1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_clock.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 #define IPA_REPLENISH_BATCH 16 29 30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ 31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ 32 33 /* The amount of RX buffer space consumed by standard skb overhead */ 34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 35 36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 38 39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 40 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ 41 42 /** enum ipa_status_opcode - status element opcode hardware values */ 43 enum ipa_status_opcode { 44 IPA_STATUS_OPCODE_PACKET = 0x01, 45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 48 }; 49 50 /** enum ipa_status_exception - status element exception type */ 51 enum ipa_status_exception { 52 /* 0 means no exception */ 53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 54 }; 55 56 /* Status element provided by hardware */ 57 struct ipa_status { 58 u8 opcode; /* enum ipa_status_opcode */ 59 u8 exception; /* enum ipa_status_exception */ 60 __le16 mask; 61 __le16 pkt_len; 62 u8 endp_src_idx; 63 u8 endp_dst_idx; 64 __le32 metadata; 65 __le32 flags1; 66 __le64 flags2; 67 __le32 flags3; 68 __le32 flags4; 69 }; 70 71 /* Field masks for struct ipa_status structure fields */ 72 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 73 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 74 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 76 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 77 78 #ifdef IPA_VALIDATE 79 80 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 81 const struct ipa_gsi_endpoint_data *all_data, 82 const struct ipa_gsi_endpoint_data *data) 83 { 84 const struct ipa_gsi_endpoint_data *other_data; 85 struct device *dev = &ipa->pdev->dev; 86 enum ipa_endpoint_name other_name; 87 88 if (ipa_gsi_endpoint_data_empty(data)) 89 return true; 90 91 if (!data->toward_ipa) { 92 if (data->endpoint.filter_support) { 93 dev_err(dev, "filtering not supported for " 94 "RX endpoint %u\n", 95 data->endpoint_id); 96 return false; 97 } 98 99 return true; /* Nothing more to check for RX */ 100 } 101 102 if (data->endpoint.config.status_enable) { 103 other_name = data->endpoint.config.tx.status_endpoint; 104 if (other_name >= count) { 105 dev_err(dev, "status endpoint name %u out of range " 106 "for endpoint %u\n", 107 other_name, data->endpoint_id); 108 return false; 109 } 110 111 /* Status endpoint must be defined... */ 112 other_data = &all_data[other_name]; 113 if (ipa_gsi_endpoint_data_empty(other_data)) { 114 dev_err(dev, "DMA endpoint name %u undefined " 115 "for endpoint %u\n", 116 other_name, data->endpoint_id); 117 return false; 118 } 119 120 /* ...and has to be an RX endpoint... */ 121 if (other_data->toward_ipa) { 122 dev_err(dev, 123 "status endpoint for endpoint %u not RX\n", 124 data->endpoint_id); 125 return false; 126 } 127 128 /* ...and if it's to be an AP endpoint... */ 129 if (other_data->ee_id == GSI_EE_AP) { 130 /* ...make sure it has status enabled. */ 131 if (!other_data->endpoint.config.status_enable) { 132 dev_err(dev, 133 "status not enabled for endpoint %u\n", 134 other_data->endpoint_id); 135 return false; 136 } 137 } 138 } 139 140 if (data->endpoint.config.dma_mode) { 141 other_name = data->endpoint.config.dma_endpoint; 142 if (other_name >= count) { 143 dev_err(dev, "DMA endpoint name %u out of range " 144 "for endpoint %u\n", 145 other_name, data->endpoint_id); 146 return false; 147 } 148 149 other_data = &all_data[other_name]; 150 if (ipa_gsi_endpoint_data_empty(other_data)) { 151 dev_err(dev, "DMA endpoint name %u undefined " 152 "for endpoint %u\n", 153 other_name, data->endpoint_id); 154 return false; 155 } 156 } 157 158 return true; 159 } 160 161 static u32 aggr_byte_limit_max(enum ipa_version version) 162 { 163 if (version < IPA_VERSION_4_5) 164 return field_max(aggr_byte_limit_fmask(true)); 165 166 return field_max(aggr_byte_limit_fmask(false)); 167 } 168 169 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 170 const struct ipa_gsi_endpoint_data *data) 171 { 172 const struct ipa_gsi_endpoint_data *dp = data; 173 struct device *dev = &ipa->pdev->dev; 174 enum ipa_endpoint_name name; 175 u32 limit; 176 177 if (count > IPA_ENDPOINT_COUNT) { 178 dev_err(dev, "too many endpoints specified (%u > %u)\n", 179 count, IPA_ENDPOINT_COUNT); 180 return false; 181 } 182 183 /* The aggregation byte limit defines the point at which an 184 * aggregation window will close. It is programmed into the 185 * IPA hardware as a number of KB. We don't use "hard byte 186 * limit" aggregation, which means that we need to supply 187 * enough space in a receive buffer to hold a complete MTU 188 * plus normal skb overhead *after* that aggregation byte 189 * limit has been crossed. 190 * 191 * This check ensures we don't define a receive buffer size 192 * that would exceed what we can represent in the field that 193 * is used to program its size. 194 */ 195 limit = aggr_byte_limit_max(ipa->version) * SZ_1K; 196 limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 197 if (limit < IPA_RX_BUFFER_SIZE) { 198 dev_err(dev, "buffer size too big for aggregation (%u > %u)\n", 199 IPA_RX_BUFFER_SIZE, limit); 200 return false; 201 } 202 203 /* Make sure needed endpoints have defined data */ 204 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 205 dev_err(dev, "command TX endpoint not defined\n"); 206 return false; 207 } 208 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 209 dev_err(dev, "LAN RX endpoint not defined\n"); 210 return false; 211 } 212 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 213 dev_err(dev, "AP->modem TX endpoint not defined\n"); 214 return false; 215 } 216 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 217 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 218 return false; 219 } 220 221 for (name = 0; name < count; name++, dp++) 222 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 223 return false; 224 225 return true; 226 } 227 228 #else /* !IPA_VALIDATE */ 229 230 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 231 const struct ipa_gsi_endpoint_data *data) 232 { 233 return true; 234 } 235 236 #endif /* !IPA_VALIDATE */ 237 238 /* Allocate a transaction to use on a non-command endpoint */ 239 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 240 u32 tre_count) 241 { 242 struct gsi *gsi = &endpoint->ipa->gsi; 243 u32 channel_id = endpoint->channel_id; 244 enum dma_data_direction direction; 245 246 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 247 248 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 249 } 250 251 /* suspend_delay represents suspend for RX, delay for TX endpoints. 252 * Note that suspend is not supported starting with IPA v4.0. 253 */ 254 static bool 255 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 256 { 257 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 258 struct ipa *ipa = endpoint->ipa; 259 bool state; 260 u32 mask; 261 u32 val; 262 263 /* Suspend is not supported for IPA v4.0+. Delay doesn't work 264 * correctly on IPA v4.2. 265 * 266 * if (endpoint->toward_ipa) 267 * assert(ipa->version != IPA_VERSION_4.2); 268 * else 269 * assert(ipa->version < IPA_VERSION_4_0); 270 */ 271 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 272 273 val = ioread32(ipa->reg_virt + offset); 274 /* Don't bother if it's already in the requested state */ 275 state = !!(val & mask); 276 if (suspend_delay != state) { 277 val ^= mask; 278 iowrite32(val, ipa->reg_virt + offset); 279 } 280 281 return state; 282 } 283 284 /* We currently don't care what the previous state was for delay mode */ 285 static void 286 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 287 { 288 /* assert(endpoint->toward_ipa); */ 289 290 /* Delay mode doesn't work properly for IPA v4.2 */ 291 if (endpoint->ipa->version != IPA_VERSION_4_2) 292 (void)ipa_endpoint_init_ctrl(endpoint, enable); 293 } 294 295 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 296 { 297 u32 mask = BIT(endpoint->endpoint_id); 298 struct ipa *ipa = endpoint->ipa; 299 u32 offset; 300 u32 val; 301 302 /* assert(mask & ipa->available); */ 303 offset = ipa_reg_state_aggr_active_offset(ipa->version); 304 val = ioread32(ipa->reg_virt + offset); 305 306 return !!(val & mask); 307 } 308 309 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 310 { 311 u32 mask = BIT(endpoint->endpoint_id); 312 struct ipa *ipa = endpoint->ipa; 313 314 /* assert(mask & ipa->available); */ 315 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 316 } 317 318 /** 319 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 320 * @endpoint: Endpoint on which to emulate a suspend 321 * 322 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 323 * with an open aggregation frame. This is to work around a hardware 324 * issue in IPA version 3.5.1 where the suspend interrupt will not be 325 * generated when it should be. 326 */ 327 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 328 { 329 struct ipa *ipa = endpoint->ipa; 330 331 if (!endpoint->data->aggregation) 332 return; 333 334 /* Nothing to do if the endpoint doesn't have aggregation open */ 335 if (!ipa_endpoint_aggr_active(endpoint)) 336 return; 337 338 /* Force close aggregation */ 339 ipa_endpoint_force_close(endpoint); 340 341 ipa_interrupt_simulate_suspend(ipa->interrupt); 342 } 343 344 /* Returns previous suspend state (true means suspend was enabled) */ 345 static bool 346 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 347 { 348 bool suspended; 349 350 if (endpoint->ipa->version >= IPA_VERSION_4_0) 351 return enable; /* For IPA v4.0+, no change made */ 352 353 /* assert(!endpoint->toward_ipa); */ 354 355 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 356 357 /* A client suspended with an open aggregation frame will not 358 * generate a SUSPEND IPA interrupt. If enabling suspend, have 359 * ipa_endpoint_suspend_aggr() handle this. 360 */ 361 if (enable && !suspended) 362 ipa_endpoint_suspend_aggr(endpoint); 363 364 return suspended; 365 } 366 367 /* Enable or disable delay or suspend mode on all modem endpoints */ 368 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 369 { 370 u32 endpoint_id; 371 372 /* DELAY mode doesn't work correctly on IPA v4.2 */ 373 if (ipa->version == IPA_VERSION_4_2) 374 return; 375 376 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 377 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 378 379 if (endpoint->ee_id != GSI_EE_MODEM) 380 continue; 381 382 /* Set TX delay mode or RX suspend mode */ 383 if (endpoint->toward_ipa) 384 ipa_endpoint_program_delay(endpoint, enable); 385 else 386 (void)ipa_endpoint_program_suspend(endpoint, enable); 387 } 388 } 389 390 /* Reset all modem endpoints to use the default exception endpoint */ 391 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 392 { 393 u32 initialized = ipa->initialized; 394 struct gsi_trans *trans; 395 u32 count; 396 397 /* We need one command per modem TX endpoint. We can get an upper 398 * bound on that by assuming all initialized endpoints are modem->IPA. 399 * That won't happen, and we could be more precise, but this is fine 400 * for now. We need to end the transaction with a "tag process." 401 */ 402 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); 403 trans = ipa_cmd_trans_alloc(ipa, count); 404 if (!trans) { 405 dev_err(&ipa->pdev->dev, 406 "no transaction to reset modem exception endpoints\n"); 407 return -EBUSY; 408 } 409 410 while (initialized) { 411 u32 endpoint_id = __ffs(initialized); 412 struct ipa_endpoint *endpoint; 413 u32 offset; 414 415 initialized ^= BIT(endpoint_id); 416 417 /* We only reset modem TX endpoints */ 418 endpoint = &ipa->endpoint[endpoint_id]; 419 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 420 continue; 421 422 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 423 424 /* Value written is 0, and all bits are updated. That 425 * means status is disabled on the endpoint, and as a 426 * result all other fields in the register are ignored. 427 */ 428 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 429 } 430 431 ipa_cmd_pipeline_clear_add(trans); 432 433 /* XXX This should have a 1 second timeout */ 434 gsi_trans_commit_wait(trans); 435 436 ipa_cmd_pipeline_clear_wait(ipa); 437 438 return 0; 439 } 440 441 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 442 { 443 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 444 u32 val = 0; 445 446 /* FRAG_OFFLOAD_EN is 0 */ 447 if (endpoint->data->checksum) { 448 if (endpoint->toward_ipa) { 449 u32 checksum_offset; 450 451 val |= u32_encode_bits(IPA_CS_OFFLOAD_UL, 452 CS_OFFLOAD_EN_FMASK); 453 /* Checksum header offset is in 4-byte units */ 454 checksum_offset = sizeof(struct rmnet_map_header); 455 checksum_offset /= sizeof(u32); 456 val |= u32_encode_bits(checksum_offset, 457 CS_METADATA_HDR_OFFSET_FMASK); 458 } else { 459 val |= u32_encode_bits(IPA_CS_OFFLOAD_DL, 460 CS_OFFLOAD_EN_FMASK); 461 } 462 } else { 463 val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE, 464 CS_OFFLOAD_EN_FMASK); 465 } 466 /* CS_GEN_QMB_MASTER_SEL is 0 */ 467 468 iowrite32(val, endpoint->ipa->reg_virt + offset); 469 } 470 471 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 472 { 473 u32 offset; 474 u32 val; 475 476 if (!endpoint->toward_ipa) 477 return; 478 479 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 480 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 481 482 iowrite32(val, endpoint->ipa->reg_virt + offset); 483 } 484 485 /** 486 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 487 * @endpoint: Endpoint pointer 488 * 489 * We program QMAP endpoints so each packet received is preceded by a QMAP 490 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 491 * packet size field, and we have the IPA hardware populate both for each 492 * received packet. The header is configured (in the HDR_EXT register) 493 * to use big endian format. 494 * 495 * The packet size is written into the QMAP header's pkt_len field. That 496 * location is defined here using the HDR_OFST_PKT_SIZE field. 497 * 498 * The mux_id comes from a 4-byte metadata value supplied with each packet 499 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 500 * value that we want, in its low-order byte. A bitmask defined in the 501 * endpoint's METADATA_MASK register defines which byte within the modem 502 * metadata contains the mux_id. And the OFST_METADATA field programmed 503 * here indicates where the extracted byte should be placed within the QMAP 504 * header. 505 */ 506 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 507 { 508 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 509 struct ipa *ipa = endpoint->ipa; 510 u32 val = 0; 511 512 if (endpoint->data->qmap) { 513 size_t header_size = sizeof(struct rmnet_map_header); 514 enum ipa_version version = ipa->version; 515 516 /* We might supply a checksum header after the QMAP header */ 517 if (endpoint->toward_ipa && endpoint->data->checksum) 518 header_size += sizeof(struct rmnet_map_ul_csum_header); 519 val |= ipa_header_size_encoded(version, header_size); 520 521 /* Define how to fill fields in a received QMAP header */ 522 if (!endpoint->toward_ipa) { 523 u32 offset; /* Field offset within header */ 524 525 /* Where IPA will write the metadata value */ 526 offset = offsetof(struct rmnet_map_header, mux_id); 527 val |= ipa_metadata_offset_encoded(version, offset); 528 529 /* Where IPA will write the length */ 530 offset = offsetof(struct rmnet_map_header, pkt_len); 531 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 532 if (version >= IPA_VERSION_4_5) 533 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 534 535 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 536 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 537 } 538 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 539 val |= HDR_OFST_METADATA_VALID_FMASK; 540 541 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 542 /* HDR_A5_MUX is 0 */ 543 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 544 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 545 } 546 547 iowrite32(val, ipa->reg_virt + offset); 548 } 549 550 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 551 { 552 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 553 u32 pad_align = endpoint->data->rx.pad_align; 554 struct ipa *ipa = endpoint->ipa; 555 u32 val = 0; 556 557 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 558 559 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet 560 * driver assumes this field is meaningful in packets it receives, 561 * and assumes the header's payload length includes that padding. 562 * The RMNet driver does *not* pad packets it sends, however, so 563 * the pad field (although 0) should be ignored. 564 */ 565 if (endpoint->data->qmap && !endpoint->toward_ipa) { 566 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 567 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 568 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 569 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 570 } 571 572 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 573 if (!endpoint->toward_ipa) 574 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 575 576 /* IPA v4.5 adds some most-significant bits to a few fields, 577 * two of which are defined in the HDR (not HDR_EXT) register. 578 */ 579 if (ipa->version >= IPA_VERSION_4_5) { 580 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 581 if (endpoint->data->qmap && !endpoint->toward_ipa) { 582 u32 offset; 583 584 offset = offsetof(struct rmnet_map_header, pkt_len); 585 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 586 val |= u32_encode_bits(offset, 587 HDR_OFST_PKT_SIZE_MSB_FMASK); 588 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 589 } 590 } 591 iowrite32(val, ipa->reg_virt + offset); 592 } 593 594 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 595 { 596 u32 endpoint_id = endpoint->endpoint_id; 597 u32 val = 0; 598 u32 offset; 599 600 if (endpoint->toward_ipa) 601 return; /* Register not valid for TX endpoints */ 602 603 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 604 605 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 606 if (endpoint->data->qmap) 607 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 608 609 iowrite32(val, endpoint->ipa->reg_virt + offset); 610 } 611 612 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 613 { 614 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 615 u32 val; 616 617 if (!endpoint->toward_ipa) 618 return; /* Register not valid for RX endpoints */ 619 620 if (endpoint->data->dma_mode) { 621 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 622 u32 dma_endpoint_id; 623 624 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 625 626 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 627 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 628 } else { 629 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 630 } 631 /* All other bits unspecified (and 0) */ 632 633 iowrite32(val, endpoint->ipa->reg_virt + offset); 634 } 635 636 /* Compute the aggregation size value to use for a given buffer size */ 637 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 638 { 639 /* We don't use "hard byte limit" aggregation, so we define the 640 * aggregation limit such that our buffer has enough space *after* 641 * that limit to receive a full MTU of data, plus overhead. 642 */ 643 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 644 645 return rx_buffer_size / SZ_1K; 646 } 647 648 /* Encoded values for AGGR endpoint register fields */ 649 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 650 { 651 if (version < IPA_VERSION_4_5) 652 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 653 654 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 655 } 656 657 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 658 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 659 { 660 u32 gran_sel; 661 u32 fmask; 662 u32 val; 663 664 if (version < IPA_VERSION_4_5) { 665 /* We set aggregation granularity in ipa_hardware_config() */ 666 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 667 668 return u32_encode_bits(limit, aggr_time_limit_fmask(true)); 669 } 670 671 /* IPA v4.5 expresses the time limit using Qtime. The AP has 672 * pulse generators 0 and 1 available, which were configured 673 * in ipa_qtime_config() to have granularity 100 usec and 674 * 1 msec, respectively. Use pulse generator 0 if possible, 675 * otherwise fall back to pulse generator 1. 676 */ 677 fmask = aggr_time_limit_fmask(false); 678 val = DIV_ROUND_CLOSEST(limit, 100); 679 if (val > field_max(fmask)) { 680 /* Have to use pulse generator 1 (millisecond granularity) */ 681 gran_sel = AGGR_GRAN_SEL_FMASK; 682 val = DIV_ROUND_CLOSEST(limit, 1000); 683 } else { 684 /* We can use pulse generator 0 (100 usec granularity) */ 685 gran_sel = 0; 686 } 687 688 return gran_sel | u32_encode_bits(val, fmask); 689 } 690 691 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 692 { 693 u32 val = enabled ? 1 : 0; 694 695 if (version < IPA_VERSION_4_5) 696 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 697 698 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 699 } 700 701 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 702 { 703 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 704 enum ipa_version version = endpoint->ipa->version; 705 u32 val = 0; 706 707 if (endpoint->data->aggregation) { 708 if (!endpoint->toward_ipa) { 709 bool close_eof; 710 u32 limit; 711 712 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 713 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 714 715 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); 716 val |= aggr_byte_limit_encoded(version, limit); 717 718 limit = IPA_AGGR_TIME_LIMIT; 719 val |= aggr_time_limit_encoded(version, limit); 720 721 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 722 723 close_eof = endpoint->data->rx.aggr_close_eof; 724 val |= aggr_sw_eof_active_encoded(version, close_eof); 725 726 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 727 } else { 728 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 729 AGGR_EN_FMASK); 730 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 731 /* other fields ignored */ 732 } 733 /* AGGR_FORCE_CLOSE is 0 */ 734 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 735 } else { 736 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 737 /* other fields ignored */ 738 } 739 740 iowrite32(val, endpoint->ipa->reg_virt + offset); 741 } 742 743 /* Return the Qtime-based head-of-line blocking timer value that 744 * represents the given number of microseconds. The result 745 * includes both the timer value and the selected timer granularity. 746 */ 747 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 748 { 749 u32 gran_sel; 750 u32 val; 751 752 /* IPA v4.5 expresses time limits using Qtime. The AP has 753 * pulse generators 0 and 1 available, which were configured 754 * in ipa_qtime_config() to have granularity 100 usec and 755 * 1 msec, respectively. Use pulse generator 0 if possible, 756 * otherwise fall back to pulse generator 1. 757 */ 758 val = DIV_ROUND_CLOSEST(microseconds, 100); 759 if (val > field_max(TIME_LIMIT_FMASK)) { 760 /* Have to use pulse generator 1 (millisecond granularity) */ 761 gran_sel = GRAN_SEL_FMASK; 762 val = DIV_ROUND_CLOSEST(microseconds, 1000); 763 } else { 764 /* We can use pulse generator 0 (100 usec granularity) */ 765 gran_sel = 0; 766 } 767 768 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 769 } 770 771 /* The head-of-line blocking timer is defined as a tick count. For 772 * IPA version 4.5 the tick count is based on the Qtimer, which is 773 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 774 * each tick represents 128 cycles of the IPA core clock. 775 * 776 * Return the encoded value that should be written to that register 777 * that represents the timeout period provided. For IPA v4.2 this 778 * encodes a base and scale value, while for earlier versions the 779 * value is a simple tick count. 780 */ 781 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 782 { 783 u32 width; 784 u32 scale; 785 u64 ticks; 786 u64 rate; 787 u32 high; 788 u32 val; 789 790 if (!microseconds) 791 return 0; /* Nothing to compute if timer period is 0 */ 792 793 if (ipa->version >= IPA_VERSION_4_5) 794 return hol_block_timer_qtime_val(ipa, microseconds); 795 796 /* Use 64 bit arithmetic to avoid overflow... */ 797 rate = ipa_clock_rate(ipa); 798 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 799 /* ...but we still need to fit into a 32-bit register */ 800 WARN_ON(ticks > U32_MAX); 801 802 /* IPA v3.5.1 through v4.1 just record the tick count */ 803 if (ipa->version < IPA_VERSION_4_2) 804 return (u32)ticks; 805 806 /* For IPA v4.2, the tick count is represented by base and 807 * scale fields within the 32-bit timer register, where: 808 * ticks = base << scale; 809 * The best precision is achieved when the base value is as 810 * large as possible. Find the highest set bit in the tick 811 * count, and extract the number of bits in the base field 812 * such that that high bit is included. 813 */ 814 high = fls(ticks); /* 1..32 */ 815 width = HWEIGHT32(BASE_VALUE_FMASK); 816 scale = high > width ? high - width : 0; 817 if (scale) { 818 /* If we're scaling, round up to get a closer result */ 819 ticks += 1 << (scale - 1); 820 /* High bit was set, so rounding might have affected it */ 821 if (fls(ticks) != high) 822 scale++; 823 } 824 825 val = u32_encode_bits(scale, SCALE_FMASK); 826 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 827 828 return val; 829 } 830 831 /* If microseconds is 0, timeout is immediate */ 832 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 833 u32 microseconds) 834 { 835 u32 endpoint_id = endpoint->endpoint_id; 836 struct ipa *ipa = endpoint->ipa; 837 u32 offset; 838 u32 val; 839 840 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 841 val = hol_block_timer_val(ipa, microseconds); 842 iowrite32(val, ipa->reg_virt + offset); 843 } 844 845 static void 846 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) 847 { 848 u32 endpoint_id = endpoint->endpoint_id; 849 u32 offset; 850 u32 val; 851 852 val = enable ? HOL_BLOCK_EN_FMASK : 0; 853 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 854 iowrite32(val, endpoint->ipa->reg_virt + offset); 855 } 856 857 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 858 { 859 u32 i; 860 861 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 862 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 863 864 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 865 continue; 866 867 ipa_endpoint_init_hol_block_timer(endpoint, 0); 868 ipa_endpoint_init_hol_block_enable(endpoint, true); 869 } 870 } 871 872 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 873 { 874 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 875 u32 val = 0; 876 877 if (!endpoint->toward_ipa) 878 return; /* Register not valid for RX endpoints */ 879 880 /* DEAGGR_HDR_LEN is 0 */ 881 /* PACKET_OFFSET_VALID is 0 */ 882 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 883 /* MAX_PACKET_LEN is 0 (not enforced) */ 884 885 iowrite32(val, endpoint->ipa->reg_virt + offset); 886 } 887 888 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 889 { 890 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 891 struct ipa *ipa = endpoint->ipa; 892 u32 val; 893 894 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); 895 iowrite32(val, ipa->reg_virt + offset); 896 } 897 898 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 899 { 900 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 901 u32 val = 0; 902 903 if (!endpoint->toward_ipa) 904 return; /* Register not valid for RX endpoints */ 905 906 /* Low-order byte configures primary packet processing */ 907 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK); 908 909 /* Second byte configures replicated packet processing */ 910 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type, 911 SEQ_REP_TYPE_FMASK); 912 913 iowrite32(val, endpoint->ipa->reg_virt + offset); 914 } 915 916 /** 917 * ipa_endpoint_skb_tx() - Transmit a socket buffer 918 * @endpoint: Endpoint pointer 919 * @skb: Socket buffer to send 920 * 921 * Returns: 0 if successful, or a negative error code 922 */ 923 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 924 { 925 struct gsi_trans *trans; 926 u32 nr_frags; 927 int ret; 928 929 /* Make sure source endpoint's TLV FIFO has enough entries to 930 * hold the linear portion of the skb and all its fragments. 931 * If not, see if we can linearize it before giving up. 932 */ 933 nr_frags = skb_shinfo(skb)->nr_frags; 934 if (1 + nr_frags > endpoint->trans_tre_max) { 935 if (skb_linearize(skb)) 936 return -E2BIG; 937 nr_frags = 0; 938 } 939 940 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 941 if (!trans) 942 return -EBUSY; 943 944 ret = gsi_trans_skb_add(trans, skb); 945 if (ret) 946 goto err_trans_free; 947 trans->data = skb; /* transaction owns skb now */ 948 949 gsi_trans_commit(trans, !netdev_xmit_more()); 950 951 return 0; 952 953 err_trans_free: 954 gsi_trans_free(trans); 955 956 return -ENOMEM; 957 } 958 959 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 960 { 961 u32 endpoint_id = endpoint->endpoint_id; 962 struct ipa *ipa = endpoint->ipa; 963 u32 val = 0; 964 u32 offset; 965 966 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 967 968 if (endpoint->data->status_enable) { 969 val |= STATUS_EN_FMASK; 970 if (endpoint->toward_ipa) { 971 enum ipa_endpoint_name name; 972 u32 status_endpoint_id; 973 974 name = endpoint->data->tx.status_endpoint; 975 status_endpoint_id = ipa->name_map[name]->endpoint_id; 976 977 val |= u32_encode_bits(status_endpoint_id, 978 STATUS_ENDP_FMASK); 979 } 980 /* STATUS_LOCATION is 0, meaning status element precedes 981 * packet (not present for IPA v4.5) 982 */ 983 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 984 } 985 986 iowrite32(val, ipa->reg_virt + offset); 987 } 988 989 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) 990 { 991 struct gsi_trans *trans; 992 bool doorbell = false; 993 struct page *page; 994 u32 offset; 995 u32 len; 996 int ret; 997 998 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); 999 if (!page) 1000 return -ENOMEM; 1001 1002 trans = ipa_endpoint_trans_alloc(endpoint, 1); 1003 if (!trans) 1004 goto err_free_pages; 1005 1006 /* Offset the buffer to make space for skb headroom */ 1007 offset = NET_SKB_PAD; 1008 len = IPA_RX_BUFFER_SIZE - offset; 1009 1010 ret = gsi_trans_page_add(trans, page, len, offset); 1011 if (ret) 1012 goto err_trans_free; 1013 trans->data = page; /* transaction owns page now */ 1014 1015 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { 1016 doorbell = true; 1017 endpoint->replenish_ready = 0; 1018 } 1019 1020 gsi_trans_commit(trans, doorbell); 1021 1022 return 0; 1023 1024 err_trans_free: 1025 gsi_trans_free(trans); 1026 err_free_pages: 1027 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1028 1029 return -ENOMEM; 1030 } 1031 1032 /** 1033 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1034 * @endpoint: Endpoint to be replenished 1035 * @add_one: Whether this is replacing a just-consumed buffer 1036 * 1037 * The IPA hardware can hold a fixed number of receive buffers for an RX 1038 * endpoint, based on the number of entries in the underlying channel ring 1039 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1040 * more receive buffers can be supplied to the hardware. Replenishing for 1041 * an endpoint can be disabled, in which case requests to replenish a 1042 * buffer are "saved", and transferred to the backlog once it is re-enabled 1043 * again. 1044 */ 1045 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one) 1046 { 1047 struct gsi *gsi; 1048 u32 backlog; 1049 1050 if (!endpoint->replenish_enabled) { 1051 if (add_one) 1052 atomic_inc(&endpoint->replenish_saved); 1053 return; 1054 } 1055 1056 while (atomic_dec_not_zero(&endpoint->replenish_backlog)) 1057 if (ipa_endpoint_replenish_one(endpoint)) 1058 goto try_again_later; 1059 if (add_one) 1060 atomic_inc(&endpoint->replenish_backlog); 1061 1062 return; 1063 1064 try_again_later: 1065 /* The last one didn't succeed, so fix the backlog */ 1066 backlog = atomic_inc_return(&endpoint->replenish_backlog); 1067 1068 if (add_one) 1069 atomic_inc(&endpoint->replenish_backlog); 1070 1071 /* Whenever a receive buffer transaction completes we'll try to 1072 * replenish again. It's unlikely, but if we fail to supply even 1073 * one buffer, nothing will trigger another replenish attempt. 1074 * Receive buffer transactions use one TRE, so schedule work to 1075 * try replenishing again if our backlog is *all* available TREs. 1076 */ 1077 gsi = &endpoint->ipa->gsi; 1078 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) 1079 schedule_delayed_work(&endpoint->replenish_work, 1080 msecs_to_jiffies(1)); 1081 } 1082 1083 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1084 { 1085 struct gsi *gsi = &endpoint->ipa->gsi; 1086 u32 max_backlog; 1087 u32 saved; 1088 1089 endpoint->replenish_enabled = true; 1090 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) 1091 atomic_add(saved, &endpoint->replenish_backlog); 1092 1093 /* Start replenishing if hardware currently has no buffers */ 1094 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); 1095 if (atomic_read(&endpoint->replenish_backlog) == max_backlog) 1096 ipa_endpoint_replenish(endpoint, false); 1097 } 1098 1099 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1100 { 1101 u32 backlog; 1102 1103 endpoint->replenish_enabled = false; 1104 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) 1105 atomic_add(backlog, &endpoint->replenish_saved); 1106 } 1107 1108 static void ipa_endpoint_replenish_work(struct work_struct *work) 1109 { 1110 struct delayed_work *dwork = to_delayed_work(work); 1111 struct ipa_endpoint *endpoint; 1112 1113 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1114 1115 ipa_endpoint_replenish(endpoint, false); 1116 } 1117 1118 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1119 void *data, u32 len, u32 extra) 1120 { 1121 struct sk_buff *skb; 1122 1123 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1124 if (skb) { 1125 skb_put(skb, len); 1126 memcpy(skb->data, data, len); 1127 skb->truesize += extra; 1128 } 1129 1130 /* Now receive it, or drop it if there's no netdev */ 1131 if (endpoint->netdev) 1132 ipa_modem_skb_rx(endpoint->netdev, skb); 1133 else if (skb) 1134 dev_kfree_skb_any(skb); 1135 } 1136 1137 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1138 struct page *page, u32 len) 1139 { 1140 struct sk_buff *skb; 1141 1142 /* Nothing to do if there's no netdev */ 1143 if (!endpoint->netdev) 1144 return false; 1145 1146 /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */ 1147 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); 1148 if (skb) { 1149 /* Reserve the headroom and account for the data */ 1150 skb_reserve(skb, NET_SKB_PAD); 1151 skb_put(skb, len); 1152 } 1153 1154 /* Receive the buffer (or record drop if unable to build it) */ 1155 ipa_modem_skb_rx(endpoint->netdev, skb); 1156 1157 return skb != NULL; 1158 } 1159 1160 /* The format of a packet status element is the same for several status 1161 * types (opcodes). Other types aren't currently supported. 1162 */ 1163 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1164 { 1165 switch (opcode) { 1166 case IPA_STATUS_OPCODE_PACKET: 1167 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1168 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1169 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1170 return true; 1171 default: 1172 return false; 1173 } 1174 } 1175 1176 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1177 const struct ipa_status *status) 1178 { 1179 u32 endpoint_id; 1180 1181 if (!ipa_status_format_packet(status->opcode)) 1182 return true; 1183 if (!status->pkt_len) 1184 return true; 1185 endpoint_id = u8_get_bits(status->endp_dst_idx, 1186 IPA_STATUS_DST_IDX_FMASK); 1187 if (endpoint_id != endpoint->endpoint_id) 1188 return true; 1189 1190 return false; /* Don't skip this packet, process it */ 1191 } 1192 1193 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1194 const struct ipa_status *status) 1195 { 1196 struct ipa_endpoint *command_endpoint; 1197 struct ipa *ipa = endpoint->ipa; 1198 u32 endpoint_id; 1199 1200 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1201 return false; /* No valid tag */ 1202 1203 /* The status contains a valid tag. We know the packet was sent to 1204 * this endpoint (already verified by ipa_endpoint_status_skip()). 1205 * If the packet came from the AP->command TX endpoint we know 1206 * this packet was sent as part of the pipeline clear process. 1207 */ 1208 endpoint_id = u8_get_bits(status->endp_src_idx, 1209 IPA_STATUS_SRC_IDX_FMASK); 1210 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1211 if (endpoint_id == command_endpoint->endpoint_id) { 1212 complete(&ipa->completion); 1213 } else { 1214 dev_err(&ipa->pdev->dev, 1215 "unexpected tagged packet from endpoint %u\n", 1216 endpoint_id); 1217 } 1218 1219 return true; 1220 } 1221 1222 /* Return whether the status indicates the packet should be dropped */ 1223 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1224 const struct ipa_status *status) 1225 { 1226 u32 val; 1227 1228 /* If the status indicates a tagged transfer, we'll drop the packet */ 1229 if (ipa_endpoint_status_tag(endpoint, status)) 1230 return true; 1231 1232 /* Deaggregation exceptions we drop; all other types we consume */ 1233 if (status->exception) 1234 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1235 1236 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1237 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1238 1239 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1240 } 1241 1242 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1243 struct page *page, u32 total_len) 1244 { 1245 void *data = page_address(page) + NET_SKB_PAD; 1246 u32 unused = IPA_RX_BUFFER_SIZE - total_len; 1247 u32 resid = total_len; 1248 1249 while (resid) { 1250 const struct ipa_status *status = data; 1251 u32 align; 1252 u32 len; 1253 1254 if (resid < sizeof(*status)) { 1255 dev_err(&endpoint->ipa->pdev->dev, 1256 "short message (%u bytes < %zu byte status)\n", 1257 resid, sizeof(*status)); 1258 break; 1259 } 1260 1261 /* Skip over status packets that lack packet data */ 1262 if (ipa_endpoint_status_skip(endpoint, status)) { 1263 data += sizeof(*status); 1264 resid -= sizeof(*status); 1265 continue; 1266 } 1267 1268 /* Compute the amount of buffer space consumed by the packet, 1269 * including the status element. If the hardware is configured 1270 * to pad packet data to an aligned boundary, account for that. 1271 * And if checksum offload is enabled a trailer containing 1272 * computed checksum information will be appended. 1273 */ 1274 align = endpoint->data->rx.pad_align ? : 1; 1275 len = le16_to_cpu(status->pkt_len); 1276 len = sizeof(*status) + ALIGN(len, align); 1277 if (endpoint->data->checksum) 1278 len += sizeof(struct rmnet_map_dl_csum_trailer); 1279 1280 if (!ipa_endpoint_status_drop(endpoint, status)) { 1281 void *data2; 1282 u32 extra; 1283 u32 len2; 1284 1285 /* Client receives only packet data (no status) */ 1286 data2 = data + sizeof(*status); 1287 len2 = le16_to_cpu(status->pkt_len); 1288 1289 /* Have the true size reflect the extra unused space in 1290 * the original receive buffer. Distribute the "cost" 1291 * proportionately across all aggregated packets in the 1292 * buffer. 1293 */ 1294 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1295 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1296 } 1297 1298 /* Consume status and the full packet it describes */ 1299 data += len; 1300 resid -= len; 1301 } 1302 } 1303 1304 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1305 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1306 struct gsi_trans *trans) 1307 { 1308 } 1309 1310 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1311 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1312 struct gsi_trans *trans) 1313 { 1314 struct page *page; 1315 1316 ipa_endpoint_replenish(endpoint, true); 1317 1318 if (trans->cancelled) 1319 return; 1320 1321 /* Parse or build a socket buffer using the actual received length */ 1322 page = trans->data; 1323 if (endpoint->data->status_enable) 1324 ipa_endpoint_status_parse(endpoint, page, trans->len); 1325 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1326 trans->data = NULL; /* Pages have been consumed */ 1327 } 1328 1329 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1330 struct gsi_trans *trans) 1331 { 1332 if (endpoint->toward_ipa) 1333 ipa_endpoint_tx_complete(endpoint, trans); 1334 else 1335 ipa_endpoint_rx_complete(endpoint, trans); 1336 } 1337 1338 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1339 struct gsi_trans *trans) 1340 { 1341 if (endpoint->toward_ipa) { 1342 struct ipa *ipa = endpoint->ipa; 1343 1344 /* Nothing to do for command transactions */ 1345 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1346 struct sk_buff *skb = trans->data; 1347 1348 if (skb) 1349 dev_kfree_skb_any(skb); 1350 } 1351 } else { 1352 struct page *page = trans->data; 1353 1354 if (page) 1355 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1356 } 1357 } 1358 1359 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1360 { 1361 u32 val; 1362 1363 /* ROUTE_DIS is 0 */ 1364 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1365 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1366 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1367 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1368 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1369 1370 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1371 } 1372 1373 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1374 { 1375 ipa_endpoint_default_route_set(ipa, 0); 1376 } 1377 1378 /** 1379 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1380 * @endpoint: Endpoint to be reset 1381 * 1382 * If aggregation is active on an RX endpoint when a reset is performed 1383 * on its underlying GSI channel, a special sequence of actions must be 1384 * taken to ensure the IPA pipeline is properly cleared. 1385 * 1386 * Return: 0 if successful, or a negative error code 1387 */ 1388 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1389 { 1390 struct device *dev = &endpoint->ipa->pdev->dev; 1391 struct ipa *ipa = endpoint->ipa; 1392 struct gsi *gsi = &ipa->gsi; 1393 bool suspended = false; 1394 dma_addr_t addr; 1395 u32 retries; 1396 u32 len = 1; 1397 void *virt; 1398 int ret; 1399 1400 virt = kzalloc(len, GFP_KERNEL); 1401 if (!virt) 1402 return -ENOMEM; 1403 1404 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1405 if (dma_mapping_error(dev, addr)) { 1406 ret = -ENOMEM; 1407 goto out_kfree; 1408 } 1409 1410 /* Force close aggregation before issuing the reset */ 1411 ipa_endpoint_force_close(endpoint); 1412 1413 /* Reset and reconfigure the channel with the doorbell engine 1414 * disabled. Then poll until we know aggregation is no longer 1415 * active. We'll re-enable the doorbell (if appropriate) when 1416 * we reset again below. 1417 */ 1418 gsi_channel_reset(gsi, endpoint->channel_id, false); 1419 1420 /* Make sure the channel isn't suspended */ 1421 suspended = ipa_endpoint_program_suspend(endpoint, false); 1422 1423 /* Start channel and do a 1 byte read */ 1424 ret = gsi_channel_start(gsi, endpoint->channel_id); 1425 if (ret) 1426 goto out_suspend_again; 1427 1428 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1429 if (ret) 1430 goto err_endpoint_stop; 1431 1432 /* Wait for aggregation to be closed on the channel */ 1433 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1434 do { 1435 if (!ipa_endpoint_aggr_active(endpoint)) 1436 break; 1437 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1438 } while (retries--); 1439 1440 /* Check one last time */ 1441 if (ipa_endpoint_aggr_active(endpoint)) 1442 dev_err(dev, "endpoint %u still active during reset\n", 1443 endpoint->endpoint_id); 1444 1445 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1446 1447 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1448 if (ret) 1449 goto out_suspend_again; 1450 1451 /* Finally, reset and reconfigure the channel again (re-enabling the 1452 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1453 * complete the channel reset sequence. Finish by suspending the 1454 * channel again (if necessary). 1455 */ 1456 gsi_channel_reset(gsi, endpoint->channel_id, true); 1457 1458 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1459 1460 goto out_suspend_again; 1461 1462 err_endpoint_stop: 1463 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1464 out_suspend_again: 1465 if (suspended) 1466 (void)ipa_endpoint_program_suspend(endpoint, true); 1467 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1468 out_kfree: 1469 kfree(virt); 1470 1471 return ret; 1472 } 1473 1474 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1475 { 1476 u32 channel_id = endpoint->channel_id; 1477 struct ipa *ipa = endpoint->ipa; 1478 bool special; 1479 int ret = 0; 1480 1481 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1482 * is active, we need to handle things specially to recover. 1483 * All other cases just need to reset the underlying GSI channel. 1484 */ 1485 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1486 endpoint->data->aggregation; 1487 if (special && ipa_endpoint_aggr_active(endpoint)) 1488 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1489 else 1490 gsi_channel_reset(&ipa->gsi, channel_id, true); 1491 1492 if (ret) 1493 dev_err(&ipa->pdev->dev, 1494 "error %d resetting channel %u for endpoint %u\n", 1495 ret, endpoint->channel_id, endpoint->endpoint_id); 1496 } 1497 1498 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1499 { 1500 if (endpoint->toward_ipa) 1501 ipa_endpoint_program_delay(endpoint, false); 1502 else 1503 (void)ipa_endpoint_program_suspend(endpoint, false); 1504 ipa_endpoint_init_cfg(endpoint); 1505 ipa_endpoint_init_nat(endpoint); 1506 ipa_endpoint_init_hdr(endpoint); 1507 ipa_endpoint_init_hdr_ext(endpoint); 1508 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1509 ipa_endpoint_init_mode(endpoint); 1510 ipa_endpoint_init_aggr(endpoint); 1511 ipa_endpoint_init_deaggr(endpoint); 1512 ipa_endpoint_init_rsrc_grp(endpoint); 1513 ipa_endpoint_init_seq(endpoint); 1514 ipa_endpoint_status(endpoint); 1515 } 1516 1517 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1518 { 1519 struct ipa *ipa = endpoint->ipa; 1520 struct gsi *gsi = &ipa->gsi; 1521 int ret; 1522 1523 ret = gsi_channel_start(gsi, endpoint->channel_id); 1524 if (ret) { 1525 dev_err(&ipa->pdev->dev, 1526 "error %d starting %cX channel %u for endpoint %u\n", 1527 ret, endpoint->toward_ipa ? 'T' : 'R', 1528 endpoint->channel_id, endpoint->endpoint_id); 1529 return ret; 1530 } 1531 1532 if (!endpoint->toward_ipa) { 1533 ipa_interrupt_suspend_enable(ipa->interrupt, 1534 endpoint->endpoint_id); 1535 ipa_endpoint_replenish_enable(endpoint); 1536 } 1537 1538 ipa->enabled |= BIT(endpoint->endpoint_id); 1539 1540 return 0; 1541 } 1542 1543 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1544 { 1545 u32 mask = BIT(endpoint->endpoint_id); 1546 struct ipa *ipa = endpoint->ipa; 1547 struct gsi *gsi = &ipa->gsi; 1548 int ret; 1549 1550 if (!(ipa->enabled & mask)) 1551 return; 1552 1553 ipa->enabled ^= mask; 1554 1555 if (!endpoint->toward_ipa) { 1556 ipa_endpoint_replenish_disable(endpoint); 1557 ipa_interrupt_suspend_disable(ipa->interrupt, 1558 endpoint->endpoint_id); 1559 } 1560 1561 /* Note that if stop fails, the channel's state is not well-defined */ 1562 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1563 if (ret) 1564 dev_err(&ipa->pdev->dev, 1565 "error %d attempting to stop endpoint %u\n", ret, 1566 endpoint->endpoint_id); 1567 } 1568 1569 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1570 { 1571 struct device *dev = &endpoint->ipa->pdev->dev; 1572 struct gsi *gsi = &endpoint->ipa->gsi; 1573 bool stop_channel; 1574 int ret; 1575 1576 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1577 return; 1578 1579 if (!endpoint->toward_ipa) { 1580 ipa_endpoint_replenish_disable(endpoint); 1581 (void)ipa_endpoint_program_suspend(endpoint, true); 1582 } 1583 1584 /* Starting with IPA v4.0, endpoints are suspended by stopping the 1585 * underlying GSI channel rather than using endpoint suspend mode. 1586 */ 1587 stop_channel = endpoint->ipa->version >= IPA_VERSION_4_0; 1588 ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel); 1589 if (ret) 1590 dev_err(dev, "error %d suspending channel %u\n", ret, 1591 endpoint->channel_id); 1592 } 1593 1594 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1595 { 1596 struct device *dev = &endpoint->ipa->pdev->dev; 1597 struct gsi *gsi = &endpoint->ipa->gsi; 1598 bool start_channel; 1599 int ret; 1600 1601 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1602 return; 1603 1604 if (!endpoint->toward_ipa) 1605 (void)ipa_endpoint_program_suspend(endpoint, false); 1606 1607 /* Starting with IPA v4.0, the underlying GSI channel must be 1608 * restarted for resume. 1609 */ 1610 start_channel = endpoint->ipa->version >= IPA_VERSION_4_0; 1611 ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel); 1612 if (ret) 1613 dev_err(dev, "error %d resuming channel %u\n", ret, 1614 endpoint->channel_id); 1615 else if (!endpoint->toward_ipa) 1616 ipa_endpoint_replenish_enable(endpoint); 1617 } 1618 1619 void ipa_endpoint_suspend(struct ipa *ipa) 1620 { 1621 if (!ipa->setup_complete) 1622 return; 1623 1624 if (ipa->modem_netdev) 1625 ipa_modem_suspend(ipa->modem_netdev); 1626 1627 ipa_cmd_pipeline_clear(ipa); 1628 1629 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1630 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1631 } 1632 1633 void ipa_endpoint_resume(struct ipa *ipa) 1634 { 1635 if (!ipa->setup_complete) 1636 return; 1637 1638 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1639 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1640 1641 if (ipa->modem_netdev) 1642 ipa_modem_resume(ipa->modem_netdev); 1643 } 1644 1645 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1646 { 1647 struct gsi *gsi = &endpoint->ipa->gsi; 1648 u32 channel_id = endpoint->channel_id; 1649 1650 /* Only AP endpoints get set up */ 1651 if (endpoint->ee_id != GSI_EE_AP) 1652 return; 1653 1654 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1655 if (!endpoint->toward_ipa) { 1656 /* RX transactions require a single TRE, so the maximum 1657 * backlog is the same as the maximum outstanding TREs. 1658 */ 1659 endpoint->replenish_enabled = false; 1660 atomic_set(&endpoint->replenish_saved, 1661 gsi_channel_tre_max(gsi, endpoint->channel_id)); 1662 atomic_set(&endpoint->replenish_backlog, 0); 1663 INIT_DELAYED_WORK(&endpoint->replenish_work, 1664 ipa_endpoint_replenish_work); 1665 } 1666 1667 ipa_endpoint_program(endpoint); 1668 1669 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1670 } 1671 1672 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1673 { 1674 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1675 1676 if (!endpoint->toward_ipa) 1677 cancel_delayed_work_sync(&endpoint->replenish_work); 1678 1679 ipa_endpoint_reset(endpoint); 1680 } 1681 1682 void ipa_endpoint_setup(struct ipa *ipa) 1683 { 1684 u32 initialized = ipa->initialized; 1685 1686 ipa->set_up = 0; 1687 while (initialized) { 1688 u32 endpoint_id = __ffs(initialized); 1689 1690 initialized ^= BIT(endpoint_id); 1691 1692 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1693 } 1694 } 1695 1696 void ipa_endpoint_teardown(struct ipa *ipa) 1697 { 1698 u32 set_up = ipa->set_up; 1699 1700 while (set_up) { 1701 u32 endpoint_id = __fls(set_up); 1702 1703 set_up ^= BIT(endpoint_id); 1704 1705 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1706 } 1707 ipa->set_up = 0; 1708 } 1709 1710 int ipa_endpoint_config(struct ipa *ipa) 1711 { 1712 struct device *dev = &ipa->pdev->dev; 1713 u32 initialized; 1714 u32 rx_base; 1715 u32 rx_mask; 1716 u32 tx_mask; 1717 int ret = 0; 1718 u32 max; 1719 u32 val; 1720 1721 /* Find out about the endpoints supplied by the hardware, and ensure 1722 * the highest one doesn't exceed the number we support. 1723 */ 1724 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1725 1726 /* Our RX is an IPA producer */ 1727 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1728 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1729 if (max > IPA_ENDPOINT_MAX) { 1730 dev_err(dev, "too many endpoints (%u > %u)\n", 1731 max, IPA_ENDPOINT_MAX); 1732 return -EINVAL; 1733 } 1734 rx_mask = GENMASK(max - 1, rx_base); 1735 1736 /* Our TX is an IPA consumer */ 1737 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1738 tx_mask = GENMASK(max - 1, 0); 1739 1740 ipa->available = rx_mask | tx_mask; 1741 1742 /* Check for initialized endpoints not supported by the hardware */ 1743 if (ipa->initialized & ~ipa->available) { 1744 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1745 ipa->initialized & ~ipa->available); 1746 ret = -EINVAL; /* Report other errors too */ 1747 } 1748 1749 initialized = ipa->initialized; 1750 while (initialized) { 1751 u32 endpoint_id = __ffs(initialized); 1752 struct ipa_endpoint *endpoint; 1753 1754 initialized ^= BIT(endpoint_id); 1755 1756 /* Make sure it's pointing in the right direction */ 1757 endpoint = &ipa->endpoint[endpoint_id]; 1758 if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) { 1759 dev_err(dev, "endpoint id %u wrong direction\n", 1760 endpoint_id); 1761 ret = -EINVAL; 1762 } 1763 } 1764 1765 return ret; 1766 } 1767 1768 void ipa_endpoint_deconfig(struct ipa *ipa) 1769 { 1770 ipa->available = 0; /* Nothing more to do */ 1771 } 1772 1773 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1774 const struct ipa_gsi_endpoint_data *data) 1775 { 1776 struct ipa_endpoint *endpoint; 1777 1778 endpoint = &ipa->endpoint[data->endpoint_id]; 1779 1780 if (data->ee_id == GSI_EE_AP) 1781 ipa->channel_map[data->channel_id] = endpoint; 1782 ipa->name_map[name] = endpoint; 1783 1784 endpoint->ipa = ipa; 1785 endpoint->ee_id = data->ee_id; 1786 endpoint->channel_id = data->channel_id; 1787 endpoint->endpoint_id = data->endpoint_id; 1788 endpoint->toward_ipa = data->toward_ipa; 1789 endpoint->data = &data->endpoint.config; 1790 1791 ipa->initialized |= BIT(endpoint->endpoint_id); 1792 } 1793 1794 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1795 { 1796 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1797 1798 memset(endpoint, 0, sizeof(*endpoint)); 1799 } 1800 1801 void ipa_endpoint_exit(struct ipa *ipa) 1802 { 1803 u32 initialized = ipa->initialized; 1804 1805 while (initialized) { 1806 u32 endpoint_id = __fls(initialized); 1807 1808 initialized ^= BIT(endpoint_id); 1809 1810 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1811 } 1812 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1813 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1814 } 1815 1816 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1817 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1818 const struct ipa_gsi_endpoint_data *data) 1819 { 1820 enum ipa_endpoint_name name; 1821 u32 filter_map; 1822 1823 if (!ipa_endpoint_data_valid(ipa, count, data)) 1824 return 0; /* Error */ 1825 1826 ipa->initialized = 0; 1827 1828 filter_map = 0; 1829 for (name = 0; name < count; name++, data++) { 1830 if (ipa_gsi_endpoint_data_empty(data)) 1831 continue; /* Skip over empty slots */ 1832 1833 ipa_endpoint_init_one(ipa, name, data); 1834 1835 if (data->endpoint.filter_support) 1836 filter_map |= BIT(data->endpoint_id); 1837 } 1838 1839 if (!ipa_filter_map_valid(ipa, filter_map)) 1840 goto err_endpoint_exit; 1841 1842 return filter_map; /* Non-zero bitmask */ 1843 1844 err_endpoint_exit: 1845 ipa_endpoint_exit(ipa); 1846 1847 return 0; /* Error */ 1848 } 1849