xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision a03a91bd68cb00c615e602cf605e6be12bedaa90)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2023 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 /* Hardware is told about receive buffers once a "batch" has been queued */
27 #define IPA_REPLENISH_BATCH	16		/* Must be non-zero */
28 
29 /* The amount of RX buffer space consumed by standard skb overhead */
30 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
31 
32 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
33 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
34 
35 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
36 
37 /** enum ipa_status_opcode - IPA status opcode field hardware values */
38 enum ipa_status_opcode {				/* *Not* a bitmask */
39 	IPA_STATUS_OPCODE_PACKET		= 1,
40 	IPA_STATUS_OPCODE_NEW_RULE_PACKET	= 2,
41 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 4,
42 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 8,
43 	IPA_STATUS_OPCODE_LOG			= 16,
44 	IPA_STATUS_OPCODE_DCMP			= 32,
45 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 64,
46 };
47 
48 /** enum ipa_status_exception - IPA status exception field hardware values */
49 enum ipa_status_exception {				/* *Not* a bitmask */
50 	/* 0 means no exception */
51 	IPA_STATUS_EXCEPTION_DEAGGR		= 1,
52 	IPA_STATUS_EXCEPTION_IPTYPE		= 4,
53 	IPA_STATUS_EXCEPTION_PACKET_LENGTH	= 8,
54 	IPA_STATUS_EXCEPTION_FRAG_RULE_MISS	= 16,
55 	IPA_STATUS_EXCEPTION_SW_FILTER		= 32,
56 	IPA_STATUS_EXCEPTION_NAT		= 64,		/* IPv4 */
57 	IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK	= 64,		/* IPv6 */
58 	IPA_STATUS_EXCEPTION_UC			= 128,
59 	IPA_STATUS_EXCEPTION_INVALID_ENDPOINT	= 129,
60 	IPA_STATUS_EXCEPTION_HEADER_INSERT	= 136,
61 	IPA_STATUS_EXCEPTION_CHEKCSUM		= 229,
62 };
63 
64 /** enum ipa_status_mask - IPA status mask field bitmask hardware values */
65 enum ipa_status_mask {
66 	IPA_STATUS_MASK_FRAG_PROCESS		= BIT(0),
67 	IPA_STATUS_MASK_FILT_PROCESS		= BIT(1),
68 	IPA_STATUS_MASK_NAT_PROCESS		= BIT(2),
69 	IPA_STATUS_MASK_ROUTE_PROCESS		= BIT(3),
70 	IPA_STATUS_MASK_TAG_VALID		= BIT(4),
71 	IPA_STATUS_MASK_FRAGMENT		= BIT(5),
72 	IPA_STATUS_MASK_FIRST_FRAGMENT		= BIT(6),
73 	IPA_STATUS_MASK_V4			= BIT(7),
74 	IPA_STATUS_MASK_CKSUM_PROCESS		= BIT(8),
75 	IPA_STATUS_MASK_AGGR_PROCESS		= BIT(9),
76 	IPA_STATUS_MASK_DEST_EOT		= BIT(10),
77 	IPA_STATUS_MASK_DEAGGR_PROCESS		= BIT(11),
78 	IPA_STATUS_MASK_DEAGG_FIRST		= BIT(12),
79 	IPA_STATUS_MASK_SRC_EOT			= BIT(13),
80 	IPA_STATUS_MASK_PREV_EOT		= BIT(14),
81 	IPA_STATUS_MASK_BYTE_LIMIT		= BIT(15),
82 };
83 
84 /* Special IPA filter/router rule field value indicating "rule miss" */
85 #define IPA_STATUS_RULE_MISS	0x3ff	/* 10-bit filter/router rule fields */
86 
87 /** The IPA status nat_type field uses enum ipa_nat_type hardware values */
88 
89 /* enum ipa_status_field_id - IPA packet status structure field identifiers */
90 enum ipa_status_field_id {
91 	STATUS_OPCODE,			/* enum ipa_status_opcode */
92 	STATUS_EXCEPTION,		/* enum ipa_status_exception */
93 	STATUS_MASK,			/* enum ipa_status_mask (bitmask) */
94 	STATUS_LENGTH,
95 	STATUS_SRC_ENDPOINT,
96 	STATUS_DST_ENDPOINT,
97 	STATUS_METADATA,
98 	STATUS_FILTER_LOCAL,		/* Boolean */
99 	STATUS_FILTER_HASH,		/* Boolean */
100 	STATUS_FILTER_GLOBAL,		/* Boolean */
101 	STATUS_FILTER_RETAIN,		/* Boolean */
102 	STATUS_FILTER_RULE_INDEX,
103 	STATUS_ROUTER_LOCAL,		/* Boolean */
104 	STATUS_ROUTER_HASH,		/* Boolean */
105 	STATUS_UCP,			/* Boolean */
106 	STATUS_ROUTER_TABLE,
107 	STATUS_ROUTER_RULE_INDEX,
108 	STATUS_NAT_HIT,			/* Boolean */
109 	STATUS_NAT_INDEX,
110 	STATUS_NAT_TYPE,		/* enum ipa_nat_type */
111 	STATUS_TAG_LOW32,		/* Low-order 32 bits of 48-bit tag */
112 	STATUS_TAG_HIGH16,		/* High-order 16 bits of 48-bit tag */
113 	STATUS_SEQUENCE,
114 	STATUS_TIME_OF_DAY,
115 	STATUS_HEADER_LOCAL,		/* Boolean */
116 	STATUS_HEADER_OFFSET,
117 	STATUS_FRAG_HIT,		/* Boolean */
118 	STATUS_FRAG_RULE_INDEX,
119 };
120 
121 /* Size in bytes of an IPA packet status structure */
122 #define IPA_STATUS_SIZE			sizeof(__le32[8])
123 
124 /* IPA status structure decoder; looks up field values for a structure */
125 static u32 ipa_status_extract(struct ipa *ipa, const void *data,
126 			      enum ipa_status_field_id field)
127 {
128 	enum ipa_version version = ipa->version;
129 	const __le32 *word = data;
130 
131 	switch (field) {
132 	case STATUS_OPCODE:
133 		return le32_get_bits(word[0], GENMASK(7, 0));
134 	case STATUS_EXCEPTION:
135 		return le32_get_bits(word[0], GENMASK(15, 8));
136 	case STATUS_MASK:
137 		return le32_get_bits(word[0], GENMASK(31, 16));
138 	case STATUS_LENGTH:
139 		return le32_get_bits(word[1], GENMASK(15, 0));
140 	case STATUS_SRC_ENDPOINT:
141 		if (version < IPA_VERSION_5_0)
142 			return le32_get_bits(word[1], GENMASK(20, 16));
143 		return le32_get_bits(word[1], GENMASK(23, 16));
144 	/* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */
145 	/* Status word 1, bits 24-26 are reserved (IPA v5.0+) */
146 	case STATUS_DST_ENDPOINT:
147 		if (version < IPA_VERSION_5_0)
148 			return le32_get_bits(word[1], GENMASK(28, 24));
149 		return le32_get_bits(word[7], GENMASK(23, 16));
150 	/* Status word 1, bits 29-31 are reserved */
151 	case STATUS_METADATA:
152 		return le32_to_cpu(word[2]);
153 	case STATUS_FILTER_LOCAL:
154 		return le32_get_bits(word[3], GENMASK(0, 0));
155 	case STATUS_FILTER_HASH:
156 		return le32_get_bits(word[3], GENMASK(1, 1));
157 	case STATUS_FILTER_GLOBAL:
158 		return le32_get_bits(word[3], GENMASK(2, 2));
159 	case STATUS_FILTER_RETAIN:
160 		return le32_get_bits(word[3], GENMASK(3, 3));
161 	case STATUS_FILTER_RULE_INDEX:
162 		return le32_get_bits(word[3], GENMASK(13, 4));
163 	/* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */
164 	case STATUS_ROUTER_LOCAL:
165 		if (version < IPA_VERSION_5_0)
166 			return le32_get_bits(word[3], GENMASK(14, 14));
167 		return le32_get_bits(word[1], GENMASK(27, 27));
168 	case STATUS_ROUTER_HASH:
169 		if (version < IPA_VERSION_5_0)
170 			return le32_get_bits(word[3], GENMASK(15, 15));
171 		return le32_get_bits(word[1], GENMASK(28, 28));
172 	case STATUS_UCP:
173 		if (version < IPA_VERSION_5_0)
174 			return le32_get_bits(word[3], GENMASK(16, 16));
175 		return le32_get_bits(word[7], GENMASK(31, 31));
176 	case STATUS_ROUTER_TABLE:
177 		if (version < IPA_VERSION_5_0)
178 			return le32_get_bits(word[3], GENMASK(21, 17));
179 		return le32_get_bits(word[3], GENMASK(21, 14));
180 	case STATUS_ROUTER_RULE_INDEX:
181 		return le32_get_bits(word[3], GENMASK(31, 22));
182 	case STATUS_NAT_HIT:
183 		return le32_get_bits(word[4], GENMASK(0, 0));
184 	case STATUS_NAT_INDEX:
185 		return le32_get_bits(word[4], GENMASK(13, 1));
186 	case STATUS_NAT_TYPE:
187 		return le32_get_bits(word[4], GENMASK(15, 14));
188 	case STATUS_TAG_LOW32:
189 		return le32_get_bits(word[4], GENMASK(31, 16)) |
190 			(le32_get_bits(word[5], GENMASK(15, 0)) << 16);
191 	case STATUS_TAG_HIGH16:
192 		return le32_get_bits(word[5], GENMASK(31, 16));
193 	case STATUS_SEQUENCE:
194 		return le32_get_bits(word[6], GENMASK(7, 0));
195 	case STATUS_TIME_OF_DAY:
196 		return le32_get_bits(word[6], GENMASK(31, 8));
197 	case STATUS_HEADER_LOCAL:
198 		return le32_get_bits(word[7], GENMASK(0, 0));
199 	case STATUS_HEADER_OFFSET:
200 		return le32_get_bits(word[7], GENMASK(10, 1));
201 	case STATUS_FRAG_HIT:
202 		return le32_get_bits(word[7], GENMASK(11, 11));
203 	case STATUS_FRAG_RULE_INDEX:
204 		return le32_get_bits(word[7], GENMASK(15, 12));
205 	/* Status word 7, bits 16-30 are reserved */
206 	/* Status word 7, bit 31 is reserved (not IPA v5.0+) */
207 	default:
208 		WARN(true, "%s: bad field_id %u\n", __func__, field);
209 		return 0;
210 	}
211 }
212 
213 /* Compute the aggregation size value to use for a given buffer size */
214 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
215 {
216 	/* A hard aggregation limit will not be crossed; aggregation closes
217 	 * if saving incoming data would cross the hard byte limit boundary.
218 	 *
219 	 * With a soft limit, aggregation closes *after* the size boundary
220 	 * has been crossed.  In that case the limit must leave enough space
221 	 * after that limit to receive a full MTU of data plus overhead.
222 	 */
223 	if (!aggr_hard_limit)
224 		rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
225 
226 	/* The byte limit is encoded as a number of kilobytes */
227 
228 	return rx_buffer_size / SZ_1K;
229 }
230 
231 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
232 			    const struct ipa_gsi_endpoint_data *all_data,
233 			    const struct ipa_gsi_endpoint_data *data)
234 {
235 	const struct ipa_gsi_endpoint_data *other_data;
236 	struct device *dev = &ipa->pdev->dev;
237 	enum ipa_endpoint_name other_name;
238 
239 	if (ipa_gsi_endpoint_data_empty(data))
240 		return true;
241 
242 	if (!data->toward_ipa) {
243 		const struct ipa_endpoint_rx *rx_config;
244 		const struct reg *reg;
245 		u32 buffer_size;
246 		u32 aggr_size;
247 		u32 limit;
248 
249 		if (data->endpoint.filter_support) {
250 			dev_err(dev, "filtering not supported for "
251 					"RX endpoint %u\n",
252 				data->endpoint_id);
253 			return false;
254 		}
255 
256 		/* Nothing more to check for non-AP RX */
257 		if (data->ee_id != GSI_EE_AP)
258 			return true;
259 
260 		rx_config = &data->endpoint.config.rx;
261 
262 		/* The buffer size must hold an MTU plus overhead */
263 		buffer_size = rx_config->buffer_size;
264 		limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
265 		if (buffer_size < limit) {
266 			dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
267 				data->endpoint_id, buffer_size, limit);
268 			return false;
269 		}
270 
271 		if (!data->endpoint.config.aggregation) {
272 			bool result = true;
273 
274 			/* No aggregation; check for bogus aggregation data */
275 			if (rx_config->aggr_time_limit) {
276 				dev_err(dev,
277 					"time limit with no aggregation for RX endpoint %u\n",
278 					data->endpoint_id);
279 				result = false;
280 			}
281 
282 			if (rx_config->aggr_hard_limit) {
283 				dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
284 					data->endpoint_id);
285 				result = false;
286 			}
287 
288 			if (rx_config->aggr_close_eof) {
289 				dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
290 					data->endpoint_id);
291 				result = false;
292 			}
293 
294 			return result;	/* Nothing more to check */
295 		}
296 
297 		/* For an endpoint supporting receive aggregation, the byte
298 		 * limit defines the point at which aggregation closes.  This
299 		 * check ensures the receive buffer size doesn't result in a
300 		 * limit that exceeds what's representable in the aggregation
301 		 * byte limit field.
302 		 */
303 		aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
304 					     rx_config->aggr_hard_limit);
305 		reg = ipa_reg(ipa, ENDP_INIT_AGGR);
306 
307 		limit = reg_field_max(reg, BYTE_LIMIT);
308 		if (aggr_size > limit) {
309 			dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
310 				data->endpoint_id, aggr_size, limit);
311 
312 			return false;
313 		}
314 
315 		return true;	/* Nothing more to check for RX */
316 	}
317 
318 	/* Starting with IPA v4.5 sequencer replication is obsolete */
319 	if (ipa->version >= IPA_VERSION_4_5) {
320 		if (data->endpoint.config.tx.seq_rep_type) {
321 			dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
322 				data->endpoint_id);
323 			return false;
324 		}
325 	}
326 
327 	if (data->endpoint.config.status_enable) {
328 		other_name = data->endpoint.config.tx.status_endpoint;
329 		if (other_name >= count) {
330 			dev_err(dev, "status endpoint name %u out of range "
331 					"for endpoint %u\n",
332 				other_name, data->endpoint_id);
333 			return false;
334 		}
335 
336 		/* Status endpoint must be defined... */
337 		other_data = &all_data[other_name];
338 		if (ipa_gsi_endpoint_data_empty(other_data)) {
339 			dev_err(dev, "DMA endpoint name %u undefined "
340 					"for endpoint %u\n",
341 				other_name, data->endpoint_id);
342 			return false;
343 		}
344 
345 		/* ...and has to be an RX endpoint... */
346 		if (other_data->toward_ipa) {
347 			dev_err(dev,
348 				"status endpoint for endpoint %u not RX\n",
349 				data->endpoint_id);
350 			return false;
351 		}
352 
353 		/* ...and if it's to be an AP endpoint... */
354 		if (other_data->ee_id == GSI_EE_AP) {
355 			/* ...make sure it has status enabled. */
356 			if (!other_data->endpoint.config.status_enable) {
357 				dev_err(dev,
358 					"status not enabled for endpoint %u\n",
359 					other_data->endpoint_id);
360 				return false;
361 			}
362 		}
363 	}
364 
365 	if (data->endpoint.config.dma_mode) {
366 		other_name = data->endpoint.config.dma_endpoint;
367 		if (other_name >= count) {
368 			dev_err(dev, "DMA endpoint name %u out of range "
369 					"for endpoint %u\n",
370 				other_name, data->endpoint_id);
371 			return false;
372 		}
373 
374 		other_data = &all_data[other_name];
375 		if (ipa_gsi_endpoint_data_empty(other_data)) {
376 			dev_err(dev, "DMA endpoint name %u undefined "
377 					"for endpoint %u\n",
378 				other_name, data->endpoint_id);
379 			return false;
380 		}
381 	}
382 
383 	return true;
384 }
385 
386 /* Validate endpoint configuration data.  Return max defined endpoint ID */
387 static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
388 			    const struct ipa_gsi_endpoint_data *data)
389 {
390 	const struct ipa_gsi_endpoint_data *dp = data;
391 	struct device *dev = &ipa->pdev->dev;
392 	enum ipa_endpoint_name name;
393 	u32 max;
394 
395 	if (count > IPA_ENDPOINT_COUNT) {
396 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
397 			count, IPA_ENDPOINT_COUNT);
398 		return 0;
399 	}
400 
401 	/* Make sure needed endpoints have defined data */
402 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
403 		dev_err(dev, "command TX endpoint not defined\n");
404 		return 0;
405 	}
406 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
407 		dev_err(dev, "LAN RX endpoint not defined\n");
408 		return 0;
409 	}
410 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
411 		dev_err(dev, "AP->modem TX endpoint not defined\n");
412 		return 0;
413 	}
414 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
415 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
416 		return 0;
417 	}
418 
419 	max = 0;
420 	for (name = 0; name < count; name++, dp++) {
421 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
422 			return 0;
423 		max = max_t(u32, max, dp->endpoint_id);
424 	}
425 
426 	return max;
427 }
428 
429 /* Allocate a transaction to use on a non-command endpoint */
430 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
431 						  u32 tre_count)
432 {
433 	struct gsi *gsi = &endpoint->ipa->gsi;
434 	u32 channel_id = endpoint->channel_id;
435 	enum dma_data_direction direction;
436 
437 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
438 
439 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
440 }
441 
442 /* suspend_delay represents suspend for RX, delay for TX endpoints.
443  * Note that suspend is not supported starting with IPA v4.0, and
444  * delay mode should not be used starting with IPA v4.2.
445  */
446 static bool
447 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
448 {
449 	struct ipa *ipa = endpoint->ipa;
450 	const struct reg *reg;
451 	u32 field_id;
452 	u32 offset;
453 	bool state;
454 	u32 mask;
455 	u32 val;
456 
457 	if (endpoint->toward_ipa)
458 		WARN_ON(ipa->version >= IPA_VERSION_4_2);
459 	else
460 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
461 
462 	reg = ipa_reg(ipa, ENDP_INIT_CTRL);
463 	offset = reg_n_offset(reg, endpoint->endpoint_id);
464 	val = ioread32(ipa->reg_virt + offset);
465 
466 	field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
467 	mask = reg_bit(reg, field_id);
468 
469 	state = !!(val & mask);
470 
471 	/* Don't bother if it's already in the requested state */
472 	if (suspend_delay != state) {
473 		val ^= mask;
474 		iowrite32(val, ipa->reg_virt + offset);
475 	}
476 
477 	return state;
478 }
479 
480 /* We don't care what the previous state was for delay mode */
481 static void
482 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
483 {
484 	/* Delay mode should not be used for IPA v4.2+ */
485 	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
486 	WARN_ON(!endpoint->toward_ipa);
487 
488 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
489 }
490 
491 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
492 {
493 	u32 endpoint_id = endpoint->endpoint_id;
494 	struct ipa *ipa = endpoint->ipa;
495 	u32 unit = endpoint_id / 32;
496 	const struct reg *reg;
497 	u32 val;
498 
499 	WARN_ON(!test_bit(endpoint_id, ipa->available));
500 
501 	reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
502 	val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit));
503 
504 	return !!(val & BIT(endpoint_id % 32));
505 }
506 
507 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
508 {
509 	u32 endpoint_id = endpoint->endpoint_id;
510 	u32 mask = BIT(endpoint_id % 32);
511 	struct ipa *ipa = endpoint->ipa;
512 	u32 unit = endpoint_id / 32;
513 	const struct reg *reg;
514 
515 	WARN_ON(!test_bit(endpoint_id, ipa->available));
516 
517 	reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
518 	iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit));
519 }
520 
521 /**
522  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
523  * @endpoint:	Endpoint on which to emulate a suspend
524  *
525  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
526  *  with an open aggregation frame.  This is to work around a hardware
527  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
528  *  generated when it should be.
529  */
530 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
531 {
532 	struct ipa *ipa = endpoint->ipa;
533 
534 	if (!endpoint->config.aggregation)
535 		return;
536 
537 	/* Nothing to do if the endpoint doesn't have aggregation open */
538 	if (!ipa_endpoint_aggr_active(endpoint))
539 		return;
540 
541 	/* Force close aggregation */
542 	ipa_endpoint_force_close(endpoint);
543 
544 	ipa_interrupt_simulate_suspend(ipa->interrupt);
545 }
546 
547 /* Returns previous suspend state (true means suspend was enabled) */
548 static bool
549 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
550 {
551 	bool suspended;
552 
553 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
554 		return enable;	/* For IPA v4.0+, no change made */
555 
556 	WARN_ON(endpoint->toward_ipa);
557 
558 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
559 
560 	/* A client suspended with an open aggregation frame will not
561 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
562 	 * ipa_endpoint_suspend_aggr() handle this.
563 	 */
564 	if (enable && !suspended)
565 		ipa_endpoint_suspend_aggr(endpoint);
566 
567 	return suspended;
568 }
569 
570 /* Put all modem RX endpoints into suspend mode, and stop transmission
571  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
572  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
573  * control instead.
574  */
575 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
576 {
577 	u32 endpoint_id = 0;
578 
579 	while (endpoint_id < ipa->endpoint_count) {
580 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
581 
582 		if (endpoint->ee_id != GSI_EE_MODEM)
583 			continue;
584 
585 		if (!endpoint->toward_ipa)
586 			(void)ipa_endpoint_program_suspend(endpoint, enable);
587 		else if (ipa->version < IPA_VERSION_4_2)
588 			ipa_endpoint_program_delay(endpoint, enable);
589 		else
590 			gsi_modem_channel_flow_control(&ipa->gsi,
591 						       endpoint->channel_id,
592 						       enable);
593 	}
594 }
595 
596 /* Reset all modem endpoints to use the default exception endpoint */
597 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
598 {
599 	struct gsi_trans *trans;
600 	u32 endpoint_id;
601 	u32 count;
602 
603 	/* We need one command per modem TX endpoint, plus the commands
604 	 * that clear the pipeline.
605 	 */
606 	count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
607 	trans = ipa_cmd_trans_alloc(ipa, count);
608 	if (!trans) {
609 		dev_err(&ipa->pdev->dev,
610 			"no transaction to reset modem exception endpoints\n");
611 		return -EBUSY;
612 	}
613 
614 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
615 		struct ipa_endpoint *endpoint;
616 		const struct reg *reg;
617 		u32 offset;
618 
619 		/* We only reset modem TX endpoints */
620 		endpoint = &ipa->endpoint[endpoint_id];
621 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
622 			continue;
623 
624 		reg = ipa_reg(ipa, ENDP_STATUS);
625 		offset = reg_n_offset(reg, endpoint_id);
626 
627 		/* Value written is 0, and all bits are updated.  That
628 		 * means status is disabled on the endpoint, and as a
629 		 * result all other fields in the register are ignored.
630 		 */
631 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
632 	}
633 
634 	ipa_cmd_pipeline_clear_add(trans);
635 
636 	gsi_trans_commit_wait(trans);
637 
638 	ipa_cmd_pipeline_clear_wait(ipa);
639 
640 	return 0;
641 }
642 
643 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
644 {
645 	u32 endpoint_id = endpoint->endpoint_id;
646 	struct ipa *ipa = endpoint->ipa;
647 	enum ipa_cs_offload_en enabled;
648 	const struct reg *reg;
649 	u32 val = 0;
650 
651 	reg = ipa_reg(ipa, ENDP_INIT_CFG);
652 	/* FRAG_OFFLOAD_EN is 0 */
653 	if (endpoint->config.checksum) {
654 		enum ipa_version version = ipa->version;
655 
656 		if (endpoint->toward_ipa) {
657 			u32 off;
658 
659 			/* Checksum header offset is in 4-byte units */
660 			off = sizeof(struct rmnet_map_header) / sizeof(u32);
661 			val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
662 
663 			enabled = version < IPA_VERSION_4_5
664 					? IPA_CS_OFFLOAD_UL
665 					: IPA_CS_OFFLOAD_INLINE;
666 		} else {
667 			enabled = version < IPA_VERSION_4_5
668 					? IPA_CS_OFFLOAD_DL
669 					: IPA_CS_OFFLOAD_INLINE;
670 		}
671 	} else {
672 		enabled = IPA_CS_OFFLOAD_NONE;
673 	}
674 	val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
675 	/* CS_GEN_QMB_MASTER_SEL is 0 */
676 
677 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
678 }
679 
680 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
681 {
682 	u32 endpoint_id = endpoint->endpoint_id;
683 	struct ipa *ipa = endpoint->ipa;
684 	const struct reg *reg;
685 	u32 val;
686 
687 	if (!endpoint->toward_ipa)
688 		return;
689 
690 	reg = ipa_reg(ipa, ENDP_INIT_NAT);
691 	val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
692 
693 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
694 }
695 
696 static u32
697 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
698 {
699 	u32 header_size = sizeof(struct rmnet_map_header);
700 
701 	/* Without checksum offload, we just have the MAP header */
702 	if (!endpoint->config.checksum)
703 		return header_size;
704 
705 	if (version < IPA_VERSION_4_5) {
706 		/* Checksum header inserted for AP TX endpoints only */
707 		if (endpoint->toward_ipa)
708 			header_size += sizeof(struct rmnet_map_ul_csum_header);
709 	} else {
710 		/* Checksum header is used in both directions */
711 		header_size += sizeof(struct rmnet_map_v5_csum_header);
712 	}
713 
714 	return header_size;
715 }
716 
717 /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
718 static u32 ipa_header_size_encode(enum ipa_version version,
719 				  const struct reg *reg, u32 header_size)
720 {
721 	u32 field_max = reg_field_max(reg, HDR_LEN);
722 	u32 val;
723 
724 	/* We know field_max can be used as a mask (2^n - 1) */
725 	val = reg_encode(reg, HDR_LEN, header_size & field_max);
726 	if (version < IPA_VERSION_4_5) {
727 		WARN_ON(header_size > field_max);
728 		return val;
729 	}
730 
731 	/* IPA v4.5 adds a few more most-significant bits */
732 	header_size >>= hweight32(field_max);
733 	WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
734 	val |= reg_encode(reg, HDR_LEN_MSB, header_size);
735 
736 	return val;
737 }
738 
739 /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
740 static u32 ipa_metadata_offset_encode(enum ipa_version version,
741 				      const struct reg *reg, u32 offset)
742 {
743 	u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
744 	u32 val;
745 
746 	/* We know field_max can be used as a mask (2^n - 1) */
747 	val = reg_encode(reg, HDR_OFST_METADATA, offset);
748 	if (version < IPA_VERSION_4_5) {
749 		WARN_ON(offset > field_max);
750 		return val;
751 	}
752 
753 	/* IPA v4.5 adds a few more most-significant bits */
754 	offset >>= hweight32(field_max);
755 	WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
756 	val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
757 
758 	return val;
759 }
760 
761 /**
762  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
763  * @endpoint:	Endpoint pointer
764  *
765  * We program QMAP endpoints so each packet received is preceded by a QMAP
766  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
767  * packet size field, and we have the IPA hardware populate both for each
768  * received packet.  The header is configured (in the HDR_EXT register)
769  * to use big endian format.
770  *
771  * The packet size is written into the QMAP header's pkt_len field.  That
772  * location is defined here using the HDR_OFST_PKT_SIZE field.
773  *
774  * The mux_id comes from a 4-byte metadata value supplied with each packet
775  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
776  * value that we want, in its low-order byte.  A bitmask defined in the
777  * endpoint's METADATA_MASK register defines which byte within the modem
778  * metadata contains the mux_id.  And the OFST_METADATA field programmed
779  * here indicates where the extracted byte should be placed within the QMAP
780  * header.
781  */
782 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
783 {
784 	u32 endpoint_id = endpoint->endpoint_id;
785 	struct ipa *ipa = endpoint->ipa;
786 	const struct reg *reg;
787 	u32 val = 0;
788 
789 	reg = ipa_reg(ipa, ENDP_INIT_HDR);
790 	if (endpoint->config.qmap) {
791 		enum ipa_version version = ipa->version;
792 		size_t header_size;
793 
794 		header_size = ipa_qmap_header_size(version, endpoint);
795 		val = ipa_header_size_encode(version, reg, header_size);
796 
797 		/* Define how to fill fields in a received QMAP header */
798 		if (!endpoint->toward_ipa) {
799 			u32 off;     /* Field offset within header */
800 
801 			/* Where IPA will write the metadata value */
802 			off = offsetof(struct rmnet_map_header, mux_id);
803 			val |= ipa_metadata_offset_encode(version, reg, off);
804 
805 			/* Where IPA will write the length */
806 			off = offsetof(struct rmnet_map_header, pkt_len);
807 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
808 			if (version >= IPA_VERSION_4_5)
809 				off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
810 
811 			val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
812 			val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
813 		}
814 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
815 		val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
816 
817 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
818 		/* HDR_A5_MUX is 0 */
819 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
820 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
821 	}
822 
823 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
824 }
825 
826 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
827 {
828 	u32 pad_align = endpoint->config.rx.pad_align;
829 	u32 endpoint_id = endpoint->endpoint_id;
830 	struct ipa *ipa = endpoint->ipa;
831 	const struct reg *reg;
832 	u32 val = 0;
833 
834 	reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
835 	if (endpoint->config.qmap) {
836 		/* We have a header, so we must specify its endianness */
837 		val |= reg_bit(reg, HDR_ENDIANNESS);	/* big endian */
838 
839 		/* A QMAP header contains a 6 bit pad field at offset 0.
840 		 * The RMNet driver assumes this field is meaningful in
841 		 * packets it receives, and assumes the header's payload
842 		 * length includes that padding.  The RMNet driver does
843 		 * *not* pad packets it sends, however, so the pad field
844 		 * (although 0) should be ignored.
845 		 */
846 		if (!endpoint->toward_ipa) {
847 			val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
848 			/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
849 			val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
850 			/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
851 		}
852 	}
853 
854 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
855 	if (!endpoint->toward_ipa)
856 		val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
857 
858 	/* IPA v4.5 adds some most-significant bits to a few fields,
859 	 * two of which are defined in the HDR (not HDR_EXT) register.
860 	 */
861 	if (ipa->version >= IPA_VERSION_4_5) {
862 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
863 		if (endpoint->config.qmap && !endpoint->toward_ipa) {
864 			u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
865 			u32 off;     /* Field offset within header */
866 
867 			off = offsetof(struct rmnet_map_header, pkt_len);
868 			/* Low bits are in the ENDP_INIT_HDR register */
869 			off >>= hweight32(mask);
870 			val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
871 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
872 		}
873 	}
874 
875 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
876 }
877 
878 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
879 {
880 	u32 endpoint_id = endpoint->endpoint_id;
881 	struct ipa *ipa = endpoint->ipa;
882 	const struct reg *reg;
883 	u32 val = 0;
884 	u32 offset;
885 
886 	if (endpoint->toward_ipa)
887 		return;		/* Register not valid for TX endpoints */
888 
889 	reg = ipa_reg(ipa,  ENDP_INIT_HDR_METADATA_MASK);
890 	offset = reg_n_offset(reg, endpoint_id);
891 
892 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
893 	if (endpoint->config.qmap)
894 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
895 
896 	iowrite32(val, ipa->reg_virt + offset);
897 }
898 
899 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
900 {
901 	struct ipa *ipa = endpoint->ipa;
902 	const struct reg *reg;
903 	u32 offset;
904 	u32 val;
905 
906 	if (!endpoint->toward_ipa)
907 		return;		/* Register not valid for RX endpoints */
908 
909 	reg = ipa_reg(ipa, ENDP_INIT_MODE);
910 	if (endpoint->config.dma_mode) {
911 		enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
912 		u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
913 
914 		val = reg_encode(reg, ENDP_MODE, IPA_DMA);
915 		val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
916 	} else {
917 		val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
918 	}
919 	/* All other bits unspecified (and 0) */
920 
921 	offset = reg_n_offset(reg, endpoint->endpoint_id);
922 	iowrite32(val, ipa->reg_virt + offset);
923 }
924 
925 /* For IPA v4.5+, times are expressed using Qtime.  A time is represented
926  * at one of several available granularities, which are configured in
927  * ipa_qtime_config().  Three (or, starting with IPA v5.0, four) pulse
928  * generators are set up with different "tick" periods.  A Qtime value
929  * encodes a tick count along with an indication of a pulse generator
930  * (which has a fixed tick period).  Two pulse generators are always
931  * available to the AP; a third is available starting with IPA v5.0.
932  * This function determines which pulse generator most accurately
933  * represents the time period provided, and returns the tick count to
934  * use to represent that time.
935  */
936 static u32
937 ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select)
938 {
939 	u32 which = 0;
940 	u32 ticks;
941 
942 	/* Pulse generator 0 has 100 microsecond granularity */
943 	ticks = DIV_ROUND_CLOSEST(microseconds, 100);
944 	if (ticks <= max)
945 		goto out;
946 
947 	/* Pulse generator 1 has millisecond granularity */
948 	which = 1;
949 	ticks = DIV_ROUND_CLOSEST(microseconds, 1000);
950 	if (ticks <= max)
951 		goto out;
952 
953 	if (ipa->version >= IPA_VERSION_5_0) {
954 		/* Pulse generator 2 has 10 millisecond granularity */
955 		which = 2;
956 		ticks = DIV_ROUND_CLOSEST(microseconds, 100);
957 	}
958 	WARN_ON(ticks > max);
959 out:
960 	*select = which;
961 
962 	return ticks;
963 }
964 
965 /* Encode the aggregation timer limit (microseconds) based on IPA version */
966 static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
967 				  u32 microseconds)
968 {
969 	u32 ticks;
970 	u32 max;
971 
972 	if (!microseconds)
973 		return 0;	/* Nothing to compute if time limit is 0 */
974 
975 	max = reg_field_max(reg, TIME_LIMIT);
976 	if (ipa->version >= IPA_VERSION_4_5) {
977 		u32 select;
978 
979 		ticks = ipa_qtime_val(ipa, microseconds, max, &select);
980 
981 		return reg_encode(reg, AGGR_GRAN_SEL, select) |
982 		       reg_encode(reg, TIME_LIMIT, ticks);
983 	}
984 
985 	/* We program aggregation granularity in ipa_hardware_config() */
986 	ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
987 	WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
988 	     microseconds, max * IPA_AGGR_GRANULARITY);
989 
990 	return reg_encode(reg, TIME_LIMIT, ticks);
991 }
992 
993 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
994 {
995 	u32 endpoint_id = endpoint->endpoint_id;
996 	struct ipa *ipa = endpoint->ipa;
997 	const struct reg *reg;
998 	u32 val = 0;
999 
1000 	reg = ipa_reg(ipa, ENDP_INIT_AGGR);
1001 	if (endpoint->config.aggregation) {
1002 		if (!endpoint->toward_ipa) {
1003 			const struct ipa_endpoint_rx *rx_config;
1004 			u32 buffer_size;
1005 			u32 limit;
1006 
1007 			rx_config = &endpoint->config.rx;
1008 			val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
1009 			val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
1010 
1011 			buffer_size = rx_config->buffer_size;
1012 			limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
1013 						 rx_config->aggr_hard_limit);
1014 			val |= reg_encode(reg, BYTE_LIMIT, limit);
1015 
1016 			limit = rx_config->aggr_time_limit;
1017 			val |= aggr_time_limit_encode(ipa, reg, limit);
1018 
1019 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
1020 
1021 			if (rx_config->aggr_close_eof)
1022 				val |= reg_bit(reg, SW_EOF_ACTIVE);
1023 		} else {
1024 			val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
1025 			val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
1026 			/* other fields ignored */
1027 		}
1028 		/* AGGR_FORCE_CLOSE is 0 */
1029 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
1030 	} else {
1031 		val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
1032 		/* other fields ignored */
1033 	}
1034 
1035 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1036 }
1037 
1038 /* The head-of-line blocking timer is defined as a tick count.  For
1039  * IPA version 4.5 the tick count is based on the Qtimer, which is
1040  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
1041  * each tick represents 128 cycles of the IPA core clock.
1042  *
1043  * Return the encoded value representing the timeout period provided
1044  * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
1045  */
1046 static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
1047 				  u32 microseconds)
1048 {
1049 	u32 width;
1050 	u32 scale;
1051 	u64 ticks;
1052 	u64 rate;
1053 	u32 high;
1054 	u32 val;
1055 
1056 	if (!microseconds)
1057 		return 0;	/* Nothing to compute if timer period is 0 */
1058 
1059 	if (ipa->version >= IPA_VERSION_4_5) {
1060 		u32 max = reg_field_max(reg, TIMER_LIMIT);
1061 		u32 select;
1062 		u32 ticks;
1063 
1064 		ticks = ipa_qtime_val(ipa, microseconds, max, &select);
1065 
1066 		return reg_encode(reg, TIMER_GRAN_SEL, 1) |
1067 		       reg_encode(reg, TIMER_LIMIT, ticks);
1068 	}
1069 
1070 	/* Use 64 bit arithmetic to avoid overflow */
1071 	rate = ipa_core_clock_rate(ipa);
1072 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
1073 
1074 	/* We still need the result to fit into the field */
1075 	WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
1076 
1077 	/* IPA v3.5.1 through v4.1 just record the tick count */
1078 	if (ipa->version < IPA_VERSION_4_2)
1079 		return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
1080 
1081 	/* For IPA v4.2, the tick count is represented by base and
1082 	 * scale fields within the 32-bit timer register, where:
1083 	 *     ticks = base << scale;
1084 	 * The best precision is achieved when the base value is as
1085 	 * large as possible.  Find the highest set bit in the tick
1086 	 * count, and extract the number of bits in the base field
1087 	 * such that high bit is included.
1088 	 */
1089 	high = fls(ticks);		/* 1..32 (or warning above) */
1090 	width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
1091 	scale = high > width ? high - width : 0;
1092 	if (scale) {
1093 		/* If we're scaling, round up to get a closer result */
1094 		ticks += 1 << (scale - 1);
1095 		/* High bit was set, so rounding might have affected it */
1096 		if (fls(ticks) != high)
1097 			scale++;
1098 	}
1099 
1100 	val = reg_encode(reg, TIMER_SCALE, scale);
1101 	val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
1102 
1103 	return val;
1104 }
1105 
1106 /* If microseconds is 0, timeout is immediate */
1107 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
1108 					      u32 microseconds)
1109 {
1110 	u32 endpoint_id = endpoint->endpoint_id;
1111 	struct ipa *ipa = endpoint->ipa;
1112 	const struct reg *reg;
1113 	u32 val;
1114 
1115 	/* This should only be changed when HOL_BLOCK_EN is disabled */
1116 	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
1117 	val = hol_block_timer_encode(ipa, reg, microseconds);
1118 
1119 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1120 }
1121 
1122 static void
1123 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
1124 {
1125 	u32 endpoint_id = endpoint->endpoint_id;
1126 	struct ipa *ipa = endpoint->ipa;
1127 	const struct reg *reg;
1128 	u32 offset;
1129 	u32 val;
1130 
1131 	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
1132 	offset = reg_n_offset(reg, endpoint_id);
1133 	val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
1134 
1135 	iowrite32(val, ipa->reg_virt + offset);
1136 
1137 	/* When enabling, the register must be written twice for IPA v4.5+ */
1138 	if (enable && ipa->version >= IPA_VERSION_4_5)
1139 		iowrite32(val, ipa->reg_virt + offset);
1140 }
1141 
1142 /* Assumes HOL_BLOCK is in disabled state */
1143 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1144 					       u32 microseconds)
1145 {
1146 	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1147 	ipa_endpoint_init_hol_block_en(endpoint, true);
1148 }
1149 
1150 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1151 {
1152 	ipa_endpoint_init_hol_block_en(endpoint, false);
1153 }
1154 
1155 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1156 {
1157 	u32 endpoint_id = 0;
1158 
1159 	while (endpoint_id < ipa->endpoint_count) {
1160 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1161 
1162 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1163 			continue;
1164 
1165 		ipa_endpoint_init_hol_block_disable(endpoint);
1166 		ipa_endpoint_init_hol_block_enable(endpoint, 0);
1167 	}
1168 }
1169 
1170 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1171 {
1172 	u32 endpoint_id = endpoint->endpoint_id;
1173 	struct ipa *ipa = endpoint->ipa;
1174 	const struct reg *reg;
1175 	u32 val = 0;
1176 
1177 	if (!endpoint->toward_ipa)
1178 		return;		/* Register not valid for RX endpoints */
1179 
1180 	reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1181 	/* DEAGGR_HDR_LEN is 0 */
1182 	/* PACKET_OFFSET_VALID is 0 */
1183 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
1184 	/* MAX_PACKET_LEN is 0 (not enforced) */
1185 
1186 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1187 }
1188 
1189 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1190 {
1191 	u32 resource_group = endpoint->config.resource_group;
1192 	u32 endpoint_id = endpoint->endpoint_id;
1193 	struct ipa *ipa = endpoint->ipa;
1194 	const struct reg *reg;
1195 	u32 val;
1196 
1197 	reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1198 	val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1199 
1200 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1201 }
1202 
1203 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1204 {
1205 	u32 endpoint_id = endpoint->endpoint_id;
1206 	struct ipa *ipa = endpoint->ipa;
1207 	const struct reg *reg;
1208 	u32 val;
1209 
1210 	if (!endpoint->toward_ipa)
1211 		return;		/* Register not valid for RX endpoints */
1212 
1213 	reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1214 
1215 	/* Low-order byte configures primary packet processing */
1216 	val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1217 
1218 	/* Second byte (if supported) configures replicated packet processing */
1219 	if (ipa->version < IPA_VERSION_4_5)
1220 		val |= reg_encode(reg, SEQ_REP_TYPE,
1221 				  endpoint->config.tx.seq_rep_type);
1222 
1223 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1224 }
1225 
1226 /**
1227  * ipa_endpoint_skb_tx() - Transmit a socket buffer
1228  * @endpoint:	Endpoint pointer
1229  * @skb:	Socket buffer to send
1230  *
1231  * Returns:	0 if successful, or a negative error code
1232  */
1233 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1234 {
1235 	struct gsi_trans *trans;
1236 	u32 nr_frags;
1237 	int ret;
1238 
1239 	/* Make sure source endpoint's TLV FIFO has enough entries to
1240 	 * hold the linear portion of the skb and all its fragments.
1241 	 * If not, see if we can linearize it before giving up.
1242 	 */
1243 	nr_frags = skb_shinfo(skb)->nr_frags;
1244 	if (nr_frags > endpoint->skb_frag_max) {
1245 		if (skb_linearize(skb))
1246 			return -E2BIG;
1247 		nr_frags = 0;
1248 	}
1249 
1250 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1251 	if (!trans)
1252 		return -EBUSY;
1253 
1254 	ret = gsi_trans_skb_add(trans, skb);
1255 	if (ret)
1256 		goto err_trans_free;
1257 	trans->data = skb;	/* transaction owns skb now */
1258 
1259 	gsi_trans_commit(trans, !netdev_xmit_more());
1260 
1261 	return 0;
1262 
1263 err_trans_free:
1264 	gsi_trans_free(trans);
1265 
1266 	return -ENOMEM;
1267 }
1268 
1269 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1270 {
1271 	u32 endpoint_id = endpoint->endpoint_id;
1272 	struct ipa *ipa = endpoint->ipa;
1273 	const struct reg *reg;
1274 	u32 val = 0;
1275 
1276 	reg = ipa_reg(ipa, ENDP_STATUS);
1277 	if (endpoint->config.status_enable) {
1278 		val |= reg_bit(reg, STATUS_EN);
1279 		if (endpoint->toward_ipa) {
1280 			enum ipa_endpoint_name name;
1281 			u32 status_endpoint_id;
1282 
1283 			name = endpoint->config.tx.status_endpoint;
1284 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1285 
1286 			val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
1287 		}
1288 		/* STATUS_LOCATION is 0, meaning IPA packet status
1289 		 * precedes the packet (not present for IPA v4.5+)
1290 		 */
1291 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1292 	}
1293 
1294 	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1295 }
1296 
1297 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1298 				      struct gsi_trans *trans)
1299 {
1300 	struct page *page;
1301 	u32 buffer_size;
1302 	u32 offset;
1303 	u32 len;
1304 	int ret;
1305 
1306 	buffer_size = endpoint->config.rx.buffer_size;
1307 	page = dev_alloc_pages(get_order(buffer_size));
1308 	if (!page)
1309 		return -ENOMEM;
1310 
1311 	/* Offset the buffer to make space for skb headroom */
1312 	offset = NET_SKB_PAD;
1313 	len = buffer_size - offset;
1314 
1315 	ret = gsi_trans_page_add(trans, page, len, offset);
1316 	if (ret)
1317 		put_page(page);
1318 	else
1319 		trans->data = page;	/* transaction owns page now */
1320 
1321 	return ret;
1322 }
1323 
1324 /**
1325  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1326  * @endpoint:	Endpoint to be replenished
1327  *
1328  * The IPA hardware can hold a fixed number of receive buffers for an RX
1329  * endpoint, based on the number of entries in the underlying channel ring
1330  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1331  * more receive buffers can be supplied to the hardware.  Replenishing for
1332  * an endpoint can be disabled, in which case buffers are not queued to
1333  * the hardware.
1334  */
1335 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1336 {
1337 	struct gsi_trans *trans;
1338 
1339 	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1340 		return;
1341 
1342 	/* Skip it if it's already active */
1343 	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1344 		return;
1345 
1346 	while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1347 		bool doorbell;
1348 
1349 		if (ipa_endpoint_replenish_one(endpoint, trans))
1350 			goto try_again_later;
1351 
1352 
1353 		/* Ring the doorbell if we've got a full batch */
1354 		doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1355 		gsi_trans_commit(trans, doorbell);
1356 	}
1357 
1358 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1359 
1360 	return;
1361 
1362 try_again_later:
1363 	gsi_trans_free(trans);
1364 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1365 
1366 	/* Whenever a receive buffer transaction completes we'll try to
1367 	 * replenish again.  It's unlikely, but if we fail to supply even
1368 	 * one buffer, nothing will trigger another replenish attempt.
1369 	 * If the hardware has no receive buffers queued, schedule work to
1370 	 * try replenishing again.
1371 	 */
1372 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1373 		schedule_delayed_work(&endpoint->replenish_work,
1374 				      msecs_to_jiffies(1));
1375 }
1376 
1377 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1378 {
1379 	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1380 
1381 	/* Start replenishing if hardware currently has no buffers */
1382 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1383 		ipa_endpoint_replenish(endpoint);
1384 }
1385 
1386 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1387 {
1388 	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1389 }
1390 
1391 static void ipa_endpoint_replenish_work(struct work_struct *work)
1392 {
1393 	struct delayed_work *dwork = to_delayed_work(work);
1394 	struct ipa_endpoint *endpoint;
1395 
1396 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1397 
1398 	ipa_endpoint_replenish(endpoint);
1399 }
1400 
1401 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1402 				  void *data, u32 len, u32 extra)
1403 {
1404 	struct sk_buff *skb;
1405 
1406 	if (!endpoint->netdev)
1407 		return;
1408 
1409 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1410 	if (skb) {
1411 		/* Copy the data into the socket buffer and receive it */
1412 		skb_put(skb, len);
1413 		memcpy(skb->data, data, len);
1414 		skb->truesize += extra;
1415 	}
1416 
1417 	ipa_modem_skb_rx(endpoint->netdev, skb);
1418 }
1419 
1420 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1421 				   struct page *page, u32 len)
1422 {
1423 	u32 buffer_size = endpoint->config.rx.buffer_size;
1424 	struct sk_buff *skb;
1425 
1426 	/* Nothing to do if there's no netdev */
1427 	if (!endpoint->netdev)
1428 		return false;
1429 
1430 	WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1431 
1432 	skb = build_skb(page_address(page), buffer_size);
1433 	if (skb) {
1434 		/* Reserve the headroom and account for the data */
1435 		skb_reserve(skb, NET_SKB_PAD);
1436 		skb_put(skb, len);
1437 	}
1438 
1439 	/* Receive the buffer (or record drop if unable to build it) */
1440 	ipa_modem_skb_rx(endpoint->netdev, skb);
1441 
1442 	return skb != NULL;
1443 }
1444 
1445  /* The format of an IPA packet status structure is the same for several
1446   * status types (opcodes).  Other types aren't currently supported.
1447  */
1448 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1449 {
1450 	switch (opcode) {
1451 	case IPA_STATUS_OPCODE_PACKET:
1452 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1453 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1454 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1455 		return true;
1456 	default:
1457 		return false;
1458 	}
1459 }
1460 
1461 static bool
1462 ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data)
1463 {
1464 	struct ipa *ipa = endpoint->ipa;
1465 	enum ipa_status_opcode opcode;
1466 	u32 endpoint_id;
1467 
1468 	opcode = ipa_status_extract(ipa, data, STATUS_OPCODE);
1469 	if (!ipa_status_format_packet(opcode))
1470 		return true;
1471 
1472 	endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT);
1473 	if (endpoint_id != endpoint->endpoint_id)
1474 		return true;
1475 
1476 	return false;	/* Don't skip this packet, process it */
1477 }
1478 
1479 static bool
1480 ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data)
1481 {
1482 	struct ipa_endpoint *command_endpoint;
1483 	enum ipa_status_mask status_mask;
1484 	struct ipa *ipa = endpoint->ipa;
1485 	u32 endpoint_id;
1486 
1487 	status_mask = ipa_status_extract(ipa, data, STATUS_MASK);
1488 	if (!status_mask)
1489 		return false;	/* No valid tag */
1490 
1491 	/* The status contains a valid tag.  We know the packet was sent to
1492 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1493 	 * If the packet came from the AP->command TX endpoint we know
1494 	 * this packet was sent as part of the pipeline clear process.
1495 	 */
1496 	endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT);
1497 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1498 	if (endpoint_id == command_endpoint->endpoint_id) {
1499 		complete(&ipa->completion);
1500 	} else {
1501 		dev_err(&ipa->pdev->dev,
1502 			"unexpected tagged packet from endpoint %u\n",
1503 			endpoint_id);
1504 	}
1505 
1506 	return true;
1507 }
1508 
1509 /* Return whether the status indicates the packet should be dropped */
1510 static bool
1511 ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data)
1512 {
1513 	enum ipa_status_exception exception;
1514 	struct ipa *ipa = endpoint->ipa;
1515 	u32 rule;
1516 
1517 	/* If the status indicates a tagged transfer, we'll drop the packet */
1518 	if (ipa_endpoint_status_tag_valid(endpoint, data))
1519 		return true;
1520 
1521 	/* Deaggregation exceptions we drop; all other types we consume */
1522 	exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION);
1523 	if (exception)
1524 		return exception == IPA_STATUS_EXCEPTION_DEAGGR;
1525 
1526 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1527 	rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX);
1528 
1529 	return rule == IPA_STATUS_RULE_MISS;
1530 }
1531 
1532 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1533 				      struct page *page, u32 total_len)
1534 {
1535 	u32 buffer_size = endpoint->config.rx.buffer_size;
1536 	void *data = page_address(page) + NET_SKB_PAD;
1537 	u32 unused = buffer_size - total_len;
1538 	struct ipa *ipa = endpoint->ipa;
1539 	u32 resid = total_len;
1540 
1541 	while (resid) {
1542 		u32 length;
1543 		u32 align;
1544 		u32 len;
1545 
1546 		if (resid < IPA_STATUS_SIZE) {
1547 			dev_err(&endpoint->ipa->pdev->dev,
1548 				"short message (%u bytes < %zu byte status)\n",
1549 				resid, IPA_STATUS_SIZE);
1550 			break;
1551 		}
1552 
1553 		/* Skip over status packets that lack packet data */
1554 		length = ipa_status_extract(ipa, data, STATUS_LENGTH);
1555 		if (!length || ipa_endpoint_status_skip(endpoint, data)) {
1556 			data += IPA_STATUS_SIZE;
1557 			resid -= IPA_STATUS_SIZE;
1558 			continue;
1559 		}
1560 
1561 		/* Compute the amount of buffer space consumed by the packet,
1562 		 * including the status.  If the hardware is configured to
1563 		 * pad packet data to an aligned boundary, account for that.
1564 		 * And if checksum offload is enabled a trailer containing
1565 		 * computed checksum information will be appended.
1566 		 */
1567 		align = endpoint->config.rx.pad_align ? : 1;
1568 		len = IPA_STATUS_SIZE + ALIGN(length, align);
1569 		if (endpoint->config.checksum)
1570 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1571 
1572 		if (!ipa_endpoint_status_drop(endpoint, data)) {
1573 			void *data2;
1574 			u32 extra;
1575 
1576 			/* Client receives only packet data (no status) */
1577 			data2 = data + IPA_STATUS_SIZE;
1578 
1579 			/* Have the true size reflect the extra unused space in
1580 			 * the original receive buffer.  Distribute the "cost"
1581 			 * proportionately across all aggregated packets in the
1582 			 * buffer.
1583 			 */
1584 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1585 			ipa_endpoint_skb_copy(endpoint, data2, length, extra);
1586 		}
1587 
1588 		/* Consume status and the full packet it describes */
1589 		data += len;
1590 		resid -= len;
1591 	}
1592 }
1593 
1594 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1595 				 struct gsi_trans *trans)
1596 {
1597 	struct page *page;
1598 
1599 	if (endpoint->toward_ipa)
1600 		return;
1601 
1602 	if (trans->cancelled)
1603 		goto done;
1604 
1605 	/* Parse or build a socket buffer using the actual received length */
1606 	page = trans->data;
1607 	if (endpoint->config.status_enable)
1608 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1609 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1610 		trans->data = NULL;	/* Pages have been consumed */
1611 done:
1612 	ipa_endpoint_replenish(endpoint);
1613 }
1614 
1615 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1616 				struct gsi_trans *trans)
1617 {
1618 	if (endpoint->toward_ipa) {
1619 		struct ipa *ipa = endpoint->ipa;
1620 
1621 		/* Nothing to do for command transactions */
1622 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1623 			struct sk_buff *skb = trans->data;
1624 
1625 			if (skb)
1626 				dev_kfree_skb_any(skb);
1627 		}
1628 	} else {
1629 		struct page *page = trans->data;
1630 
1631 		if (page)
1632 			put_page(page);
1633 	}
1634 }
1635 
1636 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1637 {
1638 	const struct reg *reg;
1639 	u32 val;
1640 
1641 	reg = ipa_reg(ipa, ROUTE);
1642 	/* ROUTE_DIS is 0 */
1643 	val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1644 	val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1645 	/* ROUTE_DEF_HDR_OFST is 0 */
1646 	val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1647 	val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1648 
1649 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
1650 }
1651 
1652 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1653 {
1654 	ipa_endpoint_default_route_set(ipa, 0);
1655 }
1656 
1657 /**
1658  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1659  * @endpoint:	Endpoint to be reset
1660  *
1661  * If aggregation is active on an RX endpoint when a reset is performed
1662  * on its underlying GSI channel, a special sequence of actions must be
1663  * taken to ensure the IPA pipeline is properly cleared.
1664  *
1665  * Return:	0 if successful, or a negative error code
1666  */
1667 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1668 {
1669 	struct device *dev = &endpoint->ipa->pdev->dev;
1670 	struct ipa *ipa = endpoint->ipa;
1671 	struct gsi *gsi = &ipa->gsi;
1672 	bool suspended = false;
1673 	dma_addr_t addr;
1674 	u32 retries;
1675 	u32 len = 1;
1676 	void *virt;
1677 	int ret;
1678 
1679 	virt = kzalloc(len, GFP_KERNEL);
1680 	if (!virt)
1681 		return -ENOMEM;
1682 
1683 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1684 	if (dma_mapping_error(dev, addr)) {
1685 		ret = -ENOMEM;
1686 		goto out_kfree;
1687 	}
1688 
1689 	/* Force close aggregation before issuing the reset */
1690 	ipa_endpoint_force_close(endpoint);
1691 
1692 	/* Reset and reconfigure the channel with the doorbell engine
1693 	 * disabled.  Then poll until we know aggregation is no longer
1694 	 * active.  We'll re-enable the doorbell (if appropriate) when
1695 	 * we reset again below.
1696 	 */
1697 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1698 
1699 	/* Make sure the channel isn't suspended */
1700 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1701 
1702 	/* Start channel and do a 1 byte read */
1703 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1704 	if (ret)
1705 		goto out_suspend_again;
1706 
1707 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1708 	if (ret)
1709 		goto err_endpoint_stop;
1710 
1711 	/* Wait for aggregation to be closed on the channel */
1712 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1713 	do {
1714 		if (!ipa_endpoint_aggr_active(endpoint))
1715 			break;
1716 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1717 	} while (retries--);
1718 
1719 	/* Check one last time */
1720 	if (ipa_endpoint_aggr_active(endpoint))
1721 		dev_err(dev, "endpoint %u still active during reset\n",
1722 			endpoint->endpoint_id);
1723 
1724 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1725 
1726 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1727 	if (ret)
1728 		goto out_suspend_again;
1729 
1730 	/* Finally, reset and reconfigure the channel again (re-enabling
1731 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1732 	 * complete the channel reset sequence.  Finish by suspending the
1733 	 * channel again (if necessary).
1734 	 */
1735 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1736 
1737 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1738 
1739 	goto out_suspend_again;
1740 
1741 err_endpoint_stop:
1742 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1743 out_suspend_again:
1744 	if (suspended)
1745 		(void)ipa_endpoint_program_suspend(endpoint, true);
1746 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1747 out_kfree:
1748 	kfree(virt);
1749 
1750 	return ret;
1751 }
1752 
1753 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1754 {
1755 	u32 channel_id = endpoint->channel_id;
1756 	struct ipa *ipa = endpoint->ipa;
1757 	bool special;
1758 	int ret = 0;
1759 
1760 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1761 	 * is active, we need to handle things specially to recover.
1762 	 * All other cases just need to reset the underlying GSI channel.
1763 	 */
1764 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1765 			endpoint->config.aggregation;
1766 	if (special && ipa_endpoint_aggr_active(endpoint))
1767 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1768 	else
1769 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1770 
1771 	if (ret)
1772 		dev_err(&ipa->pdev->dev,
1773 			"error %d resetting channel %u for endpoint %u\n",
1774 			ret, endpoint->channel_id, endpoint->endpoint_id);
1775 }
1776 
1777 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1778 {
1779 	if (endpoint->toward_ipa) {
1780 		/* Newer versions of IPA use GSI channel flow control
1781 		 * instead of endpoint DELAY mode to prevent sending data.
1782 		 * Flow control is disabled for newly-allocated channels,
1783 		 * and we can assume flow control is not (ever) enabled
1784 		 * for AP TX channels.
1785 		 */
1786 		if (endpoint->ipa->version < IPA_VERSION_4_2)
1787 			ipa_endpoint_program_delay(endpoint, false);
1788 	} else {
1789 		/* Ensure suspend mode is off on all AP RX endpoints */
1790 		(void)ipa_endpoint_program_suspend(endpoint, false);
1791 	}
1792 	ipa_endpoint_init_cfg(endpoint);
1793 	ipa_endpoint_init_nat(endpoint);
1794 	ipa_endpoint_init_hdr(endpoint);
1795 	ipa_endpoint_init_hdr_ext(endpoint);
1796 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1797 	ipa_endpoint_init_mode(endpoint);
1798 	ipa_endpoint_init_aggr(endpoint);
1799 	if (!endpoint->toward_ipa) {
1800 		if (endpoint->config.rx.holb_drop)
1801 			ipa_endpoint_init_hol_block_enable(endpoint, 0);
1802 		else
1803 			ipa_endpoint_init_hol_block_disable(endpoint);
1804 	}
1805 	ipa_endpoint_init_deaggr(endpoint);
1806 	ipa_endpoint_init_rsrc_grp(endpoint);
1807 	ipa_endpoint_init_seq(endpoint);
1808 	ipa_endpoint_status(endpoint);
1809 }
1810 
1811 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1812 {
1813 	u32 endpoint_id = endpoint->endpoint_id;
1814 	struct ipa *ipa = endpoint->ipa;
1815 	struct gsi *gsi = &ipa->gsi;
1816 	int ret;
1817 
1818 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1819 	if (ret) {
1820 		dev_err(&ipa->pdev->dev,
1821 			"error %d starting %cX channel %u for endpoint %u\n",
1822 			ret, endpoint->toward_ipa ? 'T' : 'R',
1823 			endpoint->channel_id, endpoint_id);
1824 		return ret;
1825 	}
1826 
1827 	if (!endpoint->toward_ipa) {
1828 		ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1829 		ipa_endpoint_replenish_enable(endpoint);
1830 	}
1831 
1832 	__set_bit(endpoint_id, ipa->enabled);
1833 
1834 	return 0;
1835 }
1836 
1837 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1838 {
1839 	u32 endpoint_id = endpoint->endpoint_id;
1840 	struct ipa *ipa = endpoint->ipa;
1841 	struct gsi *gsi = &ipa->gsi;
1842 	int ret;
1843 
1844 	if (!test_bit(endpoint_id, ipa->enabled))
1845 		return;
1846 
1847 	__clear_bit(endpoint_id, endpoint->ipa->enabled);
1848 
1849 	if (!endpoint->toward_ipa) {
1850 		ipa_endpoint_replenish_disable(endpoint);
1851 		ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1852 	}
1853 
1854 	/* Note that if stop fails, the channel's state is not well-defined */
1855 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1856 	if (ret)
1857 		dev_err(&ipa->pdev->dev,
1858 			"error %d attempting to stop endpoint %u\n", ret,
1859 			endpoint_id);
1860 }
1861 
1862 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1863 {
1864 	struct device *dev = &endpoint->ipa->pdev->dev;
1865 	struct gsi *gsi = &endpoint->ipa->gsi;
1866 	int ret;
1867 
1868 	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1869 		return;
1870 
1871 	if (!endpoint->toward_ipa) {
1872 		ipa_endpoint_replenish_disable(endpoint);
1873 		(void)ipa_endpoint_program_suspend(endpoint, true);
1874 	}
1875 
1876 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1877 	if (ret)
1878 		dev_err(dev, "error %d suspending channel %u\n", ret,
1879 			endpoint->channel_id);
1880 }
1881 
1882 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1883 {
1884 	struct device *dev = &endpoint->ipa->pdev->dev;
1885 	struct gsi *gsi = &endpoint->ipa->gsi;
1886 	int ret;
1887 
1888 	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1889 		return;
1890 
1891 	if (!endpoint->toward_ipa)
1892 		(void)ipa_endpoint_program_suspend(endpoint, false);
1893 
1894 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1895 	if (ret)
1896 		dev_err(dev, "error %d resuming channel %u\n", ret,
1897 			endpoint->channel_id);
1898 	else if (!endpoint->toward_ipa)
1899 		ipa_endpoint_replenish_enable(endpoint);
1900 }
1901 
1902 void ipa_endpoint_suspend(struct ipa *ipa)
1903 {
1904 	if (!ipa->setup_complete)
1905 		return;
1906 
1907 	if (ipa->modem_netdev)
1908 		ipa_modem_suspend(ipa->modem_netdev);
1909 
1910 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1911 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1912 }
1913 
1914 void ipa_endpoint_resume(struct ipa *ipa)
1915 {
1916 	if (!ipa->setup_complete)
1917 		return;
1918 
1919 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1920 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1921 
1922 	if (ipa->modem_netdev)
1923 		ipa_modem_resume(ipa->modem_netdev);
1924 }
1925 
1926 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1927 {
1928 	struct gsi *gsi = &endpoint->ipa->gsi;
1929 	u32 channel_id = endpoint->channel_id;
1930 
1931 	/* Only AP endpoints get set up */
1932 	if (endpoint->ee_id != GSI_EE_AP)
1933 		return;
1934 
1935 	endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1936 	if (!endpoint->toward_ipa) {
1937 		/* RX transactions require a single TRE, so the maximum
1938 		 * backlog is the same as the maximum outstanding TREs.
1939 		 */
1940 		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1941 		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1942 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1943 				  ipa_endpoint_replenish_work);
1944 	}
1945 
1946 	ipa_endpoint_program(endpoint);
1947 
1948 	__set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1949 }
1950 
1951 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1952 {
1953 	__clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1954 
1955 	if (!endpoint->toward_ipa)
1956 		cancel_delayed_work_sync(&endpoint->replenish_work);
1957 
1958 	ipa_endpoint_reset(endpoint);
1959 }
1960 
1961 void ipa_endpoint_setup(struct ipa *ipa)
1962 {
1963 	u32 endpoint_id;
1964 
1965 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1966 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1967 }
1968 
1969 void ipa_endpoint_teardown(struct ipa *ipa)
1970 {
1971 	u32 endpoint_id;
1972 
1973 	for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1974 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1975 }
1976 
1977 void ipa_endpoint_deconfig(struct ipa *ipa)
1978 {
1979 	ipa->available_count = 0;
1980 	bitmap_free(ipa->available);
1981 	ipa->available = NULL;
1982 }
1983 
1984 int ipa_endpoint_config(struct ipa *ipa)
1985 {
1986 	struct device *dev = &ipa->pdev->dev;
1987 	const struct reg *reg;
1988 	u32 endpoint_id;
1989 	u32 hw_limit;
1990 	u32 tx_count;
1991 	u32 rx_count;
1992 	u32 rx_base;
1993 	u32 limit;
1994 	u32 val;
1995 
1996 	/* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1997 	 * Furthermore, the endpoints were not grouped such that TX
1998 	 * endpoint numbers started with 0 and RX endpoints had numbers
1999 	 * higher than all TX endpoints, so we can't do the simple
2000 	 * direction check used for newer hardware below.
2001 	 *
2002 	 * For hardware that doesn't support the FLAVOR_0 register,
2003 	 * just set the available mask to support any endpoint, and
2004 	 * assume the configuration is valid.
2005 	 */
2006 	if (ipa->version < IPA_VERSION_3_5) {
2007 		ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
2008 		if (!ipa->available)
2009 			return -ENOMEM;
2010 		ipa->available_count = IPA_ENDPOINT_MAX;
2011 
2012 		bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
2013 
2014 		return 0;
2015 	}
2016 
2017 	/* Find out about the endpoints supplied by the hardware, and ensure
2018 	 * the highest one doesn't exceed the number supported by software.
2019 	 */
2020 	reg = ipa_reg(ipa, FLAVOR_0);
2021 	val = ioread32(ipa->reg_virt + reg_offset(reg));
2022 
2023 	/* Our RX is an IPA producer; our TX is an IPA consumer. */
2024 	tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
2025 	rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
2026 	rx_base = reg_decode(reg, PROD_LOWEST, val);
2027 
2028 	limit = rx_base + rx_count;
2029 	if (limit > IPA_ENDPOINT_MAX) {
2030 		dev_err(dev, "too many endpoints, %u > %u\n",
2031 			limit, IPA_ENDPOINT_MAX);
2032 		return -EINVAL;
2033 	}
2034 
2035 	/* Until IPA v5.0, the max endpoint ID was 32 */
2036 	hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1;
2037 	if (limit > hw_limit) {
2038 		dev_err(dev, "unexpected endpoint count, %u > %u\n",
2039 			limit, hw_limit);
2040 		return -EINVAL;
2041 	}
2042 
2043 	/* Allocate and initialize the available endpoint bitmap */
2044 	ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
2045 	if (!ipa->available)
2046 		return -ENOMEM;
2047 	ipa->available_count = limit;
2048 
2049 	/* Mark all supported RX and TX endpoints as available */
2050 	bitmap_set(ipa->available, 0, tx_count);
2051 	bitmap_set(ipa->available, rx_base, rx_count);
2052 
2053 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
2054 		struct ipa_endpoint *endpoint;
2055 
2056 		if (endpoint_id >= limit) {
2057 			dev_err(dev, "invalid endpoint id, %u > %u\n",
2058 				endpoint_id, limit - 1);
2059 			goto err_free_bitmap;
2060 		}
2061 
2062 		if (!test_bit(endpoint_id, ipa->available)) {
2063 			dev_err(dev, "unavailable endpoint id %u\n",
2064 				endpoint_id);
2065 			goto err_free_bitmap;
2066 		}
2067 
2068 		/* Make sure it's pointing in the right direction */
2069 		endpoint = &ipa->endpoint[endpoint_id];
2070 		if (endpoint->toward_ipa) {
2071 			if (endpoint_id < tx_count)
2072 				continue;
2073 		} else if (endpoint_id >= rx_base) {
2074 			continue;
2075 		}
2076 
2077 		dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
2078 		goto err_free_bitmap;
2079 	}
2080 
2081 	return 0;
2082 
2083 err_free_bitmap:
2084 	ipa_endpoint_deconfig(ipa);
2085 
2086 	return -EINVAL;
2087 }
2088 
2089 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
2090 				  const struct ipa_gsi_endpoint_data *data)
2091 {
2092 	struct ipa_endpoint *endpoint;
2093 
2094 	endpoint = &ipa->endpoint[data->endpoint_id];
2095 
2096 	if (data->ee_id == GSI_EE_AP)
2097 		ipa->channel_map[data->channel_id] = endpoint;
2098 	ipa->name_map[name] = endpoint;
2099 
2100 	endpoint->ipa = ipa;
2101 	endpoint->ee_id = data->ee_id;
2102 	endpoint->channel_id = data->channel_id;
2103 	endpoint->endpoint_id = data->endpoint_id;
2104 	endpoint->toward_ipa = data->toward_ipa;
2105 	endpoint->config = data->endpoint.config;
2106 
2107 	__set_bit(endpoint->endpoint_id, ipa->defined);
2108 }
2109 
2110 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
2111 {
2112 	__clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
2113 
2114 	memset(endpoint, 0, sizeof(*endpoint));
2115 }
2116 
2117 void ipa_endpoint_exit(struct ipa *ipa)
2118 {
2119 	u32 endpoint_id;
2120 
2121 	ipa->filtered = 0;
2122 
2123 	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
2124 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
2125 
2126 	bitmap_free(ipa->enabled);
2127 	ipa->enabled = NULL;
2128 	bitmap_free(ipa->set_up);
2129 	ipa->set_up = NULL;
2130 	bitmap_free(ipa->defined);
2131 	ipa->defined = NULL;
2132 
2133 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
2134 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
2135 }
2136 
2137 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
2138 int ipa_endpoint_init(struct ipa *ipa, u32 count,
2139 		      const struct ipa_gsi_endpoint_data *data)
2140 {
2141 	enum ipa_endpoint_name name;
2142 	u32 filtered;
2143 
2144 	BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
2145 
2146 	/* Number of endpoints is one more than the maximum ID */
2147 	ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
2148 	if (!ipa->endpoint_count)
2149 		return -EINVAL;
2150 
2151 	/* Initialize endpoint state bitmaps */
2152 	ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2153 	if (!ipa->defined)
2154 		return -ENOMEM;
2155 
2156 	ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2157 	if (!ipa->set_up)
2158 		goto err_free_defined;
2159 
2160 	ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2161 	if (!ipa->enabled)
2162 		goto err_free_set_up;
2163 
2164 	filtered = 0;
2165 	for (name = 0; name < count; name++, data++) {
2166 		if (ipa_gsi_endpoint_data_empty(data))
2167 			continue;	/* Skip over empty slots */
2168 
2169 		ipa_endpoint_init_one(ipa, name, data);
2170 
2171 		if (data->endpoint.filter_support)
2172 			filtered |= BIT(data->endpoint_id);
2173 		if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2174 			ipa->modem_tx_count++;
2175 	}
2176 
2177 	/* Make sure the set of filtered endpoints is valid */
2178 	if (!ipa_filtered_valid(ipa, filtered)) {
2179 		ipa_endpoint_exit(ipa);
2180 
2181 		return -EINVAL;
2182 	}
2183 
2184 	ipa->filtered = filtered;
2185 
2186 	return 0;
2187 
2188 err_free_set_up:
2189 	bitmap_free(ipa->set_up);
2190 	ipa->set_up = NULL;
2191 err_free_defined:
2192 	bitmap_free(ipa->defined);
2193 	ipa->defined = NULL;
2194 
2195 	return -ENOMEM;
2196 }
2197