xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 /* Hardware is told about receive buffers once a "batch" has been queued */
29 #define IPA_REPLENISH_BATCH	16		/* Must be non-zero */
30 
31 /* The amount of RX buffer space consumed by standard skb overhead */
32 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
33 
34 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
35 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
36 
37 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
38 
39 /** enum ipa_status_opcode - status element opcode hardware values */
40 enum ipa_status_opcode {
41 	IPA_STATUS_OPCODE_PACKET		= 0x01,
42 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
43 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
44 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
45 };
46 
47 /** enum ipa_status_exception - status element exception type */
48 enum ipa_status_exception {
49 	/* 0 means no exception */
50 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
51 };
52 
53 /* Status element provided by hardware */
54 struct ipa_status {
55 	u8 opcode;		/* enum ipa_status_opcode */
56 	u8 exception;		/* enum ipa_status_exception */
57 	__le16 mask;
58 	__le16 pkt_len;
59 	u8 endp_src_idx;
60 	u8 endp_dst_idx;
61 	__le32 metadata;
62 	__le32 flags1;
63 	__le64 flags2;
64 	__le32 flags3;
65 	__le32 flags4;
66 };
67 
68 /* Field masks for struct ipa_status structure fields */
69 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
70 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
71 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
72 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
73 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
74 
75 static u32 aggr_byte_limit_max(enum ipa_version version)
76 {
77 	if (version < IPA_VERSION_4_5)
78 		return field_max(aggr_byte_limit_fmask(true));
79 
80 	return field_max(aggr_byte_limit_fmask(false));
81 }
82 
83 /* Compute the aggregation size value to use for a given buffer size */
84 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
85 {
86 	/* A hard aggregation limit will not be crossed; aggregation closes
87 	 * if saving incoming data would cross the hard byte limit boundary.
88 	 *
89 	 * With a soft limit, aggregation closes *after* the size boundary
90 	 * has been crossed.  In that case the limit must leave enough space
91 	 * after that limit to receive a full MTU of data plus overhead.
92 	 */
93 	if (!aggr_hard_limit)
94 		rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
95 
96 	/* The byte limit is encoded as a number of kilobytes */
97 
98 	return rx_buffer_size / SZ_1K;
99 }
100 
101 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
102 			    const struct ipa_gsi_endpoint_data *all_data,
103 			    const struct ipa_gsi_endpoint_data *data)
104 {
105 	const struct ipa_gsi_endpoint_data *other_data;
106 	struct device *dev = &ipa->pdev->dev;
107 	enum ipa_endpoint_name other_name;
108 
109 	if (ipa_gsi_endpoint_data_empty(data))
110 		return true;
111 
112 	if (!data->toward_ipa) {
113 		const struct ipa_endpoint_rx *rx_config;
114 		u32 buffer_size;
115 		u32 aggr_size;
116 		u32 limit;
117 
118 		if (data->endpoint.filter_support) {
119 			dev_err(dev, "filtering not supported for "
120 					"RX endpoint %u\n",
121 				data->endpoint_id);
122 			return false;
123 		}
124 
125 		/* Nothing more to check for non-AP RX */
126 		if (data->ee_id != GSI_EE_AP)
127 			return true;
128 
129 		rx_config = &data->endpoint.config.rx;
130 
131 		/* The buffer size must hold an MTU plus overhead */
132 		buffer_size = rx_config->buffer_size;
133 		limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
134 		if (buffer_size < limit) {
135 			dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
136 				data->endpoint_id, buffer_size, limit);
137 			return false;
138 		}
139 
140 		if (!data->endpoint.config.aggregation) {
141 			bool result = true;
142 
143 			/* No aggregation; check for bogus aggregation data */
144 			if (rx_config->aggr_time_limit) {
145 				dev_err(dev,
146 					"time limit with no aggregation for RX endpoint %u\n",
147 					data->endpoint_id);
148 				result = false;
149 			}
150 
151 			if (rx_config->aggr_hard_limit) {
152 				dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
153 					data->endpoint_id);
154 				result = false;
155 			}
156 
157 			if (rx_config->aggr_close_eof) {
158 				dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
159 					data->endpoint_id);
160 				result = false;
161 			}
162 
163 			return result;	/* Nothing more to check */
164 		}
165 
166 		/* For an endpoint supporting receive aggregation, the byte
167 		 * limit defines the point at which aggregation closes.  This
168 		 * check ensures the receive buffer size doesn't result in a
169 		 * limit that exceeds what's representable in the aggregation
170 		 * byte limit field.
171 		 */
172 		aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
173 					     rx_config->aggr_hard_limit);
174 		limit = aggr_byte_limit_max(ipa->version);
175 		if (aggr_size > limit) {
176 			dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
177 				data->endpoint_id, aggr_size, limit);
178 
179 			return false;
180 		}
181 
182 		return true;	/* Nothing more to check for RX */
183 	}
184 
185 	if (data->endpoint.config.status_enable) {
186 		other_name = data->endpoint.config.tx.status_endpoint;
187 		if (other_name >= count) {
188 			dev_err(dev, "status endpoint name %u out of range "
189 					"for endpoint %u\n",
190 				other_name, data->endpoint_id);
191 			return false;
192 		}
193 
194 		/* Status endpoint must be defined... */
195 		other_data = &all_data[other_name];
196 		if (ipa_gsi_endpoint_data_empty(other_data)) {
197 			dev_err(dev, "DMA endpoint name %u undefined "
198 					"for endpoint %u\n",
199 				other_name, data->endpoint_id);
200 			return false;
201 		}
202 
203 		/* ...and has to be an RX endpoint... */
204 		if (other_data->toward_ipa) {
205 			dev_err(dev,
206 				"status endpoint for endpoint %u not RX\n",
207 				data->endpoint_id);
208 			return false;
209 		}
210 
211 		/* ...and if it's to be an AP endpoint... */
212 		if (other_data->ee_id == GSI_EE_AP) {
213 			/* ...make sure it has status enabled. */
214 			if (!other_data->endpoint.config.status_enable) {
215 				dev_err(dev,
216 					"status not enabled for endpoint %u\n",
217 					other_data->endpoint_id);
218 				return false;
219 			}
220 		}
221 	}
222 
223 	if (data->endpoint.config.dma_mode) {
224 		other_name = data->endpoint.config.dma_endpoint;
225 		if (other_name >= count) {
226 			dev_err(dev, "DMA endpoint name %u out of range "
227 					"for endpoint %u\n",
228 				other_name, data->endpoint_id);
229 			return false;
230 		}
231 
232 		other_data = &all_data[other_name];
233 		if (ipa_gsi_endpoint_data_empty(other_data)) {
234 			dev_err(dev, "DMA endpoint name %u undefined "
235 					"for endpoint %u\n",
236 				other_name, data->endpoint_id);
237 			return false;
238 		}
239 	}
240 
241 	return true;
242 }
243 
244 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
245 				    const struct ipa_gsi_endpoint_data *data)
246 {
247 	const struct ipa_gsi_endpoint_data *dp = data;
248 	struct device *dev = &ipa->pdev->dev;
249 	enum ipa_endpoint_name name;
250 
251 	if (count > IPA_ENDPOINT_COUNT) {
252 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
253 			count, IPA_ENDPOINT_COUNT);
254 		return false;
255 	}
256 
257 	/* Make sure needed endpoints have defined data */
258 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
259 		dev_err(dev, "command TX endpoint not defined\n");
260 		return false;
261 	}
262 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
263 		dev_err(dev, "LAN RX endpoint not defined\n");
264 		return false;
265 	}
266 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
267 		dev_err(dev, "AP->modem TX endpoint not defined\n");
268 		return false;
269 	}
270 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
271 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
272 		return false;
273 	}
274 
275 	for (name = 0; name < count; name++, dp++)
276 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
277 			return false;
278 
279 	return true;
280 }
281 
282 /* Allocate a transaction to use on a non-command endpoint */
283 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
284 						  u32 tre_count)
285 {
286 	struct gsi *gsi = &endpoint->ipa->gsi;
287 	u32 channel_id = endpoint->channel_id;
288 	enum dma_data_direction direction;
289 
290 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
291 
292 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
293 }
294 
295 /* suspend_delay represents suspend for RX, delay for TX endpoints.
296  * Note that suspend is not supported starting with IPA v4.0, and
297  * delay mode should not be used starting with IPA v4.2.
298  */
299 static bool
300 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
301 {
302 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
303 	struct ipa *ipa = endpoint->ipa;
304 	bool state;
305 	u32 mask;
306 	u32 val;
307 
308 	if (endpoint->toward_ipa)
309 		WARN_ON(ipa->version >= IPA_VERSION_4_2);
310 	else
311 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
312 
313 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
314 
315 	val = ioread32(ipa->reg_virt + offset);
316 	state = !!(val & mask);
317 
318 	/* Don't bother if it's already in the requested state */
319 	if (suspend_delay != state) {
320 		val ^= mask;
321 		iowrite32(val, ipa->reg_virt + offset);
322 	}
323 
324 	return state;
325 }
326 
327 /* We don't care what the previous state was for delay mode */
328 static void
329 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
330 {
331 	/* Delay mode should not be used for IPA v4.2+ */
332 	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
333 	WARN_ON(!endpoint->toward_ipa);
334 
335 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
336 }
337 
338 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
339 {
340 	u32 mask = BIT(endpoint->endpoint_id);
341 	struct ipa *ipa = endpoint->ipa;
342 	u32 offset;
343 	u32 val;
344 
345 	WARN_ON(!(mask & ipa->available));
346 
347 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
348 	val = ioread32(ipa->reg_virt + offset);
349 
350 	return !!(val & mask);
351 }
352 
353 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
354 {
355 	u32 mask = BIT(endpoint->endpoint_id);
356 	struct ipa *ipa = endpoint->ipa;
357 
358 	WARN_ON(!(mask & ipa->available));
359 
360 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
361 }
362 
363 /**
364  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
365  * @endpoint:	Endpoint on which to emulate a suspend
366  *
367  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
368  *  with an open aggregation frame.  This is to work around a hardware
369  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
370  *  generated when it should be.
371  */
372 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
373 {
374 	struct ipa *ipa = endpoint->ipa;
375 
376 	if (!endpoint->config.aggregation)
377 		return;
378 
379 	/* Nothing to do if the endpoint doesn't have aggregation open */
380 	if (!ipa_endpoint_aggr_active(endpoint))
381 		return;
382 
383 	/* Force close aggregation */
384 	ipa_endpoint_force_close(endpoint);
385 
386 	ipa_interrupt_simulate_suspend(ipa->interrupt);
387 }
388 
389 /* Returns previous suspend state (true means suspend was enabled) */
390 static bool
391 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
392 {
393 	bool suspended;
394 
395 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
396 		return enable;	/* For IPA v4.0+, no change made */
397 
398 	WARN_ON(endpoint->toward_ipa);
399 
400 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
401 
402 	/* A client suspended with an open aggregation frame will not
403 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
404 	 * ipa_endpoint_suspend_aggr() handle this.
405 	 */
406 	if (enable && !suspended)
407 		ipa_endpoint_suspend_aggr(endpoint);
408 
409 	return suspended;
410 }
411 
412 /* Put all modem RX endpoints into suspend mode, and stop transmission
413  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
414  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
415  * control instead.
416  */
417 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
418 {
419 	u32 endpoint_id;
420 
421 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
422 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
423 
424 		if (endpoint->ee_id != GSI_EE_MODEM)
425 			continue;
426 
427 		if (!endpoint->toward_ipa)
428 			(void)ipa_endpoint_program_suspend(endpoint, enable);
429 		else if (ipa->version < IPA_VERSION_4_2)
430 			ipa_endpoint_program_delay(endpoint, enable);
431 		else
432 			gsi_modem_channel_flow_control(&ipa->gsi,
433 						       endpoint->channel_id,
434 						       enable);
435 	}
436 }
437 
438 /* Reset all modem endpoints to use the default exception endpoint */
439 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
440 {
441 	u32 initialized = ipa->initialized;
442 	struct gsi_trans *trans;
443 	u32 count;
444 
445 	/* We need one command per modem TX endpoint, plus the commands
446 	 * that clear the pipeline.
447 	 */
448 	count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
449 	trans = ipa_cmd_trans_alloc(ipa, count);
450 	if (!trans) {
451 		dev_err(&ipa->pdev->dev,
452 			"no transaction to reset modem exception endpoints\n");
453 		return -EBUSY;
454 	}
455 
456 	while (initialized) {
457 		u32 endpoint_id = __ffs(initialized);
458 		struct ipa_endpoint *endpoint;
459 		u32 offset;
460 
461 		initialized ^= BIT(endpoint_id);
462 
463 		/* We only reset modem TX endpoints */
464 		endpoint = &ipa->endpoint[endpoint_id];
465 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
466 			continue;
467 
468 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
469 
470 		/* Value written is 0, and all bits are updated.  That
471 		 * means status is disabled on the endpoint, and as a
472 		 * result all other fields in the register are ignored.
473 		 */
474 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
475 	}
476 
477 	ipa_cmd_pipeline_clear_add(trans);
478 
479 	gsi_trans_commit_wait(trans);
480 
481 	ipa_cmd_pipeline_clear_wait(ipa);
482 
483 	return 0;
484 }
485 
486 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
487 {
488 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
489 	enum ipa_cs_offload_en enabled;
490 	u32 val = 0;
491 
492 	/* FRAG_OFFLOAD_EN is 0 */
493 	if (endpoint->config.checksum) {
494 		enum ipa_version version = endpoint->ipa->version;
495 
496 		if (endpoint->toward_ipa) {
497 			u32 checksum_offset;
498 
499 			/* Checksum header offset is in 4-byte units */
500 			checksum_offset = sizeof(struct rmnet_map_header);
501 			checksum_offset /= sizeof(u32);
502 			val |= u32_encode_bits(checksum_offset,
503 					       CS_METADATA_HDR_OFFSET_FMASK);
504 
505 			enabled = version < IPA_VERSION_4_5
506 					? IPA_CS_OFFLOAD_UL
507 					: IPA_CS_OFFLOAD_INLINE;
508 		} else {
509 			enabled = version < IPA_VERSION_4_5
510 					? IPA_CS_OFFLOAD_DL
511 					: IPA_CS_OFFLOAD_INLINE;
512 		}
513 	} else {
514 		enabled = IPA_CS_OFFLOAD_NONE;
515 	}
516 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
517 	/* CS_GEN_QMB_MASTER_SEL is 0 */
518 
519 	iowrite32(val, endpoint->ipa->reg_virt + offset);
520 }
521 
522 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
523 {
524 	u32 offset;
525 	u32 val;
526 
527 	if (!endpoint->toward_ipa)
528 		return;
529 
530 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
531 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
532 
533 	iowrite32(val, endpoint->ipa->reg_virt + offset);
534 }
535 
536 static u32
537 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
538 {
539 	u32 header_size = sizeof(struct rmnet_map_header);
540 
541 	/* Without checksum offload, we just have the MAP header */
542 	if (!endpoint->config.checksum)
543 		return header_size;
544 
545 	if (version < IPA_VERSION_4_5) {
546 		/* Checksum header inserted for AP TX endpoints only */
547 		if (endpoint->toward_ipa)
548 			header_size += sizeof(struct rmnet_map_ul_csum_header);
549 	} else {
550 		/* Checksum header is used in both directions */
551 		header_size += sizeof(struct rmnet_map_v5_csum_header);
552 	}
553 
554 	return header_size;
555 }
556 
557 /**
558  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
559  * @endpoint:	Endpoint pointer
560  *
561  * We program QMAP endpoints so each packet received is preceded by a QMAP
562  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
563  * packet size field, and we have the IPA hardware populate both for each
564  * received packet.  The header is configured (in the HDR_EXT register)
565  * to use big endian format.
566  *
567  * The packet size is written into the QMAP header's pkt_len field.  That
568  * location is defined here using the HDR_OFST_PKT_SIZE field.
569  *
570  * The mux_id comes from a 4-byte metadata value supplied with each packet
571  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
572  * value that we want, in its low-order byte.  A bitmask defined in the
573  * endpoint's METADATA_MASK register defines which byte within the modem
574  * metadata contains the mux_id.  And the OFST_METADATA field programmed
575  * here indicates where the extracted byte should be placed within the QMAP
576  * header.
577  */
578 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
579 {
580 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
581 	struct ipa *ipa = endpoint->ipa;
582 	u32 val = 0;
583 
584 	if (endpoint->config.qmap) {
585 		enum ipa_version version = ipa->version;
586 		size_t header_size;
587 
588 		header_size = ipa_qmap_header_size(version, endpoint);
589 		val = ipa_header_size_encoded(version, header_size);
590 
591 		/* Define how to fill fields in a received QMAP header */
592 		if (!endpoint->toward_ipa) {
593 			u32 offset;	/* Field offset within header */
594 
595 			/* Where IPA will write the metadata value */
596 			offset = offsetof(struct rmnet_map_header, mux_id);
597 			val |= ipa_metadata_offset_encoded(version, offset);
598 
599 			/* Where IPA will write the length */
600 			offset = offsetof(struct rmnet_map_header, pkt_len);
601 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
602 			if (version >= IPA_VERSION_4_5)
603 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
604 
605 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
606 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
607 		}
608 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
609 		val |= HDR_OFST_METADATA_VALID_FMASK;
610 
611 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
612 		/* HDR_A5_MUX is 0 */
613 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
614 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
615 	}
616 
617 	iowrite32(val, ipa->reg_virt + offset);
618 }
619 
620 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
621 {
622 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
623 	u32 pad_align = endpoint->config.rx.pad_align;
624 	struct ipa *ipa = endpoint->ipa;
625 	u32 val = 0;
626 
627 	if (endpoint->config.qmap) {
628 		/* We have a header, so we must specify its endianness */
629 		val |= HDR_ENDIANNESS_FMASK;	/* big endian */
630 
631 		/* A QMAP header contains a 6 bit pad field at offset 0.
632 		 * The RMNet driver assumes this field is meaningful in
633 		 * packets it receives, and assumes the header's payload
634 		 * length includes that padding.  The RMNet driver does
635 		 * *not* pad packets it sends, however, so the pad field
636 		 * (although 0) should be ignored.
637 		 */
638 		if (!endpoint->toward_ipa) {
639 			val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
640 			/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
641 			val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
642 			/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
643 		}
644 	}
645 
646 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
647 	if (!endpoint->toward_ipa)
648 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
649 
650 	/* IPA v4.5 adds some most-significant bits to a few fields,
651 	 * two of which are defined in the HDR (not HDR_EXT) register.
652 	 */
653 	if (ipa->version >= IPA_VERSION_4_5) {
654 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
655 		if (endpoint->config.qmap && !endpoint->toward_ipa) {
656 			u32 offset;
657 
658 			offset = offsetof(struct rmnet_map_header, pkt_len);
659 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
660 			val |= u32_encode_bits(offset,
661 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
662 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
663 		}
664 	}
665 	iowrite32(val, ipa->reg_virt + offset);
666 }
667 
668 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
669 {
670 	u32 endpoint_id = endpoint->endpoint_id;
671 	u32 val = 0;
672 	u32 offset;
673 
674 	if (endpoint->toward_ipa)
675 		return;		/* Register not valid for TX endpoints */
676 
677 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
678 
679 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
680 	if (endpoint->config.qmap)
681 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
682 
683 	iowrite32(val, endpoint->ipa->reg_virt + offset);
684 }
685 
686 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
687 {
688 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
689 	u32 val;
690 
691 	if (!endpoint->toward_ipa)
692 		return;		/* Register not valid for RX endpoints */
693 
694 	if (endpoint->config.dma_mode) {
695 		enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
696 		u32 dma_endpoint_id;
697 
698 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
699 
700 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
701 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
702 	} else {
703 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
704 	}
705 	/* All other bits unspecified (and 0) */
706 
707 	iowrite32(val, endpoint->ipa->reg_virt + offset);
708 }
709 
710 /* Encoded values for AGGR endpoint register fields */
711 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
712 {
713 	if (version < IPA_VERSION_4_5)
714 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
715 
716 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
717 }
718 
719 /* Encode the aggregation timer limit (microseconds) based on IPA version */
720 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
721 {
722 	u32 gran_sel;
723 	u32 fmask;
724 	u32 val;
725 
726 	if (version < IPA_VERSION_4_5) {
727 		/* We set aggregation granularity in ipa_hardware_config() */
728 		fmask = aggr_time_limit_fmask(true);
729 		val = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
730 		WARN(val > field_max(fmask),
731 		     "aggr_time_limit too large (%u > %u usec)\n",
732 		     val, field_max(fmask) * IPA_AGGR_GRANULARITY);
733 
734 		return u32_encode_bits(val, fmask);
735 	}
736 
737 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
738 	 * pulse generators 0 and 1 available, which were configured
739 	 * in ipa_qtime_config() to have granularity 100 usec and
740 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
741 	 * otherwise fall back to pulse generator 1.
742 	 */
743 	fmask = aggr_time_limit_fmask(false);
744 	val = DIV_ROUND_CLOSEST(limit, 100);
745 	if (val > field_max(fmask)) {
746 		/* Have to use pulse generator 1 (millisecond granularity) */
747 		gran_sel = AGGR_GRAN_SEL_FMASK;
748 		val = DIV_ROUND_CLOSEST(limit, 1000);
749 		WARN(val > field_max(fmask),
750 		     "aggr_time_limit too large (%u > %u usec)\n",
751 		     limit, field_max(fmask) * 1000);
752 	} else {
753 		/* We can use pulse generator 0 (100 usec granularity) */
754 		gran_sel = 0;
755 	}
756 
757 	return gran_sel | u32_encode_bits(val, fmask);
758 }
759 
760 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
761 {
762 	u32 val = enabled ? 1 : 0;
763 
764 	if (version < IPA_VERSION_4_5)
765 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
766 
767 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
768 }
769 
770 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
771 {
772 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
773 	enum ipa_version version = endpoint->ipa->version;
774 	u32 val = 0;
775 
776 	if (endpoint->config.aggregation) {
777 		if (!endpoint->toward_ipa) {
778 			const struct ipa_endpoint_rx *rx_config;
779 			u32 buffer_size;
780 			bool close_eof;
781 			u32 limit;
782 
783 			rx_config = &endpoint->config.rx;
784 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
785 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
786 
787 			buffer_size = rx_config->buffer_size;
788 			limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
789 						 rx_config->aggr_hard_limit);
790 			val |= aggr_byte_limit_encoded(version, limit);
791 
792 			limit = rx_config->aggr_time_limit;
793 			val |= aggr_time_limit_encoded(version, limit);
794 
795 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
796 
797 			close_eof = rx_config->aggr_close_eof;
798 			val |= aggr_sw_eof_active_encoded(version, close_eof);
799 		} else {
800 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
801 					       AGGR_EN_FMASK);
802 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
803 			/* other fields ignored */
804 		}
805 		/* AGGR_FORCE_CLOSE is 0 */
806 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
807 	} else {
808 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
809 		/* other fields ignored */
810 	}
811 
812 	iowrite32(val, endpoint->ipa->reg_virt + offset);
813 }
814 
815 /* Return the Qtime-based head-of-line blocking timer value that
816  * represents the given number of microseconds.  The result
817  * includes both the timer value and the selected timer granularity.
818  */
819 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
820 {
821 	u32 gran_sel;
822 	u32 val;
823 
824 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
825 	 * pulse generators 0 and 1 available, which were configured
826 	 * in ipa_qtime_config() to have granularity 100 usec and
827 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
828 	 * otherwise fall back to pulse generator 1.
829 	 */
830 	val = DIV_ROUND_CLOSEST(microseconds, 100);
831 	if (val > field_max(TIME_LIMIT_FMASK)) {
832 		/* Have to use pulse generator 1 (millisecond granularity) */
833 		gran_sel = GRAN_SEL_FMASK;
834 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
835 	} else {
836 		/* We can use pulse generator 0 (100 usec granularity) */
837 		gran_sel = 0;
838 	}
839 
840 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
841 }
842 
843 /* The head-of-line blocking timer is defined as a tick count.  For
844  * IPA version 4.5 the tick count is based on the Qtimer, which is
845  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
846  * each tick represents 128 cycles of the IPA core clock.
847  *
848  * Return the encoded value that should be written to that register
849  * that represents the timeout period provided.  For IPA v4.2 this
850  * encodes a base and scale value, while for earlier versions the
851  * value is a simple tick count.
852  */
853 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
854 {
855 	u32 width;
856 	u32 scale;
857 	u64 ticks;
858 	u64 rate;
859 	u32 high;
860 	u32 val;
861 
862 	if (!microseconds)
863 		return 0;	/* Nothing to compute if timer period is 0 */
864 
865 	if (ipa->version >= IPA_VERSION_4_5)
866 		return hol_block_timer_qtime_val(ipa, microseconds);
867 
868 	/* Use 64 bit arithmetic to avoid overflow... */
869 	rate = ipa_core_clock_rate(ipa);
870 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
871 	/* ...but we still need to fit into a 32-bit register */
872 	WARN_ON(ticks > U32_MAX);
873 
874 	/* IPA v3.5.1 through v4.1 just record the tick count */
875 	if (ipa->version < IPA_VERSION_4_2)
876 		return (u32)ticks;
877 
878 	/* For IPA v4.2, the tick count is represented by base and
879 	 * scale fields within the 32-bit timer register, where:
880 	 *     ticks = base << scale;
881 	 * The best precision is achieved when the base value is as
882 	 * large as possible.  Find the highest set bit in the tick
883 	 * count, and extract the number of bits in the base field
884 	 * such that high bit is included.
885 	 */
886 	high = fls(ticks);		/* 1..32 */
887 	width = HWEIGHT32(BASE_VALUE_FMASK);
888 	scale = high > width ? high - width : 0;
889 	if (scale) {
890 		/* If we're scaling, round up to get a closer result */
891 		ticks += 1 << (scale - 1);
892 		/* High bit was set, so rounding might have affected it */
893 		if (fls(ticks) != high)
894 			scale++;
895 	}
896 
897 	val = u32_encode_bits(scale, SCALE_FMASK);
898 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
899 
900 	return val;
901 }
902 
903 /* If microseconds is 0, timeout is immediate */
904 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
905 					      u32 microseconds)
906 {
907 	u32 endpoint_id = endpoint->endpoint_id;
908 	struct ipa *ipa = endpoint->ipa;
909 	u32 offset;
910 	u32 val;
911 
912 	/* This should only be changed when HOL_BLOCK_EN is disabled */
913 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
914 	val = hol_block_timer_val(ipa, microseconds);
915 	iowrite32(val, ipa->reg_virt + offset);
916 }
917 
918 static void
919 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
920 {
921 	u32 endpoint_id = endpoint->endpoint_id;
922 	u32 offset;
923 	u32 val;
924 
925 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
926 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
927 	iowrite32(val, endpoint->ipa->reg_virt + offset);
928 	/* When enabling, the register must be written twice for IPA v4.5+ */
929 	if (enable && endpoint->ipa->version >= IPA_VERSION_4_5)
930 		iowrite32(val, endpoint->ipa->reg_virt + offset);
931 }
932 
933 /* Assumes HOL_BLOCK is in disabled state */
934 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
935 					       u32 microseconds)
936 {
937 	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
938 	ipa_endpoint_init_hol_block_en(endpoint, true);
939 }
940 
941 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
942 {
943 	ipa_endpoint_init_hol_block_en(endpoint, false);
944 }
945 
946 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
947 {
948 	u32 i;
949 
950 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
951 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
952 
953 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
954 			continue;
955 
956 		ipa_endpoint_init_hol_block_disable(endpoint);
957 		ipa_endpoint_init_hol_block_enable(endpoint, 0);
958 	}
959 }
960 
961 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
962 {
963 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
964 	u32 val = 0;
965 
966 	if (!endpoint->toward_ipa)
967 		return;		/* Register not valid for RX endpoints */
968 
969 	/* DEAGGR_HDR_LEN is 0 */
970 	/* PACKET_OFFSET_VALID is 0 */
971 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
972 	/* MAX_PACKET_LEN is 0 (not enforced) */
973 
974 	iowrite32(val, endpoint->ipa->reg_virt + offset);
975 }
976 
977 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
978 {
979 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
980 	struct ipa *ipa = endpoint->ipa;
981 	u32 val;
982 
983 	val = rsrc_grp_encoded(ipa->version, endpoint->config.resource_group);
984 	iowrite32(val, ipa->reg_virt + offset);
985 }
986 
987 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
988 {
989 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
990 	u32 val = 0;
991 
992 	if (!endpoint->toward_ipa)
993 		return;		/* Register not valid for RX endpoints */
994 
995 	/* Low-order byte configures primary packet processing */
996 	val |= u32_encode_bits(endpoint->config.tx.seq_type, SEQ_TYPE_FMASK);
997 
998 	/* Second byte configures replicated packet processing */
999 	val |= u32_encode_bits(endpoint->config.tx.seq_rep_type,
1000 			       SEQ_REP_TYPE_FMASK);
1001 
1002 	iowrite32(val, endpoint->ipa->reg_virt + offset);
1003 }
1004 
1005 /**
1006  * ipa_endpoint_skb_tx() - Transmit a socket buffer
1007  * @endpoint:	Endpoint pointer
1008  * @skb:	Socket buffer to send
1009  *
1010  * Returns:	0 if successful, or a negative error code
1011  */
1012 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1013 {
1014 	struct gsi_trans *trans;
1015 	u32 nr_frags;
1016 	int ret;
1017 
1018 	/* Make sure source endpoint's TLV FIFO has enough entries to
1019 	 * hold the linear portion of the skb and all its fragments.
1020 	 * If not, see if we can linearize it before giving up.
1021 	 */
1022 	nr_frags = skb_shinfo(skb)->nr_frags;
1023 	if (nr_frags > endpoint->skb_frag_max) {
1024 		if (skb_linearize(skb))
1025 			return -E2BIG;
1026 		nr_frags = 0;
1027 	}
1028 
1029 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1030 	if (!trans)
1031 		return -EBUSY;
1032 
1033 	ret = gsi_trans_skb_add(trans, skb);
1034 	if (ret)
1035 		goto err_trans_free;
1036 	trans->data = skb;	/* transaction owns skb now */
1037 
1038 	gsi_trans_commit(trans, !netdev_xmit_more());
1039 
1040 	return 0;
1041 
1042 err_trans_free:
1043 	gsi_trans_free(trans);
1044 
1045 	return -ENOMEM;
1046 }
1047 
1048 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1049 {
1050 	u32 endpoint_id = endpoint->endpoint_id;
1051 	struct ipa *ipa = endpoint->ipa;
1052 	u32 val = 0;
1053 	u32 offset;
1054 
1055 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
1056 
1057 	if (endpoint->config.status_enable) {
1058 		val |= STATUS_EN_FMASK;
1059 		if (endpoint->toward_ipa) {
1060 			enum ipa_endpoint_name name;
1061 			u32 status_endpoint_id;
1062 
1063 			name = endpoint->config.tx.status_endpoint;
1064 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1065 
1066 			val |= u32_encode_bits(status_endpoint_id,
1067 					       STATUS_ENDP_FMASK);
1068 		}
1069 		/* STATUS_LOCATION is 0, meaning status element precedes
1070 		 * packet (not present for IPA v4.5)
1071 		 */
1072 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1073 	}
1074 
1075 	iowrite32(val, ipa->reg_virt + offset);
1076 }
1077 
1078 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1079 				      struct gsi_trans *trans)
1080 {
1081 	struct page *page;
1082 	u32 buffer_size;
1083 	u32 offset;
1084 	u32 len;
1085 	int ret;
1086 
1087 	buffer_size = endpoint->config.rx.buffer_size;
1088 	page = dev_alloc_pages(get_order(buffer_size));
1089 	if (!page)
1090 		return -ENOMEM;
1091 
1092 	/* Offset the buffer to make space for skb headroom */
1093 	offset = NET_SKB_PAD;
1094 	len = buffer_size - offset;
1095 
1096 	ret = gsi_trans_page_add(trans, page, len, offset);
1097 	if (ret)
1098 		put_page(page);
1099 	else
1100 		trans->data = page;	/* transaction owns page now */
1101 
1102 	return ret;
1103 }
1104 
1105 /**
1106  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1107  * @endpoint:	Endpoint to be replenished
1108  *
1109  * The IPA hardware can hold a fixed number of receive buffers for an RX
1110  * endpoint, based on the number of entries in the underlying channel ring
1111  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1112  * more receive buffers can be supplied to the hardware.  Replenishing for
1113  * an endpoint can be disabled, in which case buffers are not queued to
1114  * the hardware.
1115  */
1116 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1117 {
1118 	struct gsi_trans *trans;
1119 
1120 	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1121 		return;
1122 
1123 	/* Skip it if it's already active */
1124 	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1125 		return;
1126 
1127 	while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1128 		bool doorbell;
1129 
1130 		if (ipa_endpoint_replenish_one(endpoint, trans))
1131 			goto try_again_later;
1132 
1133 
1134 		/* Ring the doorbell if we've got a full batch */
1135 		doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1136 		gsi_trans_commit(trans, doorbell);
1137 	}
1138 
1139 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1140 
1141 	return;
1142 
1143 try_again_later:
1144 	gsi_trans_free(trans);
1145 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1146 
1147 	/* Whenever a receive buffer transaction completes we'll try to
1148 	 * replenish again.  It's unlikely, but if we fail to supply even
1149 	 * one buffer, nothing will trigger another replenish attempt.
1150 	 * If the hardware has no receive buffers queued, schedule work to
1151 	 * try replenishing again.
1152 	 */
1153 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1154 		schedule_delayed_work(&endpoint->replenish_work,
1155 				      msecs_to_jiffies(1));
1156 }
1157 
1158 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1159 {
1160 	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1161 
1162 	/* Start replenishing if hardware currently has no buffers */
1163 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1164 		ipa_endpoint_replenish(endpoint);
1165 }
1166 
1167 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1168 {
1169 	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1170 }
1171 
1172 static void ipa_endpoint_replenish_work(struct work_struct *work)
1173 {
1174 	struct delayed_work *dwork = to_delayed_work(work);
1175 	struct ipa_endpoint *endpoint;
1176 
1177 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1178 
1179 	ipa_endpoint_replenish(endpoint);
1180 }
1181 
1182 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1183 				  void *data, u32 len, u32 extra)
1184 {
1185 	struct sk_buff *skb;
1186 
1187 	if (!endpoint->netdev)
1188 		return;
1189 
1190 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1191 	if (skb) {
1192 		/* Copy the data into the socket buffer and receive it */
1193 		skb_put(skb, len);
1194 		memcpy(skb->data, data, len);
1195 		skb->truesize += extra;
1196 	}
1197 
1198 	ipa_modem_skb_rx(endpoint->netdev, skb);
1199 }
1200 
1201 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1202 				   struct page *page, u32 len)
1203 {
1204 	u32 buffer_size = endpoint->config.rx.buffer_size;
1205 	struct sk_buff *skb;
1206 
1207 	/* Nothing to do if there's no netdev */
1208 	if (!endpoint->netdev)
1209 		return false;
1210 
1211 	WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1212 
1213 	skb = build_skb(page_address(page), buffer_size);
1214 	if (skb) {
1215 		/* Reserve the headroom and account for the data */
1216 		skb_reserve(skb, NET_SKB_PAD);
1217 		skb_put(skb, len);
1218 	}
1219 
1220 	/* Receive the buffer (or record drop if unable to build it) */
1221 	ipa_modem_skb_rx(endpoint->netdev, skb);
1222 
1223 	return skb != NULL;
1224 }
1225 
1226 /* The format of a packet status element is the same for several status
1227  * types (opcodes).  Other types aren't currently supported.
1228  */
1229 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1230 {
1231 	switch (opcode) {
1232 	case IPA_STATUS_OPCODE_PACKET:
1233 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1234 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1235 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1236 		return true;
1237 	default:
1238 		return false;
1239 	}
1240 }
1241 
1242 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1243 				     const struct ipa_status *status)
1244 {
1245 	u32 endpoint_id;
1246 
1247 	if (!ipa_status_format_packet(status->opcode))
1248 		return true;
1249 	if (!status->pkt_len)
1250 		return true;
1251 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1252 				  IPA_STATUS_DST_IDX_FMASK);
1253 	if (endpoint_id != endpoint->endpoint_id)
1254 		return true;
1255 
1256 	return false;	/* Don't skip this packet, process it */
1257 }
1258 
1259 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1260 				    const struct ipa_status *status)
1261 {
1262 	struct ipa_endpoint *command_endpoint;
1263 	struct ipa *ipa = endpoint->ipa;
1264 	u32 endpoint_id;
1265 
1266 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1267 		return false;	/* No valid tag */
1268 
1269 	/* The status contains a valid tag.  We know the packet was sent to
1270 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1271 	 * If the packet came from the AP->command TX endpoint we know
1272 	 * this packet was sent as part of the pipeline clear process.
1273 	 */
1274 	endpoint_id = u8_get_bits(status->endp_src_idx,
1275 				  IPA_STATUS_SRC_IDX_FMASK);
1276 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1277 	if (endpoint_id == command_endpoint->endpoint_id) {
1278 		complete(&ipa->completion);
1279 	} else {
1280 		dev_err(&ipa->pdev->dev,
1281 			"unexpected tagged packet from endpoint %u\n",
1282 			endpoint_id);
1283 	}
1284 
1285 	return true;
1286 }
1287 
1288 /* Return whether the status indicates the packet should be dropped */
1289 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1290 				     const struct ipa_status *status)
1291 {
1292 	u32 val;
1293 
1294 	/* If the status indicates a tagged transfer, we'll drop the packet */
1295 	if (ipa_endpoint_status_tag(endpoint, status))
1296 		return true;
1297 
1298 	/* Deaggregation exceptions we drop; all other types we consume */
1299 	if (status->exception)
1300 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1301 
1302 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1303 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1304 
1305 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1306 }
1307 
1308 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1309 				      struct page *page, u32 total_len)
1310 {
1311 	u32 buffer_size = endpoint->config.rx.buffer_size;
1312 	void *data = page_address(page) + NET_SKB_PAD;
1313 	u32 unused = buffer_size - total_len;
1314 	u32 resid = total_len;
1315 
1316 	while (resid) {
1317 		const struct ipa_status *status = data;
1318 		u32 align;
1319 		u32 len;
1320 
1321 		if (resid < sizeof(*status)) {
1322 			dev_err(&endpoint->ipa->pdev->dev,
1323 				"short message (%u bytes < %zu byte status)\n",
1324 				resid, sizeof(*status));
1325 			break;
1326 		}
1327 
1328 		/* Skip over status packets that lack packet data */
1329 		if (ipa_endpoint_status_skip(endpoint, status)) {
1330 			data += sizeof(*status);
1331 			resid -= sizeof(*status);
1332 			continue;
1333 		}
1334 
1335 		/* Compute the amount of buffer space consumed by the packet,
1336 		 * including the status element.  If the hardware is configured
1337 		 * to pad packet data to an aligned boundary, account for that.
1338 		 * And if checksum offload is enabled a trailer containing
1339 		 * computed checksum information will be appended.
1340 		 */
1341 		align = endpoint->config.rx.pad_align ? : 1;
1342 		len = le16_to_cpu(status->pkt_len);
1343 		len = sizeof(*status) + ALIGN(len, align);
1344 		if (endpoint->config.checksum)
1345 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1346 
1347 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1348 			void *data2;
1349 			u32 extra;
1350 			u32 len2;
1351 
1352 			/* Client receives only packet data (no status) */
1353 			data2 = data + sizeof(*status);
1354 			len2 = le16_to_cpu(status->pkt_len);
1355 
1356 			/* Have the true size reflect the extra unused space in
1357 			 * the original receive buffer.  Distribute the "cost"
1358 			 * proportionately across all aggregated packets in the
1359 			 * buffer.
1360 			 */
1361 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1362 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1363 		}
1364 
1365 		/* Consume status and the full packet it describes */
1366 		data += len;
1367 		resid -= len;
1368 	}
1369 }
1370 
1371 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1372 				 struct gsi_trans *trans)
1373 {
1374 	struct page *page;
1375 
1376 	if (endpoint->toward_ipa)
1377 		return;
1378 
1379 	if (trans->cancelled)
1380 		goto done;
1381 
1382 	/* Parse or build a socket buffer using the actual received length */
1383 	page = trans->data;
1384 	if (endpoint->config.status_enable)
1385 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1386 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1387 		trans->data = NULL;	/* Pages have been consumed */
1388 done:
1389 	ipa_endpoint_replenish(endpoint);
1390 }
1391 
1392 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1393 				struct gsi_trans *trans)
1394 {
1395 	if (endpoint->toward_ipa) {
1396 		struct ipa *ipa = endpoint->ipa;
1397 
1398 		/* Nothing to do for command transactions */
1399 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1400 			struct sk_buff *skb = trans->data;
1401 
1402 			if (skb)
1403 				dev_kfree_skb_any(skb);
1404 		}
1405 	} else {
1406 		struct page *page = trans->data;
1407 
1408 		if (page)
1409 			put_page(page);
1410 	}
1411 }
1412 
1413 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1414 {
1415 	u32 val;
1416 
1417 	/* ROUTE_DIS is 0 */
1418 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1419 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1420 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1421 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1422 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1423 
1424 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1425 }
1426 
1427 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1428 {
1429 	ipa_endpoint_default_route_set(ipa, 0);
1430 }
1431 
1432 /**
1433  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1434  * @endpoint:	Endpoint to be reset
1435  *
1436  * If aggregation is active on an RX endpoint when a reset is performed
1437  * on its underlying GSI channel, a special sequence of actions must be
1438  * taken to ensure the IPA pipeline is properly cleared.
1439  *
1440  * Return:	0 if successful, or a negative error code
1441  */
1442 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1443 {
1444 	struct device *dev = &endpoint->ipa->pdev->dev;
1445 	struct ipa *ipa = endpoint->ipa;
1446 	struct gsi *gsi = &ipa->gsi;
1447 	bool suspended = false;
1448 	dma_addr_t addr;
1449 	u32 retries;
1450 	u32 len = 1;
1451 	void *virt;
1452 	int ret;
1453 
1454 	virt = kzalloc(len, GFP_KERNEL);
1455 	if (!virt)
1456 		return -ENOMEM;
1457 
1458 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1459 	if (dma_mapping_error(dev, addr)) {
1460 		ret = -ENOMEM;
1461 		goto out_kfree;
1462 	}
1463 
1464 	/* Force close aggregation before issuing the reset */
1465 	ipa_endpoint_force_close(endpoint);
1466 
1467 	/* Reset and reconfigure the channel with the doorbell engine
1468 	 * disabled.  Then poll until we know aggregation is no longer
1469 	 * active.  We'll re-enable the doorbell (if appropriate) when
1470 	 * we reset again below.
1471 	 */
1472 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1473 
1474 	/* Make sure the channel isn't suspended */
1475 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1476 
1477 	/* Start channel and do a 1 byte read */
1478 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1479 	if (ret)
1480 		goto out_suspend_again;
1481 
1482 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1483 	if (ret)
1484 		goto err_endpoint_stop;
1485 
1486 	/* Wait for aggregation to be closed on the channel */
1487 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1488 	do {
1489 		if (!ipa_endpoint_aggr_active(endpoint))
1490 			break;
1491 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1492 	} while (retries--);
1493 
1494 	/* Check one last time */
1495 	if (ipa_endpoint_aggr_active(endpoint))
1496 		dev_err(dev, "endpoint %u still active during reset\n",
1497 			endpoint->endpoint_id);
1498 
1499 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1500 
1501 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1502 	if (ret)
1503 		goto out_suspend_again;
1504 
1505 	/* Finally, reset and reconfigure the channel again (re-enabling
1506 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1507 	 * complete the channel reset sequence.  Finish by suspending the
1508 	 * channel again (if necessary).
1509 	 */
1510 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1511 
1512 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1513 
1514 	goto out_suspend_again;
1515 
1516 err_endpoint_stop:
1517 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1518 out_suspend_again:
1519 	if (suspended)
1520 		(void)ipa_endpoint_program_suspend(endpoint, true);
1521 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1522 out_kfree:
1523 	kfree(virt);
1524 
1525 	return ret;
1526 }
1527 
1528 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1529 {
1530 	u32 channel_id = endpoint->channel_id;
1531 	struct ipa *ipa = endpoint->ipa;
1532 	bool special;
1533 	int ret = 0;
1534 
1535 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1536 	 * is active, we need to handle things specially to recover.
1537 	 * All other cases just need to reset the underlying GSI channel.
1538 	 */
1539 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1540 			endpoint->config.aggregation;
1541 	if (special && ipa_endpoint_aggr_active(endpoint))
1542 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1543 	else
1544 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1545 
1546 	if (ret)
1547 		dev_err(&ipa->pdev->dev,
1548 			"error %d resetting channel %u for endpoint %u\n",
1549 			ret, endpoint->channel_id, endpoint->endpoint_id);
1550 }
1551 
1552 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1553 {
1554 	if (endpoint->toward_ipa) {
1555 		/* Newer versions of IPA use GSI channel flow control
1556 		 * instead of endpoint DELAY mode to prevent sending data.
1557 		 * Flow control is disabled for newly-allocated channels,
1558 		 * and we can assume flow control is not (ever) enabled
1559 		 * for AP TX channels.
1560 		 */
1561 		if (endpoint->ipa->version < IPA_VERSION_4_2)
1562 			ipa_endpoint_program_delay(endpoint, false);
1563 	} else {
1564 		/* Ensure suspend mode is off on all AP RX endpoints */
1565 		(void)ipa_endpoint_program_suspend(endpoint, false);
1566 	}
1567 	ipa_endpoint_init_cfg(endpoint);
1568 	ipa_endpoint_init_nat(endpoint);
1569 	ipa_endpoint_init_hdr(endpoint);
1570 	ipa_endpoint_init_hdr_ext(endpoint);
1571 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1572 	ipa_endpoint_init_mode(endpoint);
1573 	ipa_endpoint_init_aggr(endpoint);
1574 	if (!endpoint->toward_ipa) {
1575 		if (endpoint->config.rx.holb_drop)
1576 			ipa_endpoint_init_hol_block_enable(endpoint, 0);
1577 		else
1578 			ipa_endpoint_init_hol_block_disable(endpoint);
1579 	}
1580 	ipa_endpoint_init_deaggr(endpoint);
1581 	ipa_endpoint_init_rsrc_grp(endpoint);
1582 	ipa_endpoint_init_seq(endpoint);
1583 	ipa_endpoint_status(endpoint);
1584 }
1585 
1586 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1587 {
1588 	struct ipa *ipa = endpoint->ipa;
1589 	struct gsi *gsi = &ipa->gsi;
1590 	int ret;
1591 
1592 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1593 	if (ret) {
1594 		dev_err(&ipa->pdev->dev,
1595 			"error %d starting %cX channel %u for endpoint %u\n",
1596 			ret, endpoint->toward_ipa ? 'T' : 'R',
1597 			endpoint->channel_id, endpoint->endpoint_id);
1598 		return ret;
1599 	}
1600 
1601 	if (!endpoint->toward_ipa) {
1602 		ipa_interrupt_suspend_enable(ipa->interrupt,
1603 					     endpoint->endpoint_id);
1604 		ipa_endpoint_replenish_enable(endpoint);
1605 	}
1606 
1607 	ipa->enabled |= BIT(endpoint->endpoint_id);
1608 
1609 	return 0;
1610 }
1611 
1612 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1613 {
1614 	u32 mask = BIT(endpoint->endpoint_id);
1615 	struct ipa *ipa = endpoint->ipa;
1616 	struct gsi *gsi = &ipa->gsi;
1617 	int ret;
1618 
1619 	if (!(ipa->enabled & mask))
1620 		return;
1621 
1622 	ipa->enabled ^= mask;
1623 
1624 	if (!endpoint->toward_ipa) {
1625 		ipa_endpoint_replenish_disable(endpoint);
1626 		ipa_interrupt_suspend_disable(ipa->interrupt,
1627 					      endpoint->endpoint_id);
1628 	}
1629 
1630 	/* Note that if stop fails, the channel's state is not well-defined */
1631 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1632 	if (ret)
1633 		dev_err(&ipa->pdev->dev,
1634 			"error %d attempting to stop endpoint %u\n", ret,
1635 			endpoint->endpoint_id);
1636 }
1637 
1638 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1639 {
1640 	struct device *dev = &endpoint->ipa->pdev->dev;
1641 	struct gsi *gsi = &endpoint->ipa->gsi;
1642 	int ret;
1643 
1644 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1645 		return;
1646 
1647 	if (!endpoint->toward_ipa) {
1648 		ipa_endpoint_replenish_disable(endpoint);
1649 		(void)ipa_endpoint_program_suspend(endpoint, true);
1650 	}
1651 
1652 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1653 	if (ret)
1654 		dev_err(dev, "error %d suspending channel %u\n", ret,
1655 			endpoint->channel_id);
1656 }
1657 
1658 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1659 {
1660 	struct device *dev = &endpoint->ipa->pdev->dev;
1661 	struct gsi *gsi = &endpoint->ipa->gsi;
1662 	int ret;
1663 
1664 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1665 		return;
1666 
1667 	if (!endpoint->toward_ipa)
1668 		(void)ipa_endpoint_program_suspend(endpoint, false);
1669 
1670 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1671 	if (ret)
1672 		dev_err(dev, "error %d resuming channel %u\n", ret,
1673 			endpoint->channel_id);
1674 	else if (!endpoint->toward_ipa)
1675 		ipa_endpoint_replenish_enable(endpoint);
1676 }
1677 
1678 void ipa_endpoint_suspend(struct ipa *ipa)
1679 {
1680 	if (!ipa->setup_complete)
1681 		return;
1682 
1683 	if (ipa->modem_netdev)
1684 		ipa_modem_suspend(ipa->modem_netdev);
1685 
1686 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1687 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1688 }
1689 
1690 void ipa_endpoint_resume(struct ipa *ipa)
1691 {
1692 	if (!ipa->setup_complete)
1693 		return;
1694 
1695 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1696 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1697 
1698 	if (ipa->modem_netdev)
1699 		ipa_modem_resume(ipa->modem_netdev);
1700 }
1701 
1702 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1703 {
1704 	struct gsi *gsi = &endpoint->ipa->gsi;
1705 	u32 channel_id = endpoint->channel_id;
1706 
1707 	/* Only AP endpoints get set up */
1708 	if (endpoint->ee_id != GSI_EE_AP)
1709 		return;
1710 
1711 	endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1712 	if (!endpoint->toward_ipa) {
1713 		/* RX transactions require a single TRE, so the maximum
1714 		 * backlog is the same as the maximum outstanding TREs.
1715 		 */
1716 		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1717 		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1718 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1719 				  ipa_endpoint_replenish_work);
1720 	}
1721 
1722 	ipa_endpoint_program(endpoint);
1723 
1724 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1725 }
1726 
1727 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1728 {
1729 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1730 
1731 	if (!endpoint->toward_ipa)
1732 		cancel_delayed_work_sync(&endpoint->replenish_work);
1733 
1734 	ipa_endpoint_reset(endpoint);
1735 }
1736 
1737 void ipa_endpoint_setup(struct ipa *ipa)
1738 {
1739 	u32 initialized = ipa->initialized;
1740 
1741 	ipa->set_up = 0;
1742 	while (initialized) {
1743 		u32 endpoint_id = __ffs(initialized);
1744 
1745 		initialized ^= BIT(endpoint_id);
1746 
1747 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1748 	}
1749 }
1750 
1751 void ipa_endpoint_teardown(struct ipa *ipa)
1752 {
1753 	u32 set_up = ipa->set_up;
1754 
1755 	while (set_up) {
1756 		u32 endpoint_id = __fls(set_up);
1757 
1758 		set_up ^= BIT(endpoint_id);
1759 
1760 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1761 	}
1762 	ipa->set_up = 0;
1763 }
1764 
1765 int ipa_endpoint_config(struct ipa *ipa)
1766 {
1767 	struct device *dev = &ipa->pdev->dev;
1768 	u32 initialized;
1769 	u32 rx_base;
1770 	u32 rx_mask;
1771 	u32 tx_mask;
1772 	int ret = 0;
1773 	u32 max;
1774 	u32 val;
1775 
1776 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1777 	 * Furthermore, the endpoints were not grouped such that TX
1778 	 * endpoint numbers started with 0 and RX endpoints had numbers
1779 	 * higher than all TX endpoints, so we can't do the simple
1780 	 * direction check used for newer hardware below.
1781 	 *
1782 	 * For hardware that doesn't support the FLAVOR_0 register,
1783 	 * just set the available mask to support any endpoint, and
1784 	 * assume the configuration is valid.
1785 	 */
1786 	if (ipa->version < IPA_VERSION_3_5) {
1787 		ipa->available = ~0;
1788 		return 0;
1789 	}
1790 
1791 	/* Find out about the endpoints supplied by the hardware, and ensure
1792 	 * the highest one doesn't exceed the number we support.
1793 	 */
1794 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1795 
1796 	/* Our RX is an IPA producer */
1797 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1798 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1799 	if (max > IPA_ENDPOINT_MAX) {
1800 		dev_err(dev, "too many endpoints (%u > %u)\n",
1801 			max, IPA_ENDPOINT_MAX);
1802 		return -EINVAL;
1803 	}
1804 	rx_mask = GENMASK(max - 1, rx_base);
1805 
1806 	/* Our TX is an IPA consumer */
1807 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1808 	tx_mask = GENMASK(max - 1, 0);
1809 
1810 	ipa->available = rx_mask | tx_mask;
1811 
1812 	/* Check for initialized endpoints not supported by the hardware */
1813 	if (ipa->initialized & ~ipa->available) {
1814 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1815 			ipa->initialized & ~ipa->available);
1816 		ret = -EINVAL;		/* Report other errors too */
1817 	}
1818 
1819 	initialized = ipa->initialized;
1820 	while (initialized) {
1821 		u32 endpoint_id = __ffs(initialized);
1822 		struct ipa_endpoint *endpoint;
1823 
1824 		initialized ^= BIT(endpoint_id);
1825 
1826 		/* Make sure it's pointing in the right direction */
1827 		endpoint = &ipa->endpoint[endpoint_id];
1828 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1829 			dev_err(dev, "endpoint id %u wrong direction\n",
1830 				endpoint_id);
1831 			ret = -EINVAL;
1832 		}
1833 	}
1834 
1835 	return ret;
1836 }
1837 
1838 void ipa_endpoint_deconfig(struct ipa *ipa)
1839 {
1840 	ipa->available = 0;	/* Nothing more to do */
1841 }
1842 
1843 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1844 				  const struct ipa_gsi_endpoint_data *data)
1845 {
1846 	struct ipa_endpoint *endpoint;
1847 
1848 	endpoint = &ipa->endpoint[data->endpoint_id];
1849 
1850 	if (data->ee_id == GSI_EE_AP)
1851 		ipa->channel_map[data->channel_id] = endpoint;
1852 	ipa->name_map[name] = endpoint;
1853 
1854 	endpoint->ipa = ipa;
1855 	endpoint->ee_id = data->ee_id;
1856 	endpoint->channel_id = data->channel_id;
1857 	endpoint->endpoint_id = data->endpoint_id;
1858 	endpoint->toward_ipa = data->toward_ipa;
1859 	endpoint->config = data->endpoint.config;
1860 
1861 	ipa->initialized |= BIT(endpoint->endpoint_id);
1862 }
1863 
1864 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1865 {
1866 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1867 
1868 	memset(endpoint, 0, sizeof(*endpoint));
1869 }
1870 
1871 void ipa_endpoint_exit(struct ipa *ipa)
1872 {
1873 	u32 initialized = ipa->initialized;
1874 
1875 	while (initialized) {
1876 		u32 endpoint_id = __fls(initialized);
1877 
1878 		initialized ^= BIT(endpoint_id);
1879 
1880 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1881 	}
1882 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1883 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1884 }
1885 
1886 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1887 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1888 		      const struct ipa_gsi_endpoint_data *data)
1889 {
1890 	enum ipa_endpoint_name name;
1891 	u32 filter_map;
1892 
1893 	BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
1894 
1895 	if (!ipa_endpoint_data_valid(ipa, count, data))
1896 		return 0;	/* Error */
1897 
1898 	ipa->initialized = 0;
1899 
1900 	filter_map = 0;
1901 	for (name = 0; name < count; name++, data++) {
1902 		if (ipa_gsi_endpoint_data_empty(data))
1903 			continue;	/* Skip over empty slots */
1904 
1905 		ipa_endpoint_init_one(ipa, name, data);
1906 
1907 		if (data->endpoint.filter_support)
1908 			filter_map |= BIT(data->endpoint_id);
1909 		if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
1910 			ipa->modem_tx_count++;
1911 	}
1912 
1913 	if (!ipa_filter_map_valid(ipa, filter_map))
1914 		goto err_endpoint_exit;
1915 
1916 	return filter_map;	/* Non-zero bitmask */
1917 
1918 err_endpoint_exit:
1919 	ipa_endpoint_exit(ipa);
1920 
1921 	return 0;	/* Error */
1922 }
1923