xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
77 
78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
79 			    const struct ipa_gsi_endpoint_data *all_data,
80 			    const struct ipa_gsi_endpoint_data *data)
81 {
82 	const struct ipa_gsi_endpoint_data *other_data;
83 	struct device *dev = &ipa->pdev->dev;
84 	enum ipa_endpoint_name other_name;
85 
86 	if (ipa_gsi_endpoint_data_empty(data))
87 		return true;
88 
89 	if (!data->toward_ipa) {
90 		if (data->endpoint.filter_support) {
91 			dev_err(dev, "filtering not supported for "
92 					"RX endpoint %u\n",
93 				data->endpoint_id);
94 			return false;
95 		}
96 
97 		return true;	/* Nothing more to check for RX */
98 	}
99 
100 	if (data->endpoint.config.status_enable) {
101 		other_name = data->endpoint.config.tx.status_endpoint;
102 		if (other_name >= count) {
103 			dev_err(dev, "status endpoint name %u out of range "
104 					"for endpoint %u\n",
105 				other_name, data->endpoint_id);
106 			return false;
107 		}
108 
109 		/* Status endpoint must be defined... */
110 		other_data = &all_data[other_name];
111 		if (ipa_gsi_endpoint_data_empty(other_data)) {
112 			dev_err(dev, "DMA endpoint name %u undefined "
113 					"for endpoint %u\n",
114 				other_name, data->endpoint_id);
115 			return false;
116 		}
117 
118 		/* ...and has to be an RX endpoint... */
119 		if (other_data->toward_ipa) {
120 			dev_err(dev,
121 				"status endpoint for endpoint %u not RX\n",
122 				data->endpoint_id);
123 			return false;
124 		}
125 
126 		/* ...and if it's to be an AP endpoint... */
127 		if (other_data->ee_id == GSI_EE_AP) {
128 			/* ...make sure it has status enabled. */
129 			if (!other_data->endpoint.config.status_enable) {
130 				dev_err(dev,
131 					"status not enabled for endpoint %u\n",
132 					other_data->endpoint_id);
133 				return false;
134 			}
135 		}
136 	}
137 
138 	if (data->endpoint.config.dma_mode) {
139 		other_name = data->endpoint.config.dma_endpoint;
140 		if (other_name >= count) {
141 			dev_err(dev, "DMA endpoint name %u out of range "
142 					"for endpoint %u\n",
143 				other_name, data->endpoint_id);
144 			return false;
145 		}
146 
147 		other_data = &all_data[other_name];
148 		if (ipa_gsi_endpoint_data_empty(other_data)) {
149 			dev_err(dev, "DMA endpoint name %u undefined "
150 					"for endpoint %u\n",
151 				other_name, data->endpoint_id);
152 			return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 static u32 aggr_byte_limit_max(enum ipa_version version)
160 {
161 	if (version < IPA_VERSION_4_5)
162 		return field_max(aggr_byte_limit_fmask(true));
163 
164 	return field_max(aggr_byte_limit_fmask(false));
165 }
166 
167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
168 				    const struct ipa_gsi_endpoint_data *data)
169 {
170 	const struct ipa_gsi_endpoint_data *dp = data;
171 	struct device *dev = &ipa->pdev->dev;
172 	enum ipa_endpoint_name name;
173 	u32 limit;
174 
175 	if (count > IPA_ENDPOINT_COUNT) {
176 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
177 			count, IPA_ENDPOINT_COUNT);
178 		return false;
179 	}
180 
181 	/* The aggregation byte limit defines the point at which an
182 	 * aggregation window will close.  It is programmed into the
183 	 * IPA hardware as a number of KB.  We don't use "hard byte
184 	 * limit" aggregation, which means that we need to supply
185 	 * enough space in a receive buffer to hold a complete MTU
186 	 * plus normal skb overhead *after* that aggregation byte
187 	 * limit has been crossed.
188 	 *
189 	 * This check ensures we don't define a receive buffer size
190 	 * that would exceed what we can represent in the field that
191 	 * is used to program its size.
192 	 */
193 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
194 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
195 	if (limit < IPA_RX_BUFFER_SIZE) {
196 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
197 			IPA_RX_BUFFER_SIZE, limit);
198 		return false;
199 	}
200 
201 	/* Make sure needed endpoints have defined data */
202 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
203 		dev_err(dev, "command TX endpoint not defined\n");
204 		return false;
205 	}
206 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
207 		dev_err(dev, "LAN RX endpoint not defined\n");
208 		return false;
209 	}
210 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
211 		dev_err(dev, "AP->modem TX endpoint not defined\n");
212 		return false;
213 	}
214 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
215 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
216 		return false;
217 	}
218 
219 	for (name = 0; name < count; name++, dp++)
220 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
221 			return false;
222 
223 	return true;
224 }
225 
226 /* Allocate a transaction to use on a non-command endpoint */
227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
228 						  u32 tre_count)
229 {
230 	struct gsi *gsi = &endpoint->ipa->gsi;
231 	u32 channel_id = endpoint->channel_id;
232 	enum dma_data_direction direction;
233 
234 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
235 
236 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
237 }
238 
239 /* suspend_delay represents suspend for RX, delay for TX endpoints.
240  * Note that suspend is not supported starting with IPA v4.0.
241  */
242 static bool
243 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
244 {
245 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
246 	struct ipa *ipa = endpoint->ipa;
247 	bool state;
248 	u32 mask;
249 	u32 val;
250 
251 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
252 	 * correctly on IPA v4.2.
253 	 */
254 	if (endpoint->toward_ipa)
255 		WARN_ON(ipa->version == IPA_VERSION_4_2);
256 	else
257 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
258 
259 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
260 
261 	val = ioread32(ipa->reg_virt + offset);
262 	state = !!(val & mask);
263 
264 	/* Don't bother if it's already in the requested state */
265 	if (suspend_delay != state) {
266 		val ^= mask;
267 		iowrite32(val, ipa->reg_virt + offset);
268 	}
269 
270 	return state;
271 }
272 
273 /* We currently don't care what the previous state was for delay mode */
274 static void
275 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
276 {
277 	WARN_ON(!endpoint->toward_ipa);
278 
279 	/* Delay mode doesn't work properly for IPA v4.2 */
280 	if (endpoint->ipa->version != IPA_VERSION_4_2)
281 		(void)ipa_endpoint_init_ctrl(endpoint, enable);
282 }
283 
284 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
285 {
286 	u32 mask = BIT(endpoint->endpoint_id);
287 	struct ipa *ipa = endpoint->ipa;
288 	u32 offset;
289 	u32 val;
290 
291 	WARN_ON(!(mask & ipa->available));
292 
293 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
294 	val = ioread32(ipa->reg_virt + offset);
295 
296 	return !!(val & mask);
297 }
298 
299 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
300 {
301 	u32 mask = BIT(endpoint->endpoint_id);
302 	struct ipa *ipa = endpoint->ipa;
303 
304 	WARN_ON(!(mask & ipa->available));
305 
306 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
307 }
308 
309 /**
310  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
311  * @endpoint:	Endpoint on which to emulate a suspend
312  *
313  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
314  *  with an open aggregation frame.  This is to work around a hardware
315  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
316  *  generated when it should be.
317  */
318 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
319 {
320 	struct ipa *ipa = endpoint->ipa;
321 
322 	if (!endpoint->data->aggregation)
323 		return;
324 
325 	/* Nothing to do if the endpoint doesn't have aggregation open */
326 	if (!ipa_endpoint_aggr_active(endpoint))
327 		return;
328 
329 	/* Force close aggregation */
330 	ipa_endpoint_force_close(endpoint);
331 
332 	ipa_interrupt_simulate_suspend(ipa->interrupt);
333 }
334 
335 /* Returns previous suspend state (true means suspend was enabled) */
336 static bool
337 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
338 {
339 	bool suspended;
340 
341 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
342 		return enable;	/* For IPA v4.0+, no change made */
343 
344 	WARN_ON(endpoint->toward_ipa);
345 
346 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
347 
348 	/* A client suspended with an open aggregation frame will not
349 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
350 	 * ipa_endpoint_suspend_aggr() handle this.
351 	 */
352 	if (enable && !suspended)
353 		ipa_endpoint_suspend_aggr(endpoint);
354 
355 	return suspended;
356 }
357 
358 /* Enable or disable delay or suspend mode on all modem endpoints */
359 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
360 {
361 	u32 endpoint_id;
362 
363 	/* DELAY mode doesn't work correctly on IPA v4.2 */
364 	if (ipa->version == IPA_VERSION_4_2)
365 		return;
366 
367 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
368 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
369 
370 		if (endpoint->ee_id != GSI_EE_MODEM)
371 			continue;
372 
373 		/* Set TX delay mode or RX suspend mode */
374 		if (endpoint->toward_ipa)
375 			ipa_endpoint_program_delay(endpoint, enable);
376 		else
377 			(void)ipa_endpoint_program_suspend(endpoint, enable);
378 	}
379 }
380 
381 /* Reset all modem endpoints to use the default exception endpoint */
382 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
383 {
384 	u32 initialized = ipa->initialized;
385 	struct gsi_trans *trans;
386 	u32 count;
387 
388 	/* We need one command per modem TX endpoint.  We can get an upper
389 	 * bound on that by assuming all initialized endpoints are modem->IPA.
390 	 * That won't happen, and we could be more precise, but this is fine
391 	 * for now.  End the transaction with commands to clear the pipeline.
392 	 */
393 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
394 	trans = ipa_cmd_trans_alloc(ipa, count);
395 	if (!trans) {
396 		dev_err(&ipa->pdev->dev,
397 			"no transaction to reset modem exception endpoints\n");
398 		return -EBUSY;
399 	}
400 
401 	while (initialized) {
402 		u32 endpoint_id = __ffs(initialized);
403 		struct ipa_endpoint *endpoint;
404 		u32 offset;
405 
406 		initialized ^= BIT(endpoint_id);
407 
408 		/* We only reset modem TX endpoints */
409 		endpoint = &ipa->endpoint[endpoint_id];
410 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
411 			continue;
412 
413 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
414 
415 		/* Value written is 0, and all bits are updated.  That
416 		 * means status is disabled on the endpoint, and as a
417 		 * result all other fields in the register are ignored.
418 		 */
419 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
420 	}
421 
422 	ipa_cmd_pipeline_clear_add(trans);
423 
424 	/* XXX This should have a 1 second timeout */
425 	gsi_trans_commit_wait(trans);
426 
427 	ipa_cmd_pipeline_clear_wait(ipa);
428 
429 	return 0;
430 }
431 
432 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
433 {
434 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
435 	enum ipa_cs_offload_en enabled;
436 	u32 val = 0;
437 
438 	/* FRAG_OFFLOAD_EN is 0 */
439 	if (endpoint->data->checksum) {
440 		enum ipa_version version = endpoint->ipa->version;
441 
442 		if (endpoint->toward_ipa) {
443 			u32 checksum_offset;
444 
445 			/* Checksum header offset is in 4-byte units */
446 			checksum_offset = sizeof(struct rmnet_map_header);
447 			checksum_offset /= sizeof(u32);
448 			val |= u32_encode_bits(checksum_offset,
449 					       CS_METADATA_HDR_OFFSET_FMASK);
450 
451 			enabled = version < IPA_VERSION_4_5
452 					? IPA_CS_OFFLOAD_UL
453 					: IPA_CS_OFFLOAD_INLINE;
454 		} else {
455 			enabled = version < IPA_VERSION_4_5
456 					? IPA_CS_OFFLOAD_DL
457 					: IPA_CS_OFFLOAD_INLINE;
458 		}
459 	} else {
460 		enabled = IPA_CS_OFFLOAD_NONE;
461 	}
462 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
463 	/* CS_GEN_QMB_MASTER_SEL is 0 */
464 
465 	iowrite32(val, endpoint->ipa->reg_virt + offset);
466 }
467 
468 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
469 {
470 	u32 offset;
471 	u32 val;
472 
473 	if (!endpoint->toward_ipa)
474 		return;
475 
476 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
477 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
478 
479 	iowrite32(val, endpoint->ipa->reg_virt + offset);
480 }
481 
482 static u32
483 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
484 {
485 	u32 header_size = sizeof(struct rmnet_map_header);
486 
487 	/* Without checksum offload, we just have the MAP header */
488 	if (!endpoint->data->checksum)
489 		return header_size;
490 
491 	if (version < IPA_VERSION_4_5) {
492 		/* Checksum header inserted for AP TX endpoints only */
493 		if (endpoint->toward_ipa)
494 			header_size += sizeof(struct rmnet_map_ul_csum_header);
495 	} else {
496 		/* Checksum header is used in both directions */
497 		header_size += sizeof(struct rmnet_map_v5_csum_header);
498 	}
499 
500 	return header_size;
501 }
502 
503 /**
504  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
505  * @endpoint:	Endpoint pointer
506  *
507  * We program QMAP endpoints so each packet received is preceded by a QMAP
508  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
509  * packet size field, and we have the IPA hardware populate both for each
510  * received packet.  The header is configured (in the HDR_EXT register)
511  * to use big endian format.
512  *
513  * The packet size is written into the QMAP header's pkt_len field.  That
514  * location is defined here using the HDR_OFST_PKT_SIZE field.
515  *
516  * The mux_id comes from a 4-byte metadata value supplied with each packet
517  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
518  * value that we want, in its low-order byte.  A bitmask defined in the
519  * endpoint's METADATA_MASK register defines which byte within the modem
520  * metadata contains the mux_id.  And the OFST_METADATA field programmed
521  * here indicates where the extracted byte should be placed within the QMAP
522  * header.
523  */
524 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
525 {
526 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
527 	struct ipa *ipa = endpoint->ipa;
528 	u32 val = 0;
529 
530 	if (endpoint->data->qmap) {
531 		enum ipa_version version = ipa->version;
532 		size_t header_size;
533 
534 		header_size = ipa_qmap_header_size(version, endpoint);
535 		val = ipa_header_size_encoded(version, header_size);
536 
537 		/* Define how to fill fields in a received QMAP header */
538 		if (!endpoint->toward_ipa) {
539 			u32 offset;	/* Field offset within header */
540 
541 			/* Where IPA will write the metadata value */
542 			offset = offsetof(struct rmnet_map_header, mux_id);
543 			val |= ipa_metadata_offset_encoded(version, offset);
544 
545 			/* Where IPA will write the length */
546 			offset = offsetof(struct rmnet_map_header, pkt_len);
547 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
548 			if (version >= IPA_VERSION_4_5)
549 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
550 
551 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
552 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
553 		}
554 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
555 		val |= HDR_OFST_METADATA_VALID_FMASK;
556 
557 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
558 		/* HDR_A5_MUX is 0 */
559 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
560 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
561 	}
562 
563 	iowrite32(val, ipa->reg_virt + offset);
564 }
565 
566 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
567 {
568 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
569 	u32 pad_align = endpoint->data->rx.pad_align;
570 	struct ipa *ipa = endpoint->ipa;
571 	u32 val = 0;
572 
573 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
574 
575 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
576 	 * driver assumes this field is meaningful in packets it receives,
577 	 * and assumes the header's payload length includes that padding.
578 	 * The RMNet driver does *not* pad packets it sends, however, so
579 	 * the pad field (although 0) should be ignored.
580 	 */
581 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
582 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
583 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
584 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
585 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
586 	}
587 
588 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
589 	if (!endpoint->toward_ipa)
590 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
591 
592 	/* IPA v4.5 adds some most-significant bits to a few fields,
593 	 * two of which are defined in the HDR (not HDR_EXT) register.
594 	 */
595 	if (ipa->version >= IPA_VERSION_4_5) {
596 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
597 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
598 			u32 offset;
599 
600 			offset = offsetof(struct rmnet_map_header, pkt_len);
601 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
602 			val |= u32_encode_bits(offset,
603 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
604 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
605 		}
606 	}
607 	iowrite32(val, ipa->reg_virt + offset);
608 }
609 
610 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
611 {
612 	u32 endpoint_id = endpoint->endpoint_id;
613 	u32 val = 0;
614 	u32 offset;
615 
616 	if (endpoint->toward_ipa)
617 		return;		/* Register not valid for TX endpoints */
618 
619 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
620 
621 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
622 	if (endpoint->data->qmap)
623 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
624 
625 	iowrite32(val, endpoint->ipa->reg_virt + offset);
626 }
627 
628 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
629 {
630 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
631 	u32 val;
632 
633 	if (!endpoint->toward_ipa)
634 		return;		/* Register not valid for RX endpoints */
635 
636 	if (endpoint->data->dma_mode) {
637 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
638 		u32 dma_endpoint_id;
639 
640 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
641 
642 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
643 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
644 	} else {
645 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
646 	}
647 	/* All other bits unspecified (and 0) */
648 
649 	iowrite32(val, endpoint->ipa->reg_virt + offset);
650 }
651 
652 /* Compute the aggregation size value to use for a given buffer size */
653 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
654 {
655 	/* We don't use "hard byte limit" aggregation, so we define the
656 	 * aggregation limit such that our buffer has enough space *after*
657 	 * that limit to receive a full MTU of data, plus overhead.
658 	 */
659 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
660 
661 	return rx_buffer_size / SZ_1K;
662 }
663 
664 /* Encoded values for AGGR endpoint register fields */
665 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
666 {
667 	if (version < IPA_VERSION_4_5)
668 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
669 
670 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
671 }
672 
673 /* Encode the aggregation timer limit (microseconds) based on IPA version */
674 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
675 {
676 	u32 gran_sel;
677 	u32 fmask;
678 	u32 val;
679 
680 	if (version < IPA_VERSION_4_5) {
681 		/* We set aggregation granularity in ipa_hardware_config() */
682 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
683 
684 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
685 	}
686 
687 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
688 	 * pulse generators 0 and 1 available, which were configured
689 	 * in ipa_qtime_config() to have granularity 100 usec and
690 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
691 	 * otherwise fall back to pulse generator 1.
692 	 */
693 	fmask = aggr_time_limit_fmask(false);
694 	val = DIV_ROUND_CLOSEST(limit, 100);
695 	if (val > field_max(fmask)) {
696 		/* Have to use pulse generator 1 (millisecond granularity) */
697 		gran_sel = AGGR_GRAN_SEL_FMASK;
698 		val = DIV_ROUND_CLOSEST(limit, 1000);
699 	} else {
700 		/* We can use pulse generator 0 (100 usec granularity) */
701 		gran_sel = 0;
702 	}
703 
704 	return gran_sel | u32_encode_bits(val, fmask);
705 }
706 
707 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
708 {
709 	u32 val = enabled ? 1 : 0;
710 
711 	if (version < IPA_VERSION_4_5)
712 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
713 
714 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
715 }
716 
717 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
718 {
719 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
720 	enum ipa_version version = endpoint->ipa->version;
721 	u32 val = 0;
722 
723 	if (endpoint->data->aggregation) {
724 		if (!endpoint->toward_ipa) {
725 			bool close_eof;
726 			u32 limit;
727 
728 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
729 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
730 
731 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
732 			val |= aggr_byte_limit_encoded(version, limit);
733 
734 			limit = IPA_AGGR_TIME_LIMIT;
735 			val |= aggr_time_limit_encoded(version, limit);
736 
737 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
738 
739 			close_eof = endpoint->data->rx.aggr_close_eof;
740 			val |= aggr_sw_eof_active_encoded(version, close_eof);
741 
742 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
743 		} else {
744 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
745 					       AGGR_EN_FMASK);
746 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
747 			/* other fields ignored */
748 		}
749 		/* AGGR_FORCE_CLOSE is 0 */
750 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
751 	} else {
752 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
753 		/* other fields ignored */
754 	}
755 
756 	iowrite32(val, endpoint->ipa->reg_virt + offset);
757 }
758 
759 /* Return the Qtime-based head-of-line blocking timer value that
760  * represents the given number of microseconds.  The result
761  * includes both the timer value and the selected timer granularity.
762  */
763 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
764 {
765 	u32 gran_sel;
766 	u32 val;
767 
768 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
769 	 * pulse generators 0 and 1 available, which were configured
770 	 * in ipa_qtime_config() to have granularity 100 usec and
771 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
772 	 * otherwise fall back to pulse generator 1.
773 	 */
774 	val = DIV_ROUND_CLOSEST(microseconds, 100);
775 	if (val > field_max(TIME_LIMIT_FMASK)) {
776 		/* Have to use pulse generator 1 (millisecond granularity) */
777 		gran_sel = GRAN_SEL_FMASK;
778 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
779 	} else {
780 		/* We can use pulse generator 0 (100 usec granularity) */
781 		gran_sel = 0;
782 	}
783 
784 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
785 }
786 
787 /* The head-of-line blocking timer is defined as a tick count.  For
788  * IPA version 4.5 the tick count is based on the Qtimer, which is
789  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
790  * each tick represents 128 cycles of the IPA core clock.
791  *
792  * Return the encoded value that should be written to that register
793  * that represents the timeout period provided.  For IPA v4.2 this
794  * encodes a base and scale value, while for earlier versions the
795  * value is a simple tick count.
796  */
797 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
798 {
799 	u32 width;
800 	u32 scale;
801 	u64 ticks;
802 	u64 rate;
803 	u32 high;
804 	u32 val;
805 
806 	if (!microseconds)
807 		return 0;	/* Nothing to compute if timer period is 0 */
808 
809 	if (ipa->version >= IPA_VERSION_4_5)
810 		return hol_block_timer_qtime_val(ipa, microseconds);
811 
812 	/* Use 64 bit arithmetic to avoid overflow... */
813 	rate = ipa_core_clock_rate(ipa);
814 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
815 	/* ...but we still need to fit into a 32-bit register */
816 	WARN_ON(ticks > U32_MAX);
817 
818 	/* IPA v3.5.1 through v4.1 just record the tick count */
819 	if (ipa->version < IPA_VERSION_4_2)
820 		return (u32)ticks;
821 
822 	/* For IPA v4.2, the tick count is represented by base and
823 	 * scale fields within the 32-bit timer register, where:
824 	 *     ticks = base << scale;
825 	 * The best precision is achieved when the base value is as
826 	 * large as possible.  Find the highest set bit in the tick
827 	 * count, and extract the number of bits in the base field
828 	 * such that high bit is included.
829 	 */
830 	high = fls(ticks);		/* 1..32 */
831 	width = HWEIGHT32(BASE_VALUE_FMASK);
832 	scale = high > width ? high - width : 0;
833 	if (scale) {
834 		/* If we're scaling, round up to get a closer result */
835 		ticks += 1 << (scale - 1);
836 		/* High bit was set, so rounding might have affected it */
837 		if (fls(ticks) != high)
838 			scale++;
839 	}
840 
841 	val = u32_encode_bits(scale, SCALE_FMASK);
842 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
843 
844 	return val;
845 }
846 
847 /* If microseconds is 0, timeout is immediate */
848 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
849 					      u32 microseconds)
850 {
851 	u32 endpoint_id = endpoint->endpoint_id;
852 	struct ipa *ipa = endpoint->ipa;
853 	u32 offset;
854 	u32 val;
855 
856 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
857 	val = hol_block_timer_val(ipa, microseconds);
858 	iowrite32(val, ipa->reg_virt + offset);
859 }
860 
861 static void
862 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
863 {
864 	u32 endpoint_id = endpoint->endpoint_id;
865 	u32 offset;
866 	u32 val;
867 
868 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
869 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
870 	iowrite32(val, endpoint->ipa->reg_virt + offset);
871 }
872 
873 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
874 {
875 	u32 i;
876 
877 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
878 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
879 
880 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
881 			continue;
882 
883 		ipa_endpoint_init_hol_block_timer(endpoint, 0);
884 		ipa_endpoint_init_hol_block_enable(endpoint, true);
885 	}
886 }
887 
888 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
889 {
890 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
891 	u32 val = 0;
892 
893 	if (!endpoint->toward_ipa)
894 		return;		/* Register not valid for RX endpoints */
895 
896 	/* DEAGGR_HDR_LEN is 0 */
897 	/* PACKET_OFFSET_VALID is 0 */
898 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
899 	/* MAX_PACKET_LEN is 0 (not enforced) */
900 
901 	iowrite32(val, endpoint->ipa->reg_virt + offset);
902 }
903 
904 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
905 {
906 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
907 	struct ipa *ipa = endpoint->ipa;
908 	u32 val;
909 
910 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
911 	iowrite32(val, ipa->reg_virt + offset);
912 }
913 
914 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
915 {
916 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
917 	u32 val = 0;
918 
919 	if (!endpoint->toward_ipa)
920 		return;		/* Register not valid for RX endpoints */
921 
922 	/* Low-order byte configures primary packet processing */
923 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
924 
925 	/* Second byte configures replicated packet processing */
926 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
927 			       SEQ_REP_TYPE_FMASK);
928 
929 	iowrite32(val, endpoint->ipa->reg_virt + offset);
930 }
931 
932 /**
933  * ipa_endpoint_skb_tx() - Transmit a socket buffer
934  * @endpoint:	Endpoint pointer
935  * @skb:	Socket buffer to send
936  *
937  * Returns:	0 if successful, or a negative error code
938  */
939 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
940 {
941 	struct gsi_trans *trans;
942 	u32 nr_frags;
943 	int ret;
944 
945 	/* Make sure source endpoint's TLV FIFO has enough entries to
946 	 * hold the linear portion of the skb and all its fragments.
947 	 * If not, see if we can linearize it before giving up.
948 	 */
949 	nr_frags = skb_shinfo(skb)->nr_frags;
950 	if (1 + nr_frags > endpoint->trans_tre_max) {
951 		if (skb_linearize(skb))
952 			return -E2BIG;
953 		nr_frags = 0;
954 	}
955 
956 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
957 	if (!trans)
958 		return -EBUSY;
959 
960 	ret = gsi_trans_skb_add(trans, skb);
961 	if (ret)
962 		goto err_trans_free;
963 	trans->data = skb;	/* transaction owns skb now */
964 
965 	gsi_trans_commit(trans, !netdev_xmit_more());
966 
967 	return 0;
968 
969 err_trans_free:
970 	gsi_trans_free(trans);
971 
972 	return -ENOMEM;
973 }
974 
975 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
976 {
977 	u32 endpoint_id = endpoint->endpoint_id;
978 	struct ipa *ipa = endpoint->ipa;
979 	u32 val = 0;
980 	u32 offset;
981 
982 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
983 
984 	if (endpoint->data->status_enable) {
985 		val |= STATUS_EN_FMASK;
986 		if (endpoint->toward_ipa) {
987 			enum ipa_endpoint_name name;
988 			u32 status_endpoint_id;
989 
990 			name = endpoint->data->tx.status_endpoint;
991 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
992 
993 			val |= u32_encode_bits(status_endpoint_id,
994 					       STATUS_ENDP_FMASK);
995 		}
996 		/* STATUS_LOCATION is 0, meaning status element precedes
997 		 * packet (not present for IPA v4.5)
998 		 */
999 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1000 	}
1001 
1002 	iowrite32(val, ipa->reg_virt + offset);
1003 }
1004 
1005 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1006 {
1007 	struct gsi_trans *trans;
1008 	bool doorbell = false;
1009 	struct page *page;
1010 	u32 offset;
1011 	u32 len;
1012 	int ret;
1013 
1014 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1015 	if (!page)
1016 		return -ENOMEM;
1017 
1018 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
1019 	if (!trans)
1020 		goto err_free_pages;
1021 
1022 	/* Offset the buffer to make space for skb headroom */
1023 	offset = NET_SKB_PAD;
1024 	len = IPA_RX_BUFFER_SIZE - offset;
1025 
1026 	ret = gsi_trans_page_add(trans, page, len, offset);
1027 	if (ret)
1028 		goto err_trans_free;
1029 	trans->data = page;	/* transaction owns page now */
1030 
1031 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1032 		doorbell = true;
1033 		endpoint->replenish_ready = 0;
1034 	}
1035 
1036 	gsi_trans_commit(trans, doorbell);
1037 
1038 	return 0;
1039 
1040 err_trans_free:
1041 	gsi_trans_free(trans);
1042 err_free_pages:
1043 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1044 
1045 	return -ENOMEM;
1046 }
1047 
1048 /**
1049  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1050  * @endpoint:	Endpoint to be replenished
1051  * @add_one:	Whether this is replacing a just-consumed buffer
1052  *
1053  * The IPA hardware can hold a fixed number of receive buffers for an RX
1054  * endpoint, based on the number of entries in the underlying channel ring
1055  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1056  * more receive buffers can be supplied to the hardware.  Replenishing for
1057  * an endpoint can be disabled, in which case requests to replenish a
1058  * buffer are "saved", and transferred to the backlog once it is re-enabled
1059  * again.
1060  */
1061 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1062 {
1063 	struct gsi *gsi;
1064 	u32 backlog;
1065 
1066 	if (!endpoint->replenish_enabled) {
1067 		if (add_one)
1068 			atomic_inc(&endpoint->replenish_saved);
1069 		return;
1070 	}
1071 
1072 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1073 		if (ipa_endpoint_replenish_one(endpoint))
1074 			goto try_again_later;
1075 	if (add_one)
1076 		atomic_inc(&endpoint->replenish_backlog);
1077 
1078 	return;
1079 
1080 try_again_later:
1081 	/* The last one didn't succeed, so fix the backlog */
1082 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
1083 
1084 	if (add_one)
1085 		atomic_inc(&endpoint->replenish_backlog);
1086 
1087 	/* Whenever a receive buffer transaction completes we'll try to
1088 	 * replenish again.  It's unlikely, but if we fail to supply even
1089 	 * one buffer, nothing will trigger another replenish attempt.
1090 	 * Receive buffer transactions use one TRE, so schedule work to
1091 	 * try replenishing again if our backlog is *all* available TREs.
1092 	 */
1093 	gsi = &endpoint->ipa->gsi;
1094 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1095 		schedule_delayed_work(&endpoint->replenish_work,
1096 				      msecs_to_jiffies(1));
1097 }
1098 
1099 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1100 {
1101 	struct gsi *gsi = &endpoint->ipa->gsi;
1102 	u32 max_backlog;
1103 	u32 saved;
1104 
1105 	endpoint->replenish_enabled = true;
1106 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1107 		atomic_add(saved, &endpoint->replenish_backlog);
1108 
1109 	/* Start replenishing if hardware currently has no buffers */
1110 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1111 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1112 		ipa_endpoint_replenish(endpoint, false);
1113 }
1114 
1115 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1116 {
1117 	u32 backlog;
1118 
1119 	endpoint->replenish_enabled = false;
1120 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1121 		atomic_add(backlog, &endpoint->replenish_saved);
1122 }
1123 
1124 static void ipa_endpoint_replenish_work(struct work_struct *work)
1125 {
1126 	struct delayed_work *dwork = to_delayed_work(work);
1127 	struct ipa_endpoint *endpoint;
1128 
1129 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1130 
1131 	ipa_endpoint_replenish(endpoint, false);
1132 }
1133 
1134 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1135 				  void *data, u32 len, u32 extra)
1136 {
1137 	struct sk_buff *skb;
1138 
1139 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1140 	if (skb) {
1141 		skb_put(skb, len);
1142 		memcpy(skb->data, data, len);
1143 		skb->truesize += extra;
1144 	}
1145 
1146 	/* Now receive it, or drop it if there's no netdev */
1147 	if (endpoint->netdev)
1148 		ipa_modem_skb_rx(endpoint->netdev, skb);
1149 	else if (skb)
1150 		dev_kfree_skb_any(skb);
1151 }
1152 
1153 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1154 				   struct page *page, u32 len)
1155 {
1156 	struct sk_buff *skb;
1157 
1158 	/* Nothing to do if there's no netdev */
1159 	if (!endpoint->netdev)
1160 		return false;
1161 
1162 	WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD));
1163 
1164 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1165 	if (skb) {
1166 		/* Reserve the headroom and account for the data */
1167 		skb_reserve(skb, NET_SKB_PAD);
1168 		skb_put(skb, len);
1169 	}
1170 
1171 	/* Receive the buffer (or record drop if unable to build it) */
1172 	ipa_modem_skb_rx(endpoint->netdev, skb);
1173 
1174 	return skb != NULL;
1175 }
1176 
1177 /* The format of a packet status element is the same for several status
1178  * types (opcodes).  Other types aren't currently supported.
1179  */
1180 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1181 {
1182 	switch (opcode) {
1183 	case IPA_STATUS_OPCODE_PACKET:
1184 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1185 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1186 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1187 		return true;
1188 	default:
1189 		return false;
1190 	}
1191 }
1192 
1193 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1194 				     const struct ipa_status *status)
1195 {
1196 	u32 endpoint_id;
1197 
1198 	if (!ipa_status_format_packet(status->opcode))
1199 		return true;
1200 	if (!status->pkt_len)
1201 		return true;
1202 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1203 				  IPA_STATUS_DST_IDX_FMASK);
1204 	if (endpoint_id != endpoint->endpoint_id)
1205 		return true;
1206 
1207 	return false;	/* Don't skip this packet, process it */
1208 }
1209 
1210 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1211 				    const struct ipa_status *status)
1212 {
1213 	struct ipa_endpoint *command_endpoint;
1214 	struct ipa *ipa = endpoint->ipa;
1215 	u32 endpoint_id;
1216 
1217 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1218 		return false;	/* No valid tag */
1219 
1220 	/* The status contains a valid tag.  We know the packet was sent to
1221 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1222 	 * If the packet came from the AP->command TX endpoint we know
1223 	 * this packet was sent as part of the pipeline clear process.
1224 	 */
1225 	endpoint_id = u8_get_bits(status->endp_src_idx,
1226 				  IPA_STATUS_SRC_IDX_FMASK);
1227 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1228 	if (endpoint_id == command_endpoint->endpoint_id) {
1229 		complete(&ipa->completion);
1230 	} else {
1231 		dev_err(&ipa->pdev->dev,
1232 			"unexpected tagged packet from endpoint %u\n",
1233 			endpoint_id);
1234 	}
1235 
1236 	return true;
1237 }
1238 
1239 /* Return whether the status indicates the packet should be dropped */
1240 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1241 				     const struct ipa_status *status)
1242 {
1243 	u32 val;
1244 
1245 	/* If the status indicates a tagged transfer, we'll drop the packet */
1246 	if (ipa_endpoint_status_tag(endpoint, status))
1247 		return true;
1248 
1249 	/* Deaggregation exceptions we drop; all other types we consume */
1250 	if (status->exception)
1251 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1252 
1253 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1254 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1255 
1256 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1257 }
1258 
1259 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1260 				      struct page *page, u32 total_len)
1261 {
1262 	void *data = page_address(page) + NET_SKB_PAD;
1263 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1264 	u32 resid = total_len;
1265 
1266 	while (resid) {
1267 		const struct ipa_status *status = data;
1268 		u32 align;
1269 		u32 len;
1270 
1271 		if (resid < sizeof(*status)) {
1272 			dev_err(&endpoint->ipa->pdev->dev,
1273 				"short message (%u bytes < %zu byte status)\n",
1274 				resid, sizeof(*status));
1275 			break;
1276 		}
1277 
1278 		/* Skip over status packets that lack packet data */
1279 		if (ipa_endpoint_status_skip(endpoint, status)) {
1280 			data += sizeof(*status);
1281 			resid -= sizeof(*status);
1282 			continue;
1283 		}
1284 
1285 		/* Compute the amount of buffer space consumed by the packet,
1286 		 * including the status element.  If the hardware is configured
1287 		 * to pad packet data to an aligned boundary, account for that.
1288 		 * And if checksum offload is enabled a trailer containing
1289 		 * computed checksum information will be appended.
1290 		 */
1291 		align = endpoint->data->rx.pad_align ? : 1;
1292 		len = le16_to_cpu(status->pkt_len);
1293 		len = sizeof(*status) + ALIGN(len, align);
1294 		if (endpoint->data->checksum)
1295 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1296 
1297 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1298 			void *data2;
1299 			u32 extra;
1300 			u32 len2;
1301 
1302 			/* Client receives only packet data (no status) */
1303 			data2 = data + sizeof(*status);
1304 			len2 = le16_to_cpu(status->pkt_len);
1305 
1306 			/* Have the true size reflect the extra unused space in
1307 			 * the original receive buffer.  Distribute the "cost"
1308 			 * proportionately across all aggregated packets in the
1309 			 * buffer.
1310 			 */
1311 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1312 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1313 		}
1314 
1315 		/* Consume status and the full packet it describes */
1316 		data += len;
1317 		resid -= len;
1318 	}
1319 }
1320 
1321 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1322 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1323 				     struct gsi_trans *trans)
1324 {
1325 }
1326 
1327 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1328 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1329 				     struct gsi_trans *trans)
1330 {
1331 	struct page *page;
1332 
1333 	ipa_endpoint_replenish(endpoint, true);
1334 
1335 	if (trans->cancelled)
1336 		return;
1337 
1338 	/* Parse or build a socket buffer using the actual received length */
1339 	page = trans->data;
1340 	if (endpoint->data->status_enable)
1341 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1342 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1343 		trans->data = NULL;	/* Pages have been consumed */
1344 }
1345 
1346 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1347 				 struct gsi_trans *trans)
1348 {
1349 	if (endpoint->toward_ipa)
1350 		ipa_endpoint_tx_complete(endpoint, trans);
1351 	else
1352 		ipa_endpoint_rx_complete(endpoint, trans);
1353 }
1354 
1355 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1356 				struct gsi_trans *trans)
1357 {
1358 	if (endpoint->toward_ipa) {
1359 		struct ipa *ipa = endpoint->ipa;
1360 
1361 		/* Nothing to do for command transactions */
1362 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1363 			struct sk_buff *skb = trans->data;
1364 
1365 			if (skb)
1366 				dev_kfree_skb_any(skb);
1367 		}
1368 	} else {
1369 		struct page *page = trans->data;
1370 
1371 		if (page)
1372 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1373 	}
1374 }
1375 
1376 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1377 {
1378 	u32 val;
1379 
1380 	/* ROUTE_DIS is 0 */
1381 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1382 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1383 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1384 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1385 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1386 
1387 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1388 }
1389 
1390 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1391 {
1392 	ipa_endpoint_default_route_set(ipa, 0);
1393 }
1394 
1395 /**
1396  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1397  * @endpoint:	Endpoint to be reset
1398  *
1399  * If aggregation is active on an RX endpoint when a reset is performed
1400  * on its underlying GSI channel, a special sequence of actions must be
1401  * taken to ensure the IPA pipeline is properly cleared.
1402  *
1403  * Return:	0 if successful, or a negative error code
1404  */
1405 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1406 {
1407 	struct device *dev = &endpoint->ipa->pdev->dev;
1408 	struct ipa *ipa = endpoint->ipa;
1409 	struct gsi *gsi = &ipa->gsi;
1410 	bool suspended = false;
1411 	dma_addr_t addr;
1412 	u32 retries;
1413 	u32 len = 1;
1414 	void *virt;
1415 	int ret;
1416 
1417 	virt = kzalloc(len, GFP_KERNEL);
1418 	if (!virt)
1419 		return -ENOMEM;
1420 
1421 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1422 	if (dma_mapping_error(dev, addr)) {
1423 		ret = -ENOMEM;
1424 		goto out_kfree;
1425 	}
1426 
1427 	/* Force close aggregation before issuing the reset */
1428 	ipa_endpoint_force_close(endpoint);
1429 
1430 	/* Reset and reconfigure the channel with the doorbell engine
1431 	 * disabled.  Then poll until we know aggregation is no longer
1432 	 * active.  We'll re-enable the doorbell (if appropriate) when
1433 	 * we reset again below.
1434 	 */
1435 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1436 
1437 	/* Make sure the channel isn't suspended */
1438 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1439 
1440 	/* Start channel and do a 1 byte read */
1441 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1442 	if (ret)
1443 		goto out_suspend_again;
1444 
1445 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1446 	if (ret)
1447 		goto err_endpoint_stop;
1448 
1449 	/* Wait for aggregation to be closed on the channel */
1450 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1451 	do {
1452 		if (!ipa_endpoint_aggr_active(endpoint))
1453 			break;
1454 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1455 	} while (retries--);
1456 
1457 	/* Check one last time */
1458 	if (ipa_endpoint_aggr_active(endpoint))
1459 		dev_err(dev, "endpoint %u still active during reset\n",
1460 			endpoint->endpoint_id);
1461 
1462 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1463 
1464 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1465 	if (ret)
1466 		goto out_suspend_again;
1467 
1468 	/* Finally, reset and reconfigure the channel again (re-enabling
1469 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1470 	 * complete the channel reset sequence.  Finish by suspending the
1471 	 * channel again (if necessary).
1472 	 */
1473 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1474 
1475 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1476 
1477 	goto out_suspend_again;
1478 
1479 err_endpoint_stop:
1480 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1481 out_suspend_again:
1482 	if (suspended)
1483 		(void)ipa_endpoint_program_suspend(endpoint, true);
1484 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1485 out_kfree:
1486 	kfree(virt);
1487 
1488 	return ret;
1489 }
1490 
1491 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1492 {
1493 	u32 channel_id = endpoint->channel_id;
1494 	struct ipa *ipa = endpoint->ipa;
1495 	bool special;
1496 	int ret = 0;
1497 
1498 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1499 	 * is active, we need to handle things specially to recover.
1500 	 * All other cases just need to reset the underlying GSI channel.
1501 	 */
1502 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1503 			endpoint->data->aggregation;
1504 	if (special && ipa_endpoint_aggr_active(endpoint))
1505 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1506 	else
1507 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1508 
1509 	if (ret)
1510 		dev_err(&ipa->pdev->dev,
1511 			"error %d resetting channel %u for endpoint %u\n",
1512 			ret, endpoint->channel_id, endpoint->endpoint_id);
1513 }
1514 
1515 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1516 {
1517 	if (endpoint->toward_ipa)
1518 		ipa_endpoint_program_delay(endpoint, false);
1519 	else
1520 		(void)ipa_endpoint_program_suspend(endpoint, false);
1521 	ipa_endpoint_init_cfg(endpoint);
1522 	ipa_endpoint_init_nat(endpoint);
1523 	ipa_endpoint_init_hdr(endpoint);
1524 	ipa_endpoint_init_hdr_ext(endpoint);
1525 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1526 	ipa_endpoint_init_mode(endpoint);
1527 	ipa_endpoint_init_aggr(endpoint);
1528 	ipa_endpoint_init_deaggr(endpoint);
1529 	ipa_endpoint_init_rsrc_grp(endpoint);
1530 	ipa_endpoint_init_seq(endpoint);
1531 	ipa_endpoint_status(endpoint);
1532 }
1533 
1534 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1535 {
1536 	struct ipa *ipa = endpoint->ipa;
1537 	struct gsi *gsi = &ipa->gsi;
1538 	int ret;
1539 
1540 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1541 	if (ret) {
1542 		dev_err(&ipa->pdev->dev,
1543 			"error %d starting %cX channel %u for endpoint %u\n",
1544 			ret, endpoint->toward_ipa ? 'T' : 'R',
1545 			endpoint->channel_id, endpoint->endpoint_id);
1546 		return ret;
1547 	}
1548 
1549 	if (!endpoint->toward_ipa) {
1550 		ipa_interrupt_suspend_enable(ipa->interrupt,
1551 					     endpoint->endpoint_id);
1552 		ipa_endpoint_replenish_enable(endpoint);
1553 	}
1554 
1555 	ipa->enabled |= BIT(endpoint->endpoint_id);
1556 
1557 	return 0;
1558 }
1559 
1560 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1561 {
1562 	u32 mask = BIT(endpoint->endpoint_id);
1563 	struct ipa *ipa = endpoint->ipa;
1564 	struct gsi *gsi = &ipa->gsi;
1565 	int ret;
1566 
1567 	if (!(ipa->enabled & mask))
1568 		return;
1569 
1570 	ipa->enabled ^= mask;
1571 
1572 	if (!endpoint->toward_ipa) {
1573 		ipa_endpoint_replenish_disable(endpoint);
1574 		ipa_interrupt_suspend_disable(ipa->interrupt,
1575 					      endpoint->endpoint_id);
1576 	}
1577 
1578 	/* Note that if stop fails, the channel's state is not well-defined */
1579 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1580 	if (ret)
1581 		dev_err(&ipa->pdev->dev,
1582 			"error %d attempting to stop endpoint %u\n", ret,
1583 			endpoint->endpoint_id);
1584 }
1585 
1586 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1587 {
1588 	struct device *dev = &endpoint->ipa->pdev->dev;
1589 	struct gsi *gsi = &endpoint->ipa->gsi;
1590 	int ret;
1591 
1592 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1593 		return;
1594 
1595 	if (!endpoint->toward_ipa) {
1596 		ipa_endpoint_replenish_disable(endpoint);
1597 		(void)ipa_endpoint_program_suspend(endpoint, true);
1598 	}
1599 
1600 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1601 	if (ret)
1602 		dev_err(dev, "error %d suspending channel %u\n", ret,
1603 			endpoint->channel_id);
1604 }
1605 
1606 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1607 {
1608 	struct device *dev = &endpoint->ipa->pdev->dev;
1609 	struct gsi *gsi = &endpoint->ipa->gsi;
1610 	int ret;
1611 
1612 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1613 		return;
1614 
1615 	if (!endpoint->toward_ipa)
1616 		(void)ipa_endpoint_program_suspend(endpoint, false);
1617 
1618 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1619 	if (ret)
1620 		dev_err(dev, "error %d resuming channel %u\n", ret,
1621 			endpoint->channel_id);
1622 	else if (!endpoint->toward_ipa)
1623 		ipa_endpoint_replenish_enable(endpoint);
1624 }
1625 
1626 void ipa_endpoint_suspend(struct ipa *ipa)
1627 {
1628 	if (!ipa->setup_complete)
1629 		return;
1630 
1631 	if (ipa->modem_netdev)
1632 		ipa_modem_suspend(ipa->modem_netdev);
1633 
1634 	ipa_cmd_pipeline_clear(ipa);
1635 
1636 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1637 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1638 }
1639 
1640 void ipa_endpoint_resume(struct ipa *ipa)
1641 {
1642 	if (!ipa->setup_complete)
1643 		return;
1644 
1645 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1646 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1647 
1648 	if (ipa->modem_netdev)
1649 		ipa_modem_resume(ipa->modem_netdev);
1650 }
1651 
1652 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1653 {
1654 	struct gsi *gsi = &endpoint->ipa->gsi;
1655 	u32 channel_id = endpoint->channel_id;
1656 
1657 	/* Only AP endpoints get set up */
1658 	if (endpoint->ee_id != GSI_EE_AP)
1659 		return;
1660 
1661 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1662 	if (!endpoint->toward_ipa) {
1663 		/* RX transactions require a single TRE, so the maximum
1664 		 * backlog is the same as the maximum outstanding TREs.
1665 		 */
1666 		endpoint->replenish_enabled = false;
1667 		atomic_set(&endpoint->replenish_saved,
1668 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1669 		atomic_set(&endpoint->replenish_backlog, 0);
1670 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1671 				  ipa_endpoint_replenish_work);
1672 	}
1673 
1674 	ipa_endpoint_program(endpoint);
1675 
1676 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1677 }
1678 
1679 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1680 {
1681 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1682 
1683 	if (!endpoint->toward_ipa)
1684 		cancel_delayed_work_sync(&endpoint->replenish_work);
1685 
1686 	ipa_endpoint_reset(endpoint);
1687 }
1688 
1689 void ipa_endpoint_setup(struct ipa *ipa)
1690 {
1691 	u32 initialized = ipa->initialized;
1692 
1693 	ipa->set_up = 0;
1694 	while (initialized) {
1695 		u32 endpoint_id = __ffs(initialized);
1696 
1697 		initialized ^= BIT(endpoint_id);
1698 
1699 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1700 	}
1701 }
1702 
1703 void ipa_endpoint_teardown(struct ipa *ipa)
1704 {
1705 	u32 set_up = ipa->set_up;
1706 
1707 	while (set_up) {
1708 		u32 endpoint_id = __fls(set_up);
1709 
1710 		set_up ^= BIT(endpoint_id);
1711 
1712 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1713 	}
1714 	ipa->set_up = 0;
1715 }
1716 
1717 int ipa_endpoint_config(struct ipa *ipa)
1718 {
1719 	struct device *dev = &ipa->pdev->dev;
1720 	u32 initialized;
1721 	u32 rx_base;
1722 	u32 rx_mask;
1723 	u32 tx_mask;
1724 	int ret = 0;
1725 	u32 max;
1726 	u32 val;
1727 
1728 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1729 	 * Furthermore, the endpoints were not grouped such that TX
1730 	 * endpoint numbers started with 0 and RX endpoints had numbers
1731 	 * higher than all TX endpoints, so we can't do the simple
1732 	 * direction check used for newer hardware below.
1733 	 *
1734 	 * For hardware that doesn't support the FLAVOR_0 register,
1735 	 * just set the available mask to support any endpoint, and
1736 	 * assume the configuration is valid.
1737 	 */
1738 	if (ipa->version < IPA_VERSION_3_5) {
1739 		ipa->available = ~0;
1740 		return 0;
1741 	}
1742 
1743 	/* Find out about the endpoints supplied by the hardware, and ensure
1744 	 * the highest one doesn't exceed the number we support.
1745 	 */
1746 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1747 
1748 	/* Our RX is an IPA producer */
1749 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1750 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1751 	if (max > IPA_ENDPOINT_MAX) {
1752 		dev_err(dev, "too many endpoints (%u > %u)\n",
1753 			max, IPA_ENDPOINT_MAX);
1754 		return -EINVAL;
1755 	}
1756 	rx_mask = GENMASK(max - 1, rx_base);
1757 
1758 	/* Our TX is an IPA consumer */
1759 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1760 	tx_mask = GENMASK(max - 1, 0);
1761 
1762 	ipa->available = rx_mask | tx_mask;
1763 
1764 	/* Check for initialized endpoints not supported by the hardware */
1765 	if (ipa->initialized & ~ipa->available) {
1766 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1767 			ipa->initialized & ~ipa->available);
1768 		ret = -EINVAL;		/* Report other errors too */
1769 	}
1770 
1771 	initialized = ipa->initialized;
1772 	while (initialized) {
1773 		u32 endpoint_id = __ffs(initialized);
1774 		struct ipa_endpoint *endpoint;
1775 
1776 		initialized ^= BIT(endpoint_id);
1777 
1778 		/* Make sure it's pointing in the right direction */
1779 		endpoint = &ipa->endpoint[endpoint_id];
1780 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1781 			dev_err(dev, "endpoint id %u wrong direction\n",
1782 				endpoint_id);
1783 			ret = -EINVAL;
1784 		}
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 void ipa_endpoint_deconfig(struct ipa *ipa)
1791 {
1792 	ipa->available = 0;	/* Nothing more to do */
1793 }
1794 
1795 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1796 				  const struct ipa_gsi_endpoint_data *data)
1797 {
1798 	struct ipa_endpoint *endpoint;
1799 
1800 	endpoint = &ipa->endpoint[data->endpoint_id];
1801 
1802 	if (data->ee_id == GSI_EE_AP)
1803 		ipa->channel_map[data->channel_id] = endpoint;
1804 	ipa->name_map[name] = endpoint;
1805 
1806 	endpoint->ipa = ipa;
1807 	endpoint->ee_id = data->ee_id;
1808 	endpoint->channel_id = data->channel_id;
1809 	endpoint->endpoint_id = data->endpoint_id;
1810 	endpoint->toward_ipa = data->toward_ipa;
1811 	endpoint->data = &data->endpoint.config;
1812 
1813 	ipa->initialized |= BIT(endpoint->endpoint_id);
1814 }
1815 
1816 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1817 {
1818 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1819 
1820 	memset(endpoint, 0, sizeof(*endpoint));
1821 }
1822 
1823 void ipa_endpoint_exit(struct ipa *ipa)
1824 {
1825 	u32 initialized = ipa->initialized;
1826 
1827 	while (initialized) {
1828 		u32 endpoint_id = __fls(initialized);
1829 
1830 		initialized ^= BIT(endpoint_id);
1831 
1832 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1833 	}
1834 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1835 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1836 }
1837 
1838 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1839 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1840 		      const struct ipa_gsi_endpoint_data *data)
1841 {
1842 	enum ipa_endpoint_name name;
1843 	u32 filter_map;
1844 
1845 	if (!ipa_endpoint_data_valid(ipa, count, data))
1846 		return 0;	/* Error */
1847 
1848 	ipa->initialized = 0;
1849 
1850 	filter_map = 0;
1851 	for (name = 0; name < count; name++, data++) {
1852 		if (ipa_gsi_endpoint_data_empty(data))
1853 			continue;	/* Skip over empty slots */
1854 
1855 		ipa_endpoint_init_one(ipa, name, data);
1856 
1857 		if (data->endpoint.filter_support)
1858 			filter_map |= BIT(data->endpoint_id);
1859 	}
1860 
1861 	if (!ipa_filter_map_valid(ipa, filter_map))
1862 		goto err_endpoint_exit;
1863 
1864 	return filter_map;	/* Non-zero bitmask */
1865 
1866 err_endpoint_exit:
1867 	ipa_endpoint_exit(ipa);
1868 
1869 	return 0;	/* Error */
1870 }
1871