
640  * header.
641  */
642 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
643 {
644 	u32 endpoint_id = endpoint->endpoint_id;
645 	struct ipa *ipa = endpoint->ipa;
646 	const struct ipa_reg *reg;
647 	u32 val = 0;
648 
649 	reg = ipa_reg(ipa, ENDP_INIT_HDR);
650 	if (endpoint->config.qmap) {
651 		enum ipa_version version = ipa->version;
652 		size_t header_size;
653 
654 		header_size = ipa_qmap_header_size(version, endpoint);
655 		val = ipa_header_size_encode(version, reg, header_size);
656 
657 		/* Define how to fill fields in a received QMAP header */
658 		if (!endpoint->toward_ipa) {
659 			u32 off;     /* Field offset within header */
660 
661 			/* Where IPA will write the metadata value */
662 			off = offsetof(struct rmnet_map_header, mux_id);
663 			val |= ipa_metadata_offset_encode(version, reg, off);
664 
665 			/* Where IPA will write the length */
666 			off = offsetof(struct rmnet_map_header, pkt_len);
667 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
668 			if (version >= IPA_VERSION_4_5)
669 				off &= ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE);
670 
671 			val |= ipa_reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
672 			val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE, off);
673 		}
674 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
675 		val |= ipa_reg_bit(reg, HDR_OFST_METADATA_VALID);
676 
677 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
678 		/* HDR_A5_MUX is 0 */
679 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
680 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
681 	}
682 
683 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
684 }
685 
686 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
687 {
688 	u32 pad_align = endpoint->config.rx.pad_align;
689 	u32 endpoint_id = endpoint->endpoint_id;
690 	struct ipa *ipa = endpoint->ipa;
691 	const struct ipa_reg *reg;
692 	u32 val = 0;
693 
694 	reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
695 	if (endpoint->config.qmap) {
696 		/* We have a header, so we must specify its endianness */
697 		val |= ipa_reg_bit(reg, HDR_ENDIANNESS);	/* big endian */
698 
699 		/* A QMAP header contains a 6 bit pad field at offset 0.
700 		 * The RMNet driver assumes this field is meaningful in
701 		 * packets it receives, and assumes the header's payload
702 		 * length includes that padding.  The RMNet driver does
703 		 * *not* pad packets it sends, however, so the pad field
704 		 * (although 0) should be ignored.
705 		 */
706 		if (!endpoint->toward_ipa) {
707 			val |= ipa_reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
708 			/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
709 			val |= ipa_reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
710 			/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
711 		}
712 	}
713 
714 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
715 	if (!endpoint->toward_ipa)
716 		val |= ipa_reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
717 
718 	/* IPA v4.5 adds some most-significant bits to a few fields,
719 	 * two of which are defined in the HDR (not HDR_EXT) register.
720 	 */
721 	if (ipa->version >= IPA_VERSION_4_5) {
722 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
723 		if (endpoint->config.qmap && !endpoint->toward_ipa) {
724 			u32 mask = ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE);
725 			u32 off;     /* Field offset within header */
726 
727 			off = offsetof(struct rmnet_map_header, pkt_len);
728 			/* Low bits are in the ENDP_INIT_HDR register */
729 			off >>= hweight32(mask);
730 			val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
731 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
732 		}
733 	}
734 
735 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
736 }
737 
738 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
739 {
740 	u32 endpoint_id = endpoint->endpoint_id;
741 	struct ipa *ipa = endpoint->ipa;
742 	const struct ipa_reg *reg;
743 	u32 val = 0;
744 	u32 offset;
745 
746 	if (endpoint->toward_ipa)
747 		return;		/* Register not valid for TX endpoints */
748 
749 	reg = ipa_reg(ipa,  ENDP_INIT_HDR_METADATA_MASK);
750 	offset = ipa_reg_n_offset(reg, endpoint_id);
751 
752 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
753 	if (endpoint->config.qmap)
754 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
755 
756 	iowrite32(val, ipa->reg_virt + offset);
757 }
758 
759 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
760 {
761 	struct ipa *ipa = endpoint->ipa;
762 	const struct ipa_reg *reg;
763 	u32 offset;
764 	u32 val;
765 
766 	if (!endpoint->toward_ipa)
767 		return;		/* Register not valid for RX endpoints */
768 
769 	reg = ipa_reg(ipa, ENDP_INIT_MODE);
770 	if (endpoint->config.dma_mode) {
771 		enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
772 		u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
773 
774 		val = ipa_reg_encode(reg, ENDP_MODE, IPA_DMA);
775 		val |= ipa_reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
776 	} else {
777 		val = ipa_reg_encode(reg, ENDP_MODE, IPA_BASIC);
778 	}
779 	/* All other bits unspecified (and 0) */
780 
781 	offset = ipa_reg_n_offset(reg, endpoint->endpoint_id);
782 	iowrite32(val, ipa->reg_virt + offset);
783 }
784 
785 /* For IPA v4.5+, times are expressed using Qtime.  The AP uses one of two
786  * pulse generators (0 and 1) to measure elapsed time.  In ipa_qtime_config()
787  * they're configured to have granularity 100 usec and 1 msec, respectively.
788  *
789  * The return value is the positive or negative Qtime value to use to
790  * express the (microsecond) time provided.  A positive return value
791  * means pulse generator 0 can be used; otherwise use pulse generator 1.
792  */
793 static int ipa_qtime_val(u32 microseconds, u32 max)
794 {
795 	u32 val;
796 
797 	/* Use 100 microsecond granularity if possible */
798 	val = DIV_ROUND_CLOSEST(microseconds, 100);
799 	if (val <= max)
800 		return (int)val;
801 
802 	/* Have to use pulse generator 1 (millisecond granularity) */
803 	val = DIV_ROUND_CLOSEST(microseconds, 1000);
804 	WARN_ON(val > max);
805 
806 	return (int)-val;
807 }
808 
809 /* Encode the aggregation timer limit (microseconds) based on IPA version */
810 static u32 aggr_time_limit_encode(struct ipa *ipa, const struct ipa_reg *reg,
811 				  u32 microseconds)
812 {
813 	u32 max;
814 	u32 val;
815 
816 	if (!microseconds)
817 		return 0;	/* Nothing to compute if time limit is 0 */
818 
819 	max = ipa_reg_field_max(reg, TIME_LIMIT);
820 	if (ipa->version >= IPA_VERSION_4_5) {
821 		u32 gran_sel;
822 		int ret;
823 
824 		/* Compute the Qtime limit value to use */
825 		ret = ipa_qtime_val(microseconds, max);
826 		if (ret < 0) {
827 			val = -ret;
828 			gran_sel = ipa_reg_bit(reg, AGGR_GRAN_SEL);
829 		} else {
830 			val = ret;
831 			gran_sel = 0;
832 		}
833 
834 		return gran_sel | ipa_reg_encode(reg, TIME_LIMIT, val);
835 	}
836 
837 	/* We program aggregation granularity in ipa_hardware_config() */
838 	val = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
839 	WARN(val > max, "aggr_time_limit too large (%u > %u usec)\n",
840 	     microseconds, max * IPA_AGGR_GRANULARITY);
841 
842 	return ipa_reg_encode(reg, TIME_LIMIT, val);
843 }
844 
845 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
846 {
847 	u32 endpoint_id = endpoint->endpoint_id;
848 	struct ipa *ipa = endpoint->ipa;
849 	const struct ipa_reg *reg;
850 	u32 val = 0;
851 
852 	reg = ipa_reg(ipa, ENDP_INIT_AGGR);
853 	if (endpoint->config.aggregation) {
854 		if (!endpoint->toward_ipa) {
855 			const struct ipa_endpoint_rx *rx_config;
856 			u32 buffer_size;
857 			u32 limit;
858 
859 			rx_config = &endpoint->config.rx;
860 			val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
861 			val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
862 
863 			buffer_size = rx_config->buffer_size;
864 			limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
865 						 rx_config->aggr_hard_limit);
866 			val |= ipa_reg_encode(reg, BYTE_LIMIT, limit);
867 
868 			limit = rx_config->aggr_time_limit;
869 			val |= aggr_time_limit_encode(ipa, reg, limit);
870 
871 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
872 
873 			if (rx_config->aggr_close_eof)
874 				val |= ipa_reg_bit(reg, SW_EOF_ACTIVE);
875 		} else {
876 			val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
877 			val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
878 			/* other fields ignored */
879 		}
880 		/* AGGR_FORCE_CLOSE is 0 */
881 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
882 	} else {
883 		val |= ipa_reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
884 		/* other fields ignored */
885 	}
886 
887 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
888 }
889 
890 /* The head-of-line blocking timer is defined as a tick count.  For
891  * IPA version 4.5 the tick count is based on the Qtimer, which is
892  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
893  * each tick represents 128 cycles of the IPA core clock.
894  *
895  * Return the encoded value representing the timeout period provided
896  * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
897  */
898 static u32 hol_block_timer_encode(struct ipa *ipa, const struct ipa_reg *reg,
899 				  u32 microseconds)
900 {
901 	u32 width;
902 	u32 scale;
903 	u64 ticks;
904 	u64 rate;
905 	u32 high;
906 	u32 val;
907 
908 	if (!microseconds)
909 		return 0;	/* Nothing to compute if timer period is 0 */
910 
911 	if (ipa->version >= IPA_VERSION_4_5) {
912 		u32 max = ipa_reg_field_max(reg, TIMER_LIMIT);
913 		u32 gran_sel;
914 		int ret;
915 
916 		/* Compute the Qtime limit value to use */
917 		ret = ipa_qtime_val(microseconds, max);
918 		if (ret < 0) {
919 			val = -ret;
920 			gran_sel = ipa_reg_bit(reg, TIMER_GRAN_SEL);
921 		} else {
922 			val = ret;
923 			gran_sel = 0;
924 		}
925 
926 		return gran_sel | ipa_reg_encode(reg, TIMER_LIMIT, val);
927 	}
928 
929 	/* Use 64 bit arithmetic to avoid overflow */
930 	rate = ipa_core_clock_rate(ipa);
931 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
932 
933 	/* We still need the result to fit into the field */
934 	WARN_ON(ticks > ipa_reg_field_max(reg, TIMER_BASE_VALUE));
935 
936 	/* IPA v3.5.1 through v4.1 just record the tick count */
937 	if (ipa->version < IPA_VERSION_4_2)
938 		return ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
939 
940 	/* For IPA v4.2, the tick count is represented by base and
941 	 * scale fields within the 32-bit timer register, where:
942 	 *     ticks = base << scale;
943 	 * The best precision is achieved when the base value is as
944 	 * large as possible.  Find the highest set bit in the tick
945 	 * count, and extract the number of bits in the base field
946 	 * such that high bit is included.
947 	 */
948 	high = fls(ticks);		/* 1..32 (or warning above) */
949 	width = hweight32(ipa_reg_fmask(reg, TIMER_BASE_VALUE));
950 	scale = high > width ? high - width : 0;
951 	if (scale) {
952 		/* If we're scaling, round up to get a closer result */
953 		ticks += 1 << (scale - 1);
954 		/* High bit was set, so rounding might have affected it */
955 		if (fls(ticks) != high)
956 			scale++;
957 	}
958 
959 	val = ipa_reg_encode(reg, TIMER_SCALE, scale);
960 	val |= ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
961 
962 	return val;
963 }
964 
965 /* If microseconds is 0, timeout is immediate */
966 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
967 					      u32 microseconds)
968 {
969 	u32 endpoint_id = endpoint->endpoint_id;
970 	struct ipa *ipa = endpoint->ipa;
971 	const struct ipa_reg *reg;
972 	u32 val;
973 
974 	/* This should only be changed when HOL_BLOCK_EN is disabled */
975 	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
976 	val = hol_block_timer_encode(ipa, reg, microseconds);
977 
978 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
979 }
980 
981 static void
982 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
983 {
984 	u32 endpoint_id = endpoint->endpoint_id;
985 	struct ipa *ipa = endpoint->ipa;
986 	const struct ipa_reg *reg;
987 	u32 offset;
988 	u32 val;
989 
990 	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
991 	offset = ipa_reg_n_offset(reg, endpoint_id);
992 	val = enable ? ipa_reg_bit(reg, HOL_BLOCK_EN) : 0;
993 
994 	iowrite32(val, ipa->reg_virt + offset);
995 
996 	/* When enabling, the register must be written twice for IPA v4.5+ */
997 	if (enable && ipa->version >= IPA_VERSION_4_5)
998 		iowrite32(val, ipa->reg_virt + offset);
999 }
1000 
1001 /* Assumes HOL_BLOCK is in disabled state */
1002 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1003 					       u32 microseconds)
1004 {
1005 	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1006 	ipa_endpoint_init_hol_block_en(endpoint, true);
1007 }
1008 
1009 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1010 {
1011 	ipa_endpoint_init_hol_block_en(endpoint, false);
1012 }
1013 
1014 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1015 {
1016 	u32 endpoint_id = 0;
1017 
1018 	while (endpoint_id < ipa->endpoint_count) {
1019 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1020 
1021 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1022 			continue;
1023 
1024 		ipa_endpoint_init_hol_block_disable(endpoint);
1025 		ipa_endpoint_init_hol_block_enable(endpoint, 0);
1026 	}
1027 }
1028 
1029 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1030 {
1031 	u32 endpoint_id = endpoint->endpoint_id;
1032 	struct ipa *ipa = endpoint->ipa;
1033 	const struct ipa_reg *reg;
1034 	u32 val = 0;
1035 
1036 	if (!endpoint->toward_ipa)
1037 		return;		/* Register not valid for RX endpoints */
1038 
1039 	reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1040 	/* DEAGGR_HDR_LEN is 0 */
1041 	/* PACKET_OFFSET_VALID is 0 */
1042 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
1043 	/* MAX_PACKET_LEN is 0 (not enforced) */
1044 
1045 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1046 }
1047 
1048 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1049 {
1050 	u32 resource_group = endpoint->config.resource_group;
1051 	u32 endpoint_id = endpoint->endpoint_id;
1052 	struct ipa *ipa = endpoint->ipa;
1053 	const struct ipa_reg *reg;
1054 	u32 val;
1055 
1056 	reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1057 	val = ipa_reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1058 
1059 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1060 }
1061 
1062 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1063 {
1064 	u32 endpoint_id = endpoint->endpoint_id;
1065 	struct ipa *ipa = endpoint->ipa;
1066 	const struct ipa_reg *reg;
1067 	u32 val;
1068 
1069 	if (!endpoint->toward_ipa)
1070 		return;		/* Register not valid for RX endpoints */
1071 
1072 	reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1073 
1074 	/* Low-order byte configures primary packet processing */
1075 	val = ipa_reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1076 
1077 	/* Second byte (if supported) configures replicated packet processing */
1078 	if (ipa->version < IPA_VERSION_4_5)
1079 		val |= ipa_reg_encode(reg, SEQ_REP_TYPE,
1080 				      endpoint->config.tx.seq_rep_type);
1081 
1082 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1083 }
1084 
1085 /**
1086  * ipa_endpoint_skb_tx() - Transmit a socket buffer
1087  * @endpoint:	Endpoint pointer
1088  * @skb:	Socket buffer to send
1089  *
1090  * Returns:	0 if successful, or a negative error code
1091  */
1092 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1093 {
1094 	struct gsi_trans *trans;
1095 	u32 nr_frags;
1096 	int ret;
1097 
1098 	/* Make sure source endpoint's TLV FIFO has enough entries to
1099 	 * hold the linear portion of the skb and all its fragments.
1100 	 * If not, see if we can linearize it before giving up.
1101 	 */
1102 	nr_frags = skb_shinfo(skb)->nr_frags;
1103 	if (nr_frags > endpoint->skb_frag_max) {
1104 		if (skb_linearize(skb))
1105 			return -E2BIG;
1106 		nr_frags = 0;
1107 	}
1108 
1109 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1110 	if (!trans)
1111 		return -EBUSY;
1112 
1113 	ret = gsi_trans_skb_add(trans, skb);
1114 	if (ret)
1115 		goto err_trans_free;
1116 	trans->data = skb;	/* transaction owns skb now */
1117 
1118 	gsi_trans_commit(trans, !netdev_xmit_more());
1119 
1120 	return 0;
1121 
1122 err_trans_free:
1123 	gsi_trans_free(trans);
1124 
1125 	return -ENOMEM;
1126 }
1127 
1128 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1129 {
1130 	u32 endpoint_id = endpoint->endpoint_id;
1131 	struct ipa *ipa = endpoint->ipa;
1132 	const struct ipa_reg *reg;
1133 	u32 val = 0;
1134 
1135 	reg = ipa_reg(ipa, ENDP_STATUS);
1136 	if (endpoint->config.status_enable) {
1137 		val |= ipa_reg_bit(reg, STATUS_EN);
1138 		if (endpoint->toward_ipa) {
1139 			enum ipa_endpoint_name name;
1140 			u32 status_endpoint_id;
1141 
1142 			name = endpoint->config.tx.status_endpoint;
1143 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1144 
1145 			val |= ipa_reg_encode(reg, STATUS_ENDP,
1146 					      status_endpoint_id);
1147 		}
1148 		/* STATUS_LOCATION is 0, meaning status element precedes
1149 		 * packet (not present for IPA v4.5+)
1150 		 */
1151 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1152 	}
1153 
1154 	iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1155 }
1156 
1157 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1158 				      struct gsi_trans *trans)
1159 {
1160 	struct page *page;
1161 	u32 buffer_size;
1162 	u32 offset;
1163 	u32 len;
1164 	int ret;
1165 
1166 	buffer_size = endpoint->config.rx.buffer_size;
1167 	page = dev_alloc_pages(get_order(buffer_size));
1168 	if (!page)
1169 		return -ENOMEM;
1170 
1171 	/* Offset the buffer to make space for skb headroom */
1172 	offset = NET_SKB_PAD;
1173 	len = buffer_size - offset;
1174 
1175 	ret = gsi_trans_page_add(trans, page, len, offset);
1176 	if (ret)
1177 		put_page(page);
1178 	else
1179 		trans->data = page;	/* transaction owns page now */
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1186  * @endpoint:	Endpoint to be replenished
1187  *
1188  * The IPA hardware can hold a fixed number of receive buffers for an RX
1189  * endpoint, based on the number of entries in the underlying channel ring
1190  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1191  * more receive buffers can be supplied to the hardware.  Replenishing for
1192  * an endpoint can be disabled, in which case buffers are not queued to
1193  * the hardware.
1194  */
1195 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1196 {
1197 	struct gsi_trans *trans;
1198 
1199 	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1200 		return;
1201 
1202 	/* Skip it if it's already active */
1203 	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1204 		return;
1205 
1206 	while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1207 		bool doorbell;
1208 
1209 		if (ipa_endpoint_replenish_one(endpoint, trans))
1210 			goto try_again_later;
1211 
1212 
1213 		/* Ring the doorbell if we've got a full batch */
1214 		doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1215 		gsi_trans_commit(trans, doorbell);
1216 	}
1217 
1218 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1219 
1220 	return;
1221 
1222 try_again_later:
1223 	gsi_trans_free(trans);
1224 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1225 
1226 	/* Whenever a receive buffer transaction completes we'll try to
1227 	 * replenish again.  It's unlikely, but if we fail to supply even
1228 	 * one buffer, nothing will trigger another replenish attempt.
1229 	 * If the hardware has no receive buffers queued, schedule work to
1230 	 * try replenishing again.
1231 	 */
1232 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1233 		schedule_delayed_work(&endpoint->replenish_work,
1234 				      msecs_to_jiffies(1));
1235 }
1236 
1237 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1238 {
1239 	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1240 
1241 	/* Start replenishing if hardware currently has no buffers */
1242 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1243 		ipa_endpoint_replenish(endpoint);
1244 }
1245 
1246 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1247 {
1248 	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1249 }
1250 
1251 static void ipa_endpoint_replenish_work(struct work_struct *work)
1252 {
1253 	struct delayed_work *dwork = to_delayed_work(work);
1254 	struct ipa_endpoint *endpoint;
1255 
1256 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1257 
1258 	ipa_endpoint_replenish(endpoint);
1259 }
1260 
1261 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1262 				  void *data, u32 len, u32 extra)
1263 {
1264 	struct sk_buff *skb;
1265 
1266 	if (!endpoint->netdev)
1267 		return;
1268 
1269 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1270 	if (skb) {
1271 		/* Copy the data into the socket buffer and receive it */
1272 		skb_put(skb, len);
1273 		memcpy(skb->data, data, len);
1274 		skb->truesize += extra;
1275 	}
1276 
1277 	ipa_modem_skb_rx(endpoint->netdev, skb);
1278 }
1279 
1280 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1281 				   struct page *page, u32 len)
1282 {
1283 	u32 buffer_size = endpoint->config.rx.buffer_size;
1284 	struct sk_buff *skb;
1285 
1286 	/* Nothing to do if there's no netdev */
1287 	if (!endpoint->netdev)
1288 		return false;
1289 
1290 	WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1291 
1292 	skb = build_skb(page_address(page), buffer_size);
1293 	if (skb) {
1294 		/* Reserve the headroom and account for the data */
1295 		skb_reserve(skb, NET_SKB_PAD);
1296 		skb_put(skb, len);
1297 	}
1298 
1299 	/* Receive the buffer (or record drop if unable to build it) */
1300 	ipa_modem_skb_rx(endpoint->netdev, skb);
1301 
1302 	return skb != NULL;
1303 }
1304 
1305 /* The format of a packet status element is the same for several status
1306  * types (opcodes).  Other types aren't currently supported.
1307  */
1308 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1309 {
1310 	switch (opcode) {
1311 	case IPA_STATUS_OPCODE_PACKET:
1312 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1313 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1314 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1315 		return true;
1316 	default:
1317 		return false;
1318 	}
1319 }
1320 
1321 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1322 				     const struct ipa_status *status)
1323 {
1324 	u32 endpoint_id;
1325 
1326 	if (!ipa_status_format_packet(status->opcode))
1327 		return true;
1328 	if (!status->pkt_len)
1329 		return true;
1330 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1331 				  IPA_STATUS_DST_IDX_FMASK);
1332 	if (endpoint_id != endpoint->endpoint_id)
1333 		return true;
1334 
1335 	return false;	/* Don't skip this packet, process it */
1336 }
1337 
1338 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1339 				    const struct ipa_status *status)
1340 {
1341 	struct ipa_endpoint *command_endpoint;
1342 	struct ipa *ipa = endpoint->ipa;
1343 	u32 endpoint_id;
1344 
1345 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1346 		return false;	/* No valid tag */
1347 
1348 	/* The status contains a valid tag.  We know the packet was sent to
1349 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1350 	 * If the packet came from the AP->command TX endpoint we know
1351 	 * this packet was sent as part of the pipeline clear process.
1352 	 */
1353 	endpoint_id = u8_get_bits(status->endp_src_idx,
1354 				  IPA_STATUS_SRC_IDX_FMASK);
1355 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1356 	if (endpoint_id == command_endpoint->endpoint_id) {
1357 		complete(&ipa->completion);
1358 	} else {
1359 		dev_err(&ipa->pdev->dev,
1360 			"unexpected tagged packet from endpoint %u\n",
1361 			endpoint_id);
1362 	}
1363 
1364 	return true;
1365 }
1366 
1367 /* Return whether the status indicates the packet should be dropped */
1368 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1369 				     const struct ipa_status *status)
1370 {
1371 	u32 val;
1372 
1373 	/* If the status indicates a tagged transfer, we'll drop the packet */
1374 	if (ipa_endpoint_status_tag(endpoint, status))
1375 		return true;
1376 
1377 	/* Deaggregation exceptions we drop; all other types we consume */
1378 	if (status->exception)
1379 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1380 
1381 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1382 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1383 
1384 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1385 }
1386 
1387 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1388 				      struct page *page, u32 total_len)
1389 {
1390 	u32 buffer_size = endpoint->config.rx.buffer_size;
1391 	void *data = page_address(page) + NET_SKB_PAD;
1392 	u32 unused = buffer_size - total_len;
1393 	u32 resid = total_len;
1394 
1395 	while (resid) {
1396 		const struct ipa_status *status = data;
1397 		u32 align;
1398 		u32 len;
1399 
1400 		if (resid < sizeof(*status)) {
1401 			dev_err(&endpoint->ipa->pdev->dev,
1402 				"short message (%u bytes < %zu byte status)\n",
1403 				resid, sizeof(*status));
1404 			break;
1405 		}
1406 
1407 		/* Skip over status packets that lack packet data */
1408 		if (ipa_endpoint_status_skip(endpoint, status)) {
1409 			data += sizeof(*status);
1410 			resid -= sizeof(*status);
1411 			continue;
1412 		}
1413 
1414 		/* Compute the amount of buffer space consumed by the packet,
1415 		 * including the status element.  If the hardware is configured
1416 		 * to pad packet data to an aligned boundary, account for that.
1417 		 * And if checksum offload is enabled a trailer containing
1418 		 * computed checksum information will be appended.
1419 		 */
1420 		align = endpoint->config.rx.pad_align ? : 1;
1421 		len = le16_to_cpu(status->pkt_len);
1422 		len = sizeof(*status) + ALIGN(len, align);
1423 		if (endpoint->config.checksum)
1424 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1425 
1426 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1427 			void *data2;
1428 			u32 extra;
1429 			u32 len2;
1430 
1431 			/* Client receives only packet data (no status) */
1432 			data2 = data + sizeof(*status);
1433 			len2 = le16_to_cpu(status->pkt_len);
1434 
1435 			/* Have the true size reflect the extra unused space in
1436 			 * the original receive buffer.  Distribute the "cost"
1437 			 * proportionately across all aggregated packets in the
1438 			 * buffer.
1439 			 */
1440 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1441 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1442 		}
1443 
1444 		/* Consume status and the full packet it describes */
1445 		data += len;
1446 		resid -= len;
1447 	}
1448 }
1449 
1450 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1451 				 struct gsi_trans *trans)
1452 {
1453 	struct page *page;
1454 
1455 	if (endpoint->toward_ipa)
1456 		return;
1457 
1458 	if (trans->cancelled)
1459 		goto done;
1460 
1461 	/* Parse or build a socket buffer using the actual received length */
1462 	page = trans->data;
1463 	if (endpoint->config.status_enable)
1464 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1465 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1466 		trans->data = NULL;	/* Pages have been consumed */
1467 done:
1468 	ipa_endpoint_replenish(endpoint);
1469 }
1470 
1471 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1472 				struct gsi_trans *trans)
1473 {
1474 	if (endpoint->toward_ipa) {
1475 		struct ipa *ipa = endpoint->ipa;
1476 
1477 		/* Nothing to do for command transactions */
1478 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1479 			struct sk_buff *skb = trans->data;
1480 
1481 			if (skb)
1482 				dev_kfree_skb_any(skb);
1483 		}
1484 	} else {
1485 		struct page *page = trans->data;
1486 
1487 		if (page)
1488 			put_page(page);
1489 	}
1490 }
1491 
1492 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1493 {
1494 	const struct ipa_reg *reg;
1495 	u32 val;
1496 
1497 	reg = ipa_reg(ipa, ROUTE);
1498 	/* ROUTE_DIS is 0 */
1499 	val = ipa_reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1500 	val |= ipa_reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1501 	/* ROUTE_DEF_HDR_OFST is 0 */
1502 	val |= ipa_reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1503 	val |= ipa_reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1504 
1505 	iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
1506 }
1507 
1508 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1509 {
1510 	ipa_endpoint_default_route_set(ipa, 0);
1511 }
1512 
1513 /**
1514  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1515  * @endpoint:	Endpoint to be reset
1516  *
1517  * If aggregation is active on an RX endpoint when a reset is performed
1518  * on its underlying GSI channel, a special sequence of actions must be
1519  * taken to ensure the IPA pipeline is properly cleared.
1520  *
1521  * Return:	0 if successful, or a negative error code
1522  */
1523 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1524 {
1525 	struct device *dev = &endpoint->ipa->pdev->dev;
1526 	struct ipa *ipa = endpoint->ipa;
1527 	struct gsi *gsi = &ipa->gsi;
1528 	bool suspended = false;
1529 	dma_addr_t addr;
1530 	u32 retries;
1531 	u32 len = 1;
1532 	void *virt;
1533 	int ret;
1534 
1535 	virt = kzalloc(len, GFP_KERNEL);
1536 	if (!virt)
1537 		return -ENOMEM;
1538 
1539 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1540 	if (dma_mapping_error(dev, addr)) {
1541 		ret = -ENOMEM;
1542 		goto out_kfree;
1543 	}
1544 
1545 	/* Force close aggregation before issuing the reset */
1546 	ipa_endpoint_force_close(endpoint);
1547 
1548 	/* Reset and reconfigure the channel with the doorbell engine
1549 	 * disabled.  Then poll until we know aggregation is no longer
1550 	 * active.  We'll re-enable the doorbell (if appropriate) when
1551 	 * we reset again below.
1552 	 */
1553 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1554 
1555 	/* Make sure the channel isn't suspended */
1556 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1557 
1558 	/* Start channel and do a 1 byte read */
1559 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1560 	if (ret)
1561 		goto out_suspend_again;
1562 
1563 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1564 	if (ret)
1565 		goto err_endpoint_stop;
1566 
1567 	/* Wait for aggregation to be closed on the channel */
1568 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1569 	do {
1570 		if (!ipa_endpoint_aggr_active(endpoint))
1571 			break;
1572 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1573 	} while (retries--);
1574 
1575 	/* Check one last time */
1576 	if (ipa_endpoint_aggr_active(endpoint))
1577 		dev_err(dev, "endpoint %u still active during reset\n",
1578 			endpoint->endpoint_id);
1579 
1580 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1581 
1582 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1583 	if (ret)
1584 		goto out_suspend_again;
1585 
1586 	/* Finally, reset and reconfigure the channel again (re-enabling
1587 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1588 	 * complete the channel reset sequence.  Finish by suspending the
1589 	 * channel again (if necessary).
1590 	 */
1591 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1592 
1593 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1594 
1595 	goto out_suspend_again;
1596 
1597 err_endpoint_stop:
1598 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1599 out_suspend_again:
1600 	if (suspended)
1601 		(void)ipa_endpoint_program_suspend(endpoint, true);
1602 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1603 out_kfree:
1604 	kfree(virt);
1605 
1606 	return ret;
1607 }
1608 
1609 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1610 {
1611 	u32 channel_id = endpoint->channel_id;
1612 	struct ipa *ipa = endpoint->ipa;
1613 	bool special;
1614 	int ret = 0;
1615 
1616 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1617 	 * is active, we need to handle things specially to recover.
1618 	 * All other cases just need to reset the underlying GSI channel.
1619 	 */
1620 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1621 			endpoint->config.aggregation;
1622 	if (special && ipa_endpoint_aggr_active(endpoint))
1623 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1624 	else
1625 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1626 
1627 	if (ret)
1628 		dev_err(&ipa->pdev->dev,
1629 			"error %d resetting channel %u for endpoint %u\n",
1630 			ret, endpoint->channel_id, endpoint->endpoint_id);
1631 }
1632 
1633 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1634 {
1635 	if (endpoint->toward_ipa) {
1636 		/* Newer versions of IPA use GSI channel flow control
1637 		 * instead of endpoint DELAY mode to prevent sending data.
1638 		 * Flow control is disabled for newly-allocated channels,
1639 		 * and we can assume flow control is not (ever) enabled
1640 		 * for AP TX channels.
1641 		 */
1642 		if (endpoint->ipa->version < IPA_VERSION_4_2)
1643 			ipa_endpoint_program_delay(endpoint, false);
1644 	} else {
1645 		/* Ensure suspend mode is off on all AP RX endpoints */
1646 		(void)ipa_endpoint_program_suspend(endpoint, false);
1647 	}
1648 	ipa_endpoint_init_cfg(endpoint);
1649 	ipa_endpoint_init_nat(endpoint);
1650 	ipa_endpoint_init_hdr(endpoint);
1651 	ipa_endpoint_init_hdr_ext(endpoint);
1652 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1653 	ipa_endpoint_init_mode(endpoint);
1654 	ipa_endpoint_init_aggr(endpoint);
1655 	if (!endpoint->toward_ipa) {
1656 		if (endpoint->config.rx.holb_drop)
1657 			ipa_endpoint_init_hol_block_enable(endpoint, 0);
1658 		else
1659 			ipa_endpoint_init_hol_block_disable(endpoint);
1660 	}
1661 	ipa_endpoint_init_deaggr(endpoint);
1662 	ipa_endpoint_init_rsrc_grp(endpoint);
1663 	ipa_endpoint_init_seq(endpoint);
1664 	ipa_endpoint_status(endpoint);
1665 }
1666 
1667 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1668 {
1669 	u32 endpoint_id = endpoint->endpoint_id;
1670 	struct ipa *ipa = endpoint->ipa;
1671 	struct gsi *gsi = &ipa->gsi;
1672 	int ret;
1673 
1674 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1675 	if (ret) {
1676 		dev_err(&ipa->pdev->dev,
1677 			"error %d starting %cX channel %u for endpoint %u\n",
1678 			ret, endpoint->toward_ipa ? 'T' : 'R',
1679 			endpoint->channel_id, endpoint_id);
1680 		return ret;
1681 	}
1682 
1683 	if (!endpoint->toward_ipa) {
1684 		ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1685 		ipa_endpoint_replenish_enable(endpoint);
1686 	}
1687 
1688 	__set_bit(endpoint_id, ipa->enabled);
1689 
1690 	return 0;
1691 }
1692 
1693 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1694 {
1695 	u32 endpoint_id = endpoint->endpoint_id;
1696 	struct ipa *ipa = endpoint->ipa;
1697 	struct gsi *gsi = &ipa->gsi;
1698 	int ret;
1699 
1700 	if (!test_bit(endpoint_id, ipa->enabled))
1701 		return;
1702 
1703 	__clear_bit(endpoint_id, endpoint->ipa->enabled);
1704 
1705 	if (!endpoint->toward_ipa) {
1706 		ipa_endpoint_replenish_disable(endpoint);
1707 		ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1708 	}
1709 
1710 	/* Note that if stop fails, the channel's state is not well-defined */
1711 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1712 	if (ret)
1713 		dev_err(&ipa->pdev->dev,
1714 			"error %d attempting to stop endpoint %u\n", ret,
1715 			endpoint_id);
1716 }
1717 
1718 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1719 {
1720 	struct device *dev = &endpoint->ipa->pdev->dev;
1721 	struct gsi *gsi = &endpoint->ipa->gsi;
1722 	int ret;
1723 
1724 	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1725 		return;
1726 
1727 	if (!endpoint->toward_ipa) {
1728 		ipa_endpoint_replenish_disable(endpoint);
1729 		(void)ipa_endpoint_program_suspend(endpoint, true);
1730 	}
1731 
1732 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1733 	if (ret)
1734 		dev_err(dev, "error %d suspending channel %u\n", ret,
1735 			endpoint->channel_id);
1736 }
1737 
1738 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1739 {
1740 	struct device *dev = &endpoint->ipa->pdev->dev;
1741 	struct gsi *gsi = &endpoint->ipa->gsi;
1742 	int ret;
1743 
1744 	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1745 		return;
1746 
1747 	if (!endpoint->toward_ipa)
1748 		(void)ipa_endpoint_program_suspend(endpoint, false);
1749 
1750 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1751 	if (ret)
1752 		dev_err(dev, "error %d resuming channel %u\n", ret,
1753 			endpoint->channel_id);
1754 	else if (!endpoint->toward_ipa)
1755 		ipa_endpoint_replenish_enable(endpoint);
1756 }
1757 
1758 void ipa_endpoint_suspend(struct ipa *ipa)
1759 {
1760 	if (!ipa->setup_complete)
1761 		return;
1762 
1763 	if (ipa->modem_netdev)
1764 		ipa_modem_suspend(ipa->modem_netdev);
1765 
1766 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1767 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1768 }
1769 
1770 void ipa_endpoint_resume(struct ipa *ipa)
1771 {
1772 	if (!ipa->setup_complete)
1773 		return;
1774 
1775 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1776 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1777 
1778 	if (ipa->modem_netdev)
1779 		ipa_modem_resume(ipa->modem_netdev);
1780 }
1781 
1782 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1783 {
1784 	struct gsi *gsi = &endpoint->ipa->gsi;
1785 	u32 channel_id = endpoint->channel_id;
1786 
1787 	/* Only AP endpoints get set up */
1788 	if (endpoint->ee_id != GSI_EE_AP)
1789 		return;
1790 
1791 	endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1792 	if (!endpoint->toward_ipa) {
1793 		/* RX transactions require a single TRE, so the maximum
1794 		 * backlog is the same as the maximum outstanding TREs.
1795 		 */
1796 		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1797 		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1798 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1799 				  ipa_endpoint_replenish_work);
1800 	}
1801 
1802 	ipa_endpoint_program(endpoint);
1803 
1804 	__set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1805 }
1806 
1807 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1808 {
1809 	__clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1810 
1811 	if (!endpoint->toward_ipa)
1812 		cancel_delayed_work_sync(&endpoint->replenish_work);
1813 
1814 	ipa_endpoint_reset(endpoint);
1815 }
1816 
1817 void ipa_endpoint_setup(struct ipa *ipa)
1818 {
1819 	u32 endpoint_id;
1820 
1821 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1822 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1823 }
1824 
1825 void ipa_endpoint_teardown(struct ipa *ipa)
1826 {
1827 	u32 endpoint_id;
1828 
1829 	for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1830 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1831 }
1832 
1833 void ipa_endpoint_deconfig(struct ipa *ipa)
1834 {
1835 	ipa->available_count = 0;
1836 	bitmap_free(ipa->available);
1837 	ipa->available = NULL;
1838 }
1839 
1840 int ipa_endpoint_config(struct ipa *ipa)
1841 {
1842 	struct device *dev = &ipa->pdev->dev;
1843 	const struct ipa_reg *reg;
1844 	u32 endpoint_id;
1845 	u32 tx_count;
1846 	u32 rx_count;
1847 	u32 rx_base;
1848 	u32 limit;
1849 	u32 val;
1850 
1851 	/* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1852 	 * Furthermore, the endpoints were not grouped such that TX
1853 	 * endpoint numbers started with 0 and RX endpoints had numbers
1854 	 * higher than all TX endpoints, so we can't do the simple
1855 	 * direction check used for newer hardware below.
1856 	 *
1857 	 * For hardware that doesn't support the FLAVOR_0 register,
1858 	 * just set the available mask to support any endpoint, and
1859 	 * assume the configuration is valid.
1860 	 */
1861 	if (ipa->version < IPA_VERSION_3_5) {
1862 		ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
1863 		if (!ipa->available)
1864 			return -ENOMEM;
1865 		ipa->available_count = IPA_ENDPOINT_MAX;
1866 
1867 		bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
1868 
1869 		return 0;
1870 	}
1871 
1872 	/* Find out about the endpoints supplied by the hardware, and ensure
1873 	 * the highest one doesn't exceed the number supported by software.
1874 	 */
1875 	reg = ipa_reg(ipa, FLAVOR_0);
1876 	val = ioread32(ipa->reg_virt + ipa_reg_offset(reg));
1877 
1878 	/* Our RX is an IPA producer; our TX is an IPA consumer. */
1879 	tx_count = ipa_reg_decode(reg, MAX_CONS_PIPES, val);
1880 	rx_count = ipa_reg_decode(reg, MAX_PROD_PIPES, val);
1881 	rx_base = ipa_reg_decode(reg, PROD_LOWEST, val);
1882 
1883 	limit = rx_base + rx_count;
1884 	if (limit > IPA_ENDPOINT_MAX) {
1885 		dev_err(dev, "too many endpoints, %u > %u\n",
1886 			limit, IPA_ENDPOINT_MAX);
1887 		return -EINVAL;
1888 	}
1889 
1890 	/* Allocate and initialize the available endpoint bitmap */
1891 	ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
1892 	if (!ipa->available)
1893 		return -ENOMEM;
1894 	ipa->available_count = limit;
1895 
1896 	/* Mark all supported RX and TX endpoints as available */
1897 	bitmap_set(ipa->available, 0, tx_count);
1898 	bitmap_set(ipa->available, rx_base, rx_count);
1899 
1900 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
1901 		struct ipa_endpoint *endpoint;
1902 
1903 		if (endpoint_id >= limit) {
1904 			dev_err(dev, "invalid endpoint id, %u > %u\n",
1905 				endpoint_id, limit - 1);
1906 			goto err_free_bitmap;
1907 		}
1908 
1909 		if (!test_bit(endpoint_id, ipa->available)) {
1910 			dev_err(dev, "unavailable endpoint id %u\n",
1911 				endpoint_id);
1912 			goto err_free_bitmap;
1913 		}
1914 
1915 		/* Make sure it's pointing in the right direction */
1916 		endpoint = &ipa->endpoint[endpoint_id];
1917 		if (endpoint->toward_ipa) {
1918 			if (endpoint_id < tx_count)
1919 				continue;
1920 		} else if (endpoint_id >= rx_base) {
1921 			continue;
1922 		}
1923 
1924 		dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
1925 		goto err_free_bitmap;
1926 	}
1927 
1928 	return 0;
1929 
1930 err_free_bitmap:
1931 	ipa_endpoint_deconfig(ipa);
1932 
1933 	return -EINVAL;
1934 }
1935 
1936 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1937 				  const struct ipa_gsi_endpoint_data *data)
1938 {
1939 	struct ipa_endpoint *endpoint;
1940 
1941 	endpoint = &ipa->endpoint[data->endpoint_id];
1942 
1943 	if (data->ee_id == GSI_EE_AP)
1944 		ipa->channel_map[data->channel_id] = endpoint;
1945 	ipa->name_map[name] = endpoint;
1946 
1947 	endpoint->ipa = ipa;
1948 	endpoint->ee_id = data->ee_id;
1949 	endpoint->channel_id = data->channel_id;
1950 	endpoint->endpoint_id = data->endpoint_id;
1951 	endpoint->toward_ipa = data->toward_ipa;
1952 	endpoint->config = data->endpoint.config;
1953 
1954 	__set_bit(endpoint->endpoint_id, ipa->defined);
1955 }
1956 
1957 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1958 {
1959 	__clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
1960 
1961 	memset(endpoint, 0, sizeof(*endpoint));
1962 }
1963 
1964 void ipa_endpoint_exit(struct ipa *ipa)
1965 {
1966 	u32 endpoint_id;
1967 
1968 	ipa->filtered = 0;
1969 
1970 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1971 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1972 
1973 	bitmap_free(ipa->enabled);
1974 	ipa->enabled = NULL;
1975 	bitmap_free(ipa->set_up);
1976 	ipa->set_up = NULL;
1977 	bitmap_free(ipa->defined);
1978 	ipa->defined = NULL;
1979 
1980 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1981 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1982 }
1983 
1984 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1985 int ipa_endpoint_init(struct ipa *ipa, u32 count,
1986 		      const struct ipa_gsi_endpoint_data *data)
1987 {
1988 	enum ipa_endpoint_name name;
1989 	u32 filtered;
1990 
1991 	BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
1992 
1993 	/* Number of endpoints is one more than the maximum ID */
1994 	ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
1995 	if (!ipa->endpoint_count)
1996 		return -EINVAL;
1997 
1998 	/* Initialize endpoint state bitmaps */
1999 	ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2000 	if (!ipa->defined)
2001 		return -ENOMEM;
2002 
2003 	ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2004 	if (!ipa->set_up)
2005 		goto err_free_defined;
2006 
2007 	ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2008 	if (!ipa->enabled)
2009 		goto err_free_set_up;
2010 
2011 	filtered = 0;
2012 	for (name = 0; name < count; name++, data++) {
2013 		if (ipa_gsi_endpoint_data_empty(data))
2014 			continue;	/* Skip over empty slots */
2015 
2016 		ipa_endpoint_init_one(ipa, name, data);
2017 
2018 		if (data->endpoint.filter_support)
2019 			filtered |= BIT(data->endpoint_id);
2020 		if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2021 			ipa->modem_tx_count++;
2022 	}
2023 
2024 	/* Make sure the set of filtered endpoints is valid */
2025 	if (!ipa_filtered_valid(ipa, filtered)) {
2026 		ipa_endpoint_exit(ipa);
2027 
2028 		return -EINVAL;
2029 	}
2030 
2031 	ipa->filtered = filtered;
2032 
2033 	return 0;
2034 
2035 err_free_set_up:
2036 	bitmap_free(ipa->set_up);
2037 	ipa->set_up = NULL;
2038 err_free_defined:
2039 	bitmap_free(ipa->defined);
2040 	ipa->defined = NULL;
2041 
2042 	return -ENOMEM;
2043 }
2044