xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
77 
78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
79 			    const struct ipa_gsi_endpoint_data *all_data,
80 			    const struct ipa_gsi_endpoint_data *data)
81 {
82 	const struct ipa_gsi_endpoint_data *other_data;
83 	struct device *dev = &ipa->pdev->dev;
84 	enum ipa_endpoint_name other_name;
85 
86 	if (ipa_gsi_endpoint_data_empty(data))
87 		return true;
88 
89 	if (!data->toward_ipa) {
90 		if (data->endpoint.filter_support) {
91 			dev_err(dev, "filtering not supported for "
92 					"RX endpoint %u\n",
93 				data->endpoint_id);
94 			return false;
95 		}
96 
97 		return true;	/* Nothing more to check for RX */
98 	}
99 
100 	if (data->endpoint.config.status_enable) {
101 		other_name = data->endpoint.config.tx.status_endpoint;
102 		if (other_name >= count) {
103 			dev_err(dev, "status endpoint name %u out of range "
104 					"for endpoint %u\n",
105 				other_name, data->endpoint_id);
106 			return false;
107 		}
108 
109 		/* Status endpoint must be defined... */
110 		other_data = &all_data[other_name];
111 		if (ipa_gsi_endpoint_data_empty(other_data)) {
112 			dev_err(dev, "DMA endpoint name %u undefined "
113 					"for endpoint %u\n",
114 				other_name, data->endpoint_id);
115 			return false;
116 		}
117 
118 		/* ...and has to be an RX endpoint... */
119 		if (other_data->toward_ipa) {
120 			dev_err(dev,
121 				"status endpoint for endpoint %u not RX\n",
122 				data->endpoint_id);
123 			return false;
124 		}
125 
126 		/* ...and if it's to be an AP endpoint... */
127 		if (other_data->ee_id == GSI_EE_AP) {
128 			/* ...make sure it has status enabled. */
129 			if (!other_data->endpoint.config.status_enable) {
130 				dev_err(dev,
131 					"status not enabled for endpoint %u\n",
132 					other_data->endpoint_id);
133 				return false;
134 			}
135 		}
136 	}
137 
138 	if (data->endpoint.config.dma_mode) {
139 		other_name = data->endpoint.config.dma_endpoint;
140 		if (other_name >= count) {
141 			dev_err(dev, "DMA endpoint name %u out of range "
142 					"for endpoint %u\n",
143 				other_name, data->endpoint_id);
144 			return false;
145 		}
146 
147 		other_data = &all_data[other_name];
148 		if (ipa_gsi_endpoint_data_empty(other_data)) {
149 			dev_err(dev, "DMA endpoint name %u undefined "
150 					"for endpoint %u\n",
151 				other_name, data->endpoint_id);
152 			return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 static u32 aggr_byte_limit_max(enum ipa_version version)
160 {
161 	if (version < IPA_VERSION_4_5)
162 		return field_max(aggr_byte_limit_fmask(true));
163 
164 	return field_max(aggr_byte_limit_fmask(false));
165 }
166 
167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
168 				    const struct ipa_gsi_endpoint_data *data)
169 {
170 	const struct ipa_gsi_endpoint_data *dp = data;
171 	struct device *dev = &ipa->pdev->dev;
172 	enum ipa_endpoint_name name;
173 	u32 limit;
174 
175 	if (count > IPA_ENDPOINT_COUNT) {
176 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
177 			count, IPA_ENDPOINT_COUNT);
178 		return false;
179 	}
180 
181 	/* The aggregation byte limit defines the point at which an
182 	 * aggregation window will close.  It is programmed into the
183 	 * IPA hardware as a number of KB.  We don't use "hard byte
184 	 * limit" aggregation, which means that we need to supply
185 	 * enough space in a receive buffer to hold a complete MTU
186 	 * plus normal skb overhead *after* that aggregation byte
187 	 * limit has been crossed.
188 	 *
189 	 * This check ensures we don't define a receive buffer size
190 	 * that would exceed what we can represent in the field that
191 	 * is used to program its size.
192 	 */
193 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
194 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
195 	if (limit < IPA_RX_BUFFER_SIZE) {
196 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
197 			IPA_RX_BUFFER_SIZE, limit);
198 		return false;
199 	}
200 
201 	/* Make sure needed endpoints have defined data */
202 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
203 		dev_err(dev, "command TX endpoint not defined\n");
204 		return false;
205 	}
206 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
207 		dev_err(dev, "LAN RX endpoint not defined\n");
208 		return false;
209 	}
210 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
211 		dev_err(dev, "AP->modem TX endpoint not defined\n");
212 		return false;
213 	}
214 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
215 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
216 		return false;
217 	}
218 
219 	for (name = 0; name < count; name++, dp++)
220 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
221 			return false;
222 
223 	return true;
224 }
225 
226 /* Allocate a transaction to use on a non-command endpoint */
227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
228 						  u32 tre_count)
229 {
230 	struct gsi *gsi = &endpoint->ipa->gsi;
231 	u32 channel_id = endpoint->channel_id;
232 	enum dma_data_direction direction;
233 
234 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
235 
236 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
237 }
238 
239 /* suspend_delay represents suspend for RX, delay for TX endpoints.
240  * Note that suspend is not supported starting with IPA v4.0, and
241  * delay mode should not be used starting with IPA v4.2.
242  */
243 static bool
244 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
245 {
246 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
247 	struct ipa *ipa = endpoint->ipa;
248 	bool state;
249 	u32 mask;
250 	u32 val;
251 
252 	if (endpoint->toward_ipa)
253 		WARN_ON(ipa->version >= IPA_VERSION_4_2);
254 	else
255 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
256 
257 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
258 
259 	val = ioread32(ipa->reg_virt + offset);
260 	state = !!(val & mask);
261 
262 	/* Don't bother if it's already in the requested state */
263 	if (suspend_delay != state) {
264 		val ^= mask;
265 		iowrite32(val, ipa->reg_virt + offset);
266 	}
267 
268 	return state;
269 }
270 
271 /* We don't care what the previous state was for delay mode */
272 static void
273 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
274 {
275 	/* Delay mode should not be used for IPA v4.2+ */
276 	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
277 	WARN_ON(!endpoint->toward_ipa);
278 
279 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
280 }
281 
282 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
283 {
284 	u32 mask = BIT(endpoint->endpoint_id);
285 	struct ipa *ipa = endpoint->ipa;
286 	u32 offset;
287 	u32 val;
288 
289 	WARN_ON(!(mask & ipa->available));
290 
291 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
292 	val = ioread32(ipa->reg_virt + offset);
293 
294 	return !!(val & mask);
295 }
296 
297 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
298 {
299 	u32 mask = BIT(endpoint->endpoint_id);
300 	struct ipa *ipa = endpoint->ipa;
301 
302 	WARN_ON(!(mask & ipa->available));
303 
304 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
305 }
306 
307 /**
308  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
309  * @endpoint:	Endpoint on which to emulate a suspend
310  *
311  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
312  *  with an open aggregation frame.  This is to work around a hardware
313  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
314  *  generated when it should be.
315  */
316 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
317 {
318 	struct ipa *ipa = endpoint->ipa;
319 
320 	if (!endpoint->data->aggregation)
321 		return;
322 
323 	/* Nothing to do if the endpoint doesn't have aggregation open */
324 	if (!ipa_endpoint_aggr_active(endpoint))
325 		return;
326 
327 	/* Force close aggregation */
328 	ipa_endpoint_force_close(endpoint);
329 
330 	ipa_interrupt_simulate_suspend(ipa->interrupt);
331 }
332 
333 /* Returns previous suspend state (true means suspend was enabled) */
334 static bool
335 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
336 {
337 	bool suspended;
338 
339 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
340 		return enable;	/* For IPA v4.0+, no change made */
341 
342 	WARN_ON(endpoint->toward_ipa);
343 
344 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
345 
346 	/* A client suspended with an open aggregation frame will not
347 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
348 	 * ipa_endpoint_suspend_aggr() handle this.
349 	 */
350 	if (enable && !suspended)
351 		ipa_endpoint_suspend_aggr(endpoint);
352 
353 	return suspended;
354 }
355 
356 /* Put all modem RX endpoints into suspend mode, and stop transmission
357  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
358  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
359  * control instead.
360  */
361 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
362 {
363 	u32 endpoint_id;
364 
365 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
366 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
367 
368 		if (endpoint->ee_id != GSI_EE_MODEM)
369 			continue;
370 
371 		if (!endpoint->toward_ipa)
372 			(void)ipa_endpoint_program_suspend(endpoint, enable);
373 		else if (ipa->version < IPA_VERSION_4_2)
374 			ipa_endpoint_program_delay(endpoint, enable);
375 		else
376 			gsi_modem_channel_flow_control(&ipa->gsi,
377 						       endpoint->channel_id,
378 						       enable);
379 	}
380 }
381 
382 /* Reset all modem endpoints to use the default exception endpoint */
383 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
384 {
385 	u32 initialized = ipa->initialized;
386 	struct gsi_trans *trans;
387 	u32 count;
388 
389 	/* We need one command per modem TX endpoint.  We can get an upper
390 	 * bound on that by assuming all initialized endpoints are modem->IPA.
391 	 * That won't happen, and we could be more precise, but this is fine
392 	 * for now.  End the transaction with commands to clear the pipeline.
393 	 */
394 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
395 	trans = ipa_cmd_trans_alloc(ipa, count);
396 	if (!trans) {
397 		dev_err(&ipa->pdev->dev,
398 			"no transaction to reset modem exception endpoints\n");
399 		return -EBUSY;
400 	}
401 
402 	while (initialized) {
403 		u32 endpoint_id = __ffs(initialized);
404 		struct ipa_endpoint *endpoint;
405 		u32 offset;
406 
407 		initialized ^= BIT(endpoint_id);
408 
409 		/* We only reset modem TX endpoints */
410 		endpoint = &ipa->endpoint[endpoint_id];
411 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
412 			continue;
413 
414 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
415 
416 		/* Value written is 0, and all bits are updated.  That
417 		 * means status is disabled on the endpoint, and as a
418 		 * result all other fields in the register are ignored.
419 		 */
420 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
421 	}
422 
423 	ipa_cmd_pipeline_clear_add(trans);
424 
425 	/* XXX This should have a 1 second timeout */
426 	gsi_trans_commit_wait(trans);
427 
428 	ipa_cmd_pipeline_clear_wait(ipa);
429 
430 	return 0;
431 }
432 
433 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
434 {
435 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
436 	enum ipa_cs_offload_en enabled;
437 	u32 val = 0;
438 
439 	/* FRAG_OFFLOAD_EN is 0 */
440 	if (endpoint->data->checksum) {
441 		enum ipa_version version = endpoint->ipa->version;
442 
443 		if (endpoint->toward_ipa) {
444 			u32 checksum_offset;
445 
446 			/* Checksum header offset is in 4-byte units */
447 			checksum_offset = sizeof(struct rmnet_map_header);
448 			checksum_offset /= sizeof(u32);
449 			val |= u32_encode_bits(checksum_offset,
450 					       CS_METADATA_HDR_OFFSET_FMASK);
451 
452 			enabled = version < IPA_VERSION_4_5
453 					? IPA_CS_OFFLOAD_UL
454 					: IPA_CS_OFFLOAD_INLINE;
455 		} else {
456 			enabled = version < IPA_VERSION_4_5
457 					? IPA_CS_OFFLOAD_DL
458 					: IPA_CS_OFFLOAD_INLINE;
459 		}
460 	} else {
461 		enabled = IPA_CS_OFFLOAD_NONE;
462 	}
463 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
464 	/* CS_GEN_QMB_MASTER_SEL is 0 */
465 
466 	iowrite32(val, endpoint->ipa->reg_virt + offset);
467 }
468 
469 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
470 {
471 	u32 offset;
472 	u32 val;
473 
474 	if (!endpoint->toward_ipa)
475 		return;
476 
477 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
478 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
479 
480 	iowrite32(val, endpoint->ipa->reg_virt + offset);
481 }
482 
483 static u32
484 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
485 {
486 	u32 header_size = sizeof(struct rmnet_map_header);
487 
488 	/* Without checksum offload, we just have the MAP header */
489 	if (!endpoint->data->checksum)
490 		return header_size;
491 
492 	if (version < IPA_VERSION_4_5) {
493 		/* Checksum header inserted for AP TX endpoints only */
494 		if (endpoint->toward_ipa)
495 			header_size += sizeof(struct rmnet_map_ul_csum_header);
496 	} else {
497 		/* Checksum header is used in both directions */
498 		header_size += sizeof(struct rmnet_map_v5_csum_header);
499 	}
500 
501 	return header_size;
502 }
503 
504 /**
505  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
506  * @endpoint:	Endpoint pointer
507  *
508  * We program QMAP endpoints so each packet received is preceded by a QMAP
509  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
510  * packet size field, and we have the IPA hardware populate both for each
511  * received packet.  The header is configured (in the HDR_EXT register)
512  * to use big endian format.
513  *
514  * The packet size is written into the QMAP header's pkt_len field.  That
515  * location is defined here using the HDR_OFST_PKT_SIZE field.
516  *
517  * The mux_id comes from a 4-byte metadata value supplied with each packet
518  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
519  * value that we want, in its low-order byte.  A bitmask defined in the
520  * endpoint's METADATA_MASK register defines which byte within the modem
521  * metadata contains the mux_id.  And the OFST_METADATA field programmed
522  * here indicates where the extracted byte should be placed within the QMAP
523  * header.
524  */
525 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
526 {
527 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
528 	struct ipa *ipa = endpoint->ipa;
529 	u32 val = 0;
530 
531 	if (endpoint->data->qmap) {
532 		enum ipa_version version = ipa->version;
533 		size_t header_size;
534 
535 		header_size = ipa_qmap_header_size(version, endpoint);
536 		val = ipa_header_size_encoded(version, header_size);
537 
538 		/* Define how to fill fields in a received QMAP header */
539 		if (!endpoint->toward_ipa) {
540 			u32 offset;	/* Field offset within header */
541 
542 			/* Where IPA will write the metadata value */
543 			offset = offsetof(struct rmnet_map_header, mux_id);
544 			val |= ipa_metadata_offset_encoded(version, offset);
545 
546 			/* Where IPA will write the length */
547 			offset = offsetof(struct rmnet_map_header, pkt_len);
548 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
549 			if (version >= IPA_VERSION_4_5)
550 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
551 
552 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
553 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
554 		}
555 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
556 		val |= HDR_OFST_METADATA_VALID_FMASK;
557 
558 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
559 		/* HDR_A5_MUX is 0 */
560 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
561 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
562 	}
563 
564 	iowrite32(val, ipa->reg_virt + offset);
565 }
566 
567 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
568 {
569 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
570 	u32 pad_align = endpoint->data->rx.pad_align;
571 	struct ipa *ipa = endpoint->ipa;
572 	u32 val = 0;
573 
574 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
575 
576 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
577 	 * driver assumes this field is meaningful in packets it receives,
578 	 * and assumes the header's payload length includes that padding.
579 	 * The RMNet driver does *not* pad packets it sends, however, so
580 	 * the pad field (although 0) should be ignored.
581 	 */
582 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
583 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
584 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
585 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
586 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
587 	}
588 
589 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
590 	if (!endpoint->toward_ipa)
591 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
592 
593 	/* IPA v4.5 adds some most-significant bits to a few fields,
594 	 * two of which are defined in the HDR (not HDR_EXT) register.
595 	 */
596 	if (ipa->version >= IPA_VERSION_4_5) {
597 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
598 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
599 			u32 offset;
600 
601 			offset = offsetof(struct rmnet_map_header, pkt_len);
602 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
603 			val |= u32_encode_bits(offset,
604 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
605 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
606 		}
607 	}
608 	iowrite32(val, ipa->reg_virt + offset);
609 }
610 
611 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
612 {
613 	u32 endpoint_id = endpoint->endpoint_id;
614 	u32 val = 0;
615 	u32 offset;
616 
617 	if (endpoint->toward_ipa)
618 		return;		/* Register not valid for TX endpoints */
619 
620 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
621 
622 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
623 	if (endpoint->data->qmap)
624 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
625 
626 	iowrite32(val, endpoint->ipa->reg_virt + offset);
627 }
628 
629 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
630 {
631 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
632 	u32 val;
633 
634 	if (!endpoint->toward_ipa)
635 		return;		/* Register not valid for RX endpoints */
636 
637 	if (endpoint->data->dma_mode) {
638 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
639 		u32 dma_endpoint_id;
640 
641 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
642 
643 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
644 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
645 	} else {
646 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
647 	}
648 	/* All other bits unspecified (and 0) */
649 
650 	iowrite32(val, endpoint->ipa->reg_virt + offset);
651 }
652 
653 /* Compute the aggregation size value to use for a given buffer size */
654 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
655 {
656 	/* We don't use "hard byte limit" aggregation, so we define the
657 	 * aggregation limit such that our buffer has enough space *after*
658 	 * that limit to receive a full MTU of data, plus overhead.
659 	 */
660 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
661 
662 	return rx_buffer_size / SZ_1K;
663 }
664 
665 /* Encoded values for AGGR endpoint register fields */
666 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
667 {
668 	if (version < IPA_VERSION_4_5)
669 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
670 
671 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
672 }
673 
674 /* Encode the aggregation timer limit (microseconds) based on IPA version */
675 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
676 {
677 	u32 gran_sel;
678 	u32 fmask;
679 	u32 val;
680 
681 	if (version < IPA_VERSION_4_5) {
682 		/* We set aggregation granularity in ipa_hardware_config() */
683 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
684 
685 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
686 	}
687 
688 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
689 	 * pulse generators 0 and 1 available, which were configured
690 	 * in ipa_qtime_config() to have granularity 100 usec and
691 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
692 	 * otherwise fall back to pulse generator 1.
693 	 */
694 	fmask = aggr_time_limit_fmask(false);
695 	val = DIV_ROUND_CLOSEST(limit, 100);
696 	if (val > field_max(fmask)) {
697 		/* Have to use pulse generator 1 (millisecond granularity) */
698 		gran_sel = AGGR_GRAN_SEL_FMASK;
699 		val = DIV_ROUND_CLOSEST(limit, 1000);
700 	} else {
701 		/* We can use pulse generator 0 (100 usec granularity) */
702 		gran_sel = 0;
703 	}
704 
705 	return gran_sel | u32_encode_bits(val, fmask);
706 }
707 
708 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
709 {
710 	u32 val = enabled ? 1 : 0;
711 
712 	if (version < IPA_VERSION_4_5)
713 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
714 
715 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
716 }
717 
718 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
719 {
720 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
721 	enum ipa_version version = endpoint->ipa->version;
722 	u32 val = 0;
723 
724 	if (endpoint->data->aggregation) {
725 		if (!endpoint->toward_ipa) {
726 			bool close_eof;
727 			u32 limit;
728 
729 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
730 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
731 
732 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
733 			val |= aggr_byte_limit_encoded(version, limit);
734 
735 			limit = IPA_AGGR_TIME_LIMIT;
736 			val |= aggr_time_limit_encoded(version, limit);
737 
738 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
739 
740 			close_eof = endpoint->data->rx.aggr_close_eof;
741 			val |= aggr_sw_eof_active_encoded(version, close_eof);
742 
743 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
744 		} else {
745 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
746 					       AGGR_EN_FMASK);
747 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
748 			/* other fields ignored */
749 		}
750 		/* AGGR_FORCE_CLOSE is 0 */
751 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
752 	} else {
753 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
754 		/* other fields ignored */
755 	}
756 
757 	iowrite32(val, endpoint->ipa->reg_virt + offset);
758 }
759 
760 /* Return the Qtime-based head-of-line blocking timer value that
761  * represents the given number of microseconds.  The result
762  * includes both the timer value and the selected timer granularity.
763  */
764 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
765 {
766 	u32 gran_sel;
767 	u32 val;
768 
769 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
770 	 * pulse generators 0 and 1 available, which were configured
771 	 * in ipa_qtime_config() to have granularity 100 usec and
772 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
773 	 * otherwise fall back to pulse generator 1.
774 	 */
775 	val = DIV_ROUND_CLOSEST(microseconds, 100);
776 	if (val > field_max(TIME_LIMIT_FMASK)) {
777 		/* Have to use pulse generator 1 (millisecond granularity) */
778 		gran_sel = GRAN_SEL_FMASK;
779 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
780 	} else {
781 		/* We can use pulse generator 0 (100 usec granularity) */
782 		gran_sel = 0;
783 	}
784 
785 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
786 }
787 
788 /* The head-of-line blocking timer is defined as a tick count.  For
789  * IPA version 4.5 the tick count is based on the Qtimer, which is
790  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
791  * each tick represents 128 cycles of the IPA core clock.
792  *
793  * Return the encoded value that should be written to that register
794  * that represents the timeout period provided.  For IPA v4.2 this
795  * encodes a base and scale value, while for earlier versions the
796  * value is a simple tick count.
797  */
798 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
799 {
800 	u32 width;
801 	u32 scale;
802 	u64 ticks;
803 	u64 rate;
804 	u32 high;
805 	u32 val;
806 
807 	if (!microseconds)
808 		return 0;	/* Nothing to compute if timer period is 0 */
809 
810 	if (ipa->version >= IPA_VERSION_4_5)
811 		return hol_block_timer_qtime_val(ipa, microseconds);
812 
813 	/* Use 64 bit arithmetic to avoid overflow... */
814 	rate = ipa_core_clock_rate(ipa);
815 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
816 	/* ...but we still need to fit into a 32-bit register */
817 	WARN_ON(ticks > U32_MAX);
818 
819 	/* IPA v3.5.1 through v4.1 just record the tick count */
820 	if (ipa->version < IPA_VERSION_4_2)
821 		return (u32)ticks;
822 
823 	/* For IPA v4.2, the tick count is represented by base and
824 	 * scale fields within the 32-bit timer register, where:
825 	 *     ticks = base << scale;
826 	 * The best precision is achieved when the base value is as
827 	 * large as possible.  Find the highest set bit in the tick
828 	 * count, and extract the number of bits in the base field
829 	 * such that high bit is included.
830 	 */
831 	high = fls(ticks);		/* 1..32 */
832 	width = HWEIGHT32(BASE_VALUE_FMASK);
833 	scale = high > width ? high - width : 0;
834 	if (scale) {
835 		/* If we're scaling, round up to get a closer result */
836 		ticks += 1 << (scale - 1);
837 		/* High bit was set, so rounding might have affected it */
838 		if (fls(ticks) != high)
839 			scale++;
840 	}
841 
842 	val = u32_encode_bits(scale, SCALE_FMASK);
843 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
844 
845 	return val;
846 }
847 
848 /* If microseconds is 0, timeout is immediate */
849 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
850 					      u32 microseconds)
851 {
852 	u32 endpoint_id = endpoint->endpoint_id;
853 	struct ipa *ipa = endpoint->ipa;
854 	u32 offset;
855 	u32 val;
856 
857 	/* This should only be changed when HOL_BLOCK_EN is disabled */
858 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
859 	val = hol_block_timer_val(ipa, microseconds);
860 	iowrite32(val, ipa->reg_virt + offset);
861 }
862 
863 static void
864 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
865 {
866 	u32 endpoint_id = endpoint->endpoint_id;
867 	u32 offset;
868 	u32 val;
869 
870 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
871 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
872 	iowrite32(val, endpoint->ipa->reg_virt + offset);
873 	/* When enabling, the register must be written twice for IPA v4.5+ */
874 	if (enable && endpoint->ipa->version >= IPA_VERSION_4_5)
875 		iowrite32(val, endpoint->ipa->reg_virt + offset);
876 }
877 
878 /* Assumes HOL_BLOCK is in disabled state */
879 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
880 					       u32 microseconds)
881 {
882 	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
883 	ipa_endpoint_init_hol_block_en(endpoint, true);
884 }
885 
886 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
887 {
888 	ipa_endpoint_init_hol_block_en(endpoint, false);
889 }
890 
891 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
892 {
893 	u32 i;
894 
895 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
896 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
897 
898 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
899 			continue;
900 
901 		ipa_endpoint_init_hol_block_disable(endpoint);
902 		ipa_endpoint_init_hol_block_enable(endpoint, 0);
903 	}
904 }
905 
906 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
907 {
908 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
909 	u32 val = 0;
910 
911 	if (!endpoint->toward_ipa)
912 		return;		/* Register not valid for RX endpoints */
913 
914 	/* DEAGGR_HDR_LEN is 0 */
915 	/* PACKET_OFFSET_VALID is 0 */
916 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
917 	/* MAX_PACKET_LEN is 0 (not enforced) */
918 
919 	iowrite32(val, endpoint->ipa->reg_virt + offset);
920 }
921 
922 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
923 {
924 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
925 	struct ipa *ipa = endpoint->ipa;
926 	u32 val;
927 
928 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
929 	iowrite32(val, ipa->reg_virt + offset);
930 }
931 
932 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
933 {
934 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
935 	u32 val = 0;
936 
937 	if (!endpoint->toward_ipa)
938 		return;		/* Register not valid for RX endpoints */
939 
940 	/* Low-order byte configures primary packet processing */
941 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
942 
943 	/* Second byte configures replicated packet processing */
944 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
945 			       SEQ_REP_TYPE_FMASK);
946 
947 	iowrite32(val, endpoint->ipa->reg_virt + offset);
948 }
949 
950 /**
951  * ipa_endpoint_skb_tx() - Transmit a socket buffer
952  * @endpoint:	Endpoint pointer
953  * @skb:	Socket buffer to send
954  *
955  * Returns:	0 if successful, or a negative error code
956  */
957 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
958 {
959 	struct gsi_trans *trans;
960 	u32 nr_frags;
961 	int ret;
962 
963 	/* Make sure source endpoint's TLV FIFO has enough entries to
964 	 * hold the linear portion of the skb and all its fragments.
965 	 * If not, see if we can linearize it before giving up.
966 	 */
967 	nr_frags = skb_shinfo(skb)->nr_frags;
968 	if (1 + nr_frags > endpoint->trans_tre_max) {
969 		if (skb_linearize(skb))
970 			return -E2BIG;
971 		nr_frags = 0;
972 	}
973 
974 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
975 	if (!trans)
976 		return -EBUSY;
977 
978 	ret = gsi_trans_skb_add(trans, skb);
979 	if (ret)
980 		goto err_trans_free;
981 	trans->data = skb;	/* transaction owns skb now */
982 
983 	gsi_trans_commit(trans, !netdev_xmit_more());
984 
985 	return 0;
986 
987 err_trans_free:
988 	gsi_trans_free(trans);
989 
990 	return -ENOMEM;
991 }
992 
993 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
994 {
995 	u32 endpoint_id = endpoint->endpoint_id;
996 	struct ipa *ipa = endpoint->ipa;
997 	u32 val = 0;
998 	u32 offset;
999 
1000 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
1001 
1002 	if (endpoint->data->status_enable) {
1003 		val |= STATUS_EN_FMASK;
1004 		if (endpoint->toward_ipa) {
1005 			enum ipa_endpoint_name name;
1006 			u32 status_endpoint_id;
1007 
1008 			name = endpoint->data->tx.status_endpoint;
1009 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1010 
1011 			val |= u32_encode_bits(status_endpoint_id,
1012 					       STATUS_ENDP_FMASK);
1013 		}
1014 		/* STATUS_LOCATION is 0, meaning status element precedes
1015 		 * packet (not present for IPA v4.5)
1016 		 */
1017 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1018 	}
1019 
1020 	iowrite32(val, ipa->reg_virt + offset);
1021 }
1022 
1023 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1024 {
1025 	struct gsi_trans *trans;
1026 	bool doorbell = false;
1027 	struct page *page;
1028 	u32 offset;
1029 	u32 len;
1030 	int ret;
1031 
1032 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1033 	if (!page)
1034 		return -ENOMEM;
1035 
1036 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
1037 	if (!trans)
1038 		goto err_free_pages;
1039 
1040 	/* Offset the buffer to make space for skb headroom */
1041 	offset = NET_SKB_PAD;
1042 	len = IPA_RX_BUFFER_SIZE - offset;
1043 
1044 	ret = gsi_trans_page_add(trans, page, len, offset);
1045 	if (ret)
1046 		goto err_trans_free;
1047 	trans->data = page;	/* transaction owns page now */
1048 
1049 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1050 		doorbell = true;
1051 		endpoint->replenish_ready = 0;
1052 	}
1053 
1054 	gsi_trans_commit(trans, doorbell);
1055 
1056 	return 0;
1057 
1058 err_trans_free:
1059 	gsi_trans_free(trans);
1060 err_free_pages:
1061 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1062 
1063 	return -ENOMEM;
1064 }
1065 
1066 /**
1067  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1068  * @endpoint:	Endpoint to be replenished
1069  * @add_one:	Whether this is replacing a just-consumed buffer
1070  *
1071  * The IPA hardware can hold a fixed number of receive buffers for an RX
1072  * endpoint, based on the number of entries in the underlying channel ring
1073  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1074  * more receive buffers can be supplied to the hardware.  Replenishing for
1075  * an endpoint can be disabled, in which case requests to replenish a
1076  * buffer are "saved", and transferred to the backlog once it is re-enabled
1077  * again.
1078  */
1079 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1080 {
1081 	struct gsi *gsi;
1082 	u32 backlog;
1083 	int delta;
1084 
1085 	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) {
1086 		if (add_one)
1087 			atomic_inc(&endpoint->replenish_saved);
1088 		return;
1089 	}
1090 
1091 	/* If already active, just update the backlog */
1092 	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) {
1093 		if (add_one)
1094 			atomic_inc(&endpoint->replenish_backlog);
1095 		return;
1096 	}
1097 
1098 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1099 		if (ipa_endpoint_replenish_one(endpoint))
1100 			goto try_again_later;
1101 
1102 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1103 
1104 	if (add_one)
1105 		atomic_inc(&endpoint->replenish_backlog);
1106 
1107 	return;
1108 
1109 try_again_later:
1110 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1111 
1112 	/* The last one didn't succeed, so fix the backlog */
1113 	delta = add_one ? 2 : 1;
1114 	backlog = atomic_add_return(delta, &endpoint->replenish_backlog);
1115 
1116 	/* Whenever a receive buffer transaction completes we'll try to
1117 	 * replenish again.  It's unlikely, but if we fail to supply even
1118 	 * one buffer, nothing will trigger another replenish attempt.
1119 	 * Receive buffer transactions use one TRE, so schedule work to
1120 	 * try replenishing again if our backlog is *all* available TREs.
1121 	 */
1122 	gsi = &endpoint->ipa->gsi;
1123 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1124 		schedule_delayed_work(&endpoint->replenish_work,
1125 				      msecs_to_jiffies(1));
1126 }
1127 
1128 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1129 {
1130 	struct gsi *gsi = &endpoint->ipa->gsi;
1131 	u32 max_backlog;
1132 	u32 saved;
1133 
1134 	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1135 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1136 		atomic_add(saved, &endpoint->replenish_backlog);
1137 
1138 	/* Start replenishing if hardware currently has no buffers */
1139 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1140 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1141 		ipa_endpoint_replenish(endpoint, false);
1142 }
1143 
1144 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1145 {
1146 	u32 backlog;
1147 
1148 	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1149 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1150 		atomic_add(backlog, &endpoint->replenish_saved);
1151 }
1152 
1153 static void ipa_endpoint_replenish_work(struct work_struct *work)
1154 {
1155 	struct delayed_work *dwork = to_delayed_work(work);
1156 	struct ipa_endpoint *endpoint;
1157 
1158 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1159 
1160 	ipa_endpoint_replenish(endpoint, false);
1161 }
1162 
1163 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1164 				  void *data, u32 len, u32 extra)
1165 {
1166 	struct sk_buff *skb;
1167 
1168 	if (!endpoint->netdev)
1169 		return;
1170 
1171 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1172 	if (!skb)
1173 		return;
1174 
1175 	/* Copy the data into the socket buffer and receive it */
1176 	skb_put(skb, len);
1177 	memcpy(skb->data, data, len);
1178 	skb->truesize += extra;
1179 
1180 	ipa_modem_skb_rx(endpoint->netdev, skb);
1181 }
1182 
1183 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1184 				   struct page *page, u32 len)
1185 {
1186 	struct sk_buff *skb;
1187 
1188 	/* Nothing to do if there's no netdev */
1189 	if (!endpoint->netdev)
1190 		return false;
1191 
1192 	WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD));
1193 
1194 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1195 	if (skb) {
1196 		/* Reserve the headroom and account for the data */
1197 		skb_reserve(skb, NET_SKB_PAD);
1198 		skb_put(skb, len);
1199 	}
1200 
1201 	/* Receive the buffer (or record drop if unable to build it) */
1202 	ipa_modem_skb_rx(endpoint->netdev, skb);
1203 
1204 	return skb != NULL;
1205 }
1206 
1207 /* The format of a packet status element is the same for several status
1208  * types (opcodes).  Other types aren't currently supported.
1209  */
1210 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1211 {
1212 	switch (opcode) {
1213 	case IPA_STATUS_OPCODE_PACKET:
1214 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1215 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1216 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1217 		return true;
1218 	default:
1219 		return false;
1220 	}
1221 }
1222 
1223 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1224 				     const struct ipa_status *status)
1225 {
1226 	u32 endpoint_id;
1227 
1228 	if (!ipa_status_format_packet(status->opcode))
1229 		return true;
1230 	if (!status->pkt_len)
1231 		return true;
1232 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1233 				  IPA_STATUS_DST_IDX_FMASK);
1234 	if (endpoint_id != endpoint->endpoint_id)
1235 		return true;
1236 
1237 	return false;	/* Don't skip this packet, process it */
1238 }
1239 
1240 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1241 				    const struct ipa_status *status)
1242 {
1243 	struct ipa_endpoint *command_endpoint;
1244 	struct ipa *ipa = endpoint->ipa;
1245 	u32 endpoint_id;
1246 
1247 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1248 		return false;	/* No valid tag */
1249 
1250 	/* The status contains a valid tag.  We know the packet was sent to
1251 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1252 	 * If the packet came from the AP->command TX endpoint we know
1253 	 * this packet was sent as part of the pipeline clear process.
1254 	 */
1255 	endpoint_id = u8_get_bits(status->endp_src_idx,
1256 				  IPA_STATUS_SRC_IDX_FMASK);
1257 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1258 	if (endpoint_id == command_endpoint->endpoint_id) {
1259 		complete(&ipa->completion);
1260 	} else {
1261 		dev_err(&ipa->pdev->dev,
1262 			"unexpected tagged packet from endpoint %u\n",
1263 			endpoint_id);
1264 	}
1265 
1266 	return true;
1267 }
1268 
1269 /* Return whether the status indicates the packet should be dropped */
1270 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1271 				     const struct ipa_status *status)
1272 {
1273 	u32 val;
1274 
1275 	/* If the status indicates a tagged transfer, we'll drop the packet */
1276 	if (ipa_endpoint_status_tag(endpoint, status))
1277 		return true;
1278 
1279 	/* Deaggregation exceptions we drop; all other types we consume */
1280 	if (status->exception)
1281 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1282 
1283 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1284 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1285 
1286 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1287 }
1288 
1289 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1290 				      struct page *page, u32 total_len)
1291 {
1292 	void *data = page_address(page) + NET_SKB_PAD;
1293 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1294 	u32 resid = total_len;
1295 
1296 	while (resid) {
1297 		const struct ipa_status *status = data;
1298 		u32 align;
1299 		u32 len;
1300 
1301 		if (resid < sizeof(*status)) {
1302 			dev_err(&endpoint->ipa->pdev->dev,
1303 				"short message (%u bytes < %zu byte status)\n",
1304 				resid, sizeof(*status));
1305 			break;
1306 		}
1307 
1308 		/* Skip over status packets that lack packet data */
1309 		if (ipa_endpoint_status_skip(endpoint, status)) {
1310 			data += sizeof(*status);
1311 			resid -= sizeof(*status);
1312 			continue;
1313 		}
1314 
1315 		/* Compute the amount of buffer space consumed by the packet,
1316 		 * including the status element.  If the hardware is configured
1317 		 * to pad packet data to an aligned boundary, account for that.
1318 		 * And if checksum offload is enabled a trailer containing
1319 		 * computed checksum information will be appended.
1320 		 */
1321 		align = endpoint->data->rx.pad_align ? : 1;
1322 		len = le16_to_cpu(status->pkt_len);
1323 		len = sizeof(*status) + ALIGN(len, align);
1324 		if (endpoint->data->checksum)
1325 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1326 
1327 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1328 			void *data2;
1329 			u32 extra;
1330 			u32 len2;
1331 
1332 			/* Client receives only packet data (no status) */
1333 			data2 = data + sizeof(*status);
1334 			len2 = le16_to_cpu(status->pkt_len);
1335 
1336 			/* Have the true size reflect the extra unused space in
1337 			 * the original receive buffer.  Distribute the "cost"
1338 			 * proportionately across all aggregated packets in the
1339 			 * buffer.
1340 			 */
1341 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1342 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1343 		}
1344 
1345 		/* Consume status and the full packet it describes */
1346 		data += len;
1347 		resid -= len;
1348 	}
1349 }
1350 
1351 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1352 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1353 				     struct gsi_trans *trans)
1354 {
1355 }
1356 
1357 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1358 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1359 				     struct gsi_trans *trans)
1360 {
1361 	struct page *page;
1362 
1363 	ipa_endpoint_replenish(endpoint, true);
1364 
1365 	if (trans->cancelled)
1366 		return;
1367 
1368 	/* Parse or build a socket buffer using the actual received length */
1369 	page = trans->data;
1370 	if (endpoint->data->status_enable)
1371 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1372 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1373 		trans->data = NULL;	/* Pages have been consumed */
1374 }
1375 
1376 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1377 				 struct gsi_trans *trans)
1378 {
1379 	if (endpoint->toward_ipa)
1380 		ipa_endpoint_tx_complete(endpoint, trans);
1381 	else
1382 		ipa_endpoint_rx_complete(endpoint, trans);
1383 }
1384 
1385 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1386 				struct gsi_trans *trans)
1387 {
1388 	if (endpoint->toward_ipa) {
1389 		struct ipa *ipa = endpoint->ipa;
1390 
1391 		/* Nothing to do for command transactions */
1392 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1393 			struct sk_buff *skb = trans->data;
1394 
1395 			if (skb)
1396 				dev_kfree_skb_any(skb);
1397 		}
1398 	} else {
1399 		struct page *page = trans->data;
1400 
1401 		if (page)
1402 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1403 	}
1404 }
1405 
1406 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1407 {
1408 	u32 val;
1409 
1410 	/* ROUTE_DIS is 0 */
1411 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1412 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1413 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1414 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1415 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1416 
1417 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1418 }
1419 
1420 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1421 {
1422 	ipa_endpoint_default_route_set(ipa, 0);
1423 }
1424 
1425 /**
1426  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1427  * @endpoint:	Endpoint to be reset
1428  *
1429  * If aggregation is active on an RX endpoint when a reset is performed
1430  * on its underlying GSI channel, a special sequence of actions must be
1431  * taken to ensure the IPA pipeline is properly cleared.
1432  *
1433  * Return:	0 if successful, or a negative error code
1434  */
1435 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1436 {
1437 	struct device *dev = &endpoint->ipa->pdev->dev;
1438 	struct ipa *ipa = endpoint->ipa;
1439 	struct gsi *gsi = &ipa->gsi;
1440 	bool suspended = false;
1441 	dma_addr_t addr;
1442 	u32 retries;
1443 	u32 len = 1;
1444 	void *virt;
1445 	int ret;
1446 
1447 	virt = kzalloc(len, GFP_KERNEL);
1448 	if (!virt)
1449 		return -ENOMEM;
1450 
1451 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1452 	if (dma_mapping_error(dev, addr)) {
1453 		ret = -ENOMEM;
1454 		goto out_kfree;
1455 	}
1456 
1457 	/* Force close aggregation before issuing the reset */
1458 	ipa_endpoint_force_close(endpoint);
1459 
1460 	/* Reset and reconfigure the channel with the doorbell engine
1461 	 * disabled.  Then poll until we know aggregation is no longer
1462 	 * active.  We'll re-enable the doorbell (if appropriate) when
1463 	 * we reset again below.
1464 	 */
1465 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1466 
1467 	/* Make sure the channel isn't suspended */
1468 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1469 
1470 	/* Start channel and do a 1 byte read */
1471 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1472 	if (ret)
1473 		goto out_suspend_again;
1474 
1475 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1476 	if (ret)
1477 		goto err_endpoint_stop;
1478 
1479 	/* Wait for aggregation to be closed on the channel */
1480 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1481 	do {
1482 		if (!ipa_endpoint_aggr_active(endpoint))
1483 			break;
1484 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1485 	} while (retries--);
1486 
1487 	/* Check one last time */
1488 	if (ipa_endpoint_aggr_active(endpoint))
1489 		dev_err(dev, "endpoint %u still active during reset\n",
1490 			endpoint->endpoint_id);
1491 
1492 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1493 
1494 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1495 	if (ret)
1496 		goto out_suspend_again;
1497 
1498 	/* Finally, reset and reconfigure the channel again (re-enabling
1499 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1500 	 * complete the channel reset sequence.  Finish by suspending the
1501 	 * channel again (if necessary).
1502 	 */
1503 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1504 
1505 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1506 
1507 	goto out_suspend_again;
1508 
1509 err_endpoint_stop:
1510 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1511 out_suspend_again:
1512 	if (suspended)
1513 		(void)ipa_endpoint_program_suspend(endpoint, true);
1514 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1515 out_kfree:
1516 	kfree(virt);
1517 
1518 	return ret;
1519 }
1520 
1521 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1522 {
1523 	u32 channel_id = endpoint->channel_id;
1524 	struct ipa *ipa = endpoint->ipa;
1525 	bool special;
1526 	int ret = 0;
1527 
1528 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1529 	 * is active, we need to handle things specially to recover.
1530 	 * All other cases just need to reset the underlying GSI channel.
1531 	 */
1532 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1533 			endpoint->data->aggregation;
1534 	if (special && ipa_endpoint_aggr_active(endpoint))
1535 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1536 	else
1537 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1538 
1539 	if (ret)
1540 		dev_err(&ipa->pdev->dev,
1541 			"error %d resetting channel %u for endpoint %u\n",
1542 			ret, endpoint->channel_id, endpoint->endpoint_id);
1543 }
1544 
1545 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1546 {
1547 	if (endpoint->toward_ipa) {
1548 		/* Newer versions of IPA use GSI channel flow control
1549 		 * instead of endpoint DELAY mode to prevent sending data.
1550 		 * Flow control is disabled for newly-allocated channels,
1551 		 * and we can assume flow control is not (ever) enabled
1552 		 * for AP TX channels.
1553 		 */
1554 		if (endpoint->ipa->version < IPA_VERSION_4_2)
1555 			ipa_endpoint_program_delay(endpoint, false);
1556 	} else {
1557 		/* Ensure suspend mode is off on all AP RX endpoints */
1558 		(void)ipa_endpoint_program_suspend(endpoint, false);
1559 	}
1560 	ipa_endpoint_init_cfg(endpoint);
1561 	ipa_endpoint_init_nat(endpoint);
1562 	ipa_endpoint_init_hdr(endpoint);
1563 	ipa_endpoint_init_hdr_ext(endpoint);
1564 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1565 	ipa_endpoint_init_mode(endpoint);
1566 	ipa_endpoint_init_aggr(endpoint);
1567 	if (!endpoint->toward_ipa)
1568 		ipa_endpoint_init_hol_block_disable(endpoint);
1569 	ipa_endpoint_init_deaggr(endpoint);
1570 	ipa_endpoint_init_rsrc_grp(endpoint);
1571 	ipa_endpoint_init_seq(endpoint);
1572 	ipa_endpoint_status(endpoint);
1573 }
1574 
1575 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1576 {
1577 	struct ipa *ipa = endpoint->ipa;
1578 	struct gsi *gsi = &ipa->gsi;
1579 	int ret;
1580 
1581 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1582 	if (ret) {
1583 		dev_err(&ipa->pdev->dev,
1584 			"error %d starting %cX channel %u for endpoint %u\n",
1585 			ret, endpoint->toward_ipa ? 'T' : 'R',
1586 			endpoint->channel_id, endpoint->endpoint_id);
1587 		return ret;
1588 	}
1589 
1590 	if (!endpoint->toward_ipa) {
1591 		ipa_interrupt_suspend_enable(ipa->interrupt,
1592 					     endpoint->endpoint_id);
1593 		ipa_endpoint_replenish_enable(endpoint);
1594 	}
1595 
1596 	ipa->enabled |= BIT(endpoint->endpoint_id);
1597 
1598 	return 0;
1599 }
1600 
1601 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1602 {
1603 	u32 mask = BIT(endpoint->endpoint_id);
1604 	struct ipa *ipa = endpoint->ipa;
1605 	struct gsi *gsi = &ipa->gsi;
1606 	int ret;
1607 
1608 	if (!(ipa->enabled & mask))
1609 		return;
1610 
1611 	ipa->enabled ^= mask;
1612 
1613 	if (!endpoint->toward_ipa) {
1614 		ipa_endpoint_replenish_disable(endpoint);
1615 		ipa_interrupt_suspend_disable(ipa->interrupt,
1616 					      endpoint->endpoint_id);
1617 	}
1618 
1619 	/* Note that if stop fails, the channel's state is not well-defined */
1620 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1621 	if (ret)
1622 		dev_err(&ipa->pdev->dev,
1623 			"error %d attempting to stop endpoint %u\n", ret,
1624 			endpoint->endpoint_id);
1625 }
1626 
1627 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1628 {
1629 	struct device *dev = &endpoint->ipa->pdev->dev;
1630 	struct gsi *gsi = &endpoint->ipa->gsi;
1631 	int ret;
1632 
1633 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1634 		return;
1635 
1636 	if (!endpoint->toward_ipa) {
1637 		ipa_endpoint_replenish_disable(endpoint);
1638 		(void)ipa_endpoint_program_suspend(endpoint, true);
1639 	}
1640 
1641 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1642 	if (ret)
1643 		dev_err(dev, "error %d suspending channel %u\n", ret,
1644 			endpoint->channel_id);
1645 }
1646 
1647 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1648 {
1649 	struct device *dev = &endpoint->ipa->pdev->dev;
1650 	struct gsi *gsi = &endpoint->ipa->gsi;
1651 	int ret;
1652 
1653 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1654 		return;
1655 
1656 	if (!endpoint->toward_ipa)
1657 		(void)ipa_endpoint_program_suspend(endpoint, false);
1658 
1659 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1660 	if (ret)
1661 		dev_err(dev, "error %d resuming channel %u\n", ret,
1662 			endpoint->channel_id);
1663 	else if (!endpoint->toward_ipa)
1664 		ipa_endpoint_replenish_enable(endpoint);
1665 }
1666 
1667 void ipa_endpoint_suspend(struct ipa *ipa)
1668 {
1669 	if (!ipa->setup_complete)
1670 		return;
1671 
1672 	if (ipa->modem_netdev)
1673 		ipa_modem_suspend(ipa->modem_netdev);
1674 
1675 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1676 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1677 }
1678 
1679 void ipa_endpoint_resume(struct ipa *ipa)
1680 {
1681 	if (!ipa->setup_complete)
1682 		return;
1683 
1684 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1685 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1686 
1687 	if (ipa->modem_netdev)
1688 		ipa_modem_resume(ipa->modem_netdev);
1689 }
1690 
1691 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1692 {
1693 	struct gsi *gsi = &endpoint->ipa->gsi;
1694 	u32 channel_id = endpoint->channel_id;
1695 
1696 	/* Only AP endpoints get set up */
1697 	if (endpoint->ee_id != GSI_EE_AP)
1698 		return;
1699 
1700 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1701 	if (!endpoint->toward_ipa) {
1702 		/* RX transactions require a single TRE, so the maximum
1703 		 * backlog is the same as the maximum outstanding TREs.
1704 		 */
1705 		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1706 		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1707 		atomic_set(&endpoint->replenish_saved,
1708 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1709 		atomic_set(&endpoint->replenish_backlog, 0);
1710 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1711 				  ipa_endpoint_replenish_work);
1712 	}
1713 
1714 	ipa_endpoint_program(endpoint);
1715 
1716 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1717 }
1718 
1719 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1720 {
1721 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1722 
1723 	if (!endpoint->toward_ipa)
1724 		cancel_delayed_work_sync(&endpoint->replenish_work);
1725 
1726 	ipa_endpoint_reset(endpoint);
1727 }
1728 
1729 void ipa_endpoint_setup(struct ipa *ipa)
1730 {
1731 	u32 initialized = ipa->initialized;
1732 
1733 	ipa->set_up = 0;
1734 	while (initialized) {
1735 		u32 endpoint_id = __ffs(initialized);
1736 
1737 		initialized ^= BIT(endpoint_id);
1738 
1739 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1740 	}
1741 }
1742 
1743 void ipa_endpoint_teardown(struct ipa *ipa)
1744 {
1745 	u32 set_up = ipa->set_up;
1746 
1747 	while (set_up) {
1748 		u32 endpoint_id = __fls(set_up);
1749 
1750 		set_up ^= BIT(endpoint_id);
1751 
1752 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1753 	}
1754 	ipa->set_up = 0;
1755 }
1756 
1757 int ipa_endpoint_config(struct ipa *ipa)
1758 {
1759 	struct device *dev = &ipa->pdev->dev;
1760 	u32 initialized;
1761 	u32 rx_base;
1762 	u32 rx_mask;
1763 	u32 tx_mask;
1764 	int ret = 0;
1765 	u32 max;
1766 	u32 val;
1767 
1768 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1769 	 * Furthermore, the endpoints were not grouped such that TX
1770 	 * endpoint numbers started with 0 and RX endpoints had numbers
1771 	 * higher than all TX endpoints, so we can't do the simple
1772 	 * direction check used for newer hardware below.
1773 	 *
1774 	 * For hardware that doesn't support the FLAVOR_0 register,
1775 	 * just set the available mask to support any endpoint, and
1776 	 * assume the configuration is valid.
1777 	 */
1778 	if (ipa->version < IPA_VERSION_3_5) {
1779 		ipa->available = ~0;
1780 		return 0;
1781 	}
1782 
1783 	/* Find out about the endpoints supplied by the hardware, and ensure
1784 	 * the highest one doesn't exceed the number we support.
1785 	 */
1786 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1787 
1788 	/* Our RX is an IPA producer */
1789 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1790 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1791 	if (max > IPA_ENDPOINT_MAX) {
1792 		dev_err(dev, "too many endpoints (%u > %u)\n",
1793 			max, IPA_ENDPOINT_MAX);
1794 		return -EINVAL;
1795 	}
1796 	rx_mask = GENMASK(max - 1, rx_base);
1797 
1798 	/* Our TX is an IPA consumer */
1799 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1800 	tx_mask = GENMASK(max - 1, 0);
1801 
1802 	ipa->available = rx_mask | tx_mask;
1803 
1804 	/* Check for initialized endpoints not supported by the hardware */
1805 	if (ipa->initialized & ~ipa->available) {
1806 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1807 			ipa->initialized & ~ipa->available);
1808 		ret = -EINVAL;		/* Report other errors too */
1809 	}
1810 
1811 	initialized = ipa->initialized;
1812 	while (initialized) {
1813 		u32 endpoint_id = __ffs(initialized);
1814 		struct ipa_endpoint *endpoint;
1815 
1816 		initialized ^= BIT(endpoint_id);
1817 
1818 		/* Make sure it's pointing in the right direction */
1819 		endpoint = &ipa->endpoint[endpoint_id];
1820 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1821 			dev_err(dev, "endpoint id %u wrong direction\n",
1822 				endpoint_id);
1823 			ret = -EINVAL;
1824 		}
1825 	}
1826 
1827 	return ret;
1828 }
1829 
1830 void ipa_endpoint_deconfig(struct ipa *ipa)
1831 {
1832 	ipa->available = 0;	/* Nothing more to do */
1833 }
1834 
1835 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1836 				  const struct ipa_gsi_endpoint_data *data)
1837 {
1838 	struct ipa_endpoint *endpoint;
1839 
1840 	endpoint = &ipa->endpoint[data->endpoint_id];
1841 
1842 	if (data->ee_id == GSI_EE_AP)
1843 		ipa->channel_map[data->channel_id] = endpoint;
1844 	ipa->name_map[name] = endpoint;
1845 
1846 	endpoint->ipa = ipa;
1847 	endpoint->ee_id = data->ee_id;
1848 	endpoint->channel_id = data->channel_id;
1849 	endpoint->endpoint_id = data->endpoint_id;
1850 	endpoint->toward_ipa = data->toward_ipa;
1851 	endpoint->data = &data->endpoint.config;
1852 
1853 	ipa->initialized |= BIT(endpoint->endpoint_id);
1854 }
1855 
1856 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1857 {
1858 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1859 
1860 	memset(endpoint, 0, sizeof(*endpoint));
1861 }
1862 
1863 void ipa_endpoint_exit(struct ipa *ipa)
1864 {
1865 	u32 initialized = ipa->initialized;
1866 
1867 	while (initialized) {
1868 		u32 endpoint_id = __fls(initialized);
1869 
1870 		initialized ^= BIT(endpoint_id);
1871 
1872 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1873 	}
1874 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1875 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1876 }
1877 
1878 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1879 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1880 		      const struct ipa_gsi_endpoint_data *data)
1881 {
1882 	enum ipa_endpoint_name name;
1883 	u32 filter_map;
1884 
1885 	if (!ipa_endpoint_data_valid(ipa, count, data))
1886 		return 0;	/* Error */
1887 
1888 	ipa->initialized = 0;
1889 
1890 	filter_map = 0;
1891 	for (name = 0; name < count; name++, data++) {
1892 		if (ipa_gsi_endpoint_data_empty(data))
1893 			continue;	/* Skip over empty slots */
1894 
1895 		ipa_endpoint_init_one(ipa, name, data);
1896 
1897 		if (data->endpoint.filter_support)
1898 			filter_map |= BIT(data->endpoint_id);
1899 	}
1900 
1901 	if (!ipa_filter_map_valid(ipa, filter_map))
1902 		goto err_endpoint_exit;
1903 
1904 	return filter_map;	/* Non-zero bitmask */
1905 
1906 err_endpoint_exit:
1907 	ipa_endpoint_exit(ipa);
1908 
1909 	return 0;	/* Error */
1910 }
1911