1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_power.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 /* Hardware is told about receive buffers once a "batch" has been queued */ 29 #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ 30 31 /* The amount of RX buffer space consumed by standard skb overhead */ 32 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 33 34 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 35 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 36 37 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 38 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ 39 40 /** enum ipa_status_opcode - status element opcode hardware values */ 41 enum ipa_status_opcode { 42 IPA_STATUS_OPCODE_PACKET = 0x01, 43 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 44 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 45 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 46 }; 47 48 /** enum ipa_status_exception - status element exception type */ 49 enum ipa_status_exception { 50 /* 0 means no exception */ 51 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 52 }; 53 54 /* Status element provided by hardware */ 55 struct ipa_status { 56 u8 opcode; /* enum ipa_status_opcode */ 57 u8 exception; /* enum ipa_status_exception */ 58 __le16 mask; 59 __le16 pkt_len; 60 u8 endp_src_idx; 61 u8 endp_dst_idx; 62 __le32 metadata; 63 __le32 flags1; 64 __le64 flags2; 65 __le32 flags3; 66 __le32 flags4; 67 }; 68 69 /* Field masks for struct ipa_status structure fields */ 70 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 71 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 72 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 73 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 74 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 75 76 static u32 aggr_byte_limit_max(enum ipa_version version) 77 { 78 if (version < IPA_VERSION_4_5) 79 return field_max(aggr_byte_limit_fmask(true)); 80 81 return field_max(aggr_byte_limit_fmask(false)); 82 } 83 84 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 85 const struct ipa_gsi_endpoint_data *all_data, 86 const struct ipa_gsi_endpoint_data *data) 87 { 88 const struct ipa_gsi_endpoint_data *other_data; 89 struct device *dev = &ipa->pdev->dev; 90 enum ipa_endpoint_name other_name; 91 92 if (ipa_gsi_endpoint_data_empty(data)) 93 return true; 94 95 if (!data->toward_ipa) { 96 u32 buffer_size; 97 u32 limit; 98 99 if (data->endpoint.filter_support) { 100 dev_err(dev, "filtering not supported for " 101 "RX endpoint %u\n", 102 data->endpoint_id); 103 return false; 104 } 105 106 /* Nothing more to check for non-AP RX */ 107 if (data->ee_id != GSI_EE_AP) 108 return true; 109 110 buffer_size = data->endpoint.config.rx.buffer_size; 111 /* The buffer size must hold an MTU plus overhead */ 112 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 113 if (buffer_size < limit) { 114 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", 115 data->endpoint_id, buffer_size, limit); 116 return false; 117 } 118 119 /* For an endpoint supporting receive aggregation, the 120 * aggregation byte limit defines the point at which an 121 * aggregation window will close. It is programmed into the 122 * IPA hardware as a number of KB. We don't use "hard byte 123 * limit" aggregation, so we need to supply enough space in 124 * a receive buffer to hold a complete MTU plus normal skb 125 * overhead *after* that aggregation byte limit has been 126 * crossed. 127 * 128 * This check just ensures the receive buffer size doesn't 129 * exceed what's representable in the aggregation limit field. 130 */ 131 if (data->endpoint.config.aggregation) { 132 limit += SZ_1K * aggr_byte_limit_max(ipa->version); 133 if (buffer_size > limit) { 134 dev_err(dev, "RX buffer size too large for aggregated RX endpoint %u (%u > %u)\n", 135 data->endpoint_id, buffer_size, limit); 136 137 return false; 138 } 139 } 140 141 return true; /* Nothing more to check for RX */ 142 } 143 144 if (data->endpoint.config.status_enable) { 145 other_name = data->endpoint.config.tx.status_endpoint; 146 if (other_name >= count) { 147 dev_err(dev, "status endpoint name %u out of range " 148 "for endpoint %u\n", 149 other_name, data->endpoint_id); 150 return false; 151 } 152 153 /* Status endpoint must be defined... */ 154 other_data = &all_data[other_name]; 155 if (ipa_gsi_endpoint_data_empty(other_data)) { 156 dev_err(dev, "DMA endpoint name %u undefined " 157 "for endpoint %u\n", 158 other_name, data->endpoint_id); 159 return false; 160 } 161 162 /* ...and has to be an RX endpoint... */ 163 if (other_data->toward_ipa) { 164 dev_err(dev, 165 "status endpoint for endpoint %u not RX\n", 166 data->endpoint_id); 167 return false; 168 } 169 170 /* ...and if it's to be an AP endpoint... */ 171 if (other_data->ee_id == GSI_EE_AP) { 172 /* ...make sure it has status enabled. */ 173 if (!other_data->endpoint.config.status_enable) { 174 dev_err(dev, 175 "status not enabled for endpoint %u\n", 176 other_data->endpoint_id); 177 return false; 178 } 179 } 180 } 181 182 if (data->endpoint.config.dma_mode) { 183 other_name = data->endpoint.config.dma_endpoint; 184 if (other_name >= count) { 185 dev_err(dev, "DMA endpoint name %u out of range " 186 "for endpoint %u\n", 187 other_name, data->endpoint_id); 188 return false; 189 } 190 191 other_data = &all_data[other_name]; 192 if (ipa_gsi_endpoint_data_empty(other_data)) { 193 dev_err(dev, "DMA endpoint name %u undefined " 194 "for endpoint %u\n", 195 other_name, data->endpoint_id); 196 return false; 197 } 198 } 199 200 return true; 201 } 202 203 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 204 const struct ipa_gsi_endpoint_data *data) 205 { 206 const struct ipa_gsi_endpoint_data *dp = data; 207 struct device *dev = &ipa->pdev->dev; 208 enum ipa_endpoint_name name; 209 210 if (count > IPA_ENDPOINT_COUNT) { 211 dev_err(dev, "too many endpoints specified (%u > %u)\n", 212 count, IPA_ENDPOINT_COUNT); 213 return false; 214 } 215 216 /* Make sure needed endpoints have defined data */ 217 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 218 dev_err(dev, "command TX endpoint not defined\n"); 219 return false; 220 } 221 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 222 dev_err(dev, "LAN RX endpoint not defined\n"); 223 return false; 224 } 225 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 226 dev_err(dev, "AP->modem TX endpoint not defined\n"); 227 return false; 228 } 229 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 230 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 231 return false; 232 } 233 234 for (name = 0; name < count; name++, dp++) 235 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 236 return false; 237 238 return true; 239 } 240 241 /* Allocate a transaction to use on a non-command endpoint */ 242 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 243 u32 tre_count) 244 { 245 struct gsi *gsi = &endpoint->ipa->gsi; 246 u32 channel_id = endpoint->channel_id; 247 enum dma_data_direction direction; 248 249 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 250 251 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 252 } 253 254 /* suspend_delay represents suspend for RX, delay for TX endpoints. 255 * Note that suspend is not supported starting with IPA v4.0, and 256 * delay mode should not be used starting with IPA v4.2. 257 */ 258 static bool 259 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 260 { 261 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 262 struct ipa *ipa = endpoint->ipa; 263 bool state; 264 u32 mask; 265 u32 val; 266 267 if (endpoint->toward_ipa) 268 WARN_ON(ipa->version >= IPA_VERSION_4_2); 269 else 270 WARN_ON(ipa->version >= IPA_VERSION_4_0); 271 272 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 273 274 val = ioread32(ipa->reg_virt + offset); 275 state = !!(val & mask); 276 277 /* Don't bother if it's already in the requested state */ 278 if (suspend_delay != state) { 279 val ^= mask; 280 iowrite32(val, ipa->reg_virt + offset); 281 } 282 283 return state; 284 } 285 286 /* We don't care what the previous state was for delay mode */ 287 static void 288 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 289 { 290 /* Delay mode should not be used for IPA v4.2+ */ 291 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); 292 WARN_ON(!endpoint->toward_ipa); 293 294 (void)ipa_endpoint_init_ctrl(endpoint, enable); 295 } 296 297 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 298 { 299 u32 mask = BIT(endpoint->endpoint_id); 300 struct ipa *ipa = endpoint->ipa; 301 u32 offset; 302 u32 val; 303 304 WARN_ON(!(mask & ipa->available)); 305 306 offset = ipa_reg_state_aggr_active_offset(ipa->version); 307 val = ioread32(ipa->reg_virt + offset); 308 309 return !!(val & mask); 310 } 311 312 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 313 { 314 u32 mask = BIT(endpoint->endpoint_id); 315 struct ipa *ipa = endpoint->ipa; 316 317 WARN_ON(!(mask & ipa->available)); 318 319 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 320 } 321 322 /** 323 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 324 * @endpoint: Endpoint on which to emulate a suspend 325 * 326 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 327 * with an open aggregation frame. This is to work around a hardware 328 * issue in IPA version 3.5.1 where the suspend interrupt will not be 329 * generated when it should be. 330 */ 331 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 332 { 333 struct ipa *ipa = endpoint->ipa; 334 335 if (!endpoint->data->aggregation) 336 return; 337 338 /* Nothing to do if the endpoint doesn't have aggregation open */ 339 if (!ipa_endpoint_aggr_active(endpoint)) 340 return; 341 342 /* Force close aggregation */ 343 ipa_endpoint_force_close(endpoint); 344 345 ipa_interrupt_simulate_suspend(ipa->interrupt); 346 } 347 348 /* Returns previous suspend state (true means suspend was enabled) */ 349 static bool 350 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 351 { 352 bool suspended; 353 354 if (endpoint->ipa->version >= IPA_VERSION_4_0) 355 return enable; /* For IPA v4.0+, no change made */ 356 357 WARN_ON(endpoint->toward_ipa); 358 359 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 360 361 /* A client suspended with an open aggregation frame will not 362 * generate a SUSPEND IPA interrupt. If enabling suspend, have 363 * ipa_endpoint_suspend_aggr() handle this. 364 */ 365 if (enable && !suspended) 366 ipa_endpoint_suspend_aggr(endpoint); 367 368 return suspended; 369 } 370 371 /* Put all modem RX endpoints into suspend mode, and stop transmission 372 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is 373 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow 374 * control instead. 375 */ 376 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 377 { 378 u32 endpoint_id; 379 380 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 381 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 382 383 if (endpoint->ee_id != GSI_EE_MODEM) 384 continue; 385 386 if (!endpoint->toward_ipa) 387 (void)ipa_endpoint_program_suspend(endpoint, enable); 388 else if (ipa->version < IPA_VERSION_4_2) 389 ipa_endpoint_program_delay(endpoint, enable); 390 else 391 gsi_modem_channel_flow_control(&ipa->gsi, 392 endpoint->channel_id, 393 enable); 394 } 395 } 396 397 /* Reset all modem endpoints to use the default exception endpoint */ 398 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 399 { 400 u32 initialized = ipa->initialized; 401 struct gsi_trans *trans; 402 u32 count; 403 404 /* We need one command per modem TX endpoint. We can get an upper 405 * bound on that by assuming all initialized endpoints are modem->IPA. 406 * That won't happen, and we could be more precise, but this is fine 407 * for now. End the transaction with commands to clear the pipeline. 408 */ 409 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); 410 trans = ipa_cmd_trans_alloc(ipa, count); 411 if (!trans) { 412 dev_err(&ipa->pdev->dev, 413 "no transaction to reset modem exception endpoints\n"); 414 return -EBUSY; 415 } 416 417 while (initialized) { 418 u32 endpoint_id = __ffs(initialized); 419 struct ipa_endpoint *endpoint; 420 u32 offset; 421 422 initialized ^= BIT(endpoint_id); 423 424 /* We only reset modem TX endpoints */ 425 endpoint = &ipa->endpoint[endpoint_id]; 426 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 427 continue; 428 429 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 430 431 /* Value written is 0, and all bits are updated. That 432 * means status is disabled on the endpoint, and as a 433 * result all other fields in the register are ignored. 434 */ 435 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 436 } 437 438 ipa_cmd_pipeline_clear_add(trans); 439 440 /* XXX This should have a 1 second timeout */ 441 gsi_trans_commit_wait(trans); 442 443 ipa_cmd_pipeline_clear_wait(ipa); 444 445 return 0; 446 } 447 448 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 449 { 450 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 451 enum ipa_cs_offload_en enabled; 452 u32 val = 0; 453 454 /* FRAG_OFFLOAD_EN is 0 */ 455 if (endpoint->data->checksum) { 456 enum ipa_version version = endpoint->ipa->version; 457 458 if (endpoint->toward_ipa) { 459 u32 checksum_offset; 460 461 /* Checksum header offset is in 4-byte units */ 462 checksum_offset = sizeof(struct rmnet_map_header); 463 checksum_offset /= sizeof(u32); 464 val |= u32_encode_bits(checksum_offset, 465 CS_METADATA_HDR_OFFSET_FMASK); 466 467 enabled = version < IPA_VERSION_4_5 468 ? IPA_CS_OFFLOAD_UL 469 : IPA_CS_OFFLOAD_INLINE; 470 } else { 471 enabled = version < IPA_VERSION_4_5 472 ? IPA_CS_OFFLOAD_DL 473 : IPA_CS_OFFLOAD_INLINE; 474 } 475 } else { 476 enabled = IPA_CS_OFFLOAD_NONE; 477 } 478 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); 479 /* CS_GEN_QMB_MASTER_SEL is 0 */ 480 481 iowrite32(val, endpoint->ipa->reg_virt + offset); 482 } 483 484 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 485 { 486 u32 offset; 487 u32 val; 488 489 if (!endpoint->toward_ipa) 490 return; 491 492 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 493 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 494 495 iowrite32(val, endpoint->ipa->reg_virt + offset); 496 } 497 498 static u32 499 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 500 { 501 u32 header_size = sizeof(struct rmnet_map_header); 502 503 /* Without checksum offload, we just have the MAP header */ 504 if (!endpoint->data->checksum) 505 return header_size; 506 507 if (version < IPA_VERSION_4_5) { 508 /* Checksum header inserted for AP TX endpoints only */ 509 if (endpoint->toward_ipa) 510 header_size += sizeof(struct rmnet_map_ul_csum_header); 511 } else { 512 /* Checksum header is used in both directions */ 513 header_size += sizeof(struct rmnet_map_v5_csum_header); 514 } 515 516 return header_size; 517 } 518 519 /** 520 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 521 * @endpoint: Endpoint pointer 522 * 523 * We program QMAP endpoints so each packet received is preceded by a QMAP 524 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 525 * packet size field, and we have the IPA hardware populate both for each 526 * received packet. The header is configured (in the HDR_EXT register) 527 * to use big endian format. 528 * 529 * The packet size is written into the QMAP header's pkt_len field. That 530 * location is defined here using the HDR_OFST_PKT_SIZE field. 531 * 532 * The mux_id comes from a 4-byte metadata value supplied with each packet 533 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 534 * value that we want, in its low-order byte. A bitmask defined in the 535 * endpoint's METADATA_MASK register defines which byte within the modem 536 * metadata contains the mux_id. And the OFST_METADATA field programmed 537 * here indicates where the extracted byte should be placed within the QMAP 538 * header. 539 */ 540 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 541 { 542 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 543 struct ipa *ipa = endpoint->ipa; 544 u32 val = 0; 545 546 if (endpoint->data->qmap) { 547 enum ipa_version version = ipa->version; 548 size_t header_size; 549 550 header_size = ipa_qmap_header_size(version, endpoint); 551 val = ipa_header_size_encoded(version, header_size); 552 553 /* Define how to fill fields in a received QMAP header */ 554 if (!endpoint->toward_ipa) { 555 u32 offset; /* Field offset within header */ 556 557 /* Where IPA will write the metadata value */ 558 offset = offsetof(struct rmnet_map_header, mux_id); 559 val |= ipa_metadata_offset_encoded(version, offset); 560 561 /* Where IPA will write the length */ 562 offset = offsetof(struct rmnet_map_header, pkt_len); 563 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 564 if (version >= IPA_VERSION_4_5) 565 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 566 567 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 568 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 569 } 570 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 571 val |= HDR_OFST_METADATA_VALID_FMASK; 572 573 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 574 /* HDR_A5_MUX is 0 */ 575 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 576 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 577 } 578 579 iowrite32(val, ipa->reg_virt + offset); 580 } 581 582 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 583 { 584 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 585 u32 pad_align = endpoint->data->rx.pad_align; 586 struct ipa *ipa = endpoint->ipa; 587 u32 val = 0; 588 589 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 590 591 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet 592 * driver assumes this field is meaningful in packets it receives, 593 * and assumes the header's payload length includes that padding. 594 * The RMNet driver does *not* pad packets it sends, however, so 595 * the pad field (although 0) should be ignored. 596 */ 597 if (endpoint->data->qmap && !endpoint->toward_ipa) { 598 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 599 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 600 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 601 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 602 } 603 604 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 605 if (!endpoint->toward_ipa) 606 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 607 608 /* IPA v4.5 adds some most-significant bits to a few fields, 609 * two of which are defined in the HDR (not HDR_EXT) register. 610 */ 611 if (ipa->version >= IPA_VERSION_4_5) { 612 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 613 if (endpoint->data->qmap && !endpoint->toward_ipa) { 614 u32 offset; 615 616 offset = offsetof(struct rmnet_map_header, pkt_len); 617 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 618 val |= u32_encode_bits(offset, 619 HDR_OFST_PKT_SIZE_MSB_FMASK); 620 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 621 } 622 } 623 iowrite32(val, ipa->reg_virt + offset); 624 } 625 626 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 627 { 628 u32 endpoint_id = endpoint->endpoint_id; 629 u32 val = 0; 630 u32 offset; 631 632 if (endpoint->toward_ipa) 633 return; /* Register not valid for TX endpoints */ 634 635 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 636 637 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 638 if (endpoint->data->qmap) 639 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 640 641 iowrite32(val, endpoint->ipa->reg_virt + offset); 642 } 643 644 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 645 { 646 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 647 u32 val; 648 649 if (!endpoint->toward_ipa) 650 return; /* Register not valid for RX endpoints */ 651 652 if (endpoint->data->dma_mode) { 653 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 654 u32 dma_endpoint_id; 655 656 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 657 658 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 659 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 660 } else { 661 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 662 } 663 /* All other bits unspecified (and 0) */ 664 665 iowrite32(val, endpoint->ipa->reg_virt + offset); 666 } 667 668 /* Compute the aggregation size value to use for a given buffer size */ 669 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 670 { 671 /* We don't use "hard byte limit" aggregation, so we define the 672 * aggregation limit such that our buffer has enough space *after* 673 * that limit to receive a full MTU of data, plus overhead. 674 */ 675 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 676 677 return rx_buffer_size / SZ_1K; 678 } 679 680 /* Encoded values for AGGR endpoint register fields */ 681 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 682 { 683 if (version < IPA_VERSION_4_5) 684 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 685 686 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 687 } 688 689 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 690 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 691 { 692 u32 gran_sel; 693 u32 fmask; 694 u32 val; 695 696 if (version < IPA_VERSION_4_5) { 697 /* We set aggregation granularity in ipa_hardware_config() */ 698 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 699 700 return u32_encode_bits(limit, aggr_time_limit_fmask(true)); 701 } 702 703 /* IPA v4.5 expresses the time limit using Qtime. The AP has 704 * pulse generators 0 and 1 available, which were configured 705 * in ipa_qtime_config() to have granularity 100 usec and 706 * 1 msec, respectively. Use pulse generator 0 if possible, 707 * otherwise fall back to pulse generator 1. 708 */ 709 fmask = aggr_time_limit_fmask(false); 710 val = DIV_ROUND_CLOSEST(limit, 100); 711 if (val > field_max(fmask)) { 712 /* Have to use pulse generator 1 (millisecond granularity) */ 713 gran_sel = AGGR_GRAN_SEL_FMASK; 714 val = DIV_ROUND_CLOSEST(limit, 1000); 715 } else { 716 /* We can use pulse generator 0 (100 usec granularity) */ 717 gran_sel = 0; 718 } 719 720 return gran_sel | u32_encode_bits(val, fmask); 721 } 722 723 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 724 { 725 u32 val = enabled ? 1 : 0; 726 727 if (version < IPA_VERSION_4_5) 728 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 729 730 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 731 } 732 733 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 734 { 735 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 736 enum ipa_version version = endpoint->ipa->version; 737 u32 val = 0; 738 739 if (endpoint->data->aggregation) { 740 if (!endpoint->toward_ipa) { 741 const struct ipa_endpoint_rx_data *rx_data; 742 bool close_eof; 743 u32 limit; 744 745 rx_data = &endpoint->data->rx; 746 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 747 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 748 749 limit = ipa_aggr_size_kb(rx_data->buffer_size); 750 val |= aggr_byte_limit_encoded(version, limit); 751 752 limit = IPA_AGGR_TIME_LIMIT; 753 val |= aggr_time_limit_encoded(version, limit); 754 755 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 756 757 close_eof = rx_data->aggr_close_eof; 758 val |= aggr_sw_eof_active_encoded(version, close_eof); 759 760 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 761 } else { 762 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 763 AGGR_EN_FMASK); 764 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 765 /* other fields ignored */ 766 } 767 /* AGGR_FORCE_CLOSE is 0 */ 768 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 769 } else { 770 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 771 /* other fields ignored */ 772 } 773 774 iowrite32(val, endpoint->ipa->reg_virt + offset); 775 } 776 777 /* Return the Qtime-based head-of-line blocking timer value that 778 * represents the given number of microseconds. The result 779 * includes both the timer value and the selected timer granularity. 780 */ 781 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 782 { 783 u32 gran_sel; 784 u32 val; 785 786 /* IPA v4.5 expresses time limits using Qtime. The AP has 787 * pulse generators 0 and 1 available, which were configured 788 * in ipa_qtime_config() to have granularity 100 usec and 789 * 1 msec, respectively. Use pulse generator 0 if possible, 790 * otherwise fall back to pulse generator 1. 791 */ 792 val = DIV_ROUND_CLOSEST(microseconds, 100); 793 if (val > field_max(TIME_LIMIT_FMASK)) { 794 /* Have to use pulse generator 1 (millisecond granularity) */ 795 gran_sel = GRAN_SEL_FMASK; 796 val = DIV_ROUND_CLOSEST(microseconds, 1000); 797 } else { 798 /* We can use pulse generator 0 (100 usec granularity) */ 799 gran_sel = 0; 800 } 801 802 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 803 } 804 805 /* The head-of-line blocking timer is defined as a tick count. For 806 * IPA version 4.5 the tick count is based on the Qtimer, which is 807 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 808 * each tick represents 128 cycles of the IPA core clock. 809 * 810 * Return the encoded value that should be written to that register 811 * that represents the timeout period provided. For IPA v4.2 this 812 * encodes a base and scale value, while for earlier versions the 813 * value is a simple tick count. 814 */ 815 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 816 { 817 u32 width; 818 u32 scale; 819 u64 ticks; 820 u64 rate; 821 u32 high; 822 u32 val; 823 824 if (!microseconds) 825 return 0; /* Nothing to compute if timer period is 0 */ 826 827 if (ipa->version >= IPA_VERSION_4_5) 828 return hol_block_timer_qtime_val(ipa, microseconds); 829 830 /* Use 64 bit arithmetic to avoid overflow... */ 831 rate = ipa_core_clock_rate(ipa); 832 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 833 /* ...but we still need to fit into a 32-bit register */ 834 WARN_ON(ticks > U32_MAX); 835 836 /* IPA v3.5.1 through v4.1 just record the tick count */ 837 if (ipa->version < IPA_VERSION_4_2) 838 return (u32)ticks; 839 840 /* For IPA v4.2, the tick count is represented by base and 841 * scale fields within the 32-bit timer register, where: 842 * ticks = base << scale; 843 * The best precision is achieved when the base value is as 844 * large as possible. Find the highest set bit in the tick 845 * count, and extract the number of bits in the base field 846 * such that high bit is included. 847 */ 848 high = fls(ticks); /* 1..32 */ 849 width = HWEIGHT32(BASE_VALUE_FMASK); 850 scale = high > width ? high - width : 0; 851 if (scale) { 852 /* If we're scaling, round up to get a closer result */ 853 ticks += 1 << (scale - 1); 854 /* High bit was set, so rounding might have affected it */ 855 if (fls(ticks) != high) 856 scale++; 857 } 858 859 val = u32_encode_bits(scale, SCALE_FMASK); 860 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 861 862 return val; 863 } 864 865 /* If microseconds is 0, timeout is immediate */ 866 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 867 u32 microseconds) 868 { 869 u32 endpoint_id = endpoint->endpoint_id; 870 struct ipa *ipa = endpoint->ipa; 871 u32 offset; 872 u32 val; 873 874 /* This should only be changed when HOL_BLOCK_EN is disabled */ 875 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 876 val = hol_block_timer_val(ipa, microseconds); 877 iowrite32(val, ipa->reg_virt + offset); 878 } 879 880 static void 881 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) 882 { 883 u32 endpoint_id = endpoint->endpoint_id; 884 u32 offset; 885 u32 val; 886 887 val = enable ? HOL_BLOCK_EN_FMASK : 0; 888 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 889 iowrite32(val, endpoint->ipa->reg_virt + offset); 890 /* When enabling, the register must be written twice for IPA v4.5+ */ 891 if (enable && endpoint->ipa->version >= IPA_VERSION_4_5) 892 iowrite32(val, endpoint->ipa->reg_virt + offset); 893 } 894 895 /* Assumes HOL_BLOCK is in disabled state */ 896 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, 897 u32 microseconds) 898 { 899 ipa_endpoint_init_hol_block_timer(endpoint, microseconds); 900 ipa_endpoint_init_hol_block_en(endpoint, true); 901 } 902 903 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) 904 { 905 ipa_endpoint_init_hol_block_en(endpoint, false); 906 } 907 908 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 909 { 910 u32 i; 911 912 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 913 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 914 915 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 916 continue; 917 918 ipa_endpoint_init_hol_block_disable(endpoint); 919 ipa_endpoint_init_hol_block_enable(endpoint, 0); 920 } 921 } 922 923 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 924 { 925 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 926 u32 val = 0; 927 928 if (!endpoint->toward_ipa) 929 return; /* Register not valid for RX endpoints */ 930 931 /* DEAGGR_HDR_LEN is 0 */ 932 /* PACKET_OFFSET_VALID is 0 */ 933 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 934 /* MAX_PACKET_LEN is 0 (not enforced) */ 935 936 iowrite32(val, endpoint->ipa->reg_virt + offset); 937 } 938 939 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 940 { 941 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 942 struct ipa *ipa = endpoint->ipa; 943 u32 val; 944 945 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); 946 iowrite32(val, ipa->reg_virt + offset); 947 } 948 949 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 950 { 951 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 952 u32 val = 0; 953 954 if (!endpoint->toward_ipa) 955 return; /* Register not valid for RX endpoints */ 956 957 /* Low-order byte configures primary packet processing */ 958 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK); 959 960 /* Second byte configures replicated packet processing */ 961 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type, 962 SEQ_REP_TYPE_FMASK); 963 964 iowrite32(val, endpoint->ipa->reg_virt + offset); 965 } 966 967 /** 968 * ipa_endpoint_skb_tx() - Transmit a socket buffer 969 * @endpoint: Endpoint pointer 970 * @skb: Socket buffer to send 971 * 972 * Returns: 0 if successful, or a negative error code 973 */ 974 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 975 { 976 struct gsi_trans *trans; 977 u32 nr_frags; 978 int ret; 979 980 /* Make sure source endpoint's TLV FIFO has enough entries to 981 * hold the linear portion of the skb and all its fragments. 982 * If not, see if we can linearize it before giving up. 983 */ 984 nr_frags = skb_shinfo(skb)->nr_frags; 985 if (1 + nr_frags > endpoint->trans_tre_max) { 986 if (skb_linearize(skb)) 987 return -E2BIG; 988 nr_frags = 0; 989 } 990 991 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 992 if (!trans) 993 return -EBUSY; 994 995 ret = gsi_trans_skb_add(trans, skb); 996 if (ret) 997 goto err_trans_free; 998 trans->data = skb; /* transaction owns skb now */ 999 1000 gsi_trans_commit(trans, !netdev_xmit_more()); 1001 1002 return 0; 1003 1004 err_trans_free: 1005 gsi_trans_free(trans); 1006 1007 return -ENOMEM; 1008 } 1009 1010 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 1011 { 1012 u32 endpoint_id = endpoint->endpoint_id; 1013 struct ipa *ipa = endpoint->ipa; 1014 u32 val = 0; 1015 u32 offset; 1016 1017 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 1018 1019 if (endpoint->data->status_enable) { 1020 val |= STATUS_EN_FMASK; 1021 if (endpoint->toward_ipa) { 1022 enum ipa_endpoint_name name; 1023 u32 status_endpoint_id; 1024 1025 name = endpoint->data->tx.status_endpoint; 1026 status_endpoint_id = ipa->name_map[name]->endpoint_id; 1027 1028 val |= u32_encode_bits(status_endpoint_id, 1029 STATUS_ENDP_FMASK); 1030 } 1031 /* STATUS_LOCATION is 0, meaning status element precedes 1032 * packet (not present for IPA v4.5) 1033 */ 1034 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 1035 } 1036 1037 iowrite32(val, ipa->reg_virt + offset); 1038 } 1039 1040 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, 1041 struct gsi_trans *trans) 1042 { 1043 struct page *page; 1044 u32 buffer_size; 1045 u32 offset; 1046 u32 len; 1047 int ret; 1048 1049 buffer_size = endpoint->data->rx.buffer_size; 1050 page = dev_alloc_pages(get_order(buffer_size)); 1051 if (!page) 1052 return -ENOMEM; 1053 1054 /* Offset the buffer to make space for skb headroom */ 1055 offset = NET_SKB_PAD; 1056 len = buffer_size - offset; 1057 1058 ret = gsi_trans_page_add(trans, page, len, offset); 1059 if (ret) 1060 __free_pages(page, get_order(buffer_size)); 1061 else 1062 trans->data = page; /* transaction owns page now */ 1063 1064 return ret; 1065 } 1066 1067 /** 1068 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1069 * @endpoint: Endpoint to be replenished 1070 * 1071 * The IPA hardware can hold a fixed number of receive buffers for an RX 1072 * endpoint, based on the number of entries in the underlying channel ring 1073 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1074 * more receive buffers can be supplied to the hardware. Replenishing for 1075 * an endpoint can be disabled, in which case buffers are not queued to 1076 * the hardware. 1077 */ 1078 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) 1079 { 1080 struct gsi_trans *trans; 1081 1082 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) 1083 return; 1084 1085 /* Skip it if it's already active */ 1086 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) 1087 return; 1088 1089 while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) { 1090 bool doorbell; 1091 1092 if (ipa_endpoint_replenish_one(endpoint, trans)) 1093 goto try_again_later; 1094 1095 1096 /* Ring the doorbell if we've got a full batch */ 1097 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); 1098 gsi_trans_commit(trans, doorbell); 1099 } 1100 1101 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1102 1103 return; 1104 1105 try_again_later: 1106 gsi_trans_free(trans); 1107 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1108 1109 /* Whenever a receive buffer transaction completes we'll try to 1110 * replenish again. It's unlikely, but if we fail to supply even 1111 * one buffer, nothing will trigger another replenish attempt. 1112 * If the hardware has no receive buffers queued, schedule work to 1113 * try replenishing again. 1114 */ 1115 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1116 schedule_delayed_work(&endpoint->replenish_work, 1117 msecs_to_jiffies(1)); 1118 } 1119 1120 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1121 { 1122 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1123 1124 /* Start replenishing if hardware currently has no buffers */ 1125 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1126 ipa_endpoint_replenish(endpoint); 1127 } 1128 1129 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1130 { 1131 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1132 } 1133 1134 static void ipa_endpoint_replenish_work(struct work_struct *work) 1135 { 1136 struct delayed_work *dwork = to_delayed_work(work); 1137 struct ipa_endpoint *endpoint; 1138 1139 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1140 1141 ipa_endpoint_replenish(endpoint); 1142 } 1143 1144 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1145 void *data, u32 len, u32 extra) 1146 { 1147 struct sk_buff *skb; 1148 1149 if (!endpoint->netdev) 1150 return; 1151 1152 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1153 if (!skb) 1154 return; 1155 1156 /* Copy the data into the socket buffer and receive it */ 1157 skb_put(skb, len); 1158 memcpy(skb->data, data, len); 1159 skb->truesize += extra; 1160 1161 ipa_modem_skb_rx(endpoint->netdev, skb); 1162 } 1163 1164 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1165 struct page *page, u32 len) 1166 { 1167 u32 buffer_size = endpoint->data->rx.buffer_size; 1168 struct sk_buff *skb; 1169 1170 /* Nothing to do if there's no netdev */ 1171 if (!endpoint->netdev) 1172 return false; 1173 1174 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); 1175 1176 skb = build_skb(page_address(page), buffer_size); 1177 if (skb) { 1178 /* Reserve the headroom and account for the data */ 1179 skb_reserve(skb, NET_SKB_PAD); 1180 skb_put(skb, len); 1181 } 1182 1183 /* Receive the buffer (or record drop if unable to build it) */ 1184 ipa_modem_skb_rx(endpoint->netdev, skb); 1185 1186 return skb != NULL; 1187 } 1188 1189 /* The format of a packet status element is the same for several status 1190 * types (opcodes). Other types aren't currently supported. 1191 */ 1192 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1193 { 1194 switch (opcode) { 1195 case IPA_STATUS_OPCODE_PACKET: 1196 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1197 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1198 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1199 return true; 1200 default: 1201 return false; 1202 } 1203 } 1204 1205 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1206 const struct ipa_status *status) 1207 { 1208 u32 endpoint_id; 1209 1210 if (!ipa_status_format_packet(status->opcode)) 1211 return true; 1212 if (!status->pkt_len) 1213 return true; 1214 endpoint_id = u8_get_bits(status->endp_dst_idx, 1215 IPA_STATUS_DST_IDX_FMASK); 1216 if (endpoint_id != endpoint->endpoint_id) 1217 return true; 1218 1219 return false; /* Don't skip this packet, process it */ 1220 } 1221 1222 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1223 const struct ipa_status *status) 1224 { 1225 struct ipa_endpoint *command_endpoint; 1226 struct ipa *ipa = endpoint->ipa; 1227 u32 endpoint_id; 1228 1229 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1230 return false; /* No valid tag */ 1231 1232 /* The status contains a valid tag. We know the packet was sent to 1233 * this endpoint (already verified by ipa_endpoint_status_skip()). 1234 * If the packet came from the AP->command TX endpoint we know 1235 * this packet was sent as part of the pipeline clear process. 1236 */ 1237 endpoint_id = u8_get_bits(status->endp_src_idx, 1238 IPA_STATUS_SRC_IDX_FMASK); 1239 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1240 if (endpoint_id == command_endpoint->endpoint_id) { 1241 complete(&ipa->completion); 1242 } else { 1243 dev_err(&ipa->pdev->dev, 1244 "unexpected tagged packet from endpoint %u\n", 1245 endpoint_id); 1246 } 1247 1248 return true; 1249 } 1250 1251 /* Return whether the status indicates the packet should be dropped */ 1252 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1253 const struct ipa_status *status) 1254 { 1255 u32 val; 1256 1257 /* If the status indicates a tagged transfer, we'll drop the packet */ 1258 if (ipa_endpoint_status_tag(endpoint, status)) 1259 return true; 1260 1261 /* Deaggregation exceptions we drop; all other types we consume */ 1262 if (status->exception) 1263 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1264 1265 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1266 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1267 1268 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1269 } 1270 1271 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1272 struct page *page, u32 total_len) 1273 { 1274 u32 buffer_size = endpoint->data->rx.buffer_size; 1275 void *data = page_address(page) + NET_SKB_PAD; 1276 u32 unused = buffer_size - total_len; 1277 u32 resid = total_len; 1278 1279 while (resid) { 1280 const struct ipa_status *status = data; 1281 u32 align; 1282 u32 len; 1283 1284 if (resid < sizeof(*status)) { 1285 dev_err(&endpoint->ipa->pdev->dev, 1286 "short message (%u bytes < %zu byte status)\n", 1287 resid, sizeof(*status)); 1288 break; 1289 } 1290 1291 /* Skip over status packets that lack packet data */ 1292 if (ipa_endpoint_status_skip(endpoint, status)) { 1293 data += sizeof(*status); 1294 resid -= sizeof(*status); 1295 continue; 1296 } 1297 1298 /* Compute the amount of buffer space consumed by the packet, 1299 * including the status element. If the hardware is configured 1300 * to pad packet data to an aligned boundary, account for that. 1301 * And if checksum offload is enabled a trailer containing 1302 * computed checksum information will be appended. 1303 */ 1304 align = endpoint->data->rx.pad_align ? : 1; 1305 len = le16_to_cpu(status->pkt_len); 1306 len = sizeof(*status) + ALIGN(len, align); 1307 if (endpoint->data->checksum) 1308 len += sizeof(struct rmnet_map_dl_csum_trailer); 1309 1310 if (!ipa_endpoint_status_drop(endpoint, status)) { 1311 void *data2; 1312 u32 extra; 1313 u32 len2; 1314 1315 /* Client receives only packet data (no status) */ 1316 data2 = data + sizeof(*status); 1317 len2 = le16_to_cpu(status->pkt_len); 1318 1319 /* Have the true size reflect the extra unused space in 1320 * the original receive buffer. Distribute the "cost" 1321 * proportionately across all aggregated packets in the 1322 * buffer. 1323 */ 1324 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1325 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1326 } 1327 1328 /* Consume status and the full packet it describes */ 1329 data += len; 1330 resid -= len; 1331 } 1332 } 1333 1334 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1335 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1336 struct gsi_trans *trans) 1337 { 1338 } 1339 1340 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1341 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1342 struct gsi_trans *trans) 1343 { 1344 struct page *page; 1345 1346 if (trans->cancelled) 1347 goto done; 1348 1349 /* Parse or build a socket buffer using the actual received length */ 1350 page = trans->data; 1351 if (endpoint->data->status_enable) 1352 ipa_endpoint_status_parse(endpoint, page, trans->len); 1353 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1354 trans->data = NULL; /* Pages have been consumed */ 1355 done: 1356 ipa_endpoint_replenish(endpoint); 1357 } 1358 1359 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1360 struct gsi_trans *trans) 1361 { 1362 if (endpoint->toward_ipa) 1363 ipa_endpoint_tx_complete(endpoint, trans); 1364 else 1365 ipa_endpoint_rx_complete(endpoint, trans); 1366 } 1367 1368 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1369 struct gsi_trans *trans) 1370 { 1371 if (endpoint->toward_ipa) { 1372 struct ipa *ipa = endpoint->ipa; 1373 1374 /* Nothing to do for command transactions */ 1375 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1376 struct sk_buff *skb = trans->data; 1377 1378 if (skb) 1379 dev_kfree_skb_any(skb); 1380 } 1381 } else { 1382 struct page *page = trans->data; 1383 1384 if (page) { 1385 u32 buffer_size = endpoint->data->rx.buffer_size; 1386 1387 __free_pages(page, get_order(buffer_size)); 1388 } 1389 } 1390 } 1391 1392 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1393 { 1394 u32 val; 1395 1396 /* ROUTE_DIS is 0 */ 1397 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1398 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1399 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1400 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1401 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1402 1403 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1404 } 1405 1406 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1407 { 1408 ipa_endpoint_default_route_set(ipa, 0); 1409 } 1410 1411 /** 1412 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1413 * @endpoint: Endpoint to be reset 1414 * 1415 * If aggregation is active on an RX endpoint when a reset is performed 1416 * on its underlying GSI channel, a special sequence of actions must be 1417 * taken to ensure the IPA pipeline is properly cleared. 1418 * 1419 * Return: 0 if successful, or a negative error code 1420 */ 1421 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1422 { 1423 struct device *dev = &endpoint->ipa->pdev->dev; 1424 struct ipa *ipa = endpoint->ipa; 1425 struct gsi *gsi = &ipa->gsi; 1426 bool suspended = false; 1427 dma_addr_t addr; 1428 u32 retries; 1429 u32 len = 1; 1430 void *virt; 1431 int ret; 1432 1433 virt = kzalloc(len, GFP_KERNEL); 1434 if (!virt) 1435 return -ENOMEM; 1436 1437 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1438 if (dma_mapping_error(dev, addr)) { 1439 ret = -ENOMEM; 1440 goto out_kfree; 1441 } 1442 1443 /* Force close aggregation before issuing the reset */ 1444 ipa_endpoint_force_close(endpoint); 1445 1446 /* Reset and reconfigure the channel with the doorbell engine 1447 * disabled. Then poll until we know aggregation is no longer 1448 * active. We'll re-enable the doorbell (if appropriate) when 1449 * we reset again below. 1450 */ 1451 gsi_channel_reset(gsi, endpoint->channel_id, false); 1452 1453 /* Make sure the channel isn't suspended */ 1454 suspended = ipa_endpoint_program_suspend(endpoint, false); 1455 1456 /* Start channel and do a 1 byte read */ 1457 ret = gsi_channel_start(gsi, endpoint->channel_id); 1458 if (ret) 1459 goto out_suspend_again; 1460 1461 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1462 if (ret) 1463 goto err_endpoint_stop; 1464 1465 /* Wait for aggregation to be closed on the channel */ 1466 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1467 do { 1468 if (!ipa_endpoint_aggr_active(endpoint)) 1469 break; 1470 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1471 } while (retries--); 1472 1473 /* Check one last time */ 1474 if (ipa_endpoint_aggr_active(endpoint)) 1475 dev_err(dev, "endpoint %u still active during reset\n", 1476 endpoint->endpoint_id); 1477 1478 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1479 1480 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1481 if (ret) 1482 goto out_suspend_again; 1483 1484 /* Finally, reset and reconfigure the channel again (re-enabling 1485 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1486 * complete the channel reset sequence. Finish by suspending the 1487 * channel again (if necessary). 1488 */ 1489 gsi_channel_reset(gsi, endpoint->channel_id, true); 1490 1491 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1492 1493 goto out_suspend_again; 1494 1495 err_endpoint_stop: 1496 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1497 out_suspend_again: 1498 if (suspended) 1499 (void)ipa_endpoint_program_suspend(endpoint, true); 1500 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1501 out_kfree: 1502 kfree(virt); 1503 1504 return ret; 1505 } 1506 1507 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1508 { 1509 u32 channel_id = endpoint->channel_id; 1510 struct ipa *ipa = endpoint->ipa; 1511 bool special; 1512 int ret = 0; 1513 1514 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1515 * is active, we need to handle things specially to recover. 1516 * All other cases just need to reset the underlying GSI channel. 1517 */ 1518 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1519 endpoint->data->aggregation; 1520 if (special && ipa_endpoint_aggr_active(endpoint)) 1521 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1522 else 1523 gsi_channel_reset(&ipa->gsi, channel_id, true); 1524 1525 if (ret) 1526 dev_err(&ipa->pdev->dev, 1527 "error %d resetting channel %u for endpoint %u\n", 1528 ret, endpoint->channel_id, endpoint->endpoint_id); 1529 } 1530 1531 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1532 { 1533 if (endpoint->toward_ipa) { 1534 /* Newer versions of IPA use GSI channel flow control 1535 * instead of endpoint DELAY mode to prevent sending data. 1536 * Flow control is disabled for newly-allocated channels, 1537 * and we can assume flow control is not (ever) enabled 1538 * for AP TX channels. 1539 */ 1540 if (endpoint->ipa->version < IPA_VERSION_4_2) 1541 ipa_endpoint_program_delay(endpoint, false); 1542 } else { 1543 /* Ensure suspend mode is off on all AP RX endpoints */ 1544 (void)ipa_endpoint_program_suspend(endpoint, false); 1545 } 1546 ipa_endpoint_init_cfg(endpoint); 1547 ipa_endpoint_init_nat(endpoint); 1548 ipa_endpoint_init_hdr(endpoint); 1549 ipa_endpoint_init_hdr_ext(endpoint); 1550 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1551 ipa_endpoint_init_mode(endpoint); 1552 ipa_endpoint_init_aggr(endpoint); 1553 if (!endpoint->toward_ipa) 1554 ipa_endpoint_init_hol_block_disable(endpoint); 1555 ipa_endpoint_init_deaggr(endpoint); 1556 ipa_endpoint_init_rsrc_grp(endpoint); 1557 ipa_endpoint_init_seq(endpoint); 1558 ipa_endpoint_status(endpoint); 1559 } 1560 1561 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1562 { 1563 struct ipa *ipa = endpoint->ipa; 1564 struct gsi *gsi = &ipa->gsi; 1565 int ret; 1566 1567 ret = gsi_channel_start(gsi, endpoint->channel_id); 1568 if (ret) { 1569 dev_err(&ipa->pdev->dev, 1570 "error %d starting %cX channel %u for endpoint %u\n", 1571 ret, endpoint->toward_ipa ? 'T' : 'R', 1572 endpoint->channel_id, endpoint->endpoint_id); 1573 return ret; 1574 } 1575 1576 if (!endpoint->toward_ipa) { 1577 ipa_interrupt_suspend_enable(ipa->interrupt, 1578 endpoint->endpoint_id); 1579 ipa_endpoint_replenish_enable(endpoint); 1580 } 1581 1582 ipa->enabled |= BIT(endpoint->endpoint_id); 1583 1584 return 0; 1585 } 1586 1587 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1588 { 1589 u32 mask = BIT(endpoint->endpoint_id); 1590 struct ipa *ipa = endpoint->ipa; 1591 struct gsi *gsi = &ipa->gsi; 1592 int ret; 1593 1594 if (!(ipa->enabled & mask)) 1595 return; 1596 1597 ipa->enabled ^= mask; 1598 1599 if (!endpoint->toward_ipa) { 1600 ipa_endpoint_replenish_disable(endpoint); 1601 ipa_interrupt_suspend_disable(ipa->interrupt, 1602 endpoint->endpoint_id); 1603 } 1604 1605 /* Note that if stop fails, the channel's state is not well-defined */ 1606 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1607 if (ret) 1608 dev_err(&ipa->pdev->dev, 1609 "error %d attempting to stop endpoint %u\n", ret, 1610 endpoint->endpoint_id); 1611 } 1612 1613 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1614 { 1615 struct device *dev = &endpoint->ipa->pdev->dev; 1616 struct gsi *gsi = &endpoint->ipa->gsi; 1617 int ret; 1618 1619 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1620 return; 1621 1622 if (!endpoint->toward_ipa) { 1623 ipa_endpoint_replenish_disable(endpoint); 1624 (void)ipa_endpoint_program_suspend(endpoint, true); 1625 } 1626 1627 ret = gsi_channel_suspend(gsi, endpoint->channel_id); 1628 if (ret) 1629 dev_err(dev, "error %d suspending channel %u\n", ret, 1630 endpoint->channel_id); 1631 } 1632 1633 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1634 { 1635 struct device *dev = &endpoint->ipa->pdev->dev; 1636 struct gsi *gsi = &endpoint->ipa->gsi; 1637 int ret; 1638 1639 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1640 return; 1641 1642 if (!endpoint->toward_ipa) 1643 (void)ipa_endpoint_program_suspend(endpoint, false); 1644 1645 ret = gsi_channel_resume(gsi, endpoint->channel_id); 1646 if (ret) 1647 dev_err(dev, "error %d resuming channel %u\n", ret, 1648 endpoint->channel_id); 1649 else if (!endpoint->toward_ipa) 1650 ipa_endpoint_replenish_enable(endpoint); 1651 } 1652 1653 void ipa_endpoint_suspend(struct ipa *ipa) 1654 { 1655 if (!ipa->setup_complete) 1656 return; 1657 1658 if (ipa->modem_netdev) 1659 ipa_modem_suspend(ipa->modem_netdev); 1660 1661 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1662 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1663 } 1664 1665 void ipa_endpoint_resume(struct ipa *ipa) 1666 { 1667 if (!ipa->setup_complete) 1668 return; 1669 1670 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1671 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1672 1673 if (ipa->modem_netdev) 1674 ipa_modem_resume(ipa->modem_netdev); 1675 } 1676 1677 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1678 { 1679 struct gsi *gsi = &endpoint->ipa->gsi; 1680 u32 channel_id = endpoint->channel_id; 1681 1682 /* Only AP endpoints get set up */ 1683 if (endpoint->ee_id != GSI_EE_AP) 1684 return; 1685 1686 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1687 if (!endpoint->toward_ipa) { 1688 /* RX transactions require a single TRE, so the maximum 1689 * backlog is the same as the maximum outstanding TREs. 1690 */ 1691 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1692 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1693 INIT_DELAYED_WORK(&endpoint->replenish_work, 1694 ipa_endpoint_replenish_work); 1695 } 1696 1697 ipa_endpoint_program(endpoint); 1698 1699 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1700 } 1701 1702 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1703 { 1704 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1705 1706 if (!endpoint->toward_ipa) 1707 cancel_delayed_work_sync(&endpoint->replenish_work); 1708 1709 ipa_endpoint_reset(endpoint); 1710 } 1711 1712 void ipa_endpoint_setup(struct ipa *ipa) 1713 { 1714 u32 initialized = ipa->initialized; 1715 1716 ipa->set_up = 0; 1717 while (initialized) { 1718 u32 endpoint_id = __ffs(initialized); 1719 1720 initialized ^= BIT(endpoint_id); 1721 1722 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1723 } 1724 } 1725 1726 void ipa_endpoint_teardown(struct ipa *ipa) 1727 { 1728 u32 set_up = ipa->set_up; 1729 1730 while (set_up) { 1731 u32 endpoint_id = __fls(set_up); 1732 1733 set_up ^= BIT(endpoint_id); 1734 1735 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1736 } 1737 ipa->set_up = 0; 1738 } 1739 1740 int ipa_endpoint_config(struct ipa *ipa) 1741 { 1742 struct device *dev = &ipa->pdev->dev; 1743 u32 initialized; 1744 u32 rx_base; 1745 u32 rx_mask; 1746 u32 tx_mask; 1747 int ret = 0; 1748 u32 max; 1749 u32 val; 1750 1751 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. 1752 * Furthermore, the endpoints were not grouped such that TX 1753 * endpoint numbers started with 0 and RX endpoints had numbers 1754 * higher than all TX endpoints, so we can't do the simple 1755 * direction check used for newer hardware below. 1756 * 1757 * For hardware that doesn't support the FLAVOR_0 register, 1758 * just set the available mask to support any endpoint, and 1759 * assume the configuration is valid. 1760 */ 1761 if (ipa->version < IPA_VERSION_3_5) { 1762 ipa->available = ~0; 1763 return 0; 1764 } 1765 1766 /* Find out about the endpoints supplied by the hardware, and ensure 1767 * the highest one doesn't exceed the number we support. 1768 */ 1769 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1770 1771 /* Our RX is an IPA producer */ 1772 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1773 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1774 if (max > IPA_ENDPOINT_MAX) { 1775 dev_err(dev, "too many endpoints (%u > %u)\n", 1776 max, IPA_ENDPOINT_MAX); 1777 return -EINVAL; 1778 } 1779 rx_mask = GENMASK(max - 1, rx_base); 1780 1781 /* Our TX is an IPA consumer */ 1782 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1783 tx_mask = GENMASK(max - 1, 0); 1784 1785 ipa->available = rx_mask | tx_mask; 1786 1787 /* Check for initialized endpoints not supported by the hardware */ 1788 if (ipa->initialized & ~ipa->available) { 1789 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1790 ipa->initialized & ~ipa->available); 1791 ret = -EINVAL; /* Report other errors too */ 1792 } 1793 1794 initialized = ipa->initialized; 1795 while (initialized) { 1796 u32 endpoint_id = __ffs(initialized); 1797 struct ipa_endpoint *endpoint; 1798 1799 initialized ^= BIT(endpoint_id); 1800 1801 /* Make sure it's pointing in the right direction */ 1802 endpoint = &ipa->endpoint[endpoint_id]; 1803 if ((endpoint_id < rx_base) != endpoint->toward_ipa) { 1804 dev_err(dev, "endpoint id %u wrong direction\n", 1805 endpoint_id); 1806 ret = -EINVAL; 1807 } 1808 } 1809 1810 return ret; 1811 } 1812 1813 void ipa_endpoint_deconfig(struct ipa *ipa) 1814 { 1815 ipa->available = 0; /* Nothing more to do */ 1816 } 1817 1818 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1819 const struct ipa_gsi_endpoint_data *data) 1820 { 1821 struct ipa_endpoint *endpoint; 1822 1823 endpoint = &ipa->endpoint[data->endpoint_id]; 1824 1825 if (data->ee_id == GSI_EE_AP) 1826 ipa->channel_map[data->channel_id] = endpoint; 1827 ipa->name_map[name] = endpoint; 1828 1829 endpoint->ipa = ipa; 1830 endpoint->ee_id = data->ee_id; 1831 endpoint->channel_id = data->channel_id; 1832 endpoint->endpoint_id = data->endpoint_id; 1833 endpoint->toward_ipa = data->toward_ipa; 1834 endpoint->data = &data->endpoint.config; 1835 1836 ipa->initialized |= BIT(endpoint->endpoint_id); 1837 } 1838 1839 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1840 { 1841 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1842 1843 memset(endpoint, 0, sizeof(*endpoint)); 1844 } 1845 1846 void ipa_endpoint_exit(struct ipa *ipa) 1847 { 1848 u32 initialized = ipa->initialized; 1849 1850 while (initialized) { 1851 u32 endpoint_id = __fls(initialized); 1852 1853 initialized ^= BIT(endpoint_id); 1854 1855 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1856 } 1857 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1858 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1859 } 1860 1861 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1862 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1863 const struct ipa_gsi_endpoint_data *data) 1864 { 1865 enum ipa_endpoint_name name; 1866 u32 filter_map; 1867 1868 BUILD_BUG_ON(!IPA_REPLENISH_BATCH); 1869 1870 if (!ipa_endpoint_data_valid(ipa, count, data)) 1871 return 0; /* Error */ 1872 1873 ipa->initialized = 0; 1874 1875 filter_map = 0; 1876 for (name = 0; name < count; name++, data++) { 1877 if (ipa_gsi_endpoint_data_empty(data)) 1878 continue; /* Skip over empty slots */ 1879 1880 ipa_endpoint_init_one(ipa, name, data); 1881 1882 if (data->endpoint.filter_support) 1883 filter_map |= BIT(data->endpoint_id); 1884 } 1885 1886 if (!ipa_filter_map_valid(ipa, filter_map)) 1887 goto err_endpoint_exit; 1888 1889 return filter_map; /* Non-zero bitmask */ 1890 1891 err_endpoint_exit: 1892 ipa_endpoint_exit(ipa); 1893 1894 return 0; /* Error */ 1895 } 1896